stata

Group sequential designs

Why wait until you finish collecting data to analyze the results of your clinical trial?

Stata's **gsbounds** and **gsdesign** commands calculate efficacy- and futility-stopping boundaries, compute sample sizes for interim and final analyses, graph the stopping boundaries for your trial, and more.

Hypothesis tests	 Stopping boundaries
One-sample mean	Classical O'Brien–Fleming
 Two-sample means 	 Classical Pocock
 One-sample proportion 	 Classical Wang–Tsiatis
 Two-sample proportions 	Error-spending O'Brien–Fleming-style
 Log-rank test of survivor functions 	 Error-spending Pocock-style
 Add your own methods 	 Error-spending Kim–DeMets
 Automatic and customizable tables and graphs 	 Error-spending Hwang–Shih–de Cani

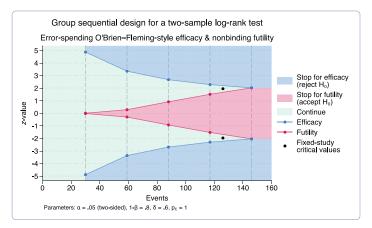
Stopping boundaries

gsbounds calculates efficacy and futility bounds based on the number of looks, the desired overall type I error, and the desired power.

For instance, calculate O'Brien–Fleming efficacy and futility bounds for a study with 5 looks, the default power of 0.8, and a type I error of 0.05.

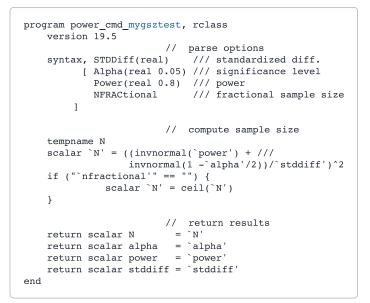
. gsbounds, nlooks(5) efficacy(errobfleming) futility(errobfleming)

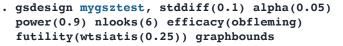
roup	sequenti	ai boundari	es				
		r-spending r-spending				ding	
-	paramete: alpha = 0 power = 0	0.0500 (tw	no-sided)				
	ratio =	1.1618					
nto.	Lacro						
		it. values	= ±1.9600				
'ixed-	study cr.	it. values s and p-val			uential de	sign	
'ixed-	study cr.	s and p-val			·	sign Futility Upper	p-value
'ixed-	study cr. al values Info.	s and p-val	ues for a	group seq		Futility	
'ixed- Critic Look	study cr al values Info. frac.	s and p-val Lower	Lues for a Efficacy Upper 4.8769	group seq p-value	Lower	Futility Upper 0.0130	0.9896
'ixed- Critic Look	study cr. al value: Info. frac. 0.20	s and p-val Lower -4.8769	Lues for a Efficacy Upper 4.8769 3.3570	group seq p-value 0.0000 0.0008	Lower -0.0130 -0.2929	Futility Upper 0.0130 0.2929	0.9896
'ixed- Critic Look	study cr. al values Info. frac. 0.20 0.40	Lower -4.8769 -3.3570 -2.6803	Lues for a Efficacy Upper 4.8769 3.3570 2.6803	p-value 0.0000 0.0008 0.0074	Lower -0.0130 -0.2929 -0.9245	Futility Upper 0.0130 0.2929 0.9245	0.9896 0.7696 0.3552

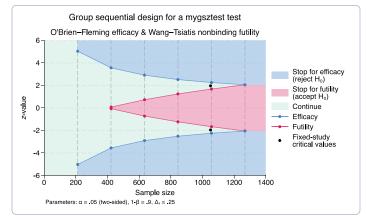

Note: Critical values are for z statistics; otherwise, use p-value boundaries.

Sample-size determination

gsdesign computes efficacy and futility boundaries and provides sample sizes at each look for a variety of tests.


Compute the required number of events for each look, and graph the O'Brien–Fleming efficacy and futility bounds for the log-rank test comparing the survivor functions of two groups and assuming a hazard ratio (effect size) of 0.6.


. gsdesign logrank, hratio(0.6) nlooks(5)
efficacy(errobfleming) futility(errobfleming)
graphbounds



Add your own methods

In addition to gsdesign's built-in methods, you can add your own methods to compute the required sample size such as when you use the simulate command to compute the sample size by simulation. All you need to do is write a program that computes sample size, and gsdesign will do the rest for you.

Perform analyses using point and click

You can perform your analyses interactively by typing the commands or by using a point-and-click GUI available via the **PSS** Control Panel.

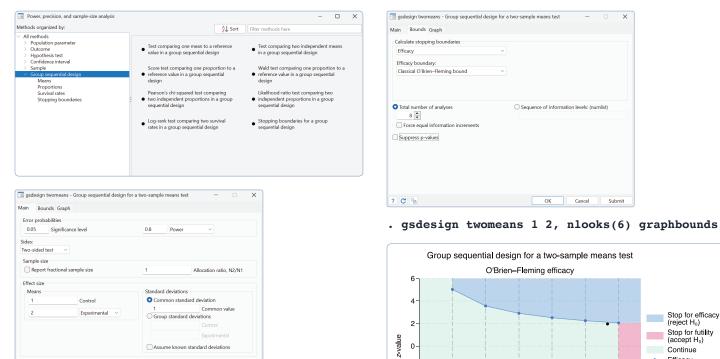
-2

-4

5

10

15


Parameters: $\alpha = .05$ (two-sided), $1 \cdot \beta = .8$, $\delta = 1$, $\mu_1 = 1$, $\sigma = 1$

20 25

Sample size

30

35

Stop for futility (accept H₀)

Fixed-study critical values

Continue ---- Efficacy

.

40

stata.com/gsd

? C 🖹 OK Cancel Submit