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Postestimation commands
The following postestimation commands are of special interest after regress:

Command Description

dfbeta DFBETA influence statistics
estat hettest tests for heteroskedasticity
estat imtest information matrix test
estat ovtest Ramsey regression specification-error test for omitted variables
estat szroeter Szroeter’s rank test for heteroskedasticity
estat vif variance inflation factors for the independent variables
estat esize η2, ε2, and ω2 effect sizes
estat moran Moran’s test of residual correlation with nearby residuals
lassogof calculate goodness-of-fit predictions

These commands are not appropriate with svy estimation results.
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The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-

formation criteria (AIC, CAIC, AICc, and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
etable table of estimation results
∗forecast dynamic forecasts and simulations
∗hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations of

coefficients
linktest link test for model specification
∗lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions and their SEs, leverage statistics, distance statistics, etc.
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

∗forecast, hausman, and lrtest are not appropriate with svy estimation results. forecast is also not appropriate
with mi estimation results.

https://www.stata.com/manuals/rcontrast.pdf#rcontrast
https://www.stata.com/manuals/restatic.pdf#restatic
https://www.stata.com/manuals/restatsummarize.pdf#restatsummarize
https://www.stata.com/manuals/restatvce.pdf#restatvce
https://www.stata.com/manuals/svyestat.pdf#svyestat
https://www.stata.com/manuals/restimates.pdf#restimates
https://www.stata.com/manuals/retable.pdf#retable
https://www.stata.com/manuals/tsforecast.pdf#tsforecast
https://www.stata.com/manuals/rhausman.pdf#rhausman
https://www.stata.com/manuals/rlincom.pdf#rlincom
https://www.stata.com/manuals/rlinktest.pdf#rlinktest
https://www.stata.com/manuals/rlrtest.pdf#rlrtest
https://www.stata.com/manuals/rmarginsplot.pdf#rmarginsplot
https://www.stata.com/manuals/rnlcom.pdf#rnlcom
https://www.stata.com/manuals/rpredictnl.pdf#rpredictnl
https://www.stata.com/manuals/rpwcompare.pdf#rpwcompare
https://www.stata.com/manuals/rsuest.pdf#rsuest
https://www.stata.com/manuals/rtest.pdf#rtest
https://www.stata.com/manuals/rtestnl.pdf#rtestnl
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Predictions

Description for predict

predict creates a new variable containing predictions such as linear predictions, residuals,
standardized residuals, Studentized residuals, Cook’s distance, leverage, probabilities, expected values,
DFBETAs for varname, standard errors, COVRATIOs, DFITS, and Welsch distances.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic
]

statistic Description

Main

xb linear prediction; the default
residuals residuals
score score; equivalent to residuals

rstandard standardized residuals
rstudent Studentized (jackknifed) residuals
cooksd Cook’s distance
leverage | hat leverage (diagonal elements of hat matrix)
pr(a,b) Pr(yj | a < yj < b)

e(a,b) E(yj | a < yj < b)

ystar(a,b) E(y∗j ), y∗j = max{a,min(yj , b)}
∗dfbeta(varname) DFBETA for varname
stdp standard error of the linear prediction
stdf standard error of the forecast
stdr standard error of the residual
∗covratio COVRATIO
∗dfits DFITS
∗welsch Welsch distance

Unstarred statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample. Starred statistics are calculated only for the estimation sample, even when if e(sample)
is not specified.

rstandard, rstudent, cooksd, leverage, dfbeta(), stdf, stdr, covratio, dfits, and welsch are not available
if any vce() other than vce(ols) was specified with regress.

xb, residuals, score, and stdp are the only options allowed with svy estimation results.

where a and b may be numbers or variables; a missing (a ≥ .) means −∞, and b missing (b ≥ .) means +∞; see
[U] 12.2.1 Missing values.

https://www.stata.com/manuals/d.pdf#dDatatypes
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u12.pdf#u12.2.1Missingvalues
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Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

residuals calculates the residuals.

score is equivalent to residuals in linear regression.

rstandard calculates the standardized residuals.

rstudent calculates the Studentized (jackknifed) residuals.

cooksd calculates the Cook’s D influence statistic (Cook 1977).

leverage or hat calculates the diagonal elements of the projection (“hat”) matrix.

pr(a,b) calculates Pr(a < xjb + uj < b), the probability that yj |xj would be observed in the
interval (a, b).

a and b may be specified as numbers or variable names; lb and ub are variable names;
pr(20,30) calculates Pr(20 < xjb + uj < 30);
pr(lb,ub) calculates Pr(lb < xjb + uj < ub); and
pr(20,ub) calculates Pr(20 < xjb + uj < ub).

a missing (a ≥ .) means −∞; pr(.,30) calculates Pr(−∞ < xjb + uj < 30);
pr(lb,30) calculates Pr(−∞ < xjb + uj < 30) in observations for which lb ≥ .
and calculates Pr(lb < xjb + uj < 30) elsewhere.

b missing (b ≥ .) means +∞; pr(20,.) calculates Pr(+∞ > xjb + uj > 20);
pr(20,ub) calculates Pr(+∞ > xjb + uj > 20) in observations for which ub ≥ .
and calculates Pr(20 < xjb + uj < ub) elsewhere.

e(a,b) calculates E(xjb + uj | a < xjb + uj < b), the expected value of yj |xj conditional on
yj |xj being in the interval (a, b), meaning that yj |xj is truncated. a and b are specified as they
are for pr().

ystar(a,b) calculates E(y∗j ), where y∗j = a if xjb + uj ≤ a, y∗j = b if xjb + uj ≥ b, and
y∗j = xjb+uj otherwise, meaning that y∗j is censored. a and b are specified as they are for pr().

dfbeta(varname) calculates the DFBETA for varname, the difference between the regression coefficient
when the jth observation is included and excluded, said difference being scaled by the estimated
standard error of the coefficient. varname must have been included among the regressors in the
previously fitted model. The calculation is automatically restricted to the estimation subsample.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of
the predicted expected value or mean for the observation’s covariate pattern. The standard error
of the prediction is also referred to as the standard error of the fitted value.

stdf calculates the standard error of the forecast, which is the standard error of the point prediction
for 1 observation. It is commonly referred to as the standard error of the future or forecast value.
By construction, the standard errors produced by stdf are always larger than those produced by
stdp; see Methods and formulas.

stdr calculates the standard error of the residuals.

covratio calculates COVRATIO (Belsley, Kuh, and Welsch 1980), a measure of the influence of the
jth observation based on considering the effect on the variance–covariance matrix of the estimates.
The calculation is automatically restricted to the estimation subsample.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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dfits calculates DFITS (Welsch and Kuh 1977) and attempts to summarize the information in the
leverage versus residual-squared plot into one statistic. The calculation is automatically restricted
to the estimation subsample.

welsch calculates Welsch distance (Welsch 1982) and is a variation on dfits. The calculation is
automatically restricted to the estimation subsample.

Remarks and examples for predict

Remarks are presented under the following headings:

Terminology
Fitted values and residuals
Prediction standard errors
Prediction with weighted data
Leverage statistics
Standardized and Studentized residuals
DFITS, Cook’s Distance, and Welsch Distance
COVRATIO

Terminology

Many of these commands concern identifying influential data in linear regression. This is, un-
fortunately, a field that is dominated by jargon, codified and partially begun by Belsley, Kuh, and
Welsch (1980). In the words of Chatterjee and Hadi (1986, 416), “Belsley, Kuh, and Welsch’s book,
Regression Diagnostics, was a very valuable contribution to the statistical literature, but it unleashed
on an unsuspecting statistical community a computer speak (à la Orwell), the likes of which we
have never seen.” Things have only gotten worse since then. Chatterjee and Hadi’s (1986, 1988)
own attempts to clean up the jargon did not improve matters (see Hoaglin and Kempthorne [1986],
Velleman [1986], and Welsch [1986]). We apologize for the jargon, and for our contribution to the
jargon in the form of inelegant command names, we apologize most of all.

Model sensitivity refers to how estimates are affected by subsets of our data. Imagine data on y
and x, and assume that the data are to be fit by the regression yi = α + βxi + εi. The regression
estimates of α and β are a and b, respectively. Now imagine that the estimated a and b would be
different if a small portion of the dataset, perhaps even one observation, were deleted. As a data
analyst, you would like to think that you are summarizing tendencies that apply to all the data, but
you have just been told that the model you fit is unduly influenced by one point or just a few points
and that, as a matter of fact, there is another model that applies to the rest of the data—a model
that you have ignored. The search for subsets of the data that, if deleted, would change the results
markedly is a predominant theme of this entry.

There are three key issues in identifying model sensitivity to individual observations, which go by
the names residuals, leverage, and influence. In our yi = a+ bxi + ei regression, the residuals are,
of course, ei—they reveal how much our fitted value ŷi = a+ bxi differs from the observed yi. A
point (xi, yi) with a corresponding large residual is called an outlier. Say that you are interested in
outliers because you somehow think that such points will exert undue influence on your estimates.
Your feelings are generally right, but there are exceptions. A point might have a huge residual and
yet not affect the estimated b at all. Nevertheless, studying observations with large residuals almost
always pays off.

(xi, yi) can be an outlier in another way—just as yi can be far from ŷi, xi can be far from
the center of mass of the other x’s. Such an “outlier” should interest you just as much as the more
traditional outliers. Picture a scatterplot of y against x with thousands of points in some sort of mass
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at the lower left of the graph and one point at the upper right of the graph. Now, run a regression
line through the points—the regression line will come close to the point at the upper right of the
graph and may in fact, go through it. That is, this isolated point will not appear as an outlier as
measured by residuals because its residual will be small. Yet this point might have a dramatic effect
on our resulting estimates in the sense that, were you to delete the point, the estimates would change
markedly. Such a point is said to have high leverage. Just as with traditional outliers, a high leverage
point does not necessarily have an undue effect on regression estimates, but if it does not, it is more
the exception than the rule.

Now, all of this is a most unsatisfactory state of affairs. Points with large residuals may, but need
not, have a large effect on our results, and points with small residuals may still have a large effect.
Points with high leverage may, but need not, have a large effect on our results, and points with low
leverage may still have a large effect. Can you not identify the influential points and simply have the
computer list them for you? You can, but you will have to define what you mean by “influential”.

“Influential” is defined with respect to some statistic. For instance, you might ask which points in
your data have a large effect on your estimated a, which points have a large effect on your estimated
b, which points have a large effect on your estimated standard error of b, and so on, but do not be
surprised when the answers to these questions are different. In any case, obtaining such measures
is not difficult—all you have to do is fit the regression excluding each observation one at a time
and record the statistic of interest which, in the day of the modern computer, is not too onerous.
Moreover, you can save considerable computer time by doing algebra ahead of time and working
out formulas that will calculate the same answers as if you ran each of the regressions. (Ignore the
question of pairs of observations that, together, exert undue influence, and triples, and so on, which
remains largely unsolved and for which the brute force fit-every-possible-regression procedure is not
a viable alternative.)

Fitted values and residuals

Typing predict newvar with no options creates newvar containing the fitted values. Typing
predict newvar, resid creates newvar containing the residuals.

Example 1

Continuing with example 1 from [R] regress, we wish to fit the following model:

mpg = β0 + β1weight + β2foreign + ε

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)

. regress mpg weight foreign

Source SS df MS Number of obs = 74
F(2, 71) = 69.75

Model 1619.2877 2 809.643849 Prob > F = 0.0000
Residual 824.171761 71 11.608053 R-squared = 0.6627

Adj R-squared = 0.6532
Total 2443.45946 73 33.4720474 Root MSE = 3.4071

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0065879 .0006371 -10.34 0.000 -.0078583 -.0053175
foreign -1.650029 1.075994 -1.53 0.130 -3.7955 .4954422

_cons 41.6797 2.165547 19.25 0.000 37.36172 45.99768

https://www.stata.com/manuals/rregress.pdf#rregressRemarksandexamplesex1_regress
https://www.stata.com/manuals/rregress.pdf#rregress
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That done, we can now obtain the predicted values from the regression. We will store them in a new
variable called pmpg by typing predict pmpg. Because predict produces no output, we will follow
that by summarizing our predicted and observed values.

. predict pmpg
(option xb assumed; fitted values)

. summarize pmpg mpg

Variable Obs Mean Std. dev. Min Max

pmpg 74 21.2973 4.709779 9.794333 29.82151
mpg 74 21.2973 5.785503 12 41

Example 2: Out-of-sample predictions

We can just as easily obtain predicted values from the model by using a wholly different dataset
from the one on which the model was fit. The only requirement is that the data have the necessary
variables, which here are weight and foreign.

Using the data on two new cars (the Pontiac Sunbird and the Volvo 260) from newautos.dta,
we can obtain out-of-sample predictions (or forecasts) by typing

. use https://www.stata-press.com/data/r18/newautos, clear
(New automobile models)

. predict pmpg
(option xb assumed; fitted values)

. list, divider

make weight foreign pmpg

1. Pont. Sunbird 2690 Domestic 23.95829
2. Volvo 260 3170 Foreign 19.14607

The Pontiac Sunbird has a predicted mileage rating of 23.96 mpg, whereas the Volvo 260 has a
predicted rating of 19.15 mpg. In comparison, the actual mileage ratings are 24 for the Pontiac and
17 for the Volvo.

Prediction standard errors

predict can calculate the standard error of the forecast (stdf option), the standard error of the
prediction (stdp option), and the standard error of the residual (stdr option). It is easy to confuse
stdf and stdp because both are often called the prediction error. Consider the prediction ŷj = xjb,
where b is the estimated coefficient (column) vector and xj is a (row) vector of independent variables
for which you want the prediction. First, ŷj has a variance due to the variance of the estimated
coefficient vector b,

Var(ŷj) = Var(xjb) = s2hj

where hj = xj(X
′X)−1x′j and s2 is the mean squared error of the regression. Do not panic over the

algebra—just remember that Var(ŷj) = s2hj , whatever s2 and hj are. stdp calculates this quantity.
This is the error in the prediction due to the uncertainty about b.

If you are about to hand this number out as your forecast, however, there is another error. According
to your model, the true value of yj is given by

yj = xjb + εj = ŷj + εj
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and thus the Var(yj) = Var(ŷj) + Var(εj) = s2hj + s2, which is the square of stdf. stdf, then,
is the sum of the error in the prediction plus the residual error.

stdr has to do with an analysis-of-variance decomposition of s2, the estimated variance of y.
The standard error of the prediction is s2hj , and therefore s2hj + s2(1− hj) = s2 decomposes s2

into the prediction and residual variances.

Example 3: Standard error of the forecast

Returning to our model of mpg on weight and foreign, we previously predicted the mileage rating
for the Pontiac Sunbird and Volvo 260 as 23.96 and 19.15 mpg, respectively. We now want to put a
standard error around our forecast. Remember, the data for these two cars were in newautos.dta:

. use https://www.stata-press.com/data/r18/newautos, clear
(New automobile models)

. predict pmpg
(option xb assumed; fitted values)

. predict se_pmpg, stdf

. list, divider

make weight foreign pmpg se_pmpg

1. Pont. Sunbird 2690 Domestic 23.95829 3.462791
2. Volvo 260 3170 Foreign 19.14607 3.525875

Thus, an approximate 95% confidence interval for the mileage rating of the Volvo 260 is 19.15±2·3.53 =
[ 12.09, 26.21 ].

Prediction with weighted data

predict can be used after frequency-weighted (fweight) estimation, just as it is used after
unweighted estimation. The technical note below concerns the use of predict after analytically
weighted (aweight) estimation.

Technical note

After analytically weighted estimation, predict is willing to calculate only the prediction (no
options), residual (residual option), standard error of the prediction (stdp option), and diagonal
elements of the projection matrix (hat option). For analytically weighted estimation, the standard
error of the forecast and residuals, the standardized and Studentized residuals, and Cook’s D are not
statistically well-defined concepts.

Leverage statistics

In addition to providing fitted values and the associated standard errors, the predict command can
also be used to generate various statistics used to detect the influence of individual observations. This
section provides a brief introduction to leverage (hat) statistics, and some of the following subsections
discuss other influence statistics produced by predict.
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Example 4: Diagonal elements of projection matrix

The diagonal elements of the projection matrix, obtained by the hat option, are a measure of
distance in explanatory variable space. leverage is a synonym for hat.

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)

. regress mpg weight foreign
(output omitted )

. predict xdist, hat

. summarize xdist, detail

Leverage

Percentiles Smallest
1% .0192325 .0192325
5% .0192686 .0192366

10% .0193448 .019241 Obs 74
25% .0220291 .0192686 Sum of wgt. 74

50% .0383797 Mean .0405405
Largest Std. dev. .0207624

75% .0494002 .0880814
90% .0693432 .099715 Variance .0004311
95% .0880814 .099715 Skewness 1.159745
99% .1003283 .1003283 Kurtosis 4.083313

Some 5% of our sample has an xdist measure in excess of 0.08. Let’s force them to reveal their
identities:

. list foreign make mpg if xdist>.08, divider

foreign make mpg

24. Domestic Ford Fiesta 28
26. Domestic Linc. Continental 12
27. Domestic Linc. Mark V 12
43. Domestic Plym. Champ 34
64. Foreign Peugeot 604 14

To understand why these cars are on this list, we must remember that the explanatory variables in our
model are weight and foreign and that xdist measures distance in this metric. The Ford Fiesta
and the Plymouth Champ are the two lightest domestic cars in our data. The Lincolns are the two
heaviest domestic cars, and the Peugeot is the heaviest foreign car.

See lvr2plot in [R] regress postestimation diagnostic plots for information on a leverage-versus-
squared-residual plot.

Standardized and Studentized residuals

The terms standardized and Studentized residuals have meant different things to different authors.
In Stata, predict defines the standardized residual as êsi = ei/(s

√
1− hi) and the Studentized

residual as ri = ei/(s(i)
√

1− hi), where s(i) is the root mean squared error of a regression with the
ith observation removed. Stata’s definition of the Studentized residual is the same as the one given
in Bollen and Jackman (1990, 264) and is what Chatterjee and Hadi (1988, 74) call the “externally
Studentized” residual. Stata’s “standardized” residual is the same as what Chatterjee and Hadi (1988,
74) call the “internally Studentized” residual.

https://www.stata.com/manuals/rregresspostestimationdiagnosticplots.pdf#rregresspostestimationdiagnosticplots
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Standardized and Studentized residuals are attempts to adjust residuals for their standard errors.
Although the εi theoretical residuals are homoskedastic by assumption (that is, they all have the same
variance), the calculated ei are not. In fact,

Var(ei) = σ2(1− hi)

where hi are the leverage measures obtained from the diagonal elements of hat matrix. Thus,
observations with the greatest leverage have corresponding residuals with the smallest variance.

Standardized residuals use the root mean squared error of the regression for σ. Studentized residuals
use the root mean squared error of a regression omitting the observation in question for σ. In general,
Studentized residuals are preferable to standardized residuals for purposes of outlier identification.
Studentized residuals can be interpreted as the t statistic for testing the significance of a dummy
variable equal to 1 in the observation in question and 0 elsewhere (Belsley, Kuh, and Welsch 1980).
Such a dummy variable would effectively absorb the observation and so remove its influence in
determining the other coefficients in the model. Caution must be exercised here, however, because
of the simultaneous testing problem. You cannot simply list the residuals that would be individually
significant at the 5% level—their joint significance would be far less (their joint significance level
would be far greater).

Example 5: Standardized and Studentized residuals

In the Terminology section of Remarks and examples for predict, we distinguished residuals from
leverage and speculated on the impact of an observation with a small residual but large leverage. If
we adjust the residuals for their standard errors, however, the adjusted residual would be (relatively)
larger and perhaps large enough so that we could simply examine the adjusted residuals. Taking
our price on weight and foreign##c.mpg model from example 1 of [R] regress postestimation
diagnostic plots, we can obtain the in-sample standardized and Studentized residuals by typing

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)

. regress price weight foreign##c.mpg
(output omitted )

. predict esta if e(sample), rstandard

. predict estu if e(sample), rstudent

In the lvr2plot section of [R] regress postestimation diagnostic plots, we discovered that the VW
Diesel has the highest leverage in our data, but a corresponding small residual. The standardized and
Studentized residuals for the VW Diesel are

. list make price esta estu if make=="VW Diesel"

make price esta estu

71. VW Diesel 5,397 .6142691 .6114758

The Studentized residual of 0.611 can be interpreted as the t statistic for including a dummy variable
for VW Diesel in our regression. Such a variable would not be significant.

https://www.stata.com/manuals/rregresspostestimationdiagnosticplotsrvfplotrvfplot_ex.pdf#rregresspostestimationdiagnosticplotsrvfplotrvfplot_ex
https://www.stata.com/manuals/rregresspostestimationdiagnosticplots.pdf#rregresspostestimationdiagnosticplots
https://www.stata.com/manuals/rregresspostestimationdiagnosticplots.pdf#rregresspostestimationdiagnosticplots
https://www.stata.com/manuals/rregresspostestimationdiagnosticplotslvr2plot.pdf#rregresspostestimationdiagnosticplotslvr2plot
https://www.stata.com/manuals/rregresspostestimationdiagnosticplots.pdf#rregresspostestimationdiagnosticplots
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DFITS, Cook’s Distance, and Welsch Distance

DFITS (Welsch and Kuh 1977), Cook’s Distance (Cook 1977), and Welsch Distance (Welsch 1982)
are three attempts to summarize the information in the leverage versus residual-squared plot into one
statistic. That is, the goal is to create an index that is affected by the size of the residuals—outliers—and
the size of hi—leverage. Viewed mechanically, one way to write DFITS (Bollen and Jackman 1990,
265) is

DFITSi = ri

√
hi

1− hi
where ri are the Studentized residuals. Thus, large residuals increase the value of DFITS, as do large
values of hi. Viewed more traditionally, DFITS is a scaled difference between predicted values for
the ith case when the regression is fit with and without the ith observation, hence the name.

The mechanical relationship between DFITS and Cook’s Distance, Di (Bollen and Jackman 1990,
266), is

Di =
1

k

s2(i)

s2
DFITS2i

where k is the number of variables (including the constant) in the regression, s is the root mean
squared error of the regression, and s(i) is the root mean squared error when the ith observation is
omitted. Viewed more traditionally, Di is a scaled measure of the distance between the coefficient
vectors when the ith observation is omitted.

The mechanical relationship between DFITS and Welsch’s Distance, Wi (Chatterjee and Hadi 1988,
123), is

Wi = DFITSi

√
n− 1

1− hi
The interpretation ofWi is more difficult because it is based on the empirical influence curve. Although
DFITS and Cook’s distance are similar, the Welsch distance measure includes another normalization
by leverage.

Belsley, Kuh, and Welsch (1980, 28) suggest that DFITS values greater than 2
√
k/n deserve more

investigation, and so values of Cook’s distance greater than 4/n should also be examined (Bollen
and Jackman 1990, 265–266). Through similar logic, the cutoff for Welsch distance is approximately
3
√
k (Chatterjee and Hadi 1988, 124).

Example 6: DFITS influence measure

Continuing with our model of price on weight and foreign##c.mpg, we can obtain the DFITS
influence measure:

. predict e if e(sample), resid

. predict dfits, dfits

We did not specify if e(sample) in computing the DFITS statistic. DFITS is available only over the
estimation sample, so specifying if e(sample) would have been redundant. It would have done no
harm, but it would not have changed the results.

Our model has k = 5 independent variables (k includes the constant) and n = 74 observations;
following the 2

√
k/n cutoff advice, we type
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. list make price e dfits if abs(dfits) > 2*sqrt(5/74), divider

make price e dfits

12. Cad. Eldorado 14,500 7271.96 .9564455
13. Cad. Seville 15,906 5036.348 1.356619
24. Ford Fiesta 4,389 3164.872 .5724172
27. Linc. Mark V 13,594 3109.193 .5200413
28. Linc. Versailles 13,466 6560.912 .8760136

42. Plym. Arrow 4,647 -3312.968 -.9384231

We calculate Cook’s distance and list the observations greater than the suggested 4/n cutoff:

. predict cooksd if e(sample), cooksd

. list make price e cooksd if cooksd > 4/74, divider

make price e cooksd

12. Cad. Eldorado 14,500 7271.96 .1492676
13. Cad. Seville 15,906 5036.348 .3328515
24. Ford Fiesta 4,389 3164.872 .0638815
28. Linc. Versailles 13,466 6560.912 .1308004
42. Plym. Arrow 4,647 -3312.968 .1700736

Here we used if e(sample) because Cook’s distance is not restricted to the estimation sample by
default. It is worth comparing this list with the preceding one.

Finally, we use Welsch distance and the suggested 3
√
k cutoff:

. predict wd, welsch

. list make price e wd if abs(wd) > 3*sqrt(5), divider

make price e wd

12. Cad. Eldorado 14,500 7271.96 8.394372
13. Cad. Seville 15,906 5036.348 12.81125
28. Linc. Versailles 13,466 6560.912 7.703005
42. Plym. Arrow 4,647 -3312.968 -8.981481

Here we did not need to specify if e(sample) because welsch automatically restricts the prediction
to the estimation sample.

COVRATIO

COVRATIO (Belsley, Kuh, and Welsch 1980) measures the influence of the ith observation by
considering the effect on the variance–covariance matrix of the estimates. The measure is the ratio
of the determinants of the covariances matrix, with and without the ith observation. The resulting
formula is

COVRATIOi =
1

1− hi

(
n− k − ê2si
n− k − 1

)k
where êsi is the standardized residual.



regress postestimation — Postestimation tools for regress 13

For noninfluential observations, the value of COVRATIO is approximately 1. Large values of the
residuals or large values of leverage will cause deviations from 1, although if both are large, COVRATIO
may tend back toward 1 and therefore not identify such observations (Chatterjee and Hadi 1988, 139).

Belsley, Kuh, and Welsch (1980) suggest that observations for which

|COVRATIOi − 1| ≥ 3k

n

are worthy of further examination.

Example 7: COVRATIO influence measure

Using our model of price on weight and foreign##c.mpg, we can obtain the COVRATIO
measure and list the observations outside the suggested cutoff by typing

. predict covr, covratio

. list make price e covr if abs(covr-1) >= 3*5/74, divider

make price e covr

12. Cad. Eldorado 14,500 7271.96 .3814242
13. Cad. Seville 15,906 5036.348 .7386969
28. Linc. Versailles 13,466 6560.912 .4761695
43. Plym. Champ 4,425 1621.747 1.27782
53. Audi 5000 9,690 591.2883 1.206842

57. Datsun 210 4,589 19.81829 1.284801
64. Peugeot 604 12,990 1037.184 1.348219
66. Subaru 3,798 -909.5894 1.264677
71. VW Diesel 5,397 999.7209 1.630653
74. Volvo 260 11,995 1327.668 1.211888

The covratio option automatically restricts the prediction to the estimation sample.
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margins

Description for margins

margins estimates margins of response for linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . . )

[
options

]
statistic Description

xb linear prediction; the default
pr(a,b) not allowed with margins

e(a,b) not allowed with margins

ystar(a,b) not allowed with margins

residuals not allowed with margins

score not allowed with margins

rstandard not allowed with margins

rstudent not allowed with margins

cooksd not allowed with margins

leverage | hat not allowed with margins

not allowed with margins

dfbeta(varname) not allowed with margins

stdp not allowed with margins

stdf not allowed with margins

stdr not allowed with margins

covratio not allowed with margins

dfits not allowed with margins

welsch not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rmargins.pdf#rmargins
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DFBETA influence statistics

Description for dfbeta

dfbeta will calculate one, more than one, or all the DFBETAs after regress. Although predict
will also calculate DFBETAs, predict can do this for only one variable at a time. dfbeta is a
convenience tool for those who want to calculate DFBETAs for multiple variables. The names for the
new variables created are chosen automatically and begin with the letters dfbeta .

Menu for dfbeta
Statistics > Linear models and related > Regression diagnostics > DFBETAs

Syntax for dfbeta

dfbeta
[

indepvar
[

indepvar
[
. . .
] ] ] [

, stub(name)
]

Option for dfbeta

stub(name) specifies the leading characters dfbeta uses to name the new variables to be generated.
The default is stub( dfbeta ).

Remarks and examples for dfbeta

DFBETAs are perhaps the most direct influence measure of interest to model builders. DFBETAs
focus on one coefficient and measure the difference between the regression coefficient when the ith
observation is included and excluded, the difference being scaled by the estimated standard error of
the coefficient. Belsley, Kuh, and Welsch (1980, 28) suggest observations with |DFBETAi| > 2/

√
n

as deserving special attention, but it is also common practice to use 1 (Bollen and Jackman 1990,
267), meaning that the observation shifted the estimate at least one standard error.

Example 8: DFBETAs influence measure; the dfbeta() option

Using our model of price on weight and foreign##c.mpg, let’s first ask which observations
have the greatest impact on the determination of the coefficient on 1.foreign. We will use the
suggested 2/

√
n cutoff:

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)

. regress price weight foreign##c.mpg
(output omitted )

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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. sort foreign make

. predict dfor, dfbeta(1.foreign)

. list make price foreign dfor if abs(dfor) > 2/sqrt(74), divider

make price foreign dfor

12. Cad. Eldorado 14,500 Domestic -.5290519
13. Cad. Seville 15,906 Domestic .8243419
28. Linc. Versailles 13,466 Domestic -.5283729
42. Plym. Arrow 4,647 Domestic -.6622424
43. Plym. Champ 4,425 Domestic .2371104

64. Peugeot 604 12,990 Foreign .2552032
69. Toyota Corona 5,719 Foreign -.256431

The Cadillac Seville shifted the coefficient on 1.foreign 0.82 standard deviations!

Now let us ask which observations have the greatest effect on the mpg coefficient:

. predict dmpg, dfbeta(mpg)

. list make price mpg dmpg if abs(dmpg) > 2/sqrt(74), divider

make price mpg dmpg

12. Cad. Eldorado 14,500 14 -.5970351
13. Cad. Seville 15,906 21 1.134269
28. Linc. Versailles 13,466 14 -.6069287
42. Plym. Arrow 4,647 28 -.8925859
43. Plym. Champ 4,425 34 .3186909

Once again, we see the Cadillac Seville heading the list, indicating that our regression results may
be dominated by this one car.

Example 9: DFBETAs influence measure; the dfbeta command

We can use predict, dfbeta() or the dfbeta command to generate the DFBETAs. dfbeta
makes up names for the new variables automatically and, without arguments, generates the DFBETAs
for all the variables in the regression:

. dfbeta

Generating DFBETA variables ...

_dfbeta_1: DFBETA weight

_dfbeta_2: DFBETA 1.foreign

_dfbeta_3: DFBETA mpg

_dfbeta_4: DFBETA 1.foreign#c.mpg

dfbeta created four new variables in our dataset: dfbeta 1, containing the DFBETAs for weight;
dfbeta 2, containing the DFBETAs for mpg; and so on. Had we wanted only the DFBETAs for mpg

and weight, we might have typed

. dfbeta mpg weight

Generating DFBETA variables ...

_dfbeta_5: DFBETA weight

_dfbeta_6: DFBETA mpg
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In the example above, we typed dfbeta mpg weight instead of dfbeta; if we had typed dfbeta
followed by dfbeta mpg weight, here is what would have happened:

. dfbeta

Generating DFBETA variables ...

_dfbeta_7: DFBETA weight

_dfbeta_8: DFBETA 1.foreign

_dfbeta_9: DFBETA mpg

_dfbeta_10: DFBETA 1.foreign#c.mpg

. dfbeta mpg weight

Generating DFBETA variables ...

_dfbeta_11: DFBETA weight

_dfbeta_12: DFBETA mpg

dfbeta would have made up different names for the new variables. dfbeta never replaces existing
variables—it instead makes up a different name, so we need to pay attention to dfbeta’s output.

Tests for violation of assumptions

Description for estat hettest
estat hettest performs three versions of the Breusch–Pagan (1979) and Cook–Weisberg (1983)

test for heteroskedasticity. All three versions of this test present evidence against the null hypothesis
that t = 0 in Var(e) = σ2exp(zt). In the normal version, performed by default, the null hypothesis
also includes the assumption that the regression disturbances are independent-normal draws with
variance σ2. The normality assumption is dropped from the null hypothesis in the iid and fstat
versions, which respectively produce the score and F tests discussed in Methods and formulas. If
varlist is not specified, the fitted values are used for z. If varlist or the rhs option is specified, the
variables specified are used for z.

Menu for estat
Statistics > Postestimation

Syntax for estat hettest

estat hettest
[

varlist
] [

, rhs
[
normal | iid | fstat

]
mtest

[
(spec)

] ]
collect is allowed with estat hettest; see [U] 11.1.10 Prefix commands.

Options for estat hettest

rhs specifies that tests for heteroskedasticity be performed for the right-hand-side (explanatory)
variables of the fitted regression model. The rhs option may be combined with a varlist.

normal, the default, causes estat hettest to compute the original Breusch–Pagan/Cook–Weisberg
test, which assumes that the regression disturbances are normally distributed.

iid causes estat hettest to compute the N ∗R2 version of the score test that drops the normality
assumption.

fstat causes estat hettest to compute the F -statistic version that drops the normality assumption.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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mtest
[
(spec)

]
specifies that multiple testing be performed. The argument specifies how p-values

are adjusted. The following specifications, spec, are supported:

bonferroni Bonferroni’s multiple testing adjustment
holm Holm’s multiple testing adjustment
sidak Šidák’s multiple testing adjustment

noadjust no adjustment is made for multiple testing

mtest may be specified without an argument. This is equivalent to specifying mtest(noadjust);
that is, tests for the individual variables should be performed with unadjusted p-values. By default,
estat hettest does not perform multiple testing. mtest may not be specified with iid or
fstat.

Description for estat imtest

estat imtest performs an information matrix test for the regression model and an orthogonal de-
composition into tests for heteroskedasticity, skewness, and kurtosis due to Cameron and Trivedi (1990);
White’s test for homoskedasticity against unrestricted forms of heteroskedasticity (1980) is available
as an option. White’s test is usually similar to the first term of the Cameron–Trivedi decomposition.

Menu for estat
Statistics > Postestimation

Syntax for estat imtest

estat imtest
[
, preserve white

]
collect is allowed with estat imtest; see [U] 11.1.10 Prefix commands.

Options for estat imtest

preserve specifies that the data in memory be preserved, all variables and cases that are not needed
in the calculations be dropped, and at the conclusion the original data be restored. This option is
costly for large datasets. However, because estat imtest has to perform an auxiliary regression
on k(k + 1)/2 temporary variables, where k is the number of regressors, it may not be able to
perform the test otherwise.

white specifies that White’s original heteroskedasticity test also be performed.

Description for estat ovtest

estat ovtest performs two versions of the Ramsey (1969) regression specification-error test
(RESET) for omitted variables. This test amounts to fitting y = xb + zt + u and then testing t = 0.
If the rhs option is not specified, powers of the fitted values are used for z. If rhs is specified,
powers of the individual elements of x are used.

https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
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Menu for estat
Statistics > Postestimation

Syntax for estat ovtest

estat ovtest
[
, rhs

]
collect is allowed with estat ovtest; see [U] 11.1.10 Prefix commands.

Option for estat ovtest

rhs specifies that powers of the right-hand-side (explanatory) variables be used in the test rather than
powers of the fitted values.

Description for estat szroeter

estat szroeter performs Szroeter’s rank test for heteroskedasticity for each of the variables in
varlist or for the explanatory variables of the regression if rhs is specified.

Menu for estat
Statistics > Postestimation

Syntax for estat szroeter

estat szroeter
[

varlist
] [

, rhs mtest(spec)
]

Either varlist or rhs must be specified.

Options for estat szroeter

rhs specifies that tests for heteroskedasticity be performed for the right-hand-side (explanatory)
variables of the fitted regression model. The rhs option may be combined with a varlist.

mtest(spec) specifies that multiple testing be performed. The argument specifies how p-values are
adjusted. The following specifications, spec, are supported:

bonferroni Bonferroni’s multiple testing adjustment
holm Holm’s multiple testing adjustment
sidak Šidák’s multiple testing adjustment

noadjust no adjustment is made for multiple testing

estat szroeter always performs multiple testing. By default, it does not adjust the p-values.

https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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Remarks and examples for estat hettest, estat imtest, estat ovtest, and estat szroeter

We introduce some regression diagnostic commands that are designed to test for certain violations
that rvfplot (see [R] regress postestimation diagnostic plots) less formally attempts to detect. estat
ovtest provides Ramsey’s test for omitted variables—a pattern in the residuals. estat hettest
provides a test for heteroskedasticity—the increasing or decreasing variation in the residuals with
fitted values, with respect to the explanatory variables, or with respect to yet other variables. The score
test implemented in estat hettest (Breusch and Pagan 1979; Cook and Weisberg 1983) performs
a score test of the null hypothesis that b = 0 against the alternative hypothesis of multiplicative
heteroskedasticity. estat szroeter provides a rank test for heteroskedasticity, which is an alternative
to the score test computed by estat hettest. Finally, estat imtest computes an information
matrix test, including an orthogonal decomposition into tests for heteroskedasticity, skewness, and
kurtosis (Cameron and Trivedi 1990). The heteroskedasticity test computed by estat imtest is
similar to the general test for heteroskedasticity that was proposed by White (1980). Cameron and
Trivedi (2022, chap. 3) discuss most of these tests and provides more examples.

Example 10: estat ovtest, estat hettest, estat szroeter, and estat imtest

We use our model of price on weight and foreign##c.mpg.

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)

. regress price weight foreign##c.mpg
(output omitted )

. estat ovtest

Ramsey RESET test for omitted variables
Omitted: Powers of fitted values of price

H0: Model has no omitted variables

F(3, 66) = 7.77
Prob > F = 0.0002

. estat hettest

Breusch--Pagan/Cook--Weisberg test for heteroskedasticity
Assumption: Normal error terms
Variable: Fitted values of price

H0: Constant variance

chi2(1) = 6.50
Prob > chi2 = 0.0108

Testing for heteroskedasticity in the right-hand-side variables is requested by specifying the rhs
option. By specifying the mtest(bonferroni) option, we request that tests be conducted for each
of the variables, with a Bonferroni adjustment for the p-values to accommodate our testing multiple
hypotheses.

https://www.stata.com/manuals/rregresspostestimationdiagnosticplots.pdf#rregresspostestimationdiagnosticplots
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. estat hettest, rhs mtest(bonf)

Breusch--Pagan/Cook--Weisberg test for heteroskedasticity
Assumption: Normal error terms
H0: Constant variance

Variable chi2 df p

weight 15.24 1 0.0004*
foreign

Foreign 6.15 1 0.0525*
mpg 9.04 1 0.0106*

foreign#
c.mpg

Foreign 6.02 1 0.0566*

Simultaneous 15.60 4 0.0036

* Bonferroni-adjusted p-values

. estat szroeter, rhs mtest(holm)

Szroeter’s test for homoskedasticity

H0: Variance constant
Ha: Variance monotonic in variables

Variable chi2 df p

weight 17.07 1 0.0001*
foreign

Foreign 6.15 1 0.0131*
mpg 11.45 1 0.0021*

foreign#
c.mpg

Foreign 6.17 1 0.0260*

* Holm-adjusted p-values

Finally, we request the information matrix test, which is a conditional moments test with second-,
third-, and fourth-order moment conditions.

. estat imtest

Cameron & Trivedi’s decomposition of IM-test

Source chi2 df p

Heteroskedasticity 18.86 10 0.0420
Skewness 11.69 4 0.0198
Kurtosis 2.33 1 0.1273

Total 32.87 15 0.0049

We find evidence for omitted variables, heteroskedasticity, and nonnormal skewness.

So, why bother with the various graphical commands when the tests seem so much easier to
interpret? In part, it is a matter of taste: both are designed to uncover the same problem, and both
are, in fact, going about it in similar ways. One is based on a formal calculation, whereas the other is
based on personal judgment in evaluating a graph. On the other hand, the tests are seeking evidence
of specific problems, whereas judgment is more general. The careful analyst will use both.

We performed the omitted-variable test first. Omitted variables are a more serious problem than
heteroskedasticity or the violations of higher moment conditions tested by estat imtest. If this
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were not a manual, having found evidence of omitted variables, we would never have run the
estat hettest, estat szroeter, and estat imtest commands, at least not until we solved the
omitted-variable problem.

Technical note
estat ovtest and estat hettest both perform two flavors of their respective tests. By default,

estat ovtest looks for evidence of omitted variables by fitting the original model augmented by
ŷ2, ŷ3, and ŷ4, which are the fitted values from the original model. Under the assumption of no
misspecification, the coefficients on the powers of the fitted values will be zero. With the rhs option,
estat ovtest instead augments the original model with powers (second through fourth) of the
explanatory variables (except for dummy variables).

estat hettest, by default, looks for heteroskedasticity by modeling the variance as a function
of the fitted values. If, however, we specify a variable or variables, the variance will be modeled as
a function of the specified variables. In our example, if we had, a priori, some reason to suspect
heteroskedasticity and that the heteroskedasticity is a function of a car’s weight, then using a test that
focuses on weight would be more powerful than the more general tests such as White’s test or the
first term in the Cameron–Trivedi decomposition test.

estat hettest, by default, computes the original Breusch–Pagan/Cook–Weisberg test, which
includes the assumption of normally distributed errors. Koenker (1981) derived an N ∗ R2 version
of this test that drops the normality assumption. Wooldridge (2020, 270) gives an F -statistic version
that does not require the normality assumption.

Stored results for estat hettest, estat imtest, and estat ovtest

estat hettest stores the following results for the (multivariate) score test in r():

Scalars
r(chi2) χ2 test statistic
r(df) #df for the asymptotic χ2 distribution under H0

r(p) p-value

estat hettest, fstat stores results for the (multivariate) score test in r():

Scalars
r(F) test statistic
r(df m) #df of the test for the F distribution under H0

r(df r) #df of the residuals for the F distribution under H0

r(p) p-value

estat hettest (if mtest is specified) and estat szroeter store the following in r():

Matrices
r(mtest) a matrix of test results, with rows corresponding to the univariate tests

mtest[.,1] χ2 test statistic
mtest[.,2] #df
mtest[.,3] unadjusted p-value
mtest[.,4] adjusted p-value (if an mtest() adjustment method is specified)

Macros
r(mtmethod) adjustment method for p-value
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estat imtest stores the following in r():
Scalars

r(chi2 t) IM-test statistic (= r(chi2 h) + r(chi2 s) + r(chi2 k))
r(df t) df for limiting χ2 distribution under H0 (= r(df h) + r(df s) + r(df k))
r(chi2 h) heteroskedasticity test statistic
r(df h) df for limiting χ2 distribution under H0

r(chi2 s) skewness test statistic
r(df s) df for limiting χ2 distribution under H0

r(chi2 k) kurtosis test statistic
r(df k) df for limiting χ2 distribution under H0

r(chi2 w) White’s heteroskedasticity test (if white specified)
r(df w) df for limiting χ2 distribution under H0

estat ovtest stores the following in r():
Scalars

r(p) two-sided p-value
r(F) F statistic
r(df) degrees of freedom
r(df r) residual degrees of freedom

Variance inflation factors

Description for estat vif

estat vif calculates the centered or uncentered variance inflation factors (VIFs) for the independent
variables specified in a linear regression model.

Menu for estat
Statistics > Postestimation

Syntax for estat vif

estat vif
[
, uncentered

]
Option for estat vif

uncentered requests the computation of the uncentered variance inflation factors. The uncentered
VIFs are often used to detect the collinearity of the regressors with the constant. uncentered must
be specified if the regression model did not include a constant term because centered VIFs are not
appropriate for these models.

Remarks and examples for estat vif

Problems arise in regression when the predictors are highly correlated. In this situation, there may
be a significant change in the regression coefficients if you add or delete an independent variable.
The estimated standard errors of the fitted coefficients are inflated, or the estimated coefficients may
not be statistically significant even though a statistical relation exists between the dependent and
independent variables.
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Data analysts rely on these facts to check informally for the presence of multicollinearity. estat
vif, another command for use after regress, calculates the variance inflation factors and tolerances
for each of the independent variables.

The output shows the variance inflation factors together with their reciprocals. Some analysts
compare the reciprocals with a predetermined tolerance. In the comparison, if the reciprocal of the
VIF is smaller than the tolerance, the associated predictor variable is removed from the regression
model. However, most analysts rely on informal rules of thumb applied to the VIF; see Chatterjee
and Hadi (2012). According to these rules, there is evidence of multicollinearity if

1. The largest VIF is greater than 10 (some choose a more conservative threshold value of 30).

2. The mean of all the VIFs is considerably larger than 1.

Example 11: estat vif

We examine a regression model fit using the ubiquitous automobile dataset:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)

. regress price mpg rep78 trunk headroom length turn displ gear_ratio

Source SS df MS Number of obs = 69
F(8, 60) = 6.33

Model 264102049 8 33012756.2 Prob > F = 0.0000
Residual 312694909 60 5211581.82 R-squared = 0.4579

Adj R-squared = 0.3856
Total 576796959 68 8482308.22 Root MSE = 2282.9

price Coefficient Std. err. t P>|t| [95% conf. interval]

mpg -144.84 82.12751 -1.76 0.083 -309.1195 19.43948
rep78 727.5783 337.6107 2.16 0.035 52.25638 1402.9
trunk 44.02061 108.141 0.41 0.685 -172.2935 260.3347

headroom -807.0996 435.5802 -1.85 0.069 -1678.39 64.19062
length -8.688914 34.89848 -0.25 0.804 -78.49626 61.11843

turn -177.9064 137.3455 -1.30 0.200 -452.6383 96.82551
displacement 30.73146 7.576952 4.06 0.000 15.5753 45.88762

gear_ratio 1500.119 1110.959 1.35 0.182 -722.1303 3722.368
_cons 6691.976 7457.906 0.90 0.373 -8226.058 21610.01

. estat vif

Variable VIF 1/VIF

length 8.22 0.121614
displacement 6.50 0.153860

turn 4.85 0.205997
gear_ratio 3.45 0.290068

mpg 3.03 0.330171
trunk 2.88 0.347444

headroom 1.80 0.554917
rep78 1.46 0.686147

Mean VIF 4.02

The results are mixed. Although we have no VIFs greater than 10, the mean VIF is greater than 1,
though not considerably so. We could continue the investigation of collinearity, but given that other
authors advise that collinearity is a problem only when VIFs exist that are greater than 30 (contradicting
our rule above), we will not do so here.
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Example 12: estat vif, with strong evidence of multicollinearity

This example comes from a dataset described in Kutner, Nachtsheim, and Neter (2004, 257) that
examines body fat as modeled by caliper measurements on the triceps, midarm, and thigh.

. use https://www.stata-press.com/data/r18/bodyfat
(Body fat)

. regress bodyfat tricep thigh midarm

Source SS df MS Number of obs = 20
F(3, 16) = 21.52

Model 396.984607 3 132.328202 Prob > F = 0.0000
Residual 98.4049068 16 6.15030667 R-squared = 0.8014

Adj R-squared = 0.7641
Total 495.389513 19 26.0731323 Root MSE = 2.48

bodyfat Coefficient Std. err. t P>|t| [95% conf. interval]

triceps 4.334085 3.015511 1.44 0.170 -2.058512 10.72668
thigh -2.856842 2.582015 -1.11 0.285 -8.330468 2.616785

midarm -2.186056 1.595499 -1.37 0.190 -5.568362 1.19625
_cons 117.0844 99.78238 1.17 0.258 -94.44474 328.6136

. estat vif

Variable VIF 1/VIF

triceps 708.84 0.001411
thigh 564.34 0.001772

midarm 104.61 0.009560

Mean VIF 459.26

Here we see strong evidence of multicollinearity in our model. More investigation reveals that the
measurements on the thigh and the triceps are highly correlated:

. correlate triceps thigh midarm
(obs=20)

triceps thigh midarm

triceps 1.0000
thigh 0.9238 1.0000

midarm 0.4578 0.0847 1.0000

If we remove the predictor tricep from the model (because it had the highest VIF), we get

. regress bodyfat thigh midarm

Source SS df MS Number of obs = 20
F(2, 17) = 29.40

Model 384.279748 2 192.139874 Prob > F = 0.0000
Residual 111.109765 17 6.53586854 R-squared = 0.7757

Adj R-squared = 0.7493
Total 495.389513 19 26.0731323 Root MSE = 2.5565

bodyfat Coefficient Std. err. t P>|t| [95% conf. interval]

thigh .8508818 .1124482 7.57 0.000 .6136367 1.088127
midarm .0960295 .1613927 0.60 0.560 -.2444792 .4365383
_cons -25.99696 6.99732 -3.72 0.002 -40.76001 -11.2339
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. estat vif

Variable VIF 1/VIF

midarm 1.01 0.992831
thigh 1.01 0.992831

Mean VIF 1.01

Note how the coefficients change and how the estimated standard errors for each of the regression
coefficients become much smaller. The calculated value of R2 for the overall regression for the
subset model does not appreciably decline when we remove the correlated predictor. Removing an
independent variable from the model is one way to deal with multicollinearity. Other methods include
ridge regression, weighted least squares, and restricting the use of the fitted model to data that follow
the same pattern of multicollinearity. In economic studies, it is sometimes possible to estimate the
regression coefficients from different subsets of the data by using cross-section and time series.

All examples above demonstrated the use of centered VIFs. As pointed out by Belsley (1991), the
centered VIFs may fail to discover collinearity involving the constant term. One solution is to use the
uncentered VIFs instead. According to the definition of the uncentered VIFs, the constant is viewed
as a legitimate explanatory variable in a regression model, which allows one to obtain the VIF value
for the constant term.

Example 13: estat vif, with strong evidence of collinearity with the constant term

Consider the extreme example in which one of the regressors is highly correlated with the constant.
We simulate the data and examine both centered and uncentered VIF diagnostics after fitted regression
model as follows.

. use https://www.stata-press.com/data/r18/extreme_collin

. regress y one x z

Source SS df MS Number of obs = 100
F(3, 96) = 2710.27

Model 223801.985 3 74600.6617 Prob > F = 0.0000
Residual 2642.42124 96 27.5252213 R-squared = 0.9883

Adj R-squared = 0.9880
Total 226444.406 99 2287.31723 Root MSE = 5.2464

y Coefficient Std. err. t P>|t| [95% conf. interval]

one -3.278582 10.5621 -0.31 0.757 -24.24419 17.68702
x 2.038696 .0242673 84.01 0.000 1.990526 2.086866
z 4.863137 .2681036 18.14 0.000 4.330956 5.395319

_cons 9.760075 10.50935 0.93 0.355 -11.10082 30.62097

. estat vif

Variable VIF 1/VIF

z 1.03 0.968488
x 1.03 0.971307

one 1.00 0.995425

Mean VIF 1.02
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. estat vif, uncentered

Variable VIF 1/VIF

one 402.94 0.002482
_cons 401.26 0.002492

z 2.93 0.341609
x 1.13 0.888705

Mean VIF 202.06

According to the values of the centered VIFs (1.03, 1.03, 1.00), no harmful collinearity is detected
in the model. However, by the construction of these simulated data, we know that one is highly
collinear with the constant term. As such, the large values of uncentered VIFs for one (402.94) and
cons (401.26) reveal high collinearity of the variable one with the constant term.

Measures of effect size

Description for estat esize

estat esize calculates effect sizes for linear models after regress or anova. By default, estat
esize reports η2 estimates (Kerlinger and Lee 2000), which are equivalent to R2 estimates. If the
option epsilon is specified, estat esize reports ε2 estimates (Grissom and Kim 2012). If the option
omega is specified, estat esize reports ω2 estimates (Grissom and Kim 2012). Both ε2 and ω2 are
adjusted R2 estimates. Confidence intervals for η2 estimates are estimated by using the noncentral
F distribution (Smithson 2001). See Kline (2013) or Thompson (2006) for further information.

Menu for estat
Statistics > Postestimation

Syntax for estat esize

estat esize
[
, epsilon omega level(#)

]
collect is allowed with estat esize; see [U] 11.1.10 Prefix commands.

Options for estat esize

epsilon specifies that the ε2 estimates of effect size be reported. The default is η2 estimates.

omega specifies that the ω2 estimates of effect size be reported. The default is η2 estimates.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/manuals/ranova.pdf#ranova
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u20.pdf#u20.8Specifyingthewidthofconfidenceintervals
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Remarks and examples for estat esize

Whereas p-values are used to assess the statistical significance of a result, measures of effect
size are used to assess the practical significance of a result. Effect sizes can be broadly categorized
as “measures of group differences” (the d family) and “measures of association” (the r family);
see Ellis (2010, table 1.1). The d family includes estimators such as Cohen’s D, Hedges’s G, and
Glass’s ∆ (also see [R] esize). The r family includes estimators such as the point-biserial correlation
coefficient, η2, ε2, and ω2. For an introduction to the concepts and calculation of effect sizes, see
Kline (2013) or Thompson (2006). For a more detailed discussion, see Kirk (1996), Ellis (2010),
Cumming (2012), Grissom and Kim (2012), and Kelley and Preacher (2012).

Example 14: Calculating effect sizes for a linear regression model

Suppose we fit a linear regression model for low-birthweight infants.

. use https://www.stata-press.com/data/r18/lbw
(Hosmer & Lemeshow data)

. regress bwt smoke i.race

Source SS df MS Number of obs = 189
F(3, 185) = 8.69

Model 12346897.6 3 4115632.54 Prob > F = 0.0000
Residual 87568400.9 185 473342.708 R-squared = 0.1236

Adj R-squared = 0.1094
Total 99915298.6 188 531464.354 Root MSE = 688

bwt Coefficient Std. err. t P>|t| [95% conf. interval]

smoke -428.0254 109.0033 -3.93 0.000 -643.0746 -212.9761

race
Black -450.54 153.066 -2.94 0.004 -752.5194 -148.5607
Other -454.1813 116.436 -3.90 0.000 -683.8944 -224.4683

_cons 3334.858 91.74301 36.35 0.000 3153.86 3515.855

We can use the estat esize command to calculate η2 for the entire model and a partial η2 for
each term in the model.

. estat esize

Effect sizes for linear models

Source Eta-squared df [95% conf. interval]

Model .1235736 3 .0399862 .2041365

smoke .0769345 1 .0193577 .1579213
race .0908394 2 .0233037 .1700334

Note: Eta-squared values for individual model terms are partial.

The overall model effect size is 0.124. This means that roughly 12.4% of the variation in bwt is
explained by the model. The partial effect size for smoke is 0.077. This means that roughly 7.7%
of the variation in bwt is explained by smoke after you remove the variation explained by all other
terms.

https://www.stata.com/manuals/resize.pdf#resize
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The omega option causes estat esize to report ω2 and partial ω2.
. estat esize, omega

Effect sizes for linear models

Source Omega-squared df

Model .1088457 3

smoke .0715877 1
race .0806144 2

Note: Omega-squared values for individual
model terms are partial.

Example 15: Calculating effect size for an ANOVA model

We can use estat esize after ANOVA models as well.
. anova bwt smoke race

Number of obs = 189 R-squared = 0.1236
Root MSE = 687.999 Adj R-squared = 0.1094

Source Partial SS df MS F Prob>F

Model 12346898 3 4115632.5 8.69 0.0000

smoke 7298536.6 1 7298536.6 15.42 0.0001
race 8749453.3 2 4374726.6 9.24 0.0001

Residual 87568401 185 473342.71

Total 99915299 188 531464.35

. estat esize

Effect sizes for linear models

Source Eta-squared df [95% conf. interval]

Model .1235736 3 .0399862 .2041365

smoke .0769345 1 .0193577 .1579213
race .0908394 2 .0233037 .1700334

Note: Eta-squared values for individual model terms are partial.

Technical note
η2 was developed in the context of analysis of variance. Thus, the published research on the

calculation of confidence intervals focuses on cases where the numerator degrees of freedom are
relatively small (for example, df < 20).

Some combinations of the F statistic, numerator degrees of freedom, and denominator degrees of
freedom yield confidence limits that do not contain the corresponding estimated value for an η2. This
problem is most commonly observed for larger numerator degrees of freedom.

Nothing in the literature suggests alternative methods for constructing confidence intervals in
such cases; therefore, we recommend cautious interpretation of confidence intervals for η2 when the
numerator degrees of freedom are greater than 20.
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Stored results for estat esize
estat esize stores the following results in r():

Scalars
r(level) confidence level

Matrices
r(esize) a matrix of effect sizes, confidence intervals, degrees of freedom, and F statistics with rows

corresponding to each term in the model
esize[.,1] η2

esize[.,2] lower confidence bound for η2
esize[.,3] upper confidence bound for η2
esize[.,4] ε2

esize[.,5] ω2

esize[.,6] numerator degrees of freedom
esize[.,7] denominator degrees of freedom
esize[.,8] F statistic

Methods and formulas
See Hamilton (2013, chap. 7), Kohler and Kreuter (2012, sec. 9.3), or Baum (2006, chap. 5) for

an overview of using Stata to perform regression diagnostics. See Peracchi (2001, chap. 8) for a
mathematically rigorous discussion of diagnostics.

Methods and formulas are presented under the following headings:

predict
Special-interest postestimation commands

predict

Assume that you have already fit the regression model

y = Xb + e

where X is n× k.

Denote the previously estimated coefficient vector by b and its estimated variance matrix by V.
predict works by recalling various aspects of the model, such as b, and combining that information
with the data currently in memory. Let xj be the jth observation currently in memory, and let s2 be
the mean squared error of the regression.

If the user specified weights in regress, then X′X in the following formulas is replaced by
X′DX, where D is defined in Weighted regression under Methods and formulas in [R] regress.

Let V = s2(X′X)−1. Let k be the number of independent variables including the intercept, if
any, and let yj be the observed value of the dependent variable.

The predicted value (xb option) is defined as ŷj = xjb.

Let `j represent a lower bound for an observation j and uj represent an upper bound. The
probability that yj |xj would be observed in the interval (`j , uj)—the pr(`, u) option—is

P (`j , uj) = Pr(`j < xjb + ej < uj) = Φ

(
uj − ŷj

s

)
− Φ

(
`j − ŷj
s

)
where for the pr(`, u), e(`, u), and ystar(`, u) options, `j and uj can be anywhere in the
range (−∞,+∞).

https://www.stata.com/manuals/rregress.pdf#rregressMethodsandformulasWeightedregression
https://www.stata.com/manuals/rregress.pdf#rregress
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The option e(`, u) computes the expected value of yj |xj conditional on yj |xj being in the
interval (`j , uj), that is, when yj |xj is truncated. It can be expressed as

E(`j , uj) = E(xjb + ej | `j < xjb + ej < uj) = ŷj − s
φ
(
uj−ŷj
s

)
− φ

(
`j−ŷj
s

)
Φ
(
uj−ŷj
s

)
− Φ

(
`j−ŷj
s

)
where φ is the normal density and Φ is the cumulative normal.

You can also compute ystar(`, u)—the expected value of yj |xj , where yj is assumed censored
at `j and uj :

y∗j =


`j if xjb + ej ≤ `j
xjb + ej if `j < xjb + ej < uj
uj if xjb + ej ≥ uj

This computation can be expressed in several ways, but the most intuitive formulation involves a
combination of the two statistics just defined:

y∗j = P (−∞, `j)`j + P (`j , uj)E(`j , uj) + P (uj ,+∞)uj

A diagonal element of the projection matrix (hat) or (leverage) is given by

hj = xj(X
′X)−1x′j

The standard error of the prediction (the stdp option) is defined as spj =
√
xjVx′j

and can also be written as spj = s
√
hj .

The standard error of the forecast (stdf) is defined as sfj = s
√

1 + hj .

The standard error of the residual (stdr) is defined as srj = s
√

1− hj .
The residuals (residuals) are defined as êj = yj − ŷj .
The standardized residuals (rstandard) are defined as êsj = êj/srj .

The Studentized residuals (rstudent) are defined as

rj =
êj

s(j)
√

1− hj

where s(j) represents the root mean squared error with the jth observation removed, which is given
by

s2(j) =
s2(n− k)

n− k − 1
−

ê 2
j

(n− k − 1)(1− hj)

where n is the number of observations and k is the number of right-hand-side variables (including
the constant).

Cook’s D (cooksd) is given by

Dj =
ê 2
sj (spj/srj )2

k
=

hj ê
2
j

ks2(1− hj)2
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DFITS (dfits) is given by

DFITSj = rj

√
hj

1− hj

Welsch distance (welsch) is given by

Wj =
rj
√
hj(n− 1)

1− hj

COVRATIO (covratio) is given by

COVRATIOj =
1

1− hj

(
n− k − ê2sj
n− k − 1

)k
The DFBETAs (dfbeta) for a particular regressor xi are given by

DFBETAj =
rjuj√

U2(1− hj)

where uj are the residuals obtained from a regression of xi on the remaining x’s and U2 =
∑
j

u2j .

Special-interest postestimation commands

The omitted-variable test (Ramsey 1969) reported by estat ovtest fits the regression yi =
xib+zit+ui and then performs a standard F test of t = 0. The default test uses zi = (ŷ2i , ŷ

3
i , ŷ

4
i ).

If rhs is specified, zi = (x21i, x
3
1i, x

4
1i, x

2
2i, . . . , x

4
mi). In either case, the variables are normalized to

have minimum 0 and maximum 1 before powers are calculated.

The test for heteroskedasticity (Breusch and Pagan 1979; Cook and Weisberg 1983) models
Var(ei) = σ2 exp(zt), where z is a variable list specified by the user, the list of right-hand-side
variables, or the fitted values xβ̂. The test is of t = 0. Mechanically, estat hettest fits the
augmented regression ê2i /σ̂

2 = a+ zit + vi.

The original Breusch–Pagan/Cook–Weisberg version of the test assumes that the ei are normally
distributed under the null hypothesis which implies that the score test statistic S is equal to the model
sum of squares from the augmented regression divided by 2. Under the null hypothesis, S has the
χ2 distribution with m degrees of freedom, where m is the number of columns of z.

Koenker (1981) derived a score test of the null hypothesis that t = 0 under the assumption that
the ei are independent and identically distributed (i.i.d.). Koenker showed that S = N ∗ R2 has a
large-sample χ2 distribution with m degrees of freedom, where N is the number of observations and
R2 is from the augmented regression and m is the number of columns of z. estat hettest, iid
produces this version of the test.

Wooldridge (2020, 270) showed that an F test of t = 0 in the augmented regression can also be
used under the assumption that the ei are i.i.d. estat hettest, fstat produces this version of the
test.

Szroeter’s class of tests for homoskedasticity against the alternative that the residual variance
increases in some variable x is defined in terms of

H =

∑n
i=1 h(xi)e

2
i∑n

i=1 e
2
i
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where h(x) is some weight function that increases in x (Szroeter 1978). H is a weighted average
of the h(x), with the squared residuals serving as weights. Under homoskedasticity, H should be
approximately equal to the unweighted average of h(x). Large values of H suggest that e2i tends to be
large where h(x) is large; that is, the variance indeed increases in x, whereas small values of H suggest
that the variance actually decreases in x. estat szroeter uses h(xi) = rank(xi in x1 . . . xn); see
Judge et al. [1985, 452] for details. estat szroeter displays a normalized version of H ,

Q =

√
6n

n2 − 1
H

which is approximately N(0, 1) distributed under the null (homoskedasticity).

estat hettest and estat szroeter provide adjustments of p-values for multiple testing. The
supported methods are described in [R] test.

estat imtest performs the information matrix test for the regression model, as well as an
orthogonal decomposition into tests for heteroskedasticity δ1, nonnormal skewness δ2, and nonnormal
kurtosis δ3 (Cameron and Trivedi 1990; Long and Trivedi 1993). The decomposition is obtained via
three auxiliary regressions. Let e be the regression residuals, σ̂2 be the maximum likelihood estimate
of σ2 in the regression, n be the number of observations, X be the set of k variables specified with
estat imtest, and R2

un be the uncentered R2 from a regression. δ1 is obtained as nR2
un from a

regression of e2 − σ̂2 on the cross products of the variables in X . δ2 is computed as nR2
un from a

regression of e3−3σ̂2e on X . Finally, δ3 is obtained as nR2
un from a regression of e4−6σ̂2e2−3σ̂4

on X . δ1, δ2, and δ3 are asymptotically χ2 distributed with 1/2k(k+1), K, and 1 degree of freedom.
The information test statistic δ = δ1 + δ2 + δ3 is asymptotically χ2 distributed with 1/2k(k + 3)
degrees of freedom. White’s test for heteroskedasticity is computed as nR2 from a regression of û2

on X and the cross products of the variables in X . This test statistic is usually close to δ1.

estat vif calculates the centered variance inflation factor (VIFc) (Chatterjee and Hadi 2012,
248–251) for xj , given by

VIFc(xj) =
1

1− R̂2
j

where R̂2
j is the square of the centered multiple correlation coefficient that results when xj is regressed

against all other explanatory variables, including the constant.

The uncentered variance inflation factor (VIFuc) (Belsley 1991, 28–29) for xj is given by

VIFuc(xj) =
1

1− R̃2
j

where R̃2
j is the square of the uncentered multiple correlation coefficient that results when xj is

regressed against all other explanatory variables and a constant of 1. If the original regression model
was fit without a constant, the constant would also be omitted from the regression of xj .

The methods and formulas for estat esize are described in Methods and formulas of [R] esize.
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