The Elements of STATA

Numbers

A number may contain a sign, an integer part, a
decimal point, a fraction part, an e or E, and a
signed integer exponent. Numbers may not contain
commas; for example, the number 1,024 must be typed
as 1024 (or 1024. or 1024.0 or ...). The following
are examples of valid numbers:

5

-5

5.2

oD
5.2e+2
5.2e-2

A number can also take on the special value
"missing", denoted by a single period (.). You may
specify a missing value any place you may specify a
number. Do not place the period in double quotes
or STATA will interpret it as a string. Missing
values differ from ordinary numbers in one respect:
any arithmetic operation on a missing value yields
a missing value.

Technical Note: Numbers can be stored in one of
four variable types: int, lomg, float (the
default), or double. ints are stored in 2 bytes,
longs and floats in 4 bytes, and doubles in 8
bytes. ints may contain any number between -32,768
and 32,766 inclusive, and missing values are stored
as 32,767. 1longs may contain any number between
-2,146 ,483,648 and 2,147,483 ,646 inclusive, and
missing values are stored as 2,147 ,483,647. floats
may contain any number between +/-10"-37 and
+/-10"37, and missing values are stored as 27128,
doubles may contain any number between +/-107-99

- &

Elements

and +/-10799, and missing values are stored as
27333,

Do not confuse the term integer, which is a
characteristic of a number, with int, which is a
storage type. For instance, 5 is an integer no
matter how it stored. Thus if you read that an
argument is required to be an integer that does not
mean that it must be stored as an int.

Names

A name is a string of ome to eight letters (A-Z and
a-z), digits (0-9), and underscore (_). STATA
reserves the names double, float, if, im, int,
long, using, with, _all, _b, _coef, _n, N, _pi,
and _rc. You may not use these reserved names for
your variables. The first character of a name must
be either a letter or an underscore. We recommend,
however, that you do not begin your variable names
with an underscore. All STATA built-in variables
begin with an underscore, and we reserve the right
to incorporate new _variables freely.

STATA respects case, that is, myvar, Myvar, and
MYVAR are distinct names in STATA.

Raw Data

Raw data (data) is a rectangular table of numeric
values where each row is an observation on all the
variables and each column contains all the
observations on a single variable. Observations
are numbered sequentially from 1 to _N. The
following example of data contains the first five
odd and the first five even numbers:

Elements

odd even
1. 1 2
2, 3 4
3. 5 6
4, 7 8
5. 9 10

The observations are numbered 1 to 5 and the
variables are named odd and even.

Cross—Product

A data set can be stored as a cross-product (xp)
rather than as data. Define X to be a raw data
matrix augmented on the left with a system variable
(_cons) every element of which is equal to one.

The xp form of this data is the matrix inner
product X°X., For the example above, the
corresponding xp form is:

_cons odd even

1. 5 24 29
2. 24 156 180
3. 29 180 209

Several STATA commands, such as regress and
correlate, execute more rapidly if the data set is
stored in xp form. In addition, STATA can process
a data set with an unlimited number of observations
if the data set is stored in xp form. The convert
command can be used to transform data format data
sets to xp data sets. Note that not all STATA
commands can be used on xp data sets. See the
description of the convert command for more
details.

It is also possible to enter a cross—product
directly into STATA (using input or infile) and
then to direct STATA to interpret the data as a
cross-product via the set contents xp command. If

= 5 =

Elements

you use this method, you must be careful that the
data you input conforms exactly to the description
of X°X given above. For example, the value in the
first row and first column must contain the number
of observations in the data set. When you input or
infile your data, you may give the first variable
any name except _coms. The set contents xp command
automatically renames the first variable _coms if
the data set meets the requirements of a cross-—
product. _coms is the special name STATA reserves
for the first column of a cross-product. (Note: As
a convenience, STATA allows you to set one, but not
both, of a pair of corresponding of f-diagonal
elements of a cross—product to missing value. The
non-missing value will be automatically copied over
the missing value by set comtents xp.)

Technical Note: When STATA creates a cross—
product, it stores all the data as doubles. If you
create your own cross—product directly, we
recommend that you do likewise. However, you may
use any variable types you wish.

Language Syntax

With few exceptions, the basic language syntax is:

[by varlist:] command [varlist] [=exp]
[if exp] [im range] [, options]

where square brackets denote optional qualifiers.
In this diagram, "varlist" denotes a list of
variable names, "command" denotes a STATA command,
"exp" denotes an algebraic expression, "range"
denotes an observation range, and "options" denotes
a list of options.

Most commands that take a subsequent varlist do not
require one to be explicitly typed. If no varlist
appears, these commands assume a varlist of _all,

- 7 =

Elements

the STATA shorthand for indicating all the
variables in the data set. In commands that alter
or destroy data, STATA always requires that the
varlist be specified explicitly.

The by varlist: prefix and the if exp and im range
qualifiers are described completely in the Command
Reference section of this manual. Briefly, the

by varlist: prefix causes STATA to repeat a command
for each subset of the data for which the values of
the variables in the varlist are equal. The if exp
qualifier restricts the scope of the command to
those observations for which the value of the
expression is non-zero. The im range qualifier
restricts the scope of the command to a specific
observation range.

The =exp phrase serves two different functions. In
the generate and replace commands, =exp specifies
the values to be assigned to a variable. In other
STATA commands, =exp is used to indicate the weight
to attach to each observation. In these latter
commands, failing to specify a weight is equivalent
to specifying =1.

Many commands take command specific options. These
are described along with each command in the
Command Reference section of this manual.

STATA treats any line starting with a "*"
comment and ignores it.

as a

Elements
Abbreviation Rules

Command, variable, and option names may be
abbreviated to the shortest string of characters
that uniquely identifies them. For instance, there
are four commands that start with the letter "r":
regress, rensme, replace, and run. Therefore
regress may be abbreviated as regres, regre, regr,
or reg. It may not be abbreviated as re since this
string does not distinguish regress from rename and

replace.

There is one exception to the abbreviation rule:

if a command or option alters or destroys data,
then the command or option name must be spelled out
completely. For example, the drop command may not
be abbreviated.

varlists

A varlist is a list of variable names. The
variable names in a varlist refer exclusively
either to new (not yet created) variables or to
existing variables.

In lists of existing variable names, variable names
may be repeated in the varlist. The variable names
may also be abbreviated. A "*" may be appended to
a partial variable name to indicate all variables
that start with that letter combination. For
example, if the variables poplt5, pop5tob, and
popl8p are in your data set, you may type pop* as a
shorthand way to refer to all three variables. You
may also place a dash (-) between two variable
names to specify all the variables stored between
the two listed variables inclusive. (The describe
command lists variables in the order in which they
are stored.)

In lists of new variables, no variable names may be

-9 =

Elements

repeated or abbreviated in the varlist. You may
specify a dash (-) between two variable names that
have the same letter prefix and that end in
numbers. This form of the dash notation indicates
a range of variables in ascending numerical order.
For instance, typing "v1-v4" is equivalent to
typing "vl v2 v3 v4".

In lists of new variables, you may type the name of
a storage type before the variable name to force a
storage type other than the default. The storage
types are int, long, float (the default), and
double. For instance, the list "varl int var2
var3" specifies that varl and var3 are to be given
the default storage type, and var2 is to be stored
as an int. You may use parentheses to bind a list
of variable names. The list "var 1 int(var2 var3)"
specifies that both var2 and var3 are to be stored
as ints.

In lists of new variables, you may also append a
colon and a value label name. For instance, "varl
var2:myfmt" specifies that the variable var2 is to
be associated with the value labels stored under
the name myfmt. This has the same effect as typing
the list "varl var2" and then subsequently giving
the command

label values varZ myfmt

The advantage of specifying the value label
association with the colon notation is that the
value labels can then be used by the current
command. (See the descriptions of the input and
infile commands for further explanations of using
the colon notation.)

- 10 -

Elements

Expressions

STATA includes a complete expression parser.
Algebraic expressions are specified in a natural
way using the standard rules of hierarchy. For
instance, myvar+2/othvar is interpreted as
myvar+(2/othvar). You may use parentheses freely
to force a different order of evaluation.

Operators

The arithmetic operators in STATA are:

+ (addition), — (subtraction), * (multiplication),
/ (division), ~ (raise to a power), and the prefix
— which indicates negation. Any arithmetic
operation on a missing value or any impossible
arithmetic operation (such as division by zero)
yields a missing value.

The relational operators in STATA are: > (greater
than), < (less than), >= (greater than or equal),
<= (less than or equal), == (equal), and ™= (not
equal). Note that the relational operator for
equality is a pair of equal signs. This convention
distinguishes relational equality from the =exp
phrase.

Relational expressions are either true (denoted by
1) or false (denoted by 0). Relational operations
are performed after all arithmetic operations.
Thus the expression (3>2)+1 is equal to 2 while
3>2+1 is equal to 0. Missing values may appear in
relational expressions. The expression x==. 1is
true (equal to 1) if x is missing and false (equal
to 0) otherwise. A missing value is greater than
any non-missing value.

The logical operators in STATA are: & (and),
| (or), and ~ (not). On input, the logical
operators interpret any non-zero value (including

- 11 -

Elements

missing value) as true and zero as false. Like the
relational operators, they return the value 1 for
true and 0 for false. For example, the expression
5 & . is equal to 1. Logical operations, except
for =, are performed after all arithmetic and
relational operations; the expression 3>2 & 5>4 is
interpreted as (3>2)&(5>4) and is equal to 1.

The order of evaluation (from first to last) of all
the operators is: - (negation), ~, =, /, %,
- (subtraction), +, ~=, >, <, <=, >=, ==, &, |.

Functions

Functions may appear in expressions. Functions are
indicated by the function name, an open
parenthesis, an expression or expressions separated
by commas, and a close parenthesis. For example,
the square root of a variable named x is specified
by typing sqrt(x). All functions return missing
values when given missing values as arguments or
when the result is undefined.

The mathematical functions in STATA are: abs(x)
(absolute value), atan(x) (arc-tangent returning
radians), cos(x) (cosine of radians), exp(x)
(exponent), mod(x,y) (the modulus of x with respect
to y), sin(x) (sine of radians), and sqrt(x)
(square root).

The statistical functions in STATA are:
chiprob(df,x) (the cumulative chi-square with df
degrees of freedom and value x), fprob(dfl,df2,f)
(the cumulative F-distribution with dfl numerator
and df2 denominator degrees of freedom), invnorm(p)
(the inverse cumulative normal), normprob(z) (the
cumulative normal), and tprob(df,t) (Student’s
cumulative t-distribution with df degrees of
freedom).

- 12 -

Elements

STATA includes a random number function, uniform(),
which takes no arguments (although you must include
the open and close parentheses). It produces
uniformly distributed pseudo-random numbers over
the open interval zero to one. Every time STATA is
started, uniform() produces the same sequence of
numbers. The seed value, and hence the sequence of
pseudo-random numbers, can be changed with the set
seed command.

STATA also includes the following special
functions:

autocode(x,ng,xmin,xmax) partitions the interval
from xmin to xmax into ng equal length intervals
and returns the upper bound of the interval
which contains x. This function is an automated
version of recode() (see below). The algorithm
for autocode is

if (x==. | ng==. | xmin==. | xmax==. | ng<=0
| xmin>=xmax) then return .
otherwise
for i=1 to ng-l1
xmap=xmin+i*(xmax-xmin)/ng
if x<=xmap then return xmap
end
otherwise
return xmax

cond(x,a,b) returns a if x evaluates to true
(not 0) and b if x evaluates to false (0). For
example,

generate maxinc=cond(incl>inc2,incl,inc2)

creates the variable maxinc as the maximum of
incl and inc2.

float(x) returns the value of x rounded to float.
Although you may store your variables as double,

- |3 =

Elements

float, long, or imt, STATA converts all numbers
to double before performing any calculations.

As a consequence, difficulties can arise when
comparing numbers that have no finite digit
binary representation. For example, if the
variable x is stored as a float and contains the
value 1.1 (a repeating decimal in binary) the
expression x==1.1 will evaluate to false because
the literal 1.1 is the double representation of
1.1 which is different than the float
representation stored in x. The expression
x==float(1l.1l) will evaluate to true, because the
float function converts the literal 1.1 to its
float representation before it is compared to x.

group(x) creates a categorical variable that
divides the data into x as near equally sized
subsamples as possible, numbering the first
group 1, the second 2, and so on.

int(x) returns the integer obtained by truncating
X

max(x1,x2,...,xn) returns the maximum of x1, x2,
seey Xn., Missing values are ignored. If all
the arguments are missing, missing is returned.

min(x1,x2,...,xn) returns the minimum of x1, x2,
eess Xn, Missing values are ignored. If all
the arguments are missing, missing is returned.

recode(x,x1,x2,...,xn) returns missing if x is
missing, x1 if x<=x1, x2 if x<=x2, ..., or xn if
is greater thamn x1, x2, ... , x(n-1).

sign(x) returns missing if x is missing, -1 if x<0,
0 if x==0, and 1 if x>0,

sum(x) returns the running sum of x, treating
missing values as zero. For example, following
the command

= 1% =

Elements
generate y = sum(x)

the i-th observation on y contains the sum of
the first through i-th observations on x.

System Variables (_variables)

Expressions may also contain _variables (pronounced
"underscore variables"). These are built-in,
system variables that are created and updated by
STATA. They are called _variables because their
names all begin with the underscore character ().

The _variables in STATA are:

_coeflvarname] (synonym: _blvarnamel) contains the
value (to machine precision) of the coefficient
on varname from the last most recent regression.

_cons is always equal to the number 1.
_n contains the number of the current observation.

_N contains the total number of observations in the
data set.

_pi contains the value of pi to machine precision.

_pred contains the predicted values of the
dependent variable from the most recent
regression. The predictions are formed using
the current values of the regressors which may
not be the same as the values they contained
when the regression was run. As a result, _pred
can be used to calculate forecasts and other
out-of-sample predictions. For instance, you
may use one data set, run a regression, then use
another data set and make predictions using
_pred.

- 15 =

Elements

_rc contains the value of the return code from the
most recent capture command.

Explicit Subscripting

Individual observations on variables can be
referenced by subscripting the variables. Explicit
subscripts are specified by following a variable
name with square brackets that contain an
expression. The result of the subscript expression
is truncated to an integer and the value of the
variable for the indicated observation is returned.
If the value of the subscript expression is less
than 1 or greater than _N, a missing value is
returned.

As an example, the lagged value of a variable x can
be generated by

generate xlag = x[_n-1]

The first observation on xlag is equal to missing
value.

When a command is preceded by the by varlist:
prefix, subscript expressions and the _variables _nm
and _N are evaluated relative to the subset of the
data currently being processed. For example, in
the data set

bvar oldvar

1. 1 1.1
2. 1 2.1
3. 1 3.1
4, 2 4.1
5. 2 5.1

the command
by bvar: gen newvar=oldvar[1]

- 16 -

Elements

will produce

bvar oldvar newvar
1. 1 1.1 1.1
2, 1 2.1 1.1
3. 1 3.1 1.1
4, 2 4.1 4.1
5. 2 5.1 4.1

Label Values

You may use labels in an expression in place of the
numeric values with which they are associated. To
use a label in this way, type the label in double
quotes followed by a colon and the name of the
value label. For instance, if the value label
yesno associates the label "yes" with 1 and the
label "no" with 0, then "yes™:yesno is evaluated as
1. If the double quoted label is not defined in
the indicated value label, or the value label
itself is not found, a missing value is returned.
Thus, the expression "maybe™:yesno is evaluated as
a missing value.

- 17 -

