
stata

Bayesian model averaging

Uncertain which predictors to include in your regression model? Would you like to account for this uncertainty in your anaysis? Want to learn about influential models and important predictors?

Stata's Bayesian model averaging (BMA) suite can help.

- Model choice, inference, and prediction
- Influential models using posterior model probabilities (PMPs)
- Important predictors using posterior inclusion probabilities (PIPs)
- Uniform, binomial, and beta-binomial model priors
- Many g-priors: fixed, robust, hyper-g, ...
- Posterior inference, including credible intervals, for coefficients and predictions
- Jointness measures for pairs of predictors
- Variable-inclusion maps
- Predictive performance using log predictive-score (LPS)

And more

Stata's **bma** suite performs BMA, which combines results from multiple candidate models weighted by models' probabilities given the observed data. This leads to more reliable inference and prediction that accounts for model uncertainty.

BMA workflow

Fit BMA linear regression

. bmaregress y x1-x100

Save BMA simulation results

. bmaregress, saving(bmamcmc)

Check BMA convergence

. bmagraph pmp

Identify influential models by using PMP

. bmastats models

Identify important predictors by using PIP

. bmastats pip x10-x20

Visually explore important predictors by producing variable-inclusion maps

. bmagraph varmap

Explore model-size distributions

- . bmastats msize
- . bmagraph msize

Simulate posterior distributions of model parameters

. bmacoefsample, saving(bmacoef)

Obtain posterior summaries of model parameters

. bayesstats summary

Plot posterior distributions of coefficients

. bmagraph coefdensity {x1} {x2}

Generate predictions and predictive credible intervals

- . bmapredict ypmean, mean
- . bmapredict y_cril y_criu, cri

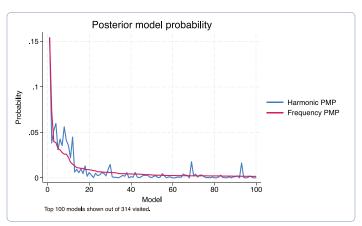
Compare predictive performance of BMA models using LPS

. bmastats lps bmal bma2 if testsample == 1

BMA linear regression

Fit a BMA linear regression of **y** on **x1** through **x40** to explore 2^{40} potential models. Use the default **Beta-binomial(1, 1)** model prior uniform over the model size and the **Hyper-g(3)** prior for the *g* parameter of Zellner's *g* prior. Save simulation results, specify a random-number seed for reproducibility, and display results only for predictors with a PIP of at least 0.1.

pipcutoff(0		prior(hyperg	3) saving(bm	nameme) r:	seed(18)		
Burn-in Simulation Computing mod		ities					
Bayesian mode Linear regres MC3 and adapt	sion	Ling		No. o:	f obs f predictors Groups Always f models c CPMP >= .9	=	200 40 40 0 314
Cons.: Non Coef.: Zel	a-binomial() informative lner's g er-g(3)	l, 1)		Mean 1 Burn- MCMC	nodel size	=	130 5.123 2,500 10,000 0.4854
sigma2: Non Sampling corr		.9207		Mean :	sigma2	=	1.023
У	Mean	Std. dev.			Group		PIP
x2	1.15429	.0728323			2		1
x10	-4.730936	.185496			10		1
x37	.032751	.0145241			37		.8906
x35	.0245493	.0189709			35		.6767
x22	.0258066	.0331922			22		.414
	.0092896	.0150387			34		.3072
x34							
x34 x39	.0060078	.0132044			39		.1943
	.0060078 .0026092	.0132044 .0074414			39 40		.1943 .1289
x39 x40 Always	.0026092	.0074414			40		.1289
x39	.0026092 .5235217 ient posteri	.0074414 .0787887		estimated	4 0 0		
x39 x40 Always _cons Note: Coeffic models.	.0026092 .5235217 ient posteri prior is us	.0074414 .0787887 ior means an	ls.		4 0 0		.1289
x39 x40 Always cons Note: Coeffic models. Note: Default	.0026092 .5235217 ient posteri prior is us	.0074414 .0787887 ior means an sed for mode PIP less th	ls. an .1 not sho	wn.	4 0 0	inte	.1289


bmaregress explored 314 models with an average model size of 5.123. Predictors **x2** and **x10** with PIPs of 1 were included in essentially all considered models. And roughly 90% of the models included predictor **x37**. There are also 32 predictors with a PIP less than 0.1, which are not shown in the output.

Because we specified a random prior for the *g* parameter, we also see the posterior summaries for it and the shrinkage parameter, which is g/(g + 1). The shrinkage is close to 1, so there is little shrinkage of coefficients toward 0 in this model.

Posterior model probabilities (PMPs)

Check BMA convergence, and explore the number of models with high PMP

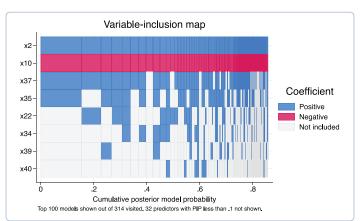
. bmagraph pmp

Explore influential models ranked by their PMPs

view bmamodels.s	mcl X						
					Dialog 🔻	Also see 🔻	Jump to
. bmastats mode	.1.				Dialog +	AISO See +	Jump to
. DMASTATS MODE	215						
Computing mode:	l probabil	ities					
Nodel summary		Number of					
			Visited = 314				
		R	eported = 5	•			
	Freque	ncy PMP	Model size	-			
Rank				-			
1		.154 .0734	4				
2		.0734	4				
4		.0389	5				
5		.0323	6				
Variable-inclu	sion summa	iry					
	Rank	Rank	Rank	Rank	Rank		
	1	2	3	4	5		
x2	x	x	x	x	x		
×10	x	x	×	x	×		
x35 x37	x		x	x	x		
x37 x22	x	x x	x	x x	x x		
x22 x39		^	x	~	^		
x34			~		x		
agand.							
Legend: x - estimated	ł						

By default, **bmastats models** shows the top 5 models ranked by their PMP, but we can specify the **top()** option to see more models. The model with the highest PMP of 0.154 includes the predictors **x2**, **x10**, **x35**, and **x37**. The model with the next-highest PMP of 0.0734 includes all the same predictors, except that **x22** is included instead of **x35**. The remaining listed models have similar PMPs below 0.05.

Posterior inclusion probabilities (PIPs)


Identify important predictors

	TUSTOI	1 pr	obabi.	шту	(PIP)
No. of obs		=	200		
No. of predic	tors	=	40		
G	roups	=	40		
	lways		0		
	orted		4		
No. of models Mean model si					
		P	IP	Gro	oup
		Ρ		Gro	_
x2		P	1	Gro	2
x10			1 1	Gro	2 10
		P .89	1 1	Gro	2
x10			1 1 06	Gro	2 10
x10 x37		.89	1 1 06	Gro	2 10 37

Note: 36 predictors with PIP less than .5 not shown.

Variable-inclusion maps

. bmagraph varmap, pipcutoff(0.1)

Jointness measures

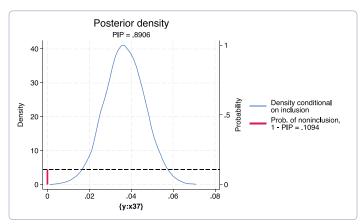
Explore jointness for pairs of predictors

. bmastats jointness Variables: x37 x22	x37 x22
	Jointness
Doppelhofer-Weeks Ley-Steel type 1 Ley-Steel type 2 Yule's Q Modified Yule's Q	.8903163 .4228378 .7326153 .4179109 .4173874
Notes: Using frequenc thresholds	y PMPs. See

Posterior summaries: Credible intervals

Simulate posterior distributions of model parameters, including regression coefficients

. bmacoefsample, saving(coefmcmc) rseed(18)


Obtain posterior summaries, including posterior means and credible intervals

view bmacri.smcl	×					
-					Dialog • Als	o see 🕶 🛛 Jump
bayesstats s	summary {x2 ;	x10}				
osterior summ	nary statist:	ics		MCMC sa	mple size =	10,000
osterior summ	nary statist:	ics		MCMC sa	mple size =	10,000
osterior summ	nary statist:	ics		MCMC sa	·	10,000
osterior summ	nary statist: Mean	ics Std. dev.	MCSE	MCMC sa Median	·	tailed
	-		MCSE		Equal-	tailed

Coefficient posterior density plots

Plot posterior density for coefficient of predictor x37

. bmagraph coefdensity {x37}

And much more

Generate posterior predictive means

. bmapredict ypmean, mean

Generate posterior predictive credible intervals

. bmapredict y_cril y_criu, cri

Check the model's performance

. bmastats lps if testsample == 1

stata.com/bma

© 2025 StataCorp LLC Stata is a registered trademark of StataCorp LLC 4905 Lakeway Drive, College Station, TX 77845, USA