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Example: AHEAD Study

• Assets and Health Dynamics Among the Oldest Old

• National longitudinal study of individuals (and spouses/partners)

aged � 70 years

• Objectives:

– monitor transitions in physical, functional, and cognitive health

– study relationship of late-life changes in health to patterns of

dissaving and income flows

• Baseline (complete) data from 1993, n = 6, 651

• Models for:

– instrumental activities of daily living

– immediate word recall

– mean of (scored) ordinal variable
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AHEAD Variables: Baseline Wave

Variable Description

numiadl Number of instrumental activities of daily living tasks for

which the subject has some di�culty, range: 0 to 5.

age Age (years) at interview of the subject, range 70 to 103.

sex Sex of subject (1 = female, 0 = male).

iwr Immediate word recall. Number of words out of 10 that

subjects can list immediately after hearing them read.

A measure of cognitive function.

netwc Categorical values of net worth.
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AHEAD Data: Two Strong Predictors

(of numiadl)

Age and Immediate Word Recall (iwr)
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Distribution of numiadl, AHEAD Data

numiadl count freq cumul

0 4,915 73.90 73.90

1 1,099 16.52 90.42

2 362 5.44 95.87

3 169 2.54 98.41

4 69 1.04 99.44

5 37 0.56 100.00

Total 6,651 100.00

As numiadl is skewed with an excess of zeros, suggest analysis with

• **Over-dispersed (quasi-Poisson) log-linear model for count data

• **Proportional odds (ordinal logistic) model for ordinal data

**discussed in prior work (Rathouz and Gao, 2009)

• A new SPGLM / GLDRM with log link:

log{E(Y |X;�)} = X
T
�
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Generalized Linear Quasilikelihood (QL) Models

Mean Model: For link g(·) and linear preditor ⌘

E(Y |X;�) = µ(X,�) ⌘ µ with g(µ) = ⌘ = X
T
�

Variance Model: For given X, variance of (Y |X) is

var(Y |X;�,�) = �v(µ)  v(µ) is variance model

In QL, � is orthogonal to �

Interpretation of � does not depend on form of v(µ) or on �

QL estimator b� will be CAN even in presence of:

• misspecification of var(Y |X;�,�)

• poor estimation of var(Y |X;�,�)

(although standard errors will be incorrect)

This is what is meant by a “working model”
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Quasilikelihood (QL) Models (cont.)

• Broad class of mean regression models with high level of flexibility

– linear predictor + link function w non-linear extensions

– continuous, count, categorical outcomes

• QL estimation “works” (is consistent) if mean model is correct:

– even if distributional model is wrong

– even if variance model is wrong

• QL estimation:

– e�cient with correct standard errors when variance correct

– empirical or “sandwich” or robust estimator when variance

incorrect

• Practicality of QL with empirical variance �! advances in:

– longitudinal data analysis

– models for missing response and covariate data

– models for covariates measured with error
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Drawbacks of Quasilikelihood (QL) Mean Models

• No likelihood-based inferences

– poor performance in small sample sizes

– excessive reliance on sandwich estimator

• No inferences about cumulative response distribution

• Di�cult to marry with latent-variable or random-e↵ect models

• Application of Bayes’ Theorem hampered:

– posterior prediction of random e↵ects

– biased- or outcome-dependent sampling models

– missing data models
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An Alternative: A New Class of Semiparametric GLMs
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Generalized Linear Density Ratio Model (GLDRM)

Mean Model: For link g(·) and linear preditor ⌘

E(Y |X;�) = µ(X,�) ⌘ µ with g(µ) = ⌘ = X
T
� (1)

Distributional Model: For given X, density of (Y |X) is

f(y|X;�, f0) =
f0(y) exp(✓y)R

Y f0(u) exp(✓u) du
 exponential tilting

where canonical parameter ✓ is implicitly defined to satisfy mean

model (1)

That is, ✓ = ✓(µ, f0) = ✓(X,�, f0)

Key idea: Reference distribution f0(·) is non-parametric, estimated

with point mass on observed support for Y

Yields semi-parametric generalized linear model (SPGLM)
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How Does this Tilting Work?

Tilting Redistributes mass according to a canonical parameter (✓)

while maintaining the support of Y

Simulated example
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Robustness and ML Estimation of � and f0

• In GLDRM, � (or any model for µ) is orthogonal to f0

• Interpretation of � does not depend on f0

• For finite support (i.e., finite dimension f0) . . .

• ML estimator b� will be CAN even in presence of:

– misspecification of f0

– poor estimation of f0

– misspecification of tilting model

(although standard errors will be incorrect)

• Implication: Tilting model and f0 form a “working model” for

distribution of f(Y |X) (as QL exploits a working model for the

mean E(Y |X))

• Both � and f0 admit Fisher score and information

• Suggest iterative ML estimation: b� ! f̂0 ! b� ! f̂0 · · ·
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More Advantages to a Full Likelihood Model

• Full likelihood inferences (ML-SPGLM)

• Natural extension to Bayesian inference model using priors

� ⇠ N(·, ·) and f0 ⇠ Dir(·) (Dir-SPGLM)

• Model for mean as well as full distribution (conditional on

X = x), e.g., quantiles or exceedance probabilities

Pr(Y � y|X = x,�, f0)  exceedance probability

• Model is easy to specify in some sense, plug-and-play (some

object!)

• Let’s see how it works with AHEAD

13



AHEAD: Fitted Log-linear (“Poisson”) Model for Mean

For full data (n = 6441) and a small (n = 100) random sample

Using maximum likelihood (ML) and Bayesian MCMC inference with

10,000 samples (including 3,000 burn-in)

Mean model parameters have standard log-linear interpretation

Comparable results for large sample; Bayes more e�cient for n = 100

(6 to 69% reduction in CI length)

Will examine bias in simulations
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AHEAD: Fitted Log-linear (“Poisson”) Model for Mean

small sample large sample

ML−SPGLM Dir−SPGLM ML−SPGLM Dir−SPGLM
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Highlights of Current (ML) State

• Theory for both finite (ML) and infinite (SP ML) support

(Note: Infinite support means continuous response)

• Good small sample performance (for mean / � parameters)

• Good computational performance for support cardinality k up to

about k = 1,500

• Two current limitations

– No good inferences for f0 (except estimation)

– Derived parameters (e.g., exceedance probabilities) are a

challenge
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A Bayesian Approach to Inference

Why?

• An alternative computational and inferential framework

• Develop inferences about reference distribution f0

• Inferences about any derived model parameter, e.g. exceedance

probabilities,

Pr(Y � y|X = x,�, f0)  exceedance probability

or

Pr(Y � y|Xage = age,�, f0)  average over other X’s

• Basis for (future) hierarchical modeling (random e↵ects, latent

variables)

• Allows principled answers to design questions (owing to unified

model for data and parameters)
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Goal for Today

Bayesian estimation and inference for case of

finite support: Challenges and Results
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Bayesian Inference Model

• Finite support case: y 2 Y = {s1, . . . , sk}, where sl < sl+1 (we

just use the observed (empirical) support)

• f0 2 simplex(k � 1)

• Priors:

– � ⇠ Np(0, Ip)
– f0 ⇠ Dir(↵H) ⌘ Dir(↵H(si), . . . ,↵H(sk)), where ↵ is a

user-specified concentration parameter

– H is chosen to be the empirical frequency distribution of

marginal y, so that

∗ prior: E(f0) = H, and

∗ average (over Y) the mean E(f0) distribution of the prior

of f0, is specified as mean(y).
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A Special Problem: f0 Is Actually an Equivalence Class

• We long-ago noted that the model as specified is not fully

identified with respect to f0

f(y|X;�, f0) =
f0(y) exp(✓y)R

Y f0(u) exp(✓u) du
 exponential tilting

• Problem: Can replace given f0(y) with any
ef0(y) / f9(y) exp(e✓y), in which case model becomes

f(y|X;�, f0) =
ef0(y) exp{(✓ � e✓)y}

R
Y
ef0(u) exp{(✓ � e✓)u} du

,

so ✓ is just replaced with (✓ � e✓)

• Under ML, we solve this problem by pre-specifing f0 to yield some

given mean, µ0 (default is empirical marginal mean of y)
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f0 Is Actually an Equivalence Class (cont.)

• Viewed di↵erently, f0 is an equivalence class of all exponential tilts

of a given (or, in Bayesian case, sampled) “index” f0

• In our Bayesian MCMC approach, we solve this problem by:

– specifying Dirichlet H to be the empirical distribution of y

– after all MCMC samples are generated, tilting each posterior

f0(y) to be f
⇤
0 (y) with mean µ0, the empirical mean of y

• Additional note: Priors on (�, f0) induce a prior on ✓ = ✓(x,�, f0)

for a given x:

If g(·) and µ0 are chosen such that, as ||x||2 ! 0,

– µ = g
�1(⌘)

P! µ0,

– then, ✓
P! 0,

– and, (scaled at same rate as x) ✓ is asymptotically normal, as

in picture (next slide)
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Induced Prior on ✓ (just so you know . . . )

0

1

2

3

−4 −2 0 2 4
θ

de
ns
ity

x −1.5 −1 0.25 0.5 2

22



Highlights (some technicalities) of Posterior Simulation

• MCMC posterior simulation with Metropolis-Hastings (MH)

transition probabilities

• Each �j and each f0(sk) are updated one at a time

• �j ’s use a random walk proposal using inverse FI matrix

• f0(sk)’s use a random walk proposal based on weighted empirical

distribution of y, which essentially retilts (untilts!) each

observation back to ✓i = 0) given current ✓i

23



Bayesian Implementation in Stata
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Bayesian Implementation in Stata

Progress

• Target: -bayesmh- with the -llevaluator()- option

• Likelihood, and related calculations, in mata

– Normal prior for coe�cients �: equation {resp:}
– Reference distribution f0, coded as a second equation:

{f0:f01},...,{f0:f0k}
– Dirichlet prior for f0:

prior({f0:}, dirichlet(2,2,2,2,2))

– Identity, log, and (generalized) logit link functions
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Bayesian Implementation in Stata

Challenges

• Recall the distributional model is:

f(y|X;�, f0) =
f0(y) exp(✓y)R

Y f0(u) exp(✓u) du
 exponential tilting

where canonical parameter ✓ is implicitly defined to satisfy the

mean

g
�1(XT

�) = µ =

R
Y uf0(u) exp(✓u) duR
Y f0(u) exp(✓u) du

– Function -getTheta()- programmed in mata

– Requires careful (stressful) handling of boundaries and large

values

• Above, integrals replaced with sums over finite support given by

parameters in equation {f0:}
Open question: How to handle when the support gets large?
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Simulation Investigations
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Simulation Investigations

Compare: Dir-SPGLM to ML-SPGLM for data on support {0, . . . , 5}

Examine: regression parameters (�)

bias and (relative) e�ciency of estimates

coverage probabilities for confidence / credible intervals

Examine: reference distribution parameters (f0)

bias and (relative) e�ciency of estimates

credible interval coverage probablities (new inferences)
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Simulation Investigations (cont.)

Data generating mechanisms: X1 ⇠ N(0, 1)

log(µ) = ⌘ = �0 + �1X1

• f0 = truncated Poisson(1) on {0, 1, . . . , 5}
• f0 = 0-inflated truncated Poisson(1) on {0, 1, . . . , 5}

with 3⇥ the mass at y = 0

Here: n = 25 (also did n = 250), 2,000 replicates.

Dir-SPGLM MCMC 10,000 posterior samples, discarding the first

3,000 and using the remaining 7,000 for inference
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Simulation Results: � Inferences

n Scenario Parm Method Truth Esta RRMSEa RLa Estm RRMSEm RLm CP

25

1

�0 ML-SPGLM -0.7 -0.78 1.00 1.00 -0.74 1.00 1.00 0.97

Dir-SPGLM -0.76 0.82 0.91 -0.74 0.89 0.93 0.97

�1 ML-SPGLM 0.2 0.20 1.00 1.00 0.19 1.00 1.00 0.93

Dir-SPGLM 0.16 0.79 0.92 0.17 0.83 0.93 0.97

2

�0 ML-SPGLM -0.7 -0.81 1.00 1.00 -0.77 1.00 1.00 0.97

Dir-SPGLM -0.77 0.75 0.87 -0.75 0.85 0.90 0.97

�1 ML-SPGLM 0.2 0.18 1.00 1.00 0.18 1.00 1.00 0.94

Dir-SPGLM 0.14 0.73 0.86 0.14 0.79 0.88 0.97

250

1

�0 ML-SPGLM -0.7 -0.71 1.00 1.00 -0.71 1.00 1.00 0.97

Dir-SPGLM -0.71 1.00 0.99 -0.71 0.98 0.99 0.96

�1 ML-SPGLM 0.2 0.20 1.00 1.00 0.20 1.00 1.00 0.96

Dir-SPGLM 0.20 0.99 0.99 0.20 1.00 0.98 0.96

2

�0 ML-SPGLM -0.7 -0.71 1.00 1.00 -0.71 1.00 1.00 0.97

Dir-SPGLM -0.71 0.98 0.99 -0.71 0.97 0.99 0.96

�1 ML-SPGLM 0.2 0.20 1.00 1.00 0.20 1.00 1.00 0.96

Dir-SPGLM 0.20 0.97 0.98 0.20 0.96 0.98 0.96
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Simulation Results: f0 Inferences

n Scenario Parm Method Truth Esta RRMSEa Estm RRMSEm CP

25

1 Scenario 1 results better than Scenario 2

2

f0(0) ML-SPGLM 0.471 0.397 1.00 0.409 1.00 N/A

Dir-SPGLM 0.458 0.58 0.461 0.66 0.89

f0(1) ML-SPGLM 0.232 0.288 1.00 0.259 1.00 N/A

Dir-SPGLM 0.246 0.58 0.240 0.83 0.88

f0(2) ML-SPGLM 0.172 0.236 1.00 0.240 1.00 N/A

Dir-SPGLM 0.178 0.60 0.164 0.58 0.91

f0(3) ML-SPGLM 0.085 0.070 1.00 0.062 1.00 N/A

Dir-SPGLM 0.076 0.58 0.070 0.38 0.88

f0(4) ML-SPGLM 0.031 0.007 1.00 0.000 1.00 N/A

Dir-SPGLM 0.029 0.77 0.019 0.51 0.90

f0(5) ML-SPGLM 0.009 0.000 1.00 0.000 1.00 N/A

Dir-SPGLM 0.010 1.44 0.006 0.46 0.93
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Simulation Investigations: Conclusions for Small Sample Sizes

• For small sample sizes, Dir-SPGLM exhibits comparable bias with

increased e�ciency vs ML-SPGLM

• Confidence / credible interval coverage for � values comparable

and acceptable

• New inferences: Credible interval coverage for f0 acceptable

• (Not shown) Exceedance value inferences (see AHEAD)
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Return to AHEAD
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AHEAD Study: Estimation and Predictive Inferences

• Already seen comparable results (Dir-SPGLM vs ML-SPGLM) for

regression coe�cients � (reminder next slide)

• How about reference distribution f0 in estimation (large sample)

and prediction (small training sample) modes?

34



AHEAD: Fitted Log-linear (“Poisson”) Model for Mean

small sample large sample
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AHEAD: Full Data Inferences on f0: ML vs Dir

TSS Par Method Est CI

Large

f0(0)
ML-SPGLM 0.725 N/A

Dir-SPGLM 0.725 [0.719, 0.731]

f0(1)
ML-SPGLM 0.187 N/A

Dir-SPGLM 0.186 [0.176, 0.196]

f0(2)
ML-SPGLM 0.059 N/A

Dir-SPGLM 0.059 [0.054, 0.064]

f0(3)
ML-SPGLM 0.022 N/A

Dir-SPGLM 0.022 [0.019, 0.025]

f0(4)
ML-SPGLM 0.006 N/A

Dir-SPGLM 0.006 [0.005, 0.008]

f0(5)
ML-SPGLM 0.002 N/A

Dir-SPGLM 0.002 [0.001, 0.002]
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AHEAD Study: Training to Test: Predictive Inference

Training data: Randomly sample n = 100; fit model; test on

remaining n = 6,341

Exceedance probabilities: ML-SPGLM

p(y � y0 | x) b= p(y � y0 | x;�(mle)
, f

(mle)
0 )

And for Dir-SPGLM (posterior mean)

p(y � y0 | x) b= (1/B)
BX

b=1

p(y � y0 | x,�(b)
, f

(b)
0 )

Set y0 = 2 (moderate) and y0 = 4 (severe)

ROC and AUC(ROC): from held out test data
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AHEAD: Small (n = 100) Training Inferences on f0: ML vs Dir

TSS Par Method Est CI

Small

f0(0)
ML-SPGLM 0.805 N/A

Dir-SPGLM 0.815 [0.764, 0.859]

f0(1)
ML-SPGLM 0.136 N/A

Dir-SPGLM 0.126 [0.069, 0.198]

f0(2)
ML-SPGLM 0.023 N/A

Dir-SPGLM 0.021 [0.004, 0.057]

f0(3)
ML-SPGLM 0.021 N/A

Dir-SPGLM 0.020 [0.003, 0.044]

f0(4)
ML-SPGLM 0.009 N/A

Dir-SPGLM 0.010 [0.001, 0.028]

f0(5)
ML-SPGLM 0.006 N/A

Dir-SPGLM 0.009 [0.001, 0.026]
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AHEAD Study: Predictive Inference Results

AUC: y0 = 2: 0.70 (ML-SPGLM); 0.71 (Dir-SPGLM)

AUC: y0 = 4: 0.75 (ML-SPGLM); 0.79 (Dir-SPGLM)
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AHEAD Study: Predictive Inference Uncertainty

• Consider exceedance probabilty for y0 = 4, for {x : xage = a}, and
where we imagine the design is fixed, and a 2 {70, 80, 90} years

• Thus, the bth posterior value is

p

⇣
y � y0 | xage = t,�

(b)
, f

(b)
0

⌘
=

P
x:xage=t

p

⇣
y � y0 | x,�(b)

, f
(b)
0

⌘

P
x 1{x:xage=a}(x)

,

• From the posterior distribution across b = {1, . . . , B}, we obtain

point esimates (e.g., median) and credible intervals (e.g,. at 2.5th

and 97.5th percentiles)

• This would be di�cult with ML owing to need to use the delta

method or similar to leverage the joint sampling distribution of

(b�, bf0)
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AHEAD Study: Predictive Inference Uncertainty
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As expected, far more uncertainty where there is less covariate (x) data
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Conclusions and Future Directions
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Conclusions and Future Directions

• The SPGLM provides a flexible, full-likelihood alternative to the

classic GLM family that has good small sample properties and

comparable inferential performance to the QL family

• But, inferentially, this is restricted to mean model parameters (�)

• To extend inferential scope and to prepare for latent variable and

other hierarchical models, we have introduced a Bayesian,

Dirichlet-prior driven model that permits

– inference on the reference distribution (f0), and

– on functionals of (�, f0) such as exceedance probabilities and

(later) quantiles (as functions of covariates x)

that were not possible earlier
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• Immediate next steps are to handle continuous responses using the

Dirichlet Process Prior (DPP), work which we have undertaken

already

• Random e↵ects and other latent variable models for clustered or

longitudinal responses

• As a tool planning clinical trials, allowing for uncertainty in that

process.

– Incorporate loss functions

– Focus on a a “high” or “low” group for planning using

exceedance probabilities

– Use Stata’s bulit in Bayesian random e↵ects structures

44



Funding and References

This research was supported by the National Institutes of Health Grant

2 R01 HL094786.

Rathouz and Guo (2009). Biostatistics.

Huang and Rathouz (2012). Biometrika.

Huang and Rathouz (2017). Comm. Stat.

Huang (2014). JASA. (includes discussion of PIT)

Wurm and Rathouz (2018). R Journal

(This work) Entejar Alam, Peter Muller, and Paul J. Rathouz.

Dir-SPGLM: A Bayesian semiparametric GLM with data- driven

reference distribution. 2024.

45


