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Why survey data?

note: Collecting a simple random sample of individuals from a population that is spread out
across a wide geographic area can be expensive and time consuming.

note: Using complex survey designs can help cut the cost and duration required to collect the
data.

Why survey data?

• Collecting data can be expensive and time consuming.

• Consider how you would collect the following data:

– Smoking habits of teenagers
– Birth weights for expectant mothers with high blood pressure

• Using stages of clustered sampling can help cut down on the expense and time.



1 Types of data

note: We typically use random number generators to help us choose a simple random sample.
note: Flipping an coin, tossing dice; I tend to think of these to explain the ’iid’ assumption.

Types of data

Simple random sample data – SRS data
Observations are “independently” sampled from a data generating process.

• Typical assumption: iid – independent and identically distributed

• Make inferences about the data generating process

• Sample variability is explained by the statistical model attributed to the data generating pro-
cess.

Standard data
We’ll use this term to distinguish this data from survey data.

Types of data

Correlated data
Individuals are assumed not independent.

• Observations are taken over time

• Random effects assumptions

• Cluster sampling

Treatment:

• Time-series models

• Longitudinal/panel data models

• cluster() option
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Types of data

Survey data
Individuals are sampled from a fixed population according to a survey design. Distinguishes itself
from other forms of data:

• Complex nature under which individuals are sampled

• Make inferences about the fixed population

• Sample variability is influenced by the survey design

2 Survey data characteristics

Survey data characteristics

Standard data

• Estimation commands for standard data:

– proportion

– regress

• We’ll refer to these as standard estimation commands.

Survey data

• Survey estimation commands are governed by the svy prefix.

– svy: proportion

– svy: regress

• svy requires that the dataset is svyset.
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note: proportion is using a stub with an index to identify the age groups because the labels
on agegrp are not valid Stata names.

note: svy: proportion also reports the estimated population size, and the design degrees of
freedom.

note: We show the number of Strata and PSUs, even for multistage designs, to show where the
design degrees of freedom come from: number of PSUs - number of Strata.

Survey data characteristics
Example: proportion and svy: proportion

note: This syntax is slightly different from Stata 8 (and previous); psu has moved from being an
option.

Survey data characteristics

Single-stage syntax

svyset
[
psu

] [
weight

] [
,strata(varname) fpc(varname)

]

• PSU – primary sampling units

• pweight – sampling weights

• Strata

• FPC – finite population correction
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note: Examples of sampling units:

• High schools for sampling from the population of 12th graders.

• Hospitals for sampling from the population of newborns.

note: I might slip and say cluster instead of sampling unit or SSU; they are synonymous.

Survey data characteristics

Sampling unit
An individual or collection of individuals from the population that can be selected for observation.

• Sampling groups of individuals is synonymous with cluster sampling.

• Cluster sampling usually results in inflated variance estimates compared to SRS.

note: If there are 100 hospitals in our population, and we choose 5 of them, the sampling weight
is 20=100/5. Thus a sampled hospital represents 20 hospitals in the population.

note: Sampling weights correct for over/under sampling of sections in the population. Many
times this over/under sampling is on purpose.

Survey data characteristics

Sampling weight
The reciprocal of the probability for an individual to be sampled.

• Probabilities are derived from the survey design.

– Sampling units
– Strata

• Typically considered to be the number of individuals in the population that a sampled indi-
vidual represents.

• Reduces bias induced by the sampling design.
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note: Examples of strata:

• States for national surveys that require that every one of the united states is represented.

• Demographic information like age group, gender, and ethnicity.

note: Although, there is potential for improving efficiency by reducing sampling variability, it is
usually not very practicle to stratify on demographic information.

Survey data characteristics

Strata
In stratified designs, the population is partitioned into well-defined groups, called strata.

• Sampling units are independently sampled from within each stratum.

• Stratification usually results in smaller variance estimates compared to SRS.

note: In a future slide, we will see that the FPC affects the number of components in the linearized
variance estimator for multistage designs.

Survey data characteristics

Finite population correction
An adjustment applied to the variance due to sampling without replacement.

• Sampling without replacement from a finite population reduces sampling variability.

note: We can use svyset to specify an SRS design.
note: The National Maternal and Infant Health Survey (1988) dataset came from a stratified

design.

Survey data characteristics
Example: svyset for single-stage designs
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note: Let’s introduce/motivate multistage designs using an example.

Survey data characteristics
Example 1. Purpose: Study the smoking habits of teenagers in the US.
Multistage design:

1. Use state for strata, and counties are the PSUs.

2. The second stage units are high schools, randomly selected within each sampled county.

3. Stratifying on gender, the final stage units are highschool seniors, randomly selected within
each sampled high school.

note: Notice that the stage specific information is delimited by the double OR bars.
note: svyset will note when it is disregarding subsequent stages if an FPC is not specified for

a given stage.

Survey data characteristics

Multistage syntax

svyset psu
[
weight

] [
, strata(varname) fpc(varname)

]
[
|| ssu

[
, strata(varname) fpc(varname)

] ]
[
|| ssu

[
, strata(varname) fpc(varname)

] ]
...

• Stages are delimited by “||”

• SSU – secondary/subsequent sampling units

• FPC is required at stage s for stage s + 1 to play a role in the linearized variance estimator

Survey data characteristics

Multiple stages of cluster sampling

1. PSUs are independently selected within each Stratum.

2. SSUs are independently selected within each sampled PSU.

3. . . .

• Sampling units are independently selected within each sampled SSU.

• Stratification is also allowed at each sampling stage.
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note: Recall the example motivating our discussion of multistage designs.

Survey data characteristics

Example 2. Smoking habits of teenagers in the US.

1. Counties are randomly selected within each State.

2. High schools are randomly selected within each sampled county.

3. Female and male seniors are randomly selected within each sampled high school.

Example: svyset for a multistage design
FPC variables

• ncounties – number of counties within each category of state

• nschools – high schools within state county

• nseniors – high school seniors within state county school sex

note: Recall that I said it is usually not vey practicle to stratify on demographic information such
as age group, gender, and ethnicity. Their frequency distribution is usually available from
census data. We can use the frequency distribution for poststratification.

Survey data characteristics

Poststratification
A method for adjusting sampling weights, usually to account for underrepresented groups in the
population.

• Adjusted weights sum to the poststratum sizes in the population.

• Reduces bias due to nonresponse and underrepresented groups.

• Can result in smaller variance estimates.

Syntax

svyset ... poststrata(varname) postweight(varname)
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note: A veterinarian has 1300 clients, 450 cats and 850 dogs. He would like to estimate the
average annual expenses of his clientele but only has enough time to gather information on
50 randomly selected clients.

note: This is an SRS design, the sampling weight is 26=1300/50.
note: As we can see, the dog clients are (on average) twice as expensive as cat clients.

Survey data characteristics
Example: svyset for poststratification

Intermission
Let’s take a short break

3 Strata with a single PSU

note: How do we get stuck with strata that have only 1 PSU?

• A very bad design.

• Missing data can cause entire PSUs to be dropped from the analysis, possibly leaving a single
PSU in the estimation sample.

Strata with a single sampling unit

Problem

• This is a big issue for variance estimation:

– Consider a sample with only 1 observation.
– svy reports missing standard errors estimates.

Solution

• Use svydes:

– Describe the strata and sampling units.
– Helps find strata with a single sampling unit.

• Drop the strata with a single sampling unit.
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• Somehow combine the singleton units into another stratum.

note: Use if e(sample) after estimation commands to restrict svydes’s focus on the esti-
mation sample.

note: Specifying variable names with svydes will result in more information about missing
values.

Strata with a single sampling unit
Example: svydes

4 Certainty units

note: What are certainty PSUs? PSUs that are guaranteed to be chosen by the design.
note: How should we handle certainty PSUs? They can be handled by treating each of them as a

stratum with an FPC of 1.

Certainty units

Certainty units
Sampling units that are guaranteed to be chosen by the design.

• Treat each certainty unit as a stratum with an FPC of 1.

• No contribution to the variance.

• Certainty PSUs are not counted in the design degrees of freedom.

note: Let’s use the dataset from the previous example, and pretend that the strata with single
PSUs are actually certainty PSUs.

Certainty units
Example: Certainty PSUs
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5 Variance estimation

note: Why does Stata 9 now have 3 different methods for variance estimation?

• Due to privacy concerns, data providers are reluctant to release strata and PSU information
in public use data.

• Some datasets now come packaged with weight variables for use with replication methods.

note: Linearization is Stata’s robust method for complex data; this is the default method for
variance estimation.

note: BRR and jackknife are replication methods; the idea is to resample the data, computing
replicates from each resample, then using the replicates to estimate the variance.

note: Think of a replicate as a copy of the point estimates.

Variance estimation
Stata has three variance estimation methods for survey data:

• Linearization

• Balanced repeated replication

• The jackknife

Variance estimation

Linearization
A method for deriving a variance estimator using a first order Taylor approximation of the point
estimator of interest.

• Foundation: Variance of the total estimator

Syntax

svyset ...
[
vce(linearized)

]

• Delta method

• Huber/White/robust/sandwich estimator
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note: Prior to Stata 9, only the first stage information could be used to estimate the variance.
Also, Stata would print a warning message about subsampling when an FPC was used.

note: fh is the FPC for stratum h in the first stage.
note: fhi denotes an FPC for the second stage.

Variance estimation

Total estimator – Stratified two-stage design

• yhijk – observed value from a sampled individual

• Strata: h = 1, . . . , L

• PSU: i = 1, . . . , nh

• SSU: j = 1, . . . ,mhi

• Individual: k = 1, . . . ,mhij

Ŷ =
∑

whijkyhijk

V̂ (Ŷ ) =
∑

h

(1 − fh)
nh

nh − 1

∑

i

(yhi − yh)
2 +

∑

h

fh

∑

i

(1 − fhi)
mhi

mhi − 1

∑

j

(yhij − yhi)
2

note: Remember that the design degrees of freedom is: number of PSUs - number of strata.

Variance estimation
Example: svy: total

12



note: ML models:

• Ĝ() is the gradient.

• sj is an equation-level score.

• D is the inverse Hessian matrix at the solution.

note: Least squares regression:

• Ĝ() is the normal equations.

• sj is a residual.

• D = (X′
WX)−1; inverse of the weighted outer product of the predictors—including the

intercept.

Variance estimation

Linearized variance for regression models

• Model is fit using estimating equations.

• Ĝ() is a total estimator, use Taylor expansion to get V̂ (β̂).

Ĝ(β) =
∑

j

wjsjxj = 0

V̂ (β̂) = DV̂ {Ĝ(β)}|
β=bβ

D′

note: The next few examples we will fit a logistic regression, modeling the incidence of high
blood pressure as a function of some demographic variables.

note: Here is the example using linearization.

Variance estimation
Example: svy: logit
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note: Reminder: The idea is to resample the data, compute replicates from each resample, then
use the replicates to estimate the variance.

note: Reminder: Think of a replicate as a copy of the point estimates.
note: Balance here means that stratum specific contributions to the variance cancel out. In other

words, no stratum contributes more to the variance than any other.
note: We can find a balanced subset by employing a Hadamard matrix of order r; a Hadamard

matrix is a type of orthogonal matrix, shown on the next slide.

Variance estimation

Balanced repeated replication
For designs with two PSUs in each of L strata.

• Compute replicates by dropping a PSU from each stratum.

• Find a balanced subset of the 2L replicates. L ≤ r < L + 4

• The replicates are used to estimate the variance.

Syntax

svyset ... vce(brr)
[
mse

]
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note: When the dataset contains replicate weight variables, you do not need to worry about
Hadamard matrices.

note: For completeness, here is how the sampling weights are adjusted to produce BRR replicate
weights.

note: These replicate weights are used to produce a copy of the point estimates (replicate). The
replicates are then used to estimate the variance.

note: svy brr can employ replicate weight variables in the dataset, if you svyset them. Oth-
erwise, svy brr will automatically adjust the sampling weights to produce the replicates;
however, a Hadamard matrix must be specified.

Variance estimation

BRR replicate weights

• wj – sampling weight for individual j, in the first PSU of stratum h.

• Hr is a Hadamard matrix for r replications; H ′

rHr = rI.

• Fay’s adjustment f ; f = 0 by default.

The adjusted sampling weight for the ith replicate is

w∗

j =

{
fwj, if Hr[i, h] = −1

(2 − f)wj, if Hr[i, h] = +1

note: The default variance formula uses deviations of the replicates from their mean.
note: The MSE formula uses deviations of the replicates from the point estimates.

Variance estimation

BRR variance formulas

• θ̂ – point estimates

• θ̂(i) – ith replicate of the point estimates

• θ(.) – average of the replicates

Default variance formula:

V̂ (θ̂) =
1

r

r∑

i=1

{θ̂(i) − θ(.)}{θ̂(i) − θ(.)}′

Mean squared error (MSE) formula:

V̂ (θ̂) =
1

r

r∑

i=1

{θ̂(i) − θ̂}{θ̂(i) − θ̂}′
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note: BRR * is clickable, taking you to a short help file informing you that you used the MSE
formula for BRR variance estimation.

Variance estimation
Example: svy brr: logit

Intermission
Let’s take a short break

note: Reminder: The idea is to resample the data, compute replicates from each resample, then
use the replicates to estimate the variance.

note: Reminder: Think of a replicate as a copy of the point estimates.

Variance estimation

The jackknife
A replication method for variance estimation. Not restricted to a specific survey design.

• Delete-1 jackknife: drop 1 PSU

• Delete-d jackknife: drop d PSUs within a stratum

Syntax

svyset ... vce(jackknife)
[
mse

]
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note: svy jackknife can employ replicate weight variables in the dataset, if you svyset
them. Otherwise, svy jackknife will automatically adjust the sampling weights to
produce the replicates using the delete-1 jackknife methodology.

note: Here is how the sampling weights are adjusted to produce delete-1 jackknife replicate
weights.

note: Each PSU is represented by a corresponding replicate.

Variance estimation

Delete-1 jackknife replicate weights

• whij – sampling weight for individual j in PSU i of stratum h.

• Dropping PSU i∗ from stratum h∗.

• nh∗ replicates from stratum h∗.

The adjusted sampling weight is

w∗

hij =





0, if h = h∗ and i = i∗
nh

nh−1
whij, if h = h∗ and i 6= i∗

whij, otherwise
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note: The delete-d jackknife is only supported if you already have the corresponding replicate
weight variables for svyset.

note: Here is how the sampling weights are adjusted to produce delete-d jackknife replicate
weights.

note: These replicate weights are used to produce a copy of the point estimates (replicate). The
replicates are then used to estimate the variance.

Variance estimation

Delete-d jackknife replicate weights

• whij – sampling weight for individual j in PSU i of stratum h.

• Drop d PSUs from stratum h∗.

•
(

nh∗

d

)
replicates from stratum h∗.

The adjusted sampling weight is

w∗

hij =





0 , if h = h∗ and i is dropped
nh

nh−d
whij , if h = h∗ and i is not dropped
whij , otherwise

note: The default variance formula uses deviations of the replicates from their mean.
note: The MSE formula uses deviations of the replicates from the point estimates.

Variance estimation

Jackknife variance formulas

• θ̂(h,i) – replicate of the point estimates from stratum h, PSU i

• θh – average of the replicates from stratum h

• mh = (nh − 1)/nh – delete-1 multiplier for stratum h

• mh = (nh − d)/nhd – delete-d

Default variance formula:

V̂ (θ̂) =
L∑

h=1

(1 − fh) mh

nh∑

i=1

{θ̂(h,i) − θh}{θ̂(h,i) − θh}′

Mean squared error (MSE) formula:

V̂ (θ̂) =
L∑

h=1

(1 − fh) mh

nh∑

i=1

{θ̂(h,i) − θ̂}{θ̂(h,i) − θ̂}′
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note: Jknife * is clickable, taking you to a short help file informing you that you used the
MSE formula for jackknife variance estimation.

Variance estimation
Example: svy jackknife: logit #1

note: The 1999-2000 NHANES data was published with jackknife replicate weight variables, but
not the 2001-2002 NHANES data.

note: Make sure to specify the correct multiplier when you svyset your jackknife replicate
weight variables.

Variance estimation

Replicate weight variable
A Stata variable that contains sampling weight values that were adjusted for resampling the data
using BRR or the jackknife.

• Typically used to protect the privacy of the survey participants.

• Eliminate the need to svyset the strata and PSU variables.

Syntax

svyset ... brrweight(varlist)

svyset ... jkrweight(varlist
[
, ... multiplier(#)

]
)

note: The standard error estimates in this example should match those of the previous if we
svyset our data correctly.

Variance estimation
Example: svy jackknife: logit #2
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6 Estimation for subpopulations

note: Most of you are familiar with the if and in restrictions; however, you most likely want to
use the subpop() option of svy instead of if and in.

note: As I mentioned earlier on, variability is governed by the survey design, so our variance
estimates assume the design is fixed. The subpop() option assumes this too.

note: If we discourage you from using if and in, why does svy allow them?

• You might want to restrict your sample because of known defects in some of the variables.

• Researchers can use if and in to conduct simulation sudies by simulating survey samples
from a population dataset without having to use preserve and restore.

Estimation for subpopulations

Focus on a subset of the population

• Subpopulation variance estimation:

– Assumes the same survey design for subsequent data collection.
– The subpop() option.

• Restricted-sample variance estimation:

– Assumes the identified subset for subsequent data collection.
– Ignores the fact that the sample size is a random variable.
– The if and in restrictions.
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note: We can illustrate the difference between these estimators with an SRS design.

Estimation for subpopulations
Total from a simple random sample without replacement design:

• Data is y1, . . . , yn and S is the subset of observations.

IS(j) =

{
1, if j ∈ S
0, otherwise

• Subpopulation (or restricted-sample) total:

ŶS =
n∑

j=1

IS(j)wjyj

• Sampling weight and subpopulation size:

wj =
N

n
, NS =

n∑

j=1

IS(j)wj =
N

n
nS

Estimation for subpopulations

Variance of a subpopulation total
Sample n without replacement from a population comprised of the NS subpopulation values with
N − NS additional zeroes.

V̂ (ŶS) =
(
1 − n

N

) n

n − 1

n∑

j=1

{
IS(j)yj −

1

n
ŶS

}2

Variance of a restricted-sample total
Sample nS without replacement from the subpopulation of NS values.

Ṽ (ŶS) =

(
1 − nS

N̂S

)
nS

nS − 1

n∑

j=1

IS(j)

{
yj −

1

nS

ŶS

}2
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note: Suppose we want to estimate the mean birth weight for mothers with high blood pressure.
note: The highbp variable is an indicator for mothers with high blood pressure.
note: In the reported results, the subpopulation information is provided in the header.
note: Notice that although the restricted sample results reproduce the mean, the standard errors

differ.

Estimation for subpopulations
Example: svy, subpop()

7 Effects of the survey design

note: Design effects give you a sense of how efficient your survey design is compared to the SRS
design.

Effects of the survey design

Design effects
Compare the sample variability between the survey design and a hypothetical SRS design of the
same sample size.

• V̂db – design based variance estimate

• V̂srs – simple random sample variance estimate

• V̂srswr – simple random sample with replacement

DEFF =
V̂db

V̂srs

, DEFT =

√
V̂db

V̂srswr
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Effects of the survey design

Misspecification effects
Compare the design based variance estimate to the variance from a misspecified model fit (no
weighting or other design characteristics).

• V̂db – design based variance estimate

• V̂msp – misspecified variance estimate

MEFF =
V̂db

V̂msp

, MEFT =
√

MEFF

note: Suppose we want to compare the mean birth weight between mothers with high blood
pressure and mothers with normal blood pressure.

note: The labels on highbp cannot be used as identifiers, so I’ll just define some labels that will
better serve my purpose.

note: We’ll use the over() option so that we can estimate the means for both subpopulations
simultaneously. I now have a variance matrix that I can use to perform tests or compute
linear combinations.

note: Use estat effects to display design effects for the entire set of point estimates.
note: Use the meff and meft options to get the misspecification effects. Note that Stata had

to refit the model to get the misspecified variance. This extra model fit is only required
the first time you specify meff or meft, estat effects posts the newly acquired
information to e() for future reference.

note: Recall that we are interested in comparing the mean birth weight between mothers with
high and normal blood pressure. We could use the test command to accomplish this, but
we used lincom to compute the difference of the means and get a 95% CI instead.

note: By the way, most of the postestimation commands that work after the standard estimation
commands also work after the svy. The available options may differ between standard and
survey results.

note: Use estat lceffects to get design and misspecification effects for linear combina-
tions.

Effects of the survey design
Example: estat effects
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8 Summary

Summary

1. Use svyset to identify the survey design characteristics for your data.

2. Use svydes to find strata with a single sampling unit.

3. Each certainty unit deserves its own stratum with a sampling fraction of 1.

4. Choose your variance estimation method; you can even svyset it.

5. Use the svy prefix with estimation commands.

6. Use subpop() instead of if and in.

7. Use estat to get design effects.
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