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Background
• I work mainly with cancer registry data where interest is on
cancer-specific survival.

• A common issue is the presence of competing events.
• Focus is often on estimating a measure called net survival

• i.e. survival in a hypothetical world where the only possible
cause of death is the event of interest e.g. death due to cancer

• i.e. the survival that would be observed if it was possible to
eliminate all competing causes of death

• This hypothetical construct allows comparisons of cancer
survival between populations without distortions from
differential background mortality

• There are two approaches for estimating net survival:
• cause-specific survival
• relative survival 2 of 38
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Excess mortality rate and relative survival

It does not require cause of death information.

Excess mortality rate

excess
mortality

=
all-cause
mortality

− expected
mortality

It compares the all-cause mortality of the cancer population to the
expected mortality of a comparable group in the general population.
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Excess mortality and Relative survival - II
The survival analog of excess mortality is relative survival.

Relative survival

relative survival =
all-cause survival
expected survival

R(t) =
S(t)

S∗(t)
and S(t) = S∗(t)R(t)

The expected survival proportions (or expected mortality rates) are
considered to be known and are usually obtained by available
population lifetables, stratified by factors such as age, sex, calendar
time etc. 4 of 38



Motivation - Example, England
Survival after a cancer diagnosis varies considerably across
population groups e.g socioeconomic groups.

Deprivation
Group

5-year
RS

Mean
Years
w/o Can-
cer

Mean
Years
with
Cancer

Prop
(%)

Age at diagnosis: 70
Least deprived 63.02 16.08 9.81 38.99

2 61.26 15.12 9.11 39.78
3 60.03 14.49 8.59 40.73
4 56.90 13.56 7.78 42.60

Most deprived 54.74 12.66 6.94 45.15

Syriopoulou E, Morris E, Finan PJ, Lambert PC, Rutherford MJ. Understanding the impact of socioeconomic differences in
colorectal cancer survival: potential gain in life-years. Brit J Cancer 2019; 20:1052–1058 5 of 38



Investigating other factors

Could stage at diagnosis partly explain the survival differences
between the least and most deprived groups?

SEP

Stage

Survival time

Age

This is a mediation analysis question!
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Mediation analysis
Mediation analysis allows to explore the role of a mediator on an
observed association between an exposure - outcome of interest.

However, we still need to deal with the complex mechanisms that
contribute towards cancer disparities:

• Cancer-related factors
• Other cause factors

We have adapted a formal causal framework to the settings of
cancer registry-based epidemiology, extending mediation analysis
methods to the relative survival framework1.

• Main idea: using the relative survival framework allows to
isolate cancer-related factors.

1Syriopoulou E, Rutherford MJ, Lambert PC. Understanding disparities in cancer prognosis: An extension of mediation
analysis to the relative survival framework. Biometrical Journal. 2021; 63: 341–353.
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Notation

• X denotes the exposure of interest (here SEP), with x = 1 if
exposed and x = 0 if unexposed

• M denotes the mediator of interest (here stage)

• Z denotes the confounding variables (here age)

• R(t) denotes relative survival at time t
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Notation - potential outcomes
The framework used for formulating the effects of interest is that of
potential outcomes: the outcomes that would be observed if we
intervene on X and M to set them on specific values.

• Rx(t) is the value that R(t) would have if we intervened on X

and set it (possibly counter to fact) to the value x

• Mx is the value that M would take if we intervened on X and
set it to x

• Rx,Mx∗
(t) is the the value that R(t) would take if we intervened

on X and set it to x and simultaneously intervened on M and
set it to Mx∗ , where x and x∗ are not necessarily the same.

We will use those to define contrasts of marginal effects of the
potential outcomes.

9 of 38



Notation - potential outcomes
The framework used for formulating the effects of interest is that of
potential outcomes: the outcomes that would be observed if we
intervene on X and M to set them on specific values.

• Rx(t) is the value that R(t) would have if we intervened on X

and set it (possibly counter to fact) to the value x

• Mx is the value that M would take if we intervened on X and
set it to x

• Rx,Mx∗
(t) is the the value that R(t) would take if we intervened

on X and set it to x and simultaneously intervened on M and
set it to Mx∗ , where x and x∗ are not necessarily the same.

We will use those to define contrasts of marginal effects of the
potential outcomes.

9 of 38



Notation - potential outcomes
The framework used for formulating the effects of interest is that of
potential outcomes: the outcomes that would be observed if we
intervene on X and M to set them on specific values.

• Rx(t) is the value that R(t) would have if we intervened on X

and set it (possibly counter to fact) to the value x

• Mx is the value that M would take if we intervened on X and
set it to x

• Rx,Mx∗
(t) is the the value that R(t) would take if we intervened

on X and set it to x and simultaneously intervened on M and
set it to Mx∗ , where x and x∗ are not necessarily the same.

We will use those to define contrasts of marginal effects of the
potential outcomes.

9 of 38



Partitioning the total survival difference

SEP

Stage

Survival time

Age

Natural indirect effect: quantifies how much of the observed
difference is due to stage differences in the two groups

NIE(t) = R1,M1
(t)−R1,M0

(t) = E[R(t|X = 1,Z,M1)]− E[R(t|X = 1,Z,M0)]

Natural direct effect: quantifies the differences in relative survival
that are not due to stage differences

NDE(t) = R1,M0
(t)−R0,M0

(t) = E[R(t|X = 1,Z,M0)]− E[R(t|X = 0,Z,M0)]
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Comment

The definitions involve the following term:

R(t|X = 1,Z,M0)

i.e., the relative survival if setting the exposure to the level of the
exposed and the mediator to the mediator value if unexposed!

An additional model is required for the mediator.
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Assumptions for identification
To link the hypothetical quantities with the observed data, we need
to assume no interference, consistency and conditional
exchangeability.

SEP

Stage

Survival time

Age

U1

U2

U3
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Assumptions for identification

We also need to make the cross-world independence assumption
that implies that there are no intermediate confounders M .

SEP

Stage

Survival time

Age

M
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Estimation - regression standardisation

N̂IE(t) =
1

N

N∑
i=1

∑
m

R̂(t|X = 1,Z,M = m)P̂ (M = m|X = 1,Z)

− 1

N

N∑
i=1

∑
m

R̂(t|X = 1,Z,M = m)P̂ (M = m|X = 0,Z)

N̂DE(t) =
1

N

N∑
i=1

∑
m

R̂(t|X = 1,Z,M = m)P̂ (M = m|X = 0,Z)

− 1

N

N∑
i=1

∑
m

R̂(t|X = 0,Z,M = m)P̂ (M = m|X = 0,Z)
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Example - simulated colon cancer data
I will use an example of simulated colon cancer data that is
available with the methodological paper.
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Identification algorithm
1. Fit a relative survival model including X , M , Z.
2. Fit model for the mediator including X , Z.
3. For each individual in the study population obtain estimates for

P̂ (M = m|X = x,Z = zi), at each X = x.
4. Obtain estimates of standardised R̂(t|X = x,Z = zi,M = m)

at X = x, using the predictions of Step 3 as weights. Form
contrasts to obtain the N̂DERS and N̂IERS .

5. Repeat from Step 3, k times, while performing parametric
bootstrap for the parameter estimates for both models.

6. Calculate 95% confidence intervals either by taking the 2.5%
and 97.5% percentiles of the estimates across the
bootstrapped samples or by using their standard deviation.
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Estimation in Stata

The following Stata user-written commands will be needed

• stpm3

• gensplines

• standsurv
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Estimation in Stata
1. Fit a relative survival model including X , M , Z.

// Merge in expected mortality rates using the population lifetable
gen _age = min(int(agediag+_t),99)
gen _year = min(floor(yeardiag + _t),2016)
sort sex _year _age dep
merge m:1 sex _year _age dep using popmort.dta, ///

keep(match master) keepusing(rate)
sort id

// Declare survival data
stset t, failure(dead==1) id(id) exit(time 3)
//Fit a flexible parametric survival model
stpm3 i.dep i.sex @ns(agediag, df(3)) i.stage i.dep##i.stage, ///

tvc(i.sex @ns(agediag, df(3))) dftvc(2) ///
scale(lncumhazard) df(4) bhazard(rate)

estimates store surv
18 of 38



Estimation in Stata

2. Fit a separate model for the mediator including X , Z.

// Generate splines for age
gensplines agediag, df(3) type(ns) gen(ns_age)
local ageknots ‘r(knots)’

// Fit a multinomial regression model for the low SEP
// (exposed/most deprived)
mlogit stage ns_age* i.sex if dep==1
estimates store ph1

// Fit a multinomial regression model for the high SEP
// (unexposed/least deprived)
mlogit stage ns_age** i.sex if dep==0
estimates store ph0

19 of 38



Estimation in Stata

3. For each individual in the study population obtain estimates for
P̂ (M = m|X = x,Z = zi), at each X = x.

// For low SEP
estimates restore ph1
gen tmpdep = dep
replace dep = 1
predict p11 p12 p13 p14
replace dep = tmpdep
drop tmpdep

// For high SEP
estimates restore ph0
gen tmpdep = dep
replace dep = 0
predict p01 p02 p03 p04
replace dep = tmpdep
drop tmpdep
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Estimation in Stata
4. Obtain estimates of standardised R̂(t|X = x,Z = zi,M = m)

at X = x, using the estimates of Step 3 as weights.
TCERS = E

[
R(t|X = 1,Z,M1)

]
− E

[
R(t|X = 0,Z,M0)

]
range tt 0 3 50 //Generate time variable for predictions

estimates restore surv

standsurv, timevar(tt) failure frame(med, replace) ///
at1(dep 1 stage 1, atindweights(p11)) ///
at2(dep 1 stage 2, atindweights(p12)) ///
at3(dep 1 stage 3, atindweights(p13)) ///
at4(dep 1 stage 4, atindweights(p14)) ///
at5(dep 0 stage 1, atindweights(p01)) ///
at6(dep 0 stage 2, atindweights(p02)) ///
at7(dep 0 stage 3, atindweights(p03)) ///
at8(dep 0 stage 4, atindweights(p04)) ///
lincom(1 1 1 1 -1 -1 -1 -1) lincomvar(tce_PE)

Use the option failure to predict net probabilities of death
(1-relative survival). 21 of 38



Estimation in stata

NDERS = E
[
R(t|X = 1,Z,M0)

]
− E

[
R(t|X = 0,Z,M0)

]

standsurv, timevar(tt) failure frame(med, merge) ///
at1(dep 1 stage 1, atindweights(p01)) ///
at2(dep 1 stage 2, atindweights(p02)) ///
at3(dep 1 stage 3, atindweights(p03)) ///
at4(dep 1 stage 4, atindweights(p04)) ///
at5(dep 0 stage 1, atindweights(p01)) ///
at6(dep 0 stage 2, atindweights(p02)) ///
at7(dep 0 stage 3, atindweights(p03)) ///
at8(dep 0 stage 4, atindweights(p04)) ///
lincom(1 1 1 1 -1 -1 -1 -1) lincomvar(tde_PE)
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Estimation in Stata

NIERS = E
[
R(t|X = 1,Z,M1)

]
− E

[
R(t|X = 1,Z,M0)

]
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Example - plot
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Confidence intervals

• We need to account for the uncertainty on both the probabilities
estimated in Step 3 and the survival functions of Step 4.

• Bootstrap-based standard errors will be obtained.

• By performing parametric bootstrap, the parameters are drawn
repeatedly from a multivariate normal distribution and for each
draw we obtain both estimates and the variance covariance
matrix that are finally combined.

There is an example available on this on GitHub:
https://github.com/syriop-elisa/mediation-example-stpm3

25 of 38

https://github.com/syriop-elisa/mediation-example-stpm3


Plot - with CIs
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Standardising among subsets

• We can also define contrasts withing specific subsets such as
the NDE and NIE among the explore (e.g. among the most
deprived)

NIEexposed = E
[
R(t|X = 1,Z∗X=1,M1)

]
− E

[
R(t|X = 1,Z∗X=1,M0)

]

• For the estimation, we restrict standardisation to a specific
subset of the population.
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Moving to a real-world setting

• So far, we only talked about a net setting that requires
elimination of competing events and looked at

• differences in relative survival

• Differences can also be quantified in a real-word setting where
no elimination of competing events is required

• difference in all-cause survival
• avoidable deaths

• To do so, we need to incorporate the expected mortality rates,
S∗(t), in the contrast of interest.

• There are many different ways to do it.
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Direct & indirect effects - all cause setting
• Use the observed distribution of the exposure for S∗(t):

NIEAC = E
[
S∗(t|X,Z∗)R(t|X = 1,Z∗X=1,M1)

]
− E

[
S∗(t|X,Z∗)R(t|X = 1,Z∗X=1,M0)

]
Differences in all-cause survival can only be due to the cancer of
interest (not due to other-cause differences).

• The difference in all-cause survival between the two SEP
groups if we could intervene and shift the stage distribution of
the lowest SEP group to that of the highest SEP group, while
keeping their background mortality unchanged?

A conceptually similar measure has recently been proposed for the
standard survival setting, so called separable effects:
Stensrud et al. Separable effects for causal inference in the presence of competing events. J Am Stat Assoc 2022.

In the next slide, there is an example on how to obtain the natural direct effect in this way. We need to use option

expsurv().
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standsurv if dep==1 , timevar(tt) failure frame(med, merge) ///
at1(dep 1 stage 1, atindweights(p11)) ///
at2(dep 1 stage 2, atindweights(p12)) ///
at3(dep 1 stage 3, atindweights(p13)) ///
at4(dep 1 stage 4, atindweights(p14)) ///
at5(dep 1 stage 1, atindweights(p01)) ///
at6(dep 1 stage 2, atindweights(p02)) ///
at7(dep 1 stage 3, atindweights(p03)) ///
at8(dep 1 stage 4, atindweights(p04)) ///
lincom(1 1 1 1 -1 -1 -1 -1) lincomvar(tie_PE_ac) ///
expsurv(using(popmort.dta) ///

datediag(datediag) ///
agediag(agediag) ///
pmrate(rate) ///
pmage(_age) ///
pmyear(_year) ///
pmmaxyear(2016) ///
pmother(dep sex) ///
at1(.) ///
at2(.) ///
at3(.) ///
at4(.) ///
at5(.) ///
at6(.) ///
at7(.) ///
at8(.) ///

)
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Avoidable deaths under hypothetical interventions

• So far, we have looked at survival differences (or probabilities
of death) under certain interventions, e.g. shifting the mediator
distribution of one group to that of another.

• The impact of such interventions can also be quantified as the
avoidable deaths.

• For instance, how many deaths would be postponed for the
lowest SEP group under an intervention that aims to shift the
distribution of stage at diagnosis for the lowest SEP to that of
the highest SEP group, while keeping other cause mortality
rates unchanged/constant?
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Avoidable deaths
• The predicted number of deaths for the exposed X = 1 in a
typical calendar year with N∗ diagnoses:

N∗ ×
(
1− E

[
S∗(t|X,Z∗X=1)R(t|X = 1,ZX=1,M1)

])

• The expected number of deaths under the intervention of
shifting the mediator distribution of the exposed to the one of
the unexposed (setting M to M0):

N∗ ×
(
1− E

[
S∗(t|X,Z∗X=1)R(t|X = 1,ZX=1,M0)

])
• The avoidable deaths is given by their difference.
• We keep the expected survival of the lowest SEP group constant
and we assess an intervention that aims to shift the stage
distribution of the lowest SEP to that of the high SEP with no
impact on other cause mortality rates. 32 of 38



standsurv if dep==1, per(2170) timevar(tt) failure frame(med, merge) ///
at1(dep 1 stage 1, atindweights(p11)) ///
at2(dep 1 stage 2, atindweights(p12)) ///
at3(dep 1 stage 3, atindweights(p13)) ///
at4(dep 1 stage 4, atindweights(p14)) ///
at5(dep 1 stage 1, atindweights(p01)) ///
at6(dep 1 stage 2, atindweights(p02)) ///
at7(dep 1 stage 3, atindweights(p03)) ///
at8(dep 1 stage 4, atindweights(p04)) ///
lincom(1 1 1 1 -1 -1 -1 -1) lincomvar(ADs_PE) ///
expsurv(using(popmort.dta) ///

datediag(datediag) ///
agediag(agediag) ///
pmrate(rate) ///
pmage(_age) ///
pmyear(_year) ///
pmmaxyear(2016) ///
pmother(dep sex) ///
at1(.) ///
at2(.) ///
at3(.) ///
at4(.) ///
at5(.) ///
at6(.) ///
at7(.) ///
at8(.) ///

)
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Avoidable deaths for colon cancer
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By stage shifting

• For total ADs, we shifted the relative survival and stage at diagnosis distribution of the lowest SEP to that of the
highest SEP.

• For both scenarios, we kept the expected survival of the lowest SEP unchanged.
• 3 years after diagnosis there would be approx. 94 avoidable deaths in total, out of 2170 patients from the lowest

SEP diagnosed in 2013 the most recent year in our cohort study.
• Partitioning that further, we found that approx. 22 deaths of the total deaths would be from eliminating stage

differences and the remaining 72 would be from removing the remaining relative survival differences.
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It will get trickier!

There will be multiple mediators (stage, treatment, comorbidity,
etc).
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Settings with multiple mediators

• Randomised interventional analogues of the NDE and the NIE
have been proposed and these require no cross-world
assumption1,2.

• The proposed effect decomposition is relatively easy to
perform via a (Monte-Carlo based) regression approach. It
delivers effects mediated via each of the mediators separately,
but also via the mediators’ dependence.

• We are currently working to extend the above approach into the
relative survival framework.

1VanderWeele TJ, Vansteelandt s, Robins, James M. Effect Decomposition in the Presence of an Exposure-Induced
Mediator-Outcome Confounder. Epidemiology 2014.
2Vansteelandt S, Daniel RM. Interventional Effects for Mediation Analysis with Multiple Mediators. Epidemiology 2017.
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Imperfectly Defined Mediators: stage categorisation
• Stage at diagnosis (I to IV) may not be able to fully capture the
heterogeneity between patients - it is likely too crude.

• Preliminary results from a microsimulation of breast cancer,
showed that using more detailed categories (T-N-M
cross-product) may be better at capturing heterogeneity.

Breast Cancer Death

Mode of Detection

Grade

Lymph Nodes

Socio-Economic Status

Tumour Size

Stage at Diagnosis

Working manuscript: Gasparini A, Humphreys K, Booth S, Rutherford MJ, Syriopoulou E. Mediation analysis with imperfectly
defined mediators: a microsimulation experiment with breast cancer, socio-economic status, and stage at diagnosis. 37 of 38



Conclusions

• There are differences in the prognosis of cancer patients.

• Understanding mechanisms driving disparities is important.

• Understanding mechanisms driving disparities is difficult!

• Causal mediation analysis using relative survival can be a
valuable tool for exploring such settings.
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