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Abstract. Multiple-imputation (MI) diagnostics are an important step of multiple-
imputation analysis. We present a short tutorial on performing multiple-imputation
diagnostics in Stata.

Introduction

Multiple imputation is a principled statistical method for handling missing data, but like
any other method, it relies on certain assumptions. One assumption, that the data are
missing at random, is not testable. But if we tentatively assume the data are missing at
random, other assumptions are testable. We can check, for instance, that the imputation
models fit the observed data well, and that the imputed values themselves are reasonable
(e.g., [Abayomi, Gelman, and Levyl [2008], [Raghunathan and Bondarenko [2007]).

We are working on a new unofficial command midiagplots to implement some of

the MI diagnostics in Stata. In the meantime you can perform them manually, as we
explain in this note.

Here are the steps for performing MI diagnostics manually:

Convert the mi data to the wide style, so that imputations will be stored in extra
variables and not in extra observations. The wide style makes it easier to compare
imputed values to observed values.

Create indicator variables to flag the observations with missing values.

Fit the imputation models to the observed data with a non-mi estimation com-
mand like regress, and use regression diagnostics to check the fit. (The models
should not be used for imputation if they fit the observed data poorly.)

Use mi impute to impute the missing values.

Check that the imputed values are reasonable. The key command ismi xeq, which
executes a given command on particular imputations.
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2 Example

Consider the heart-attack example from First use under Remarks in [MI] mi impute
monotone:

. webuse mheart5s0
(Fictional heart attack data; bmi and age missing)

. mi describe

Style: mlong
last mi update 30mar2011 12:46:48, 22 days ago

Obs.: complete 126
incomplete 28 (M = 0 imputations)
total 154

Vars.: imputed: 2; bmi(28) age(12)
passive: O
regular: 4; attack smokes female hsgrad
system: 3; _mi_m _mi_id _mi_miss

(there are no unregistered variables)

Our data are already mi set. There are two variables registered as imputed: age and
bmi. The remaining variables are complete and are registered as regular. Our primary
analysis is a logistic regression of heart attacks on smoking, adjusted for other factors
such as age, body mass index, and gender.

We want to include all available data on heart attacks and smoking in our analysis,
so we’'ll use multiple imputation to fill in the missing values of age and bmi. According
to mi misstable nested, the variables age and bmi follow a monotone missing-data
pattern:

. mi misstable nested
1. age(12) -> bmi(28)

The pattern is monotone because age is missing only when bmi is missing, so we’ll use
mi impute monotone to fill in missing values of age and bmi.

Our first step is to build an imputation model. We start with a simple model. age
and bmi are continuous variables so we choose to impute them using linear regression,
and we use all of our complete variables as predictors. Here are the imputation models
we'll fit:

. mi impute monotone (regress) age bmi = attack smokes hsgrad female, dryrun

Conditional models:
age: regress age attack smokes hsgrad female
bmi: regress bmi age attack smokes hsgrad female

The dryrun option displays the imputation models but does not fit them. There is one
equation for each imputed variable; age will be imputed first because it has the fewest
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missing values. Then the imputed age variable will be used as a predictor to impute
bmi.

Now that we have our imputation models, we are ready to check if they fit the
observed data well. For the purpose of illustration, we only check the imputation model
for age below. We’ll demonstrate another MI diagnostic using the imputation model for
bmi later.

Following the steps from the introduction, we convert to the wide style:

. mi convert wide

and create indicator variables identifying the missing values in age and bmi for later
use:

. qui mi xeq: generate byte Mis_age = missing(age)
. qui mi xeq: generate byte Mis_bmi = missing(bmi)

. mi register regular Mis_age Mis_bmi

The variables could also be created in the observed data with misstable summarize,
generate().

Now we fit the model for age to the observed data and plot the residuals against
the fitted values with rvfplot. (A list of diagnostic commands is in [R] regress
postestimation.)

. regress age attack smokes hsgrad female

Source S8 df MS Number of obs = 142
F( 4, 137) = 1.20
Model 643.790243 4 160.947561 Prob > F = 0.3116
Residual 18300.7516 137 133.582129 R-squared = 0.0340
Adj R-squared = 0.0058
Total 18944.5419 141 134.358453 Root MSE = 11.558
age Coef.  Std. Err. t P>|t] [95% Conf. Intervall
attack 3.51913  2.061631 1.71  0.090 -.55676042 7.595864
smokes .5643832  2.093235 0.27 0.788 -3.574845 4.703612
hsgrad -1.419099  2.236254 -0.63  0.527 -5.841138 3.00294
female 1.7569922  2.254749 0.78 0.436 -2.69869 6.218534
_cons 55.18863  2.279613 24.21  0.000 50.68086 59.69641

. rviplot

Figure [l does not indicate that the model fit is poor.

If a model does not fit the observed data well, we should try to improve its fit before
we impute. We may, for example, include additional predictors, or use [R] mfp to
determine a more appropriate functional form for the existing predictors.
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Figure 1: Residual versus fitted plot for age

Once we are comfortable with the observed-data model fit we can proceed with
imputation.

. mi impute monotone (regress) age bmi = attack smokes hsgrad female, add(5) rseed(288403)

Conditional models:
age: regress age attack smokes hsgrad female
bmi: regress bmi age attack smokes hsgrad female

Multivariate imputation Imputations = 5

Monotone method added = 5

Imputed: m=1 through m=5 updated = 0
age: linear regression
bmi: linear regression

Observations per m

Variable Complete Incomplete Imputed Total

age 142 12 12 154

bmi 126 28 28 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

We created 5 imputations and specified the rseed() option for reproducibility. Let’s
save our imputations:

. save mheart5_imputed
file mheart5_imputed.dta saved

Now we should check that the imputed values are reasonable—that the imputed and
observed values have similar distributions.
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We can use mi xeq to obtain summaries of the observed, imputed, and completed
data. The summary statistics for age in the first two imputations are:

. mi xeq 1/2: summarize age if Mis_age==0; ///
> summarize age if Mis_age==1; ///
> summarize age
m=1 data:
-> summarize age if Mis_age==
Variable Obs Mean Std. Dev. Min Max
age 142 56.43324 11.59131 20.73613  83.78423
-> summarize age if Mis_age==
Variable Obs Mean Std. Dev. Min Max
age 12 54.0485 10.25337  37.96242  68.38442
-> summarize age
Variable Obs Mean Std. Dev. Min Max
age 154 56.24742 11.48 20.73613  83.78423
m=2 data:
-> summarize age if Mis_age==
Variable Obs Mean Std. Dev. Min Max
age 142 56.43324 11.59131 20.73613  83.78423
-> summarize age if Mis_age==
Variable Obs Mean Std. Dev. Min Max
age 12 57.19998 7.643524  44.46599 72.91214
—-> summarize age
Variable Obs Mean Std. Dev. Min Max
age 154 56.49299 11.31651 20.73613  83.78423

The summaries look reasonable. For example, the means of the observed values are
similar to the means of the imputed values.

We can move beyond summaries and compare for the first imputation the distribu-
tions of bmi in the observed, imputed, and completed data:

. qui mi xeq 1: twoway (kdensity bmi if Mis_bmi==0) || ///

> (kdensity bmi if Mis_bmi==1) || ///

> (kdensity bmi), i

> legend(label(1l "Observed") label(2 "Imputed") label(3 "Completed"))

(Continued on next page)
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Figure 2: Distributions of bmi in the observed, imputed, and completed samples

Figure 2l shows that the shape of the distribution of the imputed values of bmi differs
from that of the observed values. But that is not necessarily a problem—the distribu-
tions should be similar only if the data are missing completely at random (MCAR). The
two distributions may differ if the data are missing at random (MAR) or missing not at
random (MNAR). If you can reasonably assume that data are missing at random, you
should verify that the observed differences make sense scientifically. If you suspect that
data are missing not at random, you should use an imputation method that also models
the missing-data mechanism. Most commonly-used imputation methods assume MAR.

You can test the assumption of MCAR data against MAR data. For example, you
can perform logistic regression of the missing-data indicator for each imputed variable
on other explanatory variables to test for associations. If data are MCAR, there should
be no strong associations. It is impossible to test the assumption of MAR data against
MNAR data formally without additional information about the process that generated
the missing data. Sensitivity analysis (e.g. [Kenward and Carpentenl2007 and references
therein) is often used to test the plausibility of the MAR assumption against MNAR.

We created our hypothetical data to be missing completely at random, so we expect
to see similar distributions of bmi in the observed and imputed data. The differences
in figure 2] suggest the our imputation model for bmi may be inappropriate. The dis-
tribution of bmi is not normal, so predictive mean matching (pmm) would perhaps be a
better choice for imputing bmi.
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It is also important to remember that multiple imputation is a stochastic procedure,
so “bad imputations” may be simply the result of randomness. As such, it is important
to look at all imputations and verify that the majority of them are reasonable. You can
do this by executing the preceding command on all imputations:

qui mi xeq 1/5: twoway (kdensity bmi if Mis_bmi==0) ||  ///

> (kdensity bmi if Mis_bmi==1) || ///

> (kdensity bmi), /17

> legend(label(1l "Observed") label(2 "Imputed") label(3 "Completed")); ///
> set more on; more; set more off

(output omitted )

Note that you can execute multiple commands with mi xeq by separating them with
semicolons. Above, we use this feature to pause Stata using more after each graph is
generated so that we can study the graph for as long as we like. When we are ready for
the next graph, we simply click on more in the Results window.

If you have enough data and wish to compare the distributions formally, you can
perform Kolmogorov-Smirnov tests (Abayomi et al! 2008, 280-281) with mi xeq:

. mi xeq 1/5: ksmirnov bmi, by(Mis_bmi)
(output omitted )

Another way to check an imputation model is to compare its predictions to the
observed data. With mi data we can plot the observed and imputed values against
predictions from the imputation model (Su et all2011, 18-19). We’ll demonstrate how
to produce such a graph for the imputation model of bmi.

To make the graph we’ll need to re-fit the imputation model for bmi to the observed
data and compute linear predictions from a specific imputation using the observed-data
estimates of the coefficients.

We could use mi xeq, as before, to produce the graph. Instead, we’ll show how to
do this by using mi extract.

(Continued on next page)
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We use mi extract O to retrieve the observed data and then re-fit the regression
model for bmi:

. use mheartb5_imputed, clear
(Fictional heart attack data; bmi and age missing)

. mi extract O

. regress bmi age attack smokes hsgrad female

Source SS df MS Number of obs = 126
F( 5, 120) = 0.90

Model 73.1449691 5 14.6289938 Prob > F = 0.4853
Residual 1956.28756 120 16.3023963 R-squared = 0.0360
Adj R-squared = -0.0041

Total 2029.43253 125 16.2354602 Root MSE = 4.0376
bmi Coef.  Std. Err. t P>|t| [95% Conf. Intervall
age -.0240674 .0318764 -0.76 0.452 -.0871805 .0390457
attack 1.545 . 7775581 1.99 0.049 .0054888 3.084511
smokes -.2470361 . 7820658 -0.32 0.753 -1.795472 1.3014
hsgrad -.4092541 .8225038 -0.50 0.620 -2.037754 1.219246
female -.109108 .8372703 -0.13 0.897 -1.766845 1.548629
_cons 26.31799 1.961478 13.42 0.000 22.4344 30.20158

We now compute linear predictions in, for example, the second imputation using
the above estimates. We reload our imputed data and use mi extract 2 to extract the
second imputation. The estimation results from regress are current, so we use predict
to compute linear predictions. We then plot the observed and imputed values against
the model’s predictions. We also overlay separate lowess curves for the observed and
imputed values:

. use mheartb5_imputed, clear
(Fictional heart attack data; bmi and age missing)

. mi extract 2
. predict xb, xb

twoway (scatter bmi xb if Mis_bmi==0, msymbol(oh)) ///

(scatter bmi xb if Mis_bmi==1) ///

(lowess bmi xb if Mis_bmi==0) ///

(lowess bmi xb if Mis_bmi==1), ///
ytitle(bmi) /17
title(Bivariate scatter with overlaid lowess fit for m=2) ///
legend(label(1 "Observed") label(2 "Imputed") ///

label(3 "Lowess (observed)") label(4 "Lowess (imputed)"))

VVVVVVYV.

(Continued on next page)
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Bivariate scatter with overlaid lowess fit for m=2
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Figure 3: Bivariate scatter plot for bmi

From figure [B] the lowess curves are similar and suggest that the imputations in the
second dataset are reasonable.
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