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Description

arfima estimates the parameters of autoregressive fractionally integrated moving-average (ARFIMA)
models.

Long-memory processes are stationary processes whose autocorrelation functions decay more
slowly than short-memory processes. The ARFIMA model provides a parsimonious parameterization of
long-memory processes that nests the autoregressive moving-average (ARMA) model, which is widely
used for short-memory processes. By allowing for fractional degrees of integration, the ARFIMA model
also generalizes the autoregressive integrated moving-average (ARIMA) model with integer degrees of
integration. See [TS] arima for ARMA and ARIMA parameter estimation.

Quick start
Autoregressive fractionally integrated moving-average model for y with regressor x using tsset data

arfima y x

Add autoregressive components of orders 1 and 2 and a moving-average component of order 4
arfima y x, ar(1 2) ma(4)

ARIMA for y with autoregressive components of orders 1 and 2
arfima y, ar(1 2) smemory

Menu
Statistics > Time series > ARFIMA > ARFIMA models
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http://stata.com
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Syntax

arfima depvar
[

indepvars
] [

if
] [

in
] [

, options
]

options Description

Model

noconstant suppress constant term
ar(numlist) autoregressive terms
ma(numlist) moving-average terms
smemory estimate short-memory model without fractional integration
mle maximum likelihood estimates; the default
mpl maximum modified-profile-likelihood estimates
constraints(numlist) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim or robust

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables
coeflegend display legend instead of statistics

You must tsset your data before using arfima; see [TS] tsset.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, collect, fp, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant; see [R] Estimation options.

ar(numlist) specifies the autoregressive (AR) terms to be included in the model. An AR(p), p ≥ 1,
specification would be ar(1/p). This model includes all lags from 1 to p, but not all lags need
to be included. For example, the specification ar(1 p) would specify an AR(p) with only lags 1
and p included, setting all the other AR lag parameters to 0.

ma(numlist) specifies the moving-average terms to be included in the model. These are the terms for
the lagged innovations (white-noise disturbances). ma(1/q), q ≥ 1, specifies an MA(q) model, but
like the ar() option, not all lags need to be included.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/tstsset.pdf#tstsset
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
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smemory causes arfima to fit a short-memory model with d = 0. This option causes arfima to
estimate the parameters of an ARMA model by a method that is asymptotically equivalent to that
produced by arima; see [TS] arima.

mle causes arfima to estimate the parameters by maximum likelihood. This method is the default.

mpl causes arfima to estimate the parameters by maximum modified profile likelihood (MPL). The
MPL estimator of the fractional-difference parameter has less small-sample bias than the maximum
likelihood estimator when there are covariates in the model. mpl may only be specified when there
is a constant term or indepvars in the model, and it may not be combined with the mle option.

constraints(numlist); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification (robust) and that are derived from asymptotic theory (oim); see
[R] vce option.

Options vce(robust) and mpl may not be combined.

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), gtolerance(#), nonrtolerance(#), and from(init specs); see [R] Maxi-
mize for all options.

Some special points for arfima’s maximize options are listed below.

technique(algorithm spec) sets the optimization algorithm. The default algorithm is BFGS and
BHHH is not allowed. See [R] Maximize for a description of the available optimization algorithms.

You can specify multiple optimization methods. For example, technique(bfgs 10 nr) requests
that the optimizer perform 10 BFGS iterations and then switch to Newton–Raphson until convergence.

iterate(#) sets the maximum number of iterations. When the maximization is not going well,
set the maximum number of iterations to the point where the optimizer appears to be stuck and
inspect the estimation results at that point.

from(matname) allows you to specify starting values for the model parameters in a row vector.
We recommend that you use the iterate(0) option, retrieve the initial estimates from e(b),
and modify these elements.

The following options are available with arfima but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

https://www.stata.com/manuals/tsarima.pdf#tsarima
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions


4 arfima — Autoregressive fractionally integrated moving-average models

Remarks and examples stata.com

Long-memory processes are stationary processes whose autocorrelation functions decay more
slowly than short-memory processes. Because the autocorrelations die out so slowly, long-memory
processes display a type of long-run dependence. The autoregressive fractionally integrated moving-
average (ARFIMA) model provides a parsimonious parameterization of long-memory processes. This
parameterization nests the autoregressive moving-average (ARMA) model, which is widely used for
short-memory processes.

The ARFIMA model also generalizes the autoregressive integrated moving-average (ARIMA) model
with integer degrees of integration. ARFIMA models provide a solution for the tendency to overdifference
stationary series that exhibit long-run dependence. In the ARIMA approach, a nonstationary time series
is differenced d times until the differenced series is stationary, where d is an integer. Such series
are said to be integrated of order d, denoted I(d), with not differencing, I(0), being the option for
stationary series. Many series exhibit too much dependence to be I(0) but are not I(1), and ARFIMA
models are designed to represent these series.

The ARFIMA model allows for a continuum of fractional differences, −0.5 < d < 0.5. The
generalization to fractional differences allows the ARFIMA model to handle processes that are neither
I(0) nor I(1), to test for overdifferencing, and to model long-run effects that only die out at long
horizons.

Technical note

An ARIMA model for the series yt is given by

ρ(L)(1− L)dyt = θ(L)εt (1)

where ρ(L) = (1 − ρ1L − ρ2L2 − · · · − ρpLp) is the autoregressive (AR) polynomial in the lag
operator L; Lyt = yt−1; θ(L) = (1 + θ1L + θ2L

2 + · · · + θpL
p) is the moving-average (MA) lag

polynomial; εt is the independent and identically distributed innovation term; and d is the integer
number of differences required to make the yt stationary. An ARFIMA model is also specified by (1)
with the generalization that −0.5 < d < 0.5. Series with d ≥ 0.5 are handled by differencing and
subsequent ARFIMA modeling.

Because long-memory processes are stationary, one might be tempted to approximate the processes
with many terms in an ARMA model. But these approximate models are difficult to fit and to interpret
because ARMA models with many terms are difficult to estimate and the ARMA parameterization has
an inherent short-run nature. In contrast, the ARFIMA model has the d parameter for the long-run
dependence and ARMA parameters for short-run dependence. Using different parameters for different
types of dependence facilitates estimation and interpretation, as discussed by Sowell (1992a).

Technical note

An ARFIMA model specifies a fractionally integrated ARMA process. Formally, the ARFIMA model
specifies that

yt = (1− L)−d{ρ(L)}−1θ(L)εt

The short-run ARMA process ρ(L)−1θ(L)εt captures the short-run effects, and the long-run effects
are captured by fractionally integrating the short-run ARMA process.

http://stata.com
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Essentially, the fractional-integration parameter d captures the long-run effects, and the ARMA
parameters capture the short-run effects. Having separate parameters for short-run and long-run
effects makes the ARFIMA model more flexible and easier to interpret than the ARMA model. After
estimating the ARFIMA parameters, the short-run effects are obtained by setting d = 0, whereas the
long-run effects use the estimated value for d. The short-run effects describe the behavior of the
fractionally differenced process (1−L)dyt, whereas the long-run effects describe the behavior of the
fractionally integrated yt.

ARFIMA models have been useful in fields as diverse as hydrology and economics. Long-memory
processes were first introduced in hydrology by Hurst (1951). Hosking (1981), in hydrology, and
Granger and Joyeux (1980), in economics, independently discovered the ARFIMA representation of
long-memory processes. Beran (1994), Baillie (1996), and Palma (2007) provide good introductions
to long-memory processes and ARFIMA models.

Example 1: Mount Campito tree ring data

Baillie (1996) discusses a time series of measurements of the widths of the annual rings of a
Mount Campito Bristlecone pine. The series contains measurements on rings formed in the tree from
3436 BC to 1969 AD. Essentially, larger widths were good years for the tree and narrower widths
were harsh years.

We begin by plotting the time series.

. use https://www.stata-press.com/data/r18/campito
(Campito Mnt. tree ring data from 3435BC to 1969AD)

. tsline width, tlabel(-3435(500)1969, angle(45)) ysize(2)
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Good years and bad years seem to run together, causing the appearance of local trends. The local
trends are evidence of dependence, but they are not as pronounced as those in a nonstationary series.
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We plot the autocorrelations for another view:

. ac width, ysize(2)
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Bartlett's formula for MA(q) 95% confidence bands

The autocorrelations do not start below 1 but decay very slowly.

Granger and Joyeux (1980) show that the autocorrelations from an ARMA model decay exponentially,
whereas the autocorrelations from an ARFIMA process decay at the much slower hyperbolic rate. Box
et al. (2016) define short-memory processes as those whose autocorrelations decay exponentially fast
and long-memory processes as those whose autocorrelations decay at the hyperbolic rate. The above
plot of autocorrelations looks closer to hyperbolic than exponential.

Together, the above plots make us suspect that the series was generated by a long-memory process.
We see evidence that the series is stationary but that the autocorrelations die out much slower than a
short-memory process would predict.
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Given that we believe the data were generated by a stationary process, we begin by fitting the data
to an ARMA model. We begin by using a short-memory model because a comparison of the results
highlights the advantages of using an ARFIMA model for a long-memory process.

. arima width, ar(1/2) ma(1) technique(bhhh 4 nr)

(setting optimization to BHHH)
Iteration 0: Log likelihood = -18934.593
Iteration 1: Log likelihood = -18914.337
Iteration 2: Log likelihood = -18913.407
Iteration 3: Log likelihood = -18913.24
(switching optimization to Newton--Raphson)
Iteration 4: Log likelihood = -18913.214
Iteration 5: Log likelihood = -18913.208
Iteration 6: Log likelihood = -18913.208

ARIMA regression

Sample: -3435 thru 1969 Number of obs = 5405
Wald chi2(3) = 133686.46

Log likelihood = -18913.21 Prob > chi2 = 0.0000

OIM
width Coefficient std. err. z P>|z| [95% conf. interval]

width
_cons 42.45055 1.02142 41.56 0.000 40.44861 44.4525

ARMA
ar

L1. 1.264367 .0253199 49.94 0.000 1.214741 1.313993
L2. -.2848827 .0227534 -12.52 0.000 -.3294785 -.240287

ma
L1. -.8066007 .0189699 -42.52 0.000 -.8437811 -.7694204

/sigma 8.005814 .0770004 103.97 0.000 7.854896 8.156732

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

The estimated coefficients seem high in magnitude. We use estat aroots to investigate further.
. estat aroots

Eigenvalue stability condition

Eigenvalue Modulus

.9709661 .970966

.2934013 .293401

All the eigenvalues lie inside the unit circle.
AR parameters satisfy stability condition.

Eigenvalue stability condition

Eigenvalue Modulus

.8066007 .806601

All the eigenvalues lie inside the unit circle.
MA parameters satisfy invertibility condition.

The roots of the AR polynomial are 0.971 and 0.293, and the root of the MA polynomial is 0.807;
all of these are less than one in magnitude, indicating that the series is stationary and invertible
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but has a high level of persistence. See Hamilton (1994, 59) and [TS] estat aroots for details about
computing and interpreting the roots of the polynomials from the estimated ARIMA coefficients.

Below we estimate the parameters of an ARFIMA model with only the fractional difference parameter
and a constant.

. arfima width
Iteration 0: Log likelihood = -18918.219
Iteration 1: Log likelihood = -18916.84
Iteration 2: Log likelihood = -18908.508
Iteration 3: Log likelihood = -18908.508 (backed up)
Iteration 4: Log likelihood = -18908.508 (backed up)
Iteration 5: Log likelihood = -18907.44
Iteration 6: Log likelihood = -18907.42
Iteration 7: Log likelihood = -18907.283
Iteration 8: Log likelihood = -18907.279
Iteration 9: Log likelihood = -18907.279
Refining estimates:
Iteration 0: Log likelihood = -18907.279
Iteration 1: Log likelihood = -18907.279

ARFIMA regression

Sample: -3435 thru 1969 Number of obs = 5,405
Wald chi2(1) = 1864.44

Log likelihood = -18907.279 Prob > chi2 = 0.0000

width Coefficient Std. err. z P>|z| [95% conf. interval]

width
_cons 44.01432 9.174317 4.80 0.000 26.03299 61.99565

ARFIMA
d .4468888 .0103496 43.18 0.000 .4266038 .4671737

/sigma2 63.92927 1.229753 51.99 0.000 61.519 66.33955

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

The estimate of d is large and statistically significant. The relative parsimony of the ARFIMA model
is illustrated by the fact that the estimates of the standard deviation of the idiosyncratic errors are
about the same in the five-parameter ARMA model and the three-parameter ARFIMA model.

https://www.stata.com/manuals/tsestataroots.pdf#tsestataroots
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Let’s add an AR parameter to the above ARFIMA model:

. arfima width, ar(1)
Iteration 0: Log likelihood = -18910.997
Iteration 1: Log likelihood = -18910.949 (backed up)
Iteration 2: Log likelihood = -18908.158 (backed up)
Iteration 3: Log likelihood = -18907.248
Iteration 4: Log likelihood = -18907.233
Iteration 5: Log likelihood = -18907.233
Iteration 6: Log likelihood = -18907.233
Refining estimates:
Iteration 0: Log likelihood = -18907.233
Iteration 1: Log likelihood = -18907.233

ARFIMA regression

Sample: -3435 thru 1969 Number of obs = 5,405
Wald chi2(2) = 1875.35

Log likelihood = -18907.233 Prob > chi2 = 0.0000

width Coefficient Std. err. z P>|z| [95% conf. interval]

width
_cons 43.98774 8.685211 5.06 0.000 26.96504 61.01044

ARFIMA
ar

L1. .0063323 .0206959 0.31 0.760 -.0342309 .0468956

d .4432471 .0157617 28.12 0.000 .4123548 .4741394

/sigma2 63.92915 1.229754 51.99 0.000 61.51887 66.33942

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

That the estimated AR term is tiny and statistically insignificant indicates that the d parameter has
accounted for all the dependence in the series.

As mentioned above, there is a sense in which the main advantages of an ARFIMA model over an
ARMA model for long-memory processes are the relative parsimony of the ARFIMA parameterization
and the ability of the ARFIMA parameterization to separate out the long-run effects from the short-run
effects. If the true process was generated from an ARFIMA model, an ARMA model with many terms
can approximate the process, but the terms make estimation difficult and the lack of separate long-run
and short-run parameters complicates interpretation.

This example highlights the relative parsimony of the ARFIMA model. In the examples below, we
illustrate the advantages of having separate parameters for long-run and short-run effects.

Technical note

You may be wondering what long-run effects can be produced by a model for stationary processes.
Because the autocorrelations of a long-memory process die out so slowly, the spectral density becomes
infinite as the frequency goes to 0 and the impulse–response functions die out at a much slower rate.

The spectral density of a process describes the relative contributions of random components at
different frequencies to the variance of the process, with the low-frequency components corresponding
to long-run effects. See [TS] psdensity for an introduction to estimating and interpreting spectral
densities implied by the estimated parameters of parametric models.

https://www.stata.com/manuals/tspsdensity.pdf#tspsdensity
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Granger and Joyeux (1980) motivate ARFIMA models by noting that their implied spectral densities
are finite except at frequency 0 with 0 < d < 0.5, whereas stationary ARMA models have finite spectral
densities at all frequencies. Granger and Joyeux (1980) argue that the ability of ARFIMA models to
capture this long-range dependence, which cannot be captured by stationary ARMA models, is an
important advantage of ARFIMA models over ARMA models when modeling long-memory processes.

Impulse–response functions are the coefficients on the infinite-order MA representation of a process,
and they describe how a shock feeds though the dynamic system. If the process is stationary, the
coefficients decay to 0 and they sum to a finite constant. As expected, the coefficients from an ARFIMA
model die out at a slower rate than those from an ARMA model. Because the ARMA terms model
the short-run effects and the d parameter models the long-run effects, an ARFIMA model specifies
both a short-run impulse–response function and a long-run impulse–response function. When an
ARMA model is used to approximate a long-memory model, the ARMA impulse–response-function
coefficients confound the two effects.

Example 2

In this example, we model the log of the monthly levels of carbon dioxide above Mauna Loa,
Hawaii. To remove the seasonality, we model the twelfth seasonal difference of the log of the series.
This example illustrates that the ARFIMA model parameterizes long-run and short-run effects, whereas
the ARMA model confounds the two effects. (Sowell [1992a] discusses this point in greater depth.)

We begin by fitting the series to an ARMA model with an AR(1) term and an MA(2).

. use https://www.stata-press.com/data/r18/mloa, clear

. arima S12.log, ar(1) ma(2)

(setting optimization to BHHH)
Iteration 0: Log likelihood = 2000.9262
Iteration 1: Log likelihood = 2001.5484
Iteration 2: Log likelihood = 2001.5637
Iteration 3: Log likelihood = 2001.5641
Iteration 4: Log likelihood = 2001.5641

ARIMA regression

Sample: 1960m1 thru 1990m12 Number of obs = 372
Wald chi2(2) = 500.41

Log likelihood = 2001.564 Prob > chi2 = 0.0000

OPG
S12.log Coefficient std. err. z P>|z| [95% conf. interval]

log
_cons .0036754 .0002475 14.85 0.000 .0031903 .0041605

ARMA
ar

L1. .7354346 .0357715 20.56 0.000 .6653237 .8055456

ma
L2. .1353086 .0513156 2.64 0.008 .0347319 .2358853

/sigma .0011129 .0000401 27.77 0.000 .0010344 .0011914

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.
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All the parameters are statistically significant, and they indicate a high degree of dependence.

Below we nest the previously fit ARMA model into an ARFIMA model.

. arfima S12.log, ar(1) ma(2)
Iteration 0: Log likelihood = 2006.0757
Iteration 1: Log likelihood = 2006.0774 (backed up)
Iteration 2: Log likelihood = 2006.0775 (backed up)
Iteration 3: Log likelihood = 2006.0804
Iteration 4: Log likelihood = 2006.0805
Refining estimates:
Iteration 0: Log likelihood = 2006.0805
Iteration 1: Log likelihood = 2006.0805

ARFIMA regression

Sample: 1960m1 thru 1990m12 Number of obs = 372
Wald chi2(3) = 248.88

Log likelihood = 2006.0805 Prob > chi2 = 0.0000

S12.log Coefficient Std. err. z P>|z| [95% conf. interval]

S12.log
_cons .003616 .0012968 2.79 0.005 .0010743 .0061578

ARFIMA
ar

L1. .2160894 .101559 2.13 0.033 .0170373 .4151414

ma
L2. .1633916 .0516911 3.16 0.002 .062079 .2647042

d .4042573 .080545 5.02 0.000 .246392 .5621226

/sigma2 1.20e-06 8.84e-08 13.63 0.000 1.03e-06 1.38e-06

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

All the parameters are statistically significant at the 5% level. That the confidence interval for the
fractional-difference parameter d includes numbers greater than 0.5 is evidence that the series may be
nonstationary. Alternatively, we proceed as if the series is stationary, and the wide confidence interval
for d reflects the difficulty of fitting a complicated dynamic model with only 372 observations.

With the above caveat, we can now proceed to compare the interpretations of the ARMA and ARFIMA
estimates. We compare these estimates in terms of their implied spectral densities. The spectral density
of a stationary time series describes the relative importance of components at different frequencies.
See [TS] psdensity for an introduction to spectral densities.

Below we quietly refit the ARMA model and use psdensity to estimate the parametric spectral
density implied by the ARMA parameter estimates.

. quietly arima S12.log, ar(1) ma(2)

. psdensity d_arma omega1

The psdensity command above put the estimated ARMA spectral density into the new variable
d arma at the frequencies stored in the new variable omega1.

Below we quietly refit the ARFIMA model and use psdensity to estimate the long-run parametric
spectral density and then the short-run parametric spectral density implied by the ARFIMA parameter
estimates. The long-run estimates use the estimated d, and the short-run estimates set d to 0 (as is
implied by specifying the smemory option). The long-run estimates describe the fractionally integrated
series, and the short-run estimates describe the fractionally differenced series.

https://www.stata.com/manuals/tspsdensity.pdf#tspsdensity
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. quietly arfima S12.log, ar(1) ma(2)

. psdensity d_arfima omega2

. psdensity ds_arfima omega3, smemory

Now that we have the ARMA estimates, the long-run ARFIMA estimates, and the short-run ARFIMA
estimates, we graph them below.

. line d_arma d_arfima omega1, ylabel(, format(%3.1f)) name(lmem) nodraw

. line d_arma ds_arfima omega1, ylabel(, format(%3.1f)) name(smem) nodraw

. graph combine lmem smem, cols(1) xcommon
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The top graph contains a plot of the spectral densities implied by the ARMA parameter estimates
and by the long-run ARFIMA parameter estimates. As discussed by Granger and Joyeux (1980), the
two models imply different spectral densities for frequencies close to 0 when d > 0. When d > 0,
the spectral density implied by the ARFIMA estimates diverges to infinity, whereas the spectral density
implied by the ARMA estimates remains finite at frequency 0 for stable ARMA processes. This difference
reflects the ability of ARFIMA models to capture long-run effects that ARMA models only capture as
the parameters approach those of an unstable model.

The bottom graph contains a plot of the spectral densities implied by the ARMA parameter estimates
and by the short-run ARFIMA parameter estimates, which are the ARMA parameters for the fractionally
differenced process. Comparing the two plots illustrates the ability of the short-run ARFIMA parameters
to capture both low-frequency and high-frequency components in the fractionally differenced series. In
contrast, the ARMA parameters captured only low-frequency components in the fractionally integrated
series.

Comparing the ARFIMA and ARMA spectral densities in the two graphs illustrates that the additional
fractional-difference parameter allows the ARFIMA model to identify both long-run and short-run
effects, which the ARMA model confounds.

Technical note

As noted above, the spectral density of an ARFIMA process with d > 0 diverges to infinity as
the frequency goes to 0. In contrast, the spectral density of an ARFIMA process with d < 0 is 0 at
frequency 0.
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The autocorrelation function of an ARFIMA process with d < 0 also decays at the slower hyperbolic
rate. ARFIMA processes with d < 0 are sometimes called antipersistent because all the autocorrelations
for lags greater than 0 are negative.

Hosking (1981), Baillie (1996), and others refer to ARFIMA processes with d < 0 as “intermediate
memory” processes and ARFIMA processes with d > 0 as long-memory processes. Box, Jenkins,
Reinsel, and Ljung (2016, 385) define long-memory processes as those with the slower hyperbolic
rate of decay, which includes ARFIMA processes with d < 0. We follow Box et al. (2016) and thus
call ARFIMA processes for −0.5 < d < 0 and 0 < d < 0.5 long-memory processes.

Sowell (1992a) uses the properties of ARFIMA processes with d < 0 to derive tests for whether a
series was generated by an I(1) process or an I(d) process with d < 1.

Example 3

In this example, we use arfima to test whether a series is nonstationary. More specifically, we
test whether the series was generated by an I(1) process by testing whether the first difference of
the series is overdifferenced.

We have monthly data on the log of the number of reported cases of mumps in New York City
between January 1928 and December 1972. We believe that the series is stationary, after accounting
for the monthly seasonal effects. We use an ARFIMA model for differenced series to test the null
hypothesis of nonstationarity. We use the confidence interval for the d parameter from an ARFIMA
model for the first difference of the log of the series to perform the test. If the right-hand end of the
95% CI is less than 0, we conclude that the differenced series was overdifferenced, which implies
that the original series was not nonstationary.

More formally, if yt is I(1), then ∆yt = yt − yt−1 must be I(0). If ∆yt is I(d) with d < 0,
then ∆yt is overdifferenced and yt is I(d) with d < 1.

We use seasonal indicators to account for the seasonal effects. In the output below, we specify the
mpl option to use the MPL estimator that is less biased in the presence of covariates.

arfima computes the maximum likelihood estimates (MLE) for the parameters of this stationary
and invertible Gaussian process. Alternatively, the maximum MPL estimates may be computed. See
Methods and formulas for a description of these two estimation techniques, but suffice it to say
that the MLE estimates for d are biased in the presence of exogenous variables, even the constant
term, for small samples. The MPL estimator reduces this bias; see Hauser (1999) and Doornik and
Ooms (2004).
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. use https://www.stata-press.com/data/r18/mumps2, clear
(Hipel and Mcleod (1994), http://robjhyndman.com/tsdldata/epi/mumps.dat)

. arfima D.log i.month, ma(1 2) mpl
Iteration 0: Log modified profile likelihood = 53.766763
Iteration 1: Log modified profile likelihood = 54.388641
Iteration 2: Log modified profile likelihood = 54.934726 (backed up)
Iteration 3: Log modified profile likelihood = 54.937524 (backed up)
Iteration 4: Log modified profile likelihood = 55.002187
Iteration 5: Log modified profile likelihood = 55.20462
Iteration 6: Log modified profile likelihood = 55.205939
Iteration 7: Log modified profile likelihood = 55.205949
Iteration 8: Log modified profile likelihood = 55.205949
Refining estimates:
Iteration 0: Log modified profile likelihood = 55.205949
Iteration 1: Log modified profile likelihood = 55.205949

ARFIMA regression

Sample: 1928m2 thru 1972m6 Number of obs = 533
Wald chi2(14) = 1360.28

Log modified profile likelihood = 55.205949 Prob > chi2 = 0.0000

D.log Coefficient Std. err. z P>|z| [95% conf. interval]

D.log
month

February -.220719 .0428112 -5.16 0.000 -.3046275 -.1368105
March .0314683 .0424718 0.74 0.459 -.0517749 .1147115
April -.2800296 .0460084 -6.09 0.000 -.3702043 -.1898548

May -.3703179 .0449932 -8.23 0.000 -.4585029 -.2821329
June -.4722035 .0446764 -10.57 0.000 -.5597676 -.3846394
July -.9613239 .0448375 -21.44 0.000 -1.049204 -.873444

August -1.063042 .0449272 -23.66 0.000 -1.151098 -.9749868
September -.7577301 .0452529 -16.74 0.000 -.8464242 -.669036

October -.3024251 .0462887 -6.53 0.000 -.3931494 -.2117009
November -.0115317 .0426911 -0.27 0.787 -.0952046 .0721413
December .0247135 .0430401 0.57 0.566 -.0596435 .1090705

_cons .3656807 .0303215 12.06 0.000 .3062517 .4251096

ARFIMA
ma

L1. .258056 .0684414 3.77 0.000 .1239133 .3921987
L2. .1972011 .0506439 3.89 0.000 .0979409 .2964612

d -.2329426 .067336 -3.46 0.001 -.3649188 -.1009663

We interpret the fact that the estimated 95% CI is strictly less than 0 to mean that the differenced
series is overdifferenced, which implies that the original series is stationary.
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Stored results
arfima stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(df m) model degrees of freedom
e(ll) log likelihood
e(chi2) χ2

e(p) p-value for model test
e(s2) idiosyncratic error variance estimate, if e(method) = mpl
e(tmin) minimum time
e(tmax) maximum time
e(ar max) maximum AR lag
e(ma max) maximum MA lag
e(constant) 0 if noconstant, 1 otherwise
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) arfima
e(cmdline) command as typed
e(depvar) name of dependent variable
e(tvar) time variable
e(covariates) list of covariates
e(method) mle or mpl
e(eqnames) names of equations
e(title) title in estimation output
e(tmins) formatted minimum time
e(tmaxs) formatted maximum time
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(ma) lags for MA terms
e(ar) lags for AR terms
e(technique) maximization technique
e(tech steps) number of iterations performed before switching techniques
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample
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In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
The likelihood function
The autocovariance function
The profile likelihood
The MPL

Introduction

We model an observed second-order stationary time-series yt, t = 1, . . . , T , using the
ARFIMA(p, d, q) model defined as

ρ(Lp)(1− L)d(yt − xtβ) = θ(Lq)εt

where
ρ(Lp) = 1− ρ1L− ρ2L2 − · · · − ρpLp

θ(Lq) = 1 + θ1L+ θ2L
2 + · · ·+ θqL

q

(1− L)d =

∞∑
j=0

(−1)j
Γ(j + d)

Γ(j + 1)Γ(d)
Lj

and the lag operator is defined as Ljyt = yt−j , t = 1, . . . , T and j = 1, . . . , t− 1; εt ∼ N(0, σ2);
Γ() is the gamma function; and −0.5 < d < 0.5, d 6= 0. The row vector xt contains the exogenous
variables specified as indepvars in the arfima syntax.

The process is stationary and invertible for−0.5 < d < 0.5; the roots of the AR polynomial, ρ(z) =
1− ρ1z− ρ2z2−· · ·−ρpzp = 0, and the MA polynomial, θ(z) = 1 + θ1z+ θ2z

2 + · · ·+ θqz
q = 0,

lie outside the unit circle and there are no common roots. When 0 < d < 0.5, the process has
long memory in that the autocovariance function, γh, decays to 0 at a hyperbolic rate, such that∑∞
h=−∞ |γh| =∞. When−0.5 < d < 0, the process also has long memory in that the autocovariance

function, γh, decays to 0 at a hyperbolic rate such that
∑∞
h=−∞ |γh| < ∞. (As discussed in the

text, some authors refer to ARFIMA processes with −0.5 < d < 0 as having intermediate memory,
but we follow Box et al. [2016] and refer to them as long-memory processes.)

Granger and Joyeux (1980), Hosking (1981), Sowell (1992b, 1992a), Baillie (1996), and
Palma (2007) provide overviews of long-memory processes, fractional integration, and introduc-
tions to ARFIMA models.
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The likelihood function

Estimation of the ARFIMA parameters ρ, θ, d, β and σ2 is done by the method of maximum
likelihood. The log Gaussian likelihood of y given parameter estimates η̂ = (ρ̂′, θ̂

′
, d̂, β̂

′
, σ̂2) is

`(y|η̂) = −1

2

{
T log(2π) + log|V̂|+ (y −Xβ̂)′V̂−1(y −Xβ̂)

}
(2)

where the covariance matrix V has a Toeplitz structure

V =


γ0 γ1 γ2 . . . γT−1
γ1 γ0 γ1 . . . γT−2
...

...
...

. . .
...

γT−1 γT−2 γT−3 . . . γ0


Var(yt) = γ0, Cov(yt, yt−h) = γh (for h = 1, . . . , t− 1), and t = 1, . . . , T (Sowell 1992b).

We use the Durbin–Levinson algorithm (Palma 2007; Golub and Van Loan 2013) to factor and
invert V. Using only the vector of autocovariances γ, the Durbin–Levinson algorithm will compute
ε̂ = D̂−0.5L̂−1(y − Xβ̂), where L is lower triangular and V = LDL′ and D = Diag(ν),
νt = Var(yt). The algorithm performs these computations without generating the T ×T matrix L−1.

During optimization, we restrict the fractional-integration parameter to (−0.5, 0.5) using a logistic
transform, d∗ = log {(x+ 0.5)/(0.5− x)}, so that the range of d∗ encompasses the real line. During
the “Refining estimates” step, the fractional-integration parameter is transformed back to the restricted
space, where we obtain its standard error from the observed information matrix.

The autocovariance function
Computation of the autocovariances γh is given by Sowell (1992b) with numerical enhancements

by Doornik and Ooms (2003) and is reviewed by Palma (2007, sec. 3.2.4). We reproduce it here.
The autocovariance of an ARFIMA(0, d, 0) process is

γ∗h = σ2 Γ(1− 2d)

Γ(1− d)Γ(d)

Γ(h+ d)

Γ(1 + h− d)

where h = 0, 1, . . . . For ARFIMA(p, d, q), we have

γh = σ2

q∑
i=−q

p∑
j=1

ψ(i)ξjC(d, p+ i− h, ρj) (3)
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where

ψ(i) =

min(q,q+i)∑
k=max(0,i)

θkθk−i

ξj =

ρj
p∏
i=1

(1− ρiρj)
∏
m6=j

(ρj − ρm)


−1

and

C(d, h, ρ) =
γ∗h
σ2

{
ρ2pF (d+ h, 1, 1− d+ h, ρ) + F (d− h, 1, 1− d− h, ρ)− 1

}
F (·) is the hypergeometric series (Zwillinger [Gradshteyn and Ryzhik] 2015)

F (a, b, c, x) = 1 +
ab

c · 1
x+

a(a+ 1)b(b+ 1)

c(c+ 1) · 1 · 2
x2 +

a(a+ 1)(a+ 2)b(b+ 1)(b+ 2)

c(c+ 1)(c+ 2) · 1 · 2 · 3
x3 + · · ·

The series recursions are evaluated backward as Doornik and Ooms (2003) emphasize. Doornik and
Ooms (2003) also provide other computational enhancements, such as not dividing by ρj in (3).

The profile likelihood

Doornik and Ooms (2003) show that the parameters σ2 and β can be concentrated out of the
likelihood. Using (2), the MLE for σ2 is

σ̂2 =
1

T
(y −Xβ̂)′R̂−1(y −Xβ̂) (4)

where R = 1
σ2V and

β̂ = (X′R̂−1X)−1X′R̂−1y (5)

is the weighted least-squares estimates for β. Substituting (4) into (2) results in the profile likelihood

`p(y|η̂r) = −T
2

{
1 + log(2π) +

1

T
log|R̂|+ logσ̂2

}

We compute the MLEs using the profile likelihood for the reduced parameter set ηr = (ρ′, θ′, d).
Equations (4) and (5) provide MLEs for σ2 and β to create the full parameter vector η =
(β′,ρ′, θ′, d, σ2). We follow with the “Refining estimates” step, optimizing on the log likelihood
(1). The refining step does not change the estimates; it produces the coefficient variance–covariance
matrix from the observed information matrix.

Using this profile likelihood prevents the use of the BHHH optimization method because there are
no observation-level scores.
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The MPL

The small-sample MLE for d can be biased when there are exogenous variables in the model. The
MPL reduces this bias (Hauser 1999; Doornik and Ooms 2004). The mpl option will direct arfima
to use this optimization criterion. The MPL is expressed as

`m(y|η̂r) = −T
2
{1 + log(2π)} −

(
1

T
− 1

2

)
log|R̂| −

(
T − k − 2

2

)
logσ̂2 − 1

2
log|X′R̂−1X|

where k = rank(X) (An and Bloomfield 1993).

There is no MPL estimator for σ2, and you will notice its absence from the coefficient table.
However, the unbiased estimate assuming ARFIMA(0, 0, 0),

σ̃2 =
(y −Xβ̂)′R̂−1(y −Xβ̂)

T − k

is stored in e() for postestimation computation of the forecast and residual root mean squared errors.
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