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Description

orthog orthogonalizes a set of variables, creating a new set of orthogonal variables (all of type
double), using a modified Gram–Schmidt procedure (Golub and Van Loan 2013). The order of the
variables determines the orthogonalization; hence, the “most important” variables should be listed
first.

Execution time is proportional to the square of the number of variables. With many (>10) variables,
orthog will be fairly slow.

orthpoly computes orthogonal polynomials for one variable.

Quick start
Generate ox1, ox2, and ox3 containing orthogonalized versions of x1, x2, and x3

orthog x1 x2 x3, generate(ox1 ox2 ox3)

Same as above
orthog x1 x2 x3, generate(ox*)

Generate op1, op2, and op3 containing degree 1, 2, and 3 orthogonal polynomials for x1
orthpoly x1, generate(op1 op2 op3) degree(3)

Same as above
orthpoly x1, generate(op1-op3) degree(3)

Same as above, and generate matrix op containing coefficients of the orthogonal polynomials
orthpoly x1, generate(op1-op3) degree(3) poly(op)

Menu
orthog

Data > Create or change data > Other variable-creation commands > Orthogonalize variables

orthpoly

Data > Create or change data > Other variable-creation commands > Orthogonal polynomials
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Syntax

Orthogonalize variables

orthog
[

varlist
] [

if
] [

in
] [

weight
]
, generate(newvarlist)

[
matrix(matname)

]
Compute orthogonal polynomial

orthpoly varname
[

if
] [

in
] [

weight
]
,{

generate(newvarlist) | poly(matname)
} [

degree(#)
]

orthpoly requires that generate(newvarlist) or poly(matname), or both, be specified.
varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
iweights, aweights, fweights, and pweights are allowed, see [U] 11.1.6 weight.

Options for orthog

� � �
Main �

generate(newvarlist) is required. generate() creates new orthogonal variables of type double.
For orthog, newvarlist will contain the orthogonalized varlist. If varlist contains d variables, then
so will newvarlist. newvarlist can be specified by giving a list of exactly d new variable names,
or it can be abbreviated using the styles newvar1-newvard or newvar*. For these two styles of
abbreviation, new variables newvar1, newvar2, . . . , newvard are generated.

matrix(matname) creates a (d+ 1)× (d+ 1) matrix containing the matrix R defined by X = QR,
where X is the N × (d+ 1) matrix representation of varlist plus a column of ones and Q is the
N × (d+ 1) matrix representation of newvarlist plus a column of ones (d = number of variables
in varlist, and N = number of observations).

Options for orthpoly

� � �
Main �

generate(newvarlist) or poly(), or both, must be specified. generate() creates new orthogonal
variables of type double. newvarlist will contain orthogonal polynomials of degree 1, 2, . . . ,
d evaluated at varname, where d is as specified by degree(d). newvarlist can be specified by
giving a list of exactly d new variable names, or it can be abbreviated using the styles newvar1-
newvard or newvar*. For these two styles of abbreviation, new variables newvar1, newvar2, . . . ,
newvard are generated.

poly(matname) creates a (d + 1) × (d + 1) matrix called matname containing the coefficients of
the orthogonal polynomials. The orthogonal polynomial of degree i ≤ d is

matname[ i, d+ 1 ] + matname[ i, 1 ]*varname + matname[ i, 2 ]*varname2

+ · · · + matname[ i, i ]*varnamei

The coefficients corresponding to the constant term are placed in the last column of the matrix.
The last row of the matrix is all zeros, except for the last column, which corresponds to the
constant term.

degree(#) specifies the highest-degree polynomial to include. Orthogonal polynomials of degree 1,
2, . . . , d = # are computed. The default is d = 1.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
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Remarks and examples stata.com

Orthogonal variables are useful for two reasons. The first is numerical accuracy for highly collinear
variables. Stata’s regress and other estimation commands can face much collinearity and still produce
accurate results. But, at some point, these commands will drop variables because of collinearity. If
you know with certainty that the variables are not perfectly collinear, you may want to retain all their
effects in the model. If you use orthog or orthpoly to produce a set of orthogonal variables, all
variables will be present in the estimation results.

Users are more likely to find orthogonal variables useful for the second reason: ease of interpreting
results. orthog and orthpoly create a set of variables such that the “effects” of all the preceding
variables have been removed from each variable. For example, if we issue the command

. orthog x1 x2 x3, generate(q1 q2 q3)

the effect of the constant is removed from x1 to produce q1; the constant and x1 are removed from
x2 to produce q2; and finally the constant, x1, and x2 are removed from x3 to produce q3. Hence,

q1 = r01 + r11 x1

q2 = r02 + r12 x1+ r22 x2

q3 = r03 + r13 x1+ r23 x2+ r33 x3

This effect can be generalized and written in matrix notation as

X = QR

where X is the N × (d + 1) matrix representation of varlist plus a column of ones, and Q is the
N × (d + 1) matrix representation of newvarlist plus a column of ones (d = number of variables
in varlist and N = number of observations). The (d+ 1)× (d+ 1) matrix R is a permuted upper-
triangular matrix, that is, R would be upper triangular if the constant were first, but the constant is
last, so the first row/column has been permuted with the last row/column. Because Stata’s estimation
commands list the constant term last, this allows R, obtained via the matrix() option, to be used
to transform estimation results.

Example 1: orthog

Consider Stata’s auto.dta dataset. Suppose that we postulate a model in which price depends
on the car’s length, weight, headroom, and trunk size (trunk). These predictors are collinear, but
not extremely so—the correlations are not that close to 1:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)

. correlate length weight headroom trunk
(obs=74)

length weight headroom trunk

length 1.0000
weight 0.9460 1.0000

headroom 0.5163 0.4835 1.0000
trunk 0.7266 0.6722 0.6620 1.0000

http://stata.com
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regress certainly has no trouble fitting this model:

. regress price length weight headroom trunk

Source SS df MS Number of obs = 74
F(4, 69) = 10.20

Model 236016580 4 59004145 Prob > F = 0.0000
Residual 399048816 69 5783316.17 R-squared = 0.3716

Adj R-squared = 0.3352
Total 635065396 73 8699525.97 Root MSE = 2404.9

price Coefficient Std. err. t P>|t| [95% conf. interval]

length -101.7092 42.12534 -2.41 0.018 -185.747 -17.67147
weight 4.753066 1.120054 4.24 0.000 2.518619 6.987512

headroom -711.5679 445.0204 -1.60 0.114 -1599.359 176.2236
trunk 114.0859 109.9488 1.04 0.303 -105.2559 333.4277
_cons 11488.47 4543.902 2.53 0.014 2423.638 20553.31

However, we may believe a priori that length is the most important predictor, followed by weight,
headroom, and trunk. We would like to remove the “effect” of length from all the other predictors,
remove weight from headroom and trunk, and remove headroom from trunk. We can do this by
running orthog, and then we fit the model again using the orthogonal variables:

. orthog length weight headroom trunk, gen(olength oweight oheadroom otrunk)
> matrix(R)

. regress price olength oweight oheadroom otrunk

Source SS df MS Number of obs = 74
F(4, 69) = 10.20

Model 236016580 4 59004145 Prob > F = 0.0000
Residual 399048816 69 5783316.17 R-squared = 0.3716

Adj R-squared = 0.3352
Total 635065396 73 8699525.97 Root MSE = 2404.9

price Coefficient Std. err. t P>|t| [95% conf. interval]

olength 1265.049 279.5584 4.53 0.000 707.3454 1822.753
oweight 1175.765 279.5584 4.21 0.000 618.0617 1733.469

oheadroom -349.9916 279.5584 -1.25 0.215 -907.6955 207.7122
otrunk 290.0776 279.5584 1.04 0.303 -267.6262 847.7815
_cons 6165.257 279.5584 22.05 0.000 5607.553 6722.961

Using the matrix R, we can transform the results obtained using the orthogonal predictors back to
the metric of original predictors:

. matrix b = e(b)*inv(R)’

. matrix list b

b[1,5]
length weight headroom trunk _cons

y1 -101.70924 4.7530659 -711.56789 114.08591 11488.475

Technical note
The matrix R obtained using the matrix() option with orthog can also be used to recover X

(the original varlist) from Q (the orthogonalized newvarlist), one variable at a time. Continuing with
the previous example, we illustrate how to recover the trunk variable:
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. matrix C = R[1...,"trunk"]’

. matrix score double rtrunk = C

. compare rtrunk trunk

Difference
Count Minimum Average Maximum

rtrunk>trunk 74 8.88e-15 1.91e-14 3.55e-14

Jointly defined 74 8.88e-15 1.91e-14 3.55e-14

Total 74

Here the recovered variable rtrunk is almost exactly the same as the original trunk variable.
When you are orthogonalizing many variables, this procedure can be performed to check the numerical
soundness of the orthogonalization. Because of the ordering of the orthogonalization procedure, the
last variable and the variables near the end of the varlist are the most important ones to check.

The orthpoly command effectively does for polynomial terms what the orthog command does
for an arbitrary set of variables.

Example 2: orthpoly

Again consider the auto.dta dataset. Suppose that we wish to fit the model

mpg = β0 + β1 weight+ β2 weight
2 + β3 weight

3 + β4 weight
4 + ε

We will first compute the regression with natural polynomials:
. generate double w1 = weight

. generate double w2 = w1*w1

. generate double w3 = w2*w1

. generate double w4 = w3*w1

. correlate w1-w4
(obs=74)

w1 w2 w3 w4

w1 1.0000
w2 0.9915 1.0000
w3 0.9665 0.9916 1.0000
w4 0.9279 0.9679 0.9922 1.0000

. regress mpg w1-w4

Source SS df MS Number of obs = 74
F(4, 69) = 36.06

Model 1652.73666 4 413.184164 Prob > F = 0.0000
Residual 790.722803 69 11.4597508 R-squared = 0.6764

Adj R-squared = 0.6576
Total 2443.45946 73 33.4720474 Root MSE = 3.3852

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

w1 .0289302 .1161939 0.25 0.804 -.2028704 .2607307
w2 -.0000229 .0000566 -0.40 0.687 -.0001359 .0000901
w3 5.74e-09 1.19e-08 0.48 0.631 -1.80e-08 2.95e-08
w4 -4.86e-13 9.14e-13 -0.53 0.596 -2.31e-12 1.34e-12

_cons 23.94421 86.60667 0.28 0.783 -148.8314 196.7198
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Some of the correlations among the powers of weight are very large, but this does not create any
problems for regress. However, we may wish to look at the quadratic trend with the constant
removed, the cubic trend with the quadratic and constant removed, etc. orthpoly will generate
polynomial terms with this property:

. orthpoly weight, generate(pw*) deg(4) poly(P)

. regress mpg pw1-pw4

Source SS df MS Number of obs = 74
F(4, 69) = 36.06

Model 1652.73666 4 413.184164 Prob > F = 0.0000
Residual 790.722803 69 11.4597508 R-squared = 0.6764

Adj R-squared = 0.6576
Total 2443.45946 73 33.4720474 Root MSE = 3.3852

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

pw1 -4.638252 .3935245 -11.79 0.000 -5.423312 -3.853192
pw2 .8263545 .3935245 2.10 0.039 .0412947 1.611414
pw3 -.3068616 .3935245 -0.78 0.438 -1.091921 .4781982
pw4 -.209457 .3935245 -0.53 0.596 -.9945168 .5756028

_cons 21.2973 .3935245 54.12 0.000 20.51224 22.08236

Compare the p-values of the terms in the natural polynomial regression with those in the orthogonal
polynomial regression. With orthogonal polynomials, it is easy to see that the pure cubic and quartic
trends are not significant and that the constant, linear, and quadratic terms each have p < 0.05.

The matrix P obtained with the poly() option can be used to transform coefficients for orthogonal
polynomials to coefficients for natural polynomials:

. orthpoly weight, poly(P) deg(4)

. matrix b = e(b)*P

. matrix list b

b[1,5]
deg1 deg2 deg3 deg4 _cons

y1 .02893016 -.00002291 5.745e-09 -4.862e-13 23.944212

Methods and formulas
orthog’s orthogonalization can be written in matrix notation as

X = QR

where X is the N × (d + 1) matrix representation of varlist plus a column of ones and Q is the
N × (d+ 1) matrix representation of newvarlist plus a column of ones (d = number of variables in
varlist, and N = number of observations). The (d + 1) × (d + 1) matrix R is a permuted upper-
triangular matrix; that is, R would be upper triangular if the constant were first, but the constant is
last, so the first row/column has been permuted with the last row/column.

Q and R are obtained using a modified Gram–Schmidt procedure; see Golub and Van Loan (2013,
254–255) for details. The traditional Gram–Schmidt procedure is notoriously unsound, but the modified
procedure is good. orthog performs two passes of this procedure.

orthpoly uses the Christoffel–Darboux recurrence formula (Abramowitz and Stegun 1964).
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Both orthog and orthpoly normalize the orthogonal variables such that

Q′WQ =MI

where W = diag(w1, w2, . . . , wN ) with weights w1, w2, . . . , wN (all 1 if weights are not specified),
and M is the sum of the weights (the number of observations if weights are not specified).
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