

Optimal multi-arm multi-stage (*MAMS*) platform randomized trials using Stata: Rationale, design, and implementation

Babak Choodari-Oskooei, PhD

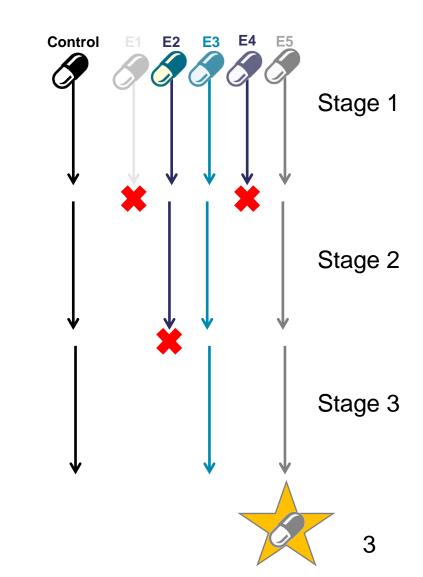
Principal Research Fellow b.choodari-Oskooei@ucl.ac.uk

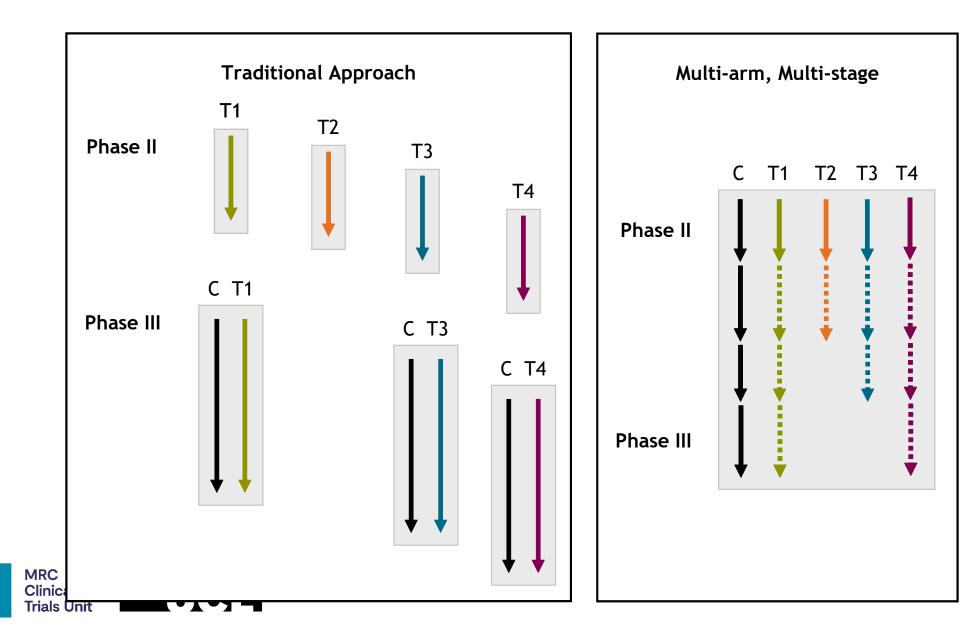
MRC Clinical Trials Unit Institute of Clinical Trials and Methodology UCL London, UK

22 February 2024 | Stata Biostatistics and Epidemiology Virtual Symposium

Smarter Studies Global Impact Better Health

Outline


- Introduction to MAMS designs: Rationale and advantages
- Examples: Cancer and surgery
- Sample sizes calculations using nstage Stata commands
- How can we make *MAMS* designs more efficient?
- Summary


Multi-Arm Multi-Stage (MAMS) designs

- Methods by Royston & Parmar et al. (Statistics in Medicine, 2003)
 - For time-to-event outcomes
- · Context: Randomised clinical trials
 - Efficacy and safety of new interventions in a defined population
- Control of operating characteristics are important
 - Probability of false positive (Type I error)
 - Of interest to regulators and reviewers
 - Probability of true positive (Power)
 - Of interest to funders
- Multiple research arms vs a common control arm (or standard-of-care)
- MAMS design has several advantages:
 - One of which is the use of an intermediate (I) outcome

Traditional approach to testing

MAMS platform trial

- Have a single <u>master</u> protocol,
- Address multiple research questions over time,
- Can **add** new research arms as well as dropping the existing one(s)

Advantages of MAMS platform trials

Faster

Multiple treatments tested at the same time

Cost

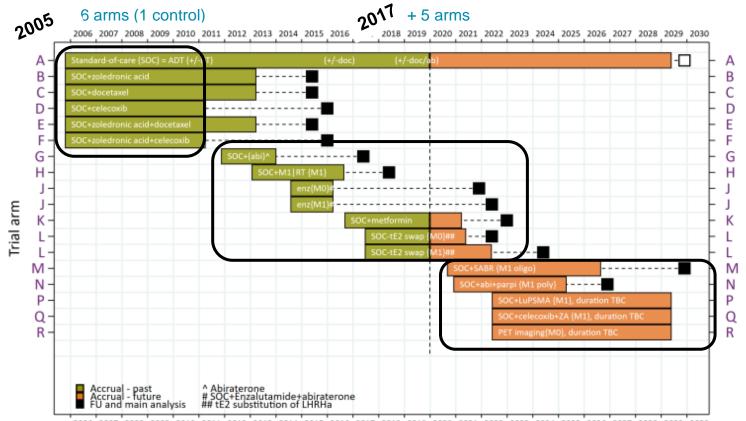
No need to set up a new trial for each treatment

Facilitate recruitment Fewer patients required overall

Flexibility Drop and add treatments

Outline

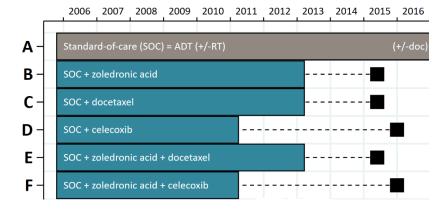
- Introduction to MAMS designs: Rationale and advantages
- Examples: Cancer and surgery
- Sample sizes calculations using nstage Stata commands


- How can we make MAMS designs more efficient?
- Summary & discussion

Example 1: Flagship STAMPEDE trial: advanced prostate cancer

STAMPEDE trial: Advanced prostate cancer

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030



STAMPEDE trial

Original design:

- STAMPEDE started with 6 arms.
 - i.e., 5 pairwise comparison.
- Each comparison posed a distinct research question.
- It tested a distinct hypothesis in each pairwise comparison.
- Therefore, probability of false positive (type I error rate) was controlled for each pairwise comparison PWER = 0.025, one-sided.

Original STAMPEDE trial: Comparisons

Design comparisons:

Νο	Design	Type I error rate Control (value)	Final stage Sig. level (one-sided)	Pairwise Power	Total events*
1	5 two-arm trials	Pairwise (0.025)	0.025	0.83	2580
2	6-arm MAMS trial	Pairwise (0.025)	0.025	0.83	1336

• Reduction in effective sample size: 48%!

*) Total events: required number of events for primary analysis across all arms.

Original STAMPEDE trial: Comparisons

Design comparisons:

Νο	Design	Type I error rate Control (value)	Final stage Sig. level (one-sided)	Pairwise Power	Total events*
1	5 two-arm trials	Pairwise (0.025)***	0.025	0.83	2580
2	6-arm MAMS trial	Pairwise (0.025)	0.025	0.83	1336
3	6-arm MAMS trial	Familywise (0.025)	0.0055**	0.83	1857

*) Total events: required number of events for primary analysis across all arms.
**) Multiplicity-adjusted final stage significance level, Dunnett's correction.
***) The *Familywise* error rate of 5 two-arm trials is about 12%!

Design parameters: <u>one arm</u> vs control

Stage/ analysis	Outcome	Hazard Ratio	Design Power	One-sided α	
1: LOB	FFS	0.75	95%	0.50	
2: LOB	FFS	0.75	95%	0.25	
3: LOB	FFS	0.75	95%	0.10	
4: Efficacy	OS	0.75	90%	0.025	

LOB: lack-of-benefit analysis

Primary Outcome

Design parameters: one arm vs control

Stage/ analysis	Outcome	Hazard Ratio	Design Power	One-sided α	Control arm events
1: LOB	FFS	0.75	95%	0.50	113
2: LOB	FFS	0.75	95%	0.25	223
3: LOB	FFS	0.75	95%	0.10	350
4: Efficacy	OS	0.75	90%	0.025	436

LOB: lack-of-benefit analysis

Primary Outcome

Design parameters: one arm vs control

Interim Stages	Stage/	Outcome	Hazard	Design	One-sided α	Control arm
 Interim outcome* 	analysis		Ratio	Power		events
 <u>High power to avoid</u> 	1: LOB	FFS	0.75	95%	0.50	113
dropping an effective treatment	2: LOB	FFS	0.75	95%	0.25	223
Significance becomes	3: LOB	FFS	0.75	95%	0.10	350
stricter over time	4: Efficacy	OS	0.75	90%	0.025	436
	IOB lack of h	onofit analysi	ic			

LOB: lack-of-benefit analysis

*PSA-failure, local progression, nodal progression, progression of metastases or new metastases or death from prostate ca.

Chosen on assumption that any trt which shows an advantage in OS will probably show an advantage in FFS first and unlikely to be an OS advantage if no FFS advantage.

Design parameters: <u>one arm</u> vs control

	Stage/ analysis	Outcome	Hazard Ratio	Design Power	One-sided α	Control events
	1: LOB	FFS	0.75	95%	0.50	113
	2: LOB	FFS	0.75	95%	0.25	223
	3: LOB	FFS	0.75	95%	0.10	350
	4: Efficacy	OS	0.75	90%	0.025	436
At stage II, if P-value IDMC likely to recoming stopping treatment and lack-of-benefit	mend					
MRC Clinical Trials Unit						16

Appropriate intermediate (I) outcome

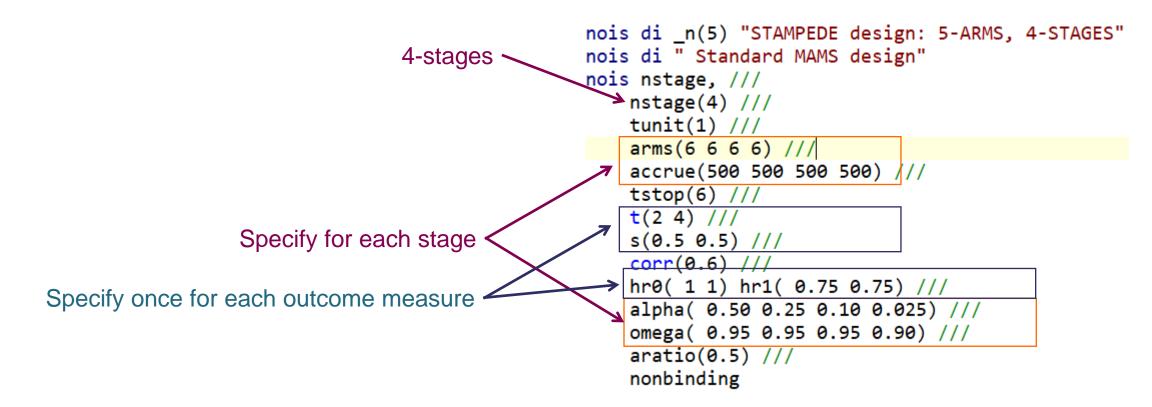
- Increases efficiency:
 - speeds up the weeding out of the insufficiently promising treatments.

Key assumptions:

- 1. "Information" on I-outcome accrues at the same rate or faster rate than that of D-outcome
- 2. The I-outcome is on the pathway between the treatments and D-outcome.
- 3. If the null hypothesis is true for the I-outcome, it must also hold for D-outcome.

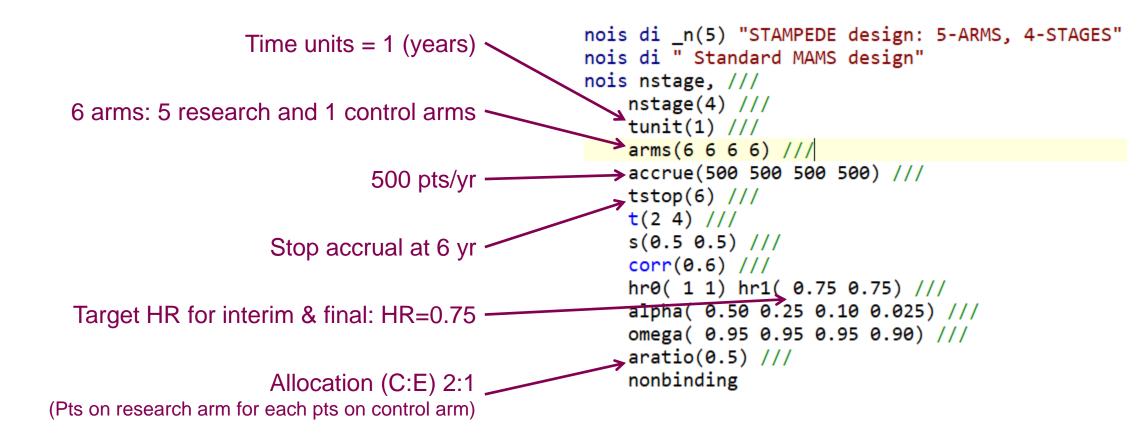
• I-outcome *does not* have to be a perfect surrogate for D-outcome in *Prentice* sense.

Key example in cancer: I = event for progression-free survival; D = death


Outline

- Introduction to MAMS designs: Rationale and advantages
- Examples: Cancer and surgery
- Sample sizes calculations using nstage Stata commands

- How can we make MAMS designs more efficient?
 - Optimal MAMS designs
- Summary & discussion



nstage Stata command: STAMPEDE design

nstage Stata command: STAMPEDE design

nstage Output 1: STAMPEDE

Median survival time (I-outcome): 2 time units Median survival time (D-outcome): 4 time units

Operating characteristics

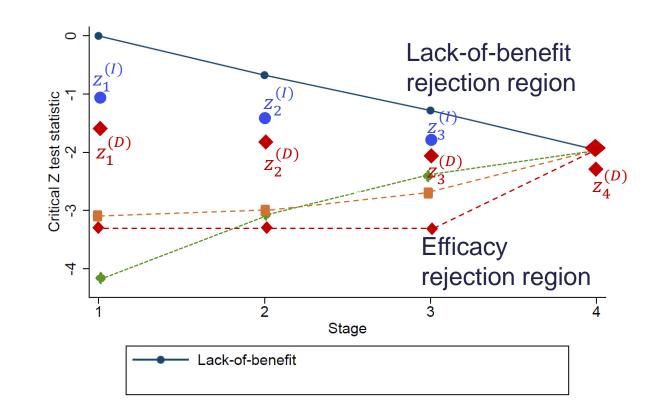
assumes_{in}survival

Stage	Alpha (LOB) *	Power	HR H0	HR H1	Crit.HR L	ength**	Time**	
 1 2 3 4	0.5000 0.2500 0.1000 0.0250	0.950 0.950 0.950 0.950 0.901	1.000 1.000 1.000 1.000	0.750 0.750 0.750 0.750 0.750	1.000 0.920 0.882 0.841	2.436 1.189 1.161 2.572	2.436 3.625 4.786 7.359	
Pairwi	se Error Rate		0.	0250	Pa	irwise Po	ower 0.8	995
Max. F	amilywise Erro	r Rate (S	E) 0.	1033 (0.	0006)			
LOB = lack of benefit							Z	
Note: patient accrual stopped at time 6.000							Å	
* All alphas are one-sided								
** Length (duration of each stage) is expressed in periods and MRC								

onentially distributed. Time is expressed in cumulative periods.

nois di _n(5) "STAMPEDE design: 5-ARMS, 4-STAGES" nois di " Standard MAMS design" nois nstage, /// nstage(4) /// tunit(1) /// arms(6 6 6 6) /// accrue(500 500 500 500) /// tstop(6) /// t(2 4) /// s(0.5 0.5) /// corr(0.6) /// hr0(11) hr1(0.700.75) /// alpha(0.450 0.200 0.050 0.025) /// omega(0.95 0.95 0.95 0.90) /// aratio(0.5) /// nonbinding

nstage Output 2: STAMPEDE


Sample size and number of events

		-Stage 1-	
	Overall	Control	Exper.
Arms	6	1	5
Acc. rate	500	143	357
Patients*	1218	348	870
Events**	343	113	230
		-Stage 2-	
	Overall	Control	Exper.
Arms	6	1	5
Acc. rate	500	143	357
Patients*	1813	518	1295
Events**	683	223	460
		-Stage 3-	
	Overall	Control	Exper.
Arms	6	1	5
Acc. rate	500	143	357
Patients*	2393	684	1709
Events**	1085	350	735
		-Stage 4-	
	Overall	Control	Exper.
Arms	6	1	5
Acc. rate	500	143	357
Patients*	3000	857	2143
Events**	1336	436	900
	IR C linical rials Unit		CL

nois di _n(5) "STAMPEDE design: 5-ARMS, 4-STAGES" nois di " Standard MAMS design" nois nstage, /// nstage(4) /// tunit(1) /// arms(6 6 6 6) /// accrue(500 500 500 500) /// tstop(6) /// t(2 4) /// s(0.5 0.5) /// corr(0.6) /// hr0(1 1) hr1(0.70 0.75) /// alpha(0.450 0.200 0.050 0.025) /// omega(0.95 0.95 0.95 0.90) /// aratio(0.5) /// nonbinding

Interim efficacy stopping boundaries, I≠D

- Haybittle-Peto (HP)
 - Constant
- O-Brien-Fleming type (OBF)
 - Extreme early
- Spending function
 - Based on information time
- When **I** & **D** are different outcomes:
 - The LOB boundaries are on the *I*-outcome

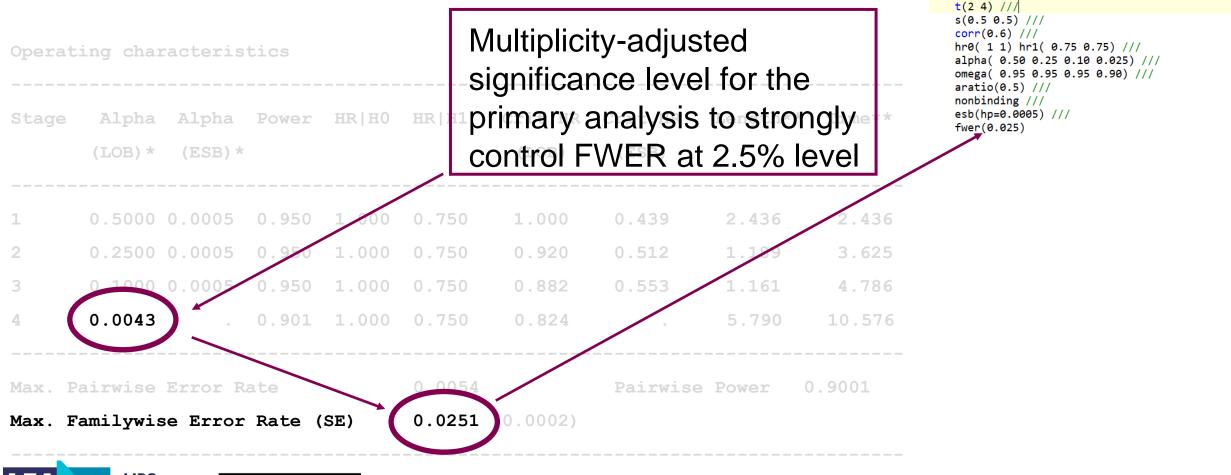
nstage: STAMPEDE with LOB and ESB

```
nois di _n(5) "STAMPEDE design: 5-ARMS, 4-STAGES"
                                                nois di "MAMS with both LOB and ESB"
                                                nois nstage, ///
                                                    nstage(4) ///
                                                    tunit(1) ///
                                                    arms(6 6 6 6) ///
                                                    accrue(500 500 500 500) ///
                                                    tstop(6) ///
                                                    t(2 4) ///
                                                    s(0.5 0.5) ///
                                                    corr(0.6) ///
                                                    hr0(11) hr1(0.750.75) ///
                                                    alpha( 0.50 0.25 0.10 0.025) ///
                                                    omega( 0.95 0.95 0.95 0.90) ///
                                                    aratio(0.5) ///
                                                    nonbinding ///
Interim stopping boundaries for efficacy -
                                                  → esb(hp=0.0005) ///
                                                  fwer(0.025)
```

Familywise type I error rate – Dunnett's correction -

nstage output 1: STAMPEDE with LOB and ESB

nois di _n(5) "STAMPEDE design: 5-ARMS, 4-STAGES" nois di "MAMS with both LOB and ESB" nois nstage, /// nstage(4) /// Median survival time (I-outcome): 2 time units tunit(1) /// arms(6 6 6 6) /// accrue(500 500 500 500) /// Median survival time (D-outcome): 4 time units tstop(6) /// t(2 4) /// s(0.5 0.5) /// corr(0.6) /// hr0(1 1) hr1(0.75 0.75) /// Operating characteristics alpha(0.50 0.25 0.10 0.025) /// omega(0.95 0.95 0.95 0.90) /// aratio(0.5) /// nonbinding /// esb(hp=0.0005) /// Alpha Alpha Power HR|H0 HR|H1 Crit.HR Crit.HR Length** Time** Stage fwer(0.025) (LOB) * (ESB) * (LOB) (ESB) 0.5000 0.0005 0.950 1.000 2.436 1 1.000 0.439 2.436 0.750 2 0.2500 0.0005 0.950 1.000 0.750 0.920 0.512 1.189 3.625 0.1000 0.0005 0.950 1.000 0.750 0.882 0.553 3 1.161 4.786 0.824 10.576 0.0043 0.901 1.000 0.750 5.790 4 • Max. Pairwise Error Rate 0.0054 Pairwise Power 0.9001 Max. Familywise Error Rate (SE) 0.0251 (0.0002)



nstage output 1: STAMPEDE with LOB and ESB

Median survival time (I-outcome): 2 time units

Median survival time (D-outcome): 4 time units

nois di "MAMS with both LOB and ESB"

accrue(500 500 500 500) ///

nois nstage, ///
nstage(4) ///

tunit(1) /// arms(6 6 6 6) ///

tstop(6) ///

nstage output 2: STAMPEDE with LOB and ESB

Sample size and number of events

		-Stage 1-	
	Overall	Control	Exper.
Arms	6	1	5
Acc. rate	500	143	357
Patients*	1218	348	870
Events**	343	113	230
		-Stage 2-	
	Overall	Control	Exper.
Arms	6	1	5
Acc. rate	500	143	357
Patients*	1813	518	1295
Events**	683	223	460
		-Stage 3-	
	Overall	Control	Exper.
Arms	6	1	5
Acc. rate	500	143	357
Patients*	2393	684	1709
Events**	1085	350	735
		-Stage 4-	
	Overall	Control	Exper.
Arms	6	1	5
Acc. rate	500	143	357
Patients*	3000	857	2143
Events**	1941	616	1325
	IR C Iinical rials Unit		CL

<pre>nois di _n(5) "STAMPEDE design: 5-ARMS, nois di "MAMS with both LOB and ESB"</pre>	4-STAGES"
nois nstage, ///	
nstage(4) ///	
<pre>tunit(1) ///</pre>	
arms(6 6 6 6) ///	
accrue(500 500 500 500) ///	
tstop(6) ///	
t(2 4) ///	
s(0.5 0.5) ///	
corr(0.6) ///	
hr0(11) hr1(0.750.75)///	
alpha(0.50 0.25 0.10 0.025) ///	
omega(0.95 0.95 0.95 0.90) ///	
aratio(0.5) ///	
nonbinding ///	
esb(hp=0.0005) ///	
fwer(0.025)	
(0.025)	

For more details and steps to design MAMS trials in the book chapter:

• *Choodari-Oskooei et al*, "Multi-arm multi-stage (MAMS) platform randomized clinical trials", in "Principles and Practice of Clinical Trials" by Springer (2022)

• Link: <u>bit.ly/3tmx0qT</u>

Outline

- Introduction to MAMS designs: Rationale and advantages
- Examples: Cancer and surgery
- Sample sizes calculations using nstage Stata commands

- How can we make MAMS designs more efficient?
 - Optimal MAMS designs
- Summary & discussion

Efficient (optimal) MAMS designs

- So far, chose stagewise design parameters then calculated overall operating characteristics.
- In the confirmatory setting the overall operating characteristics, type I and II error rates should be controlled as pre-specified level.
- In MAMS, several design options exist for a given overall type I and II error rates
- How can we choose the best design among these potential choices?
- This lends itself to the topic of efficient and optimal MAMS design
 - Here we are only exploring designs that are "mathematically" optimal.
 - "Clinically" optimality in also important, in terms of the practicality of the design and possible fragilities personal communication with Patrick Royston.

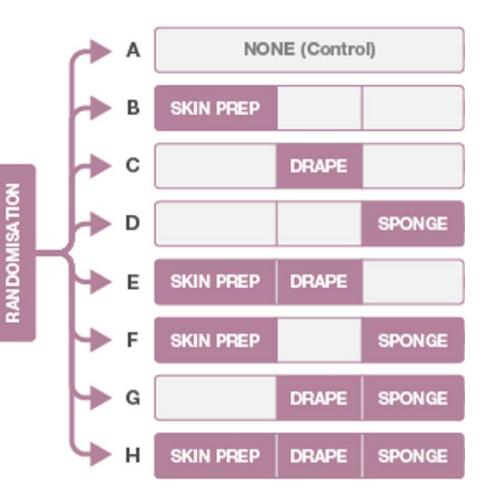
Example 2:

ROSSINI-2 *MAMS* trial in surgical wound infection

Example 2: ROSSINI 2 surgical trial

8-arm 3-stage trial in surgery

• i.e. 7 pairwise comparisons


The overall type I error rate across all comparisons and stages (FWER) is controlled at 2.5% (one-sided)

Overall pairwise power is controlled at 85%, i.e. for each pairwise comparison of research arm against control

Clinical outcome composite binary,

- Surgical site infection (SSI) within 4 weeks
- Same outcome used in all stages

Target an effect size of 5% reduction from control arm risk of 15%

Example: ROSSINI-2 surgical trial

8-arm 3-stage surgical trial

Clinical outcome: composite binary, surgical site infection (SSI);

Main interventions

A) Chlorhexidine 2% alcoholic skin prep

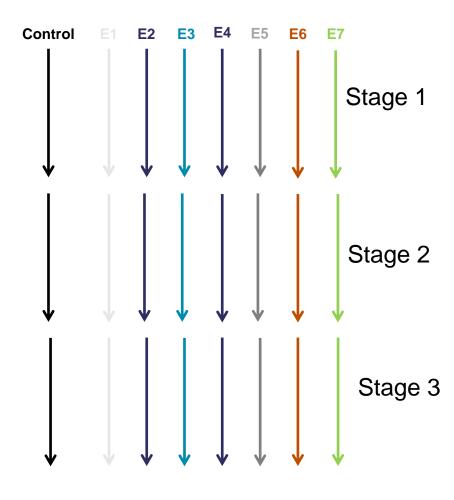
[versus any other standard wound prep agent

of surgeon's choice]

B) Loban-impregnated incise drapes

[versus no drape]

C] Gentamicin-impregnated collagen <u>sponge</u> [versus no sponge]


How can we embark on designing such a trial?

Step 1: Choose design significance levels and pairwise power at each stage such that overall type I and II error rates are controlled at prespecified levels.

• nstagebinopt Stata command

Step 2: Conduct sample size calculations and estimate the trial timelines, using the design parameters found in Step 1.

• nstagebin Stata command

Step 1 leads us to optimal MAMS designs

Biggest challenge is to find a "universal" optimality criterion.

Efficient designs minimise the expected sample size (ESS) under a certain scenario

Common choices are:

- minimax: designs with smallest ESS under the alternative hypothesis for all comparisons
- null-optimal: designs with smallest ESS under the null hypothesis for all comparisons

Admissible designs minimise a weighted sum of these two measures:

 $L = q. E(N|H_1) + (1 - q). E(N|H_0) \qquad q \in [0,1], \text{ which is prespecified}$ Loss function used in nstagebinopt

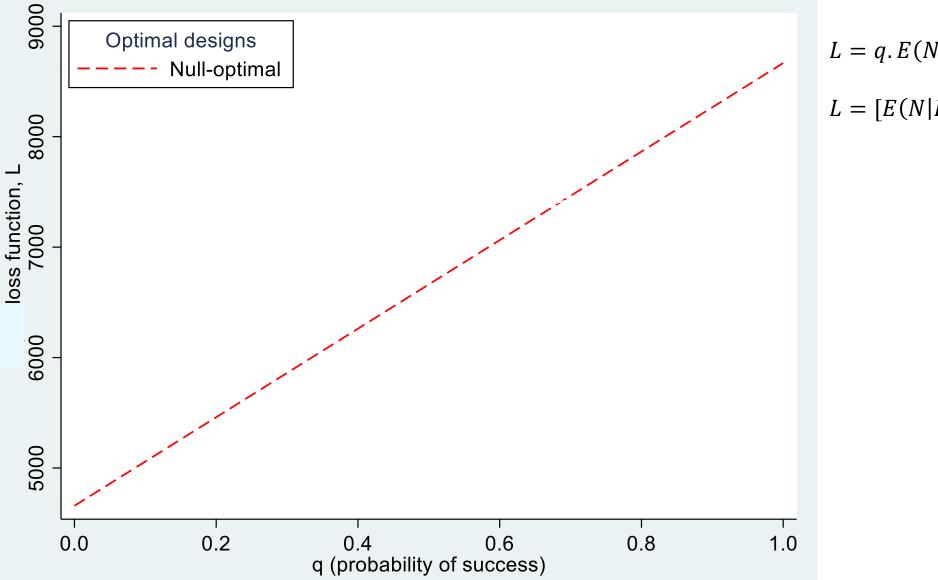
Back to ROSSINI-2 surgical trial

nstagebinopt command for admissible designs

Syntax:

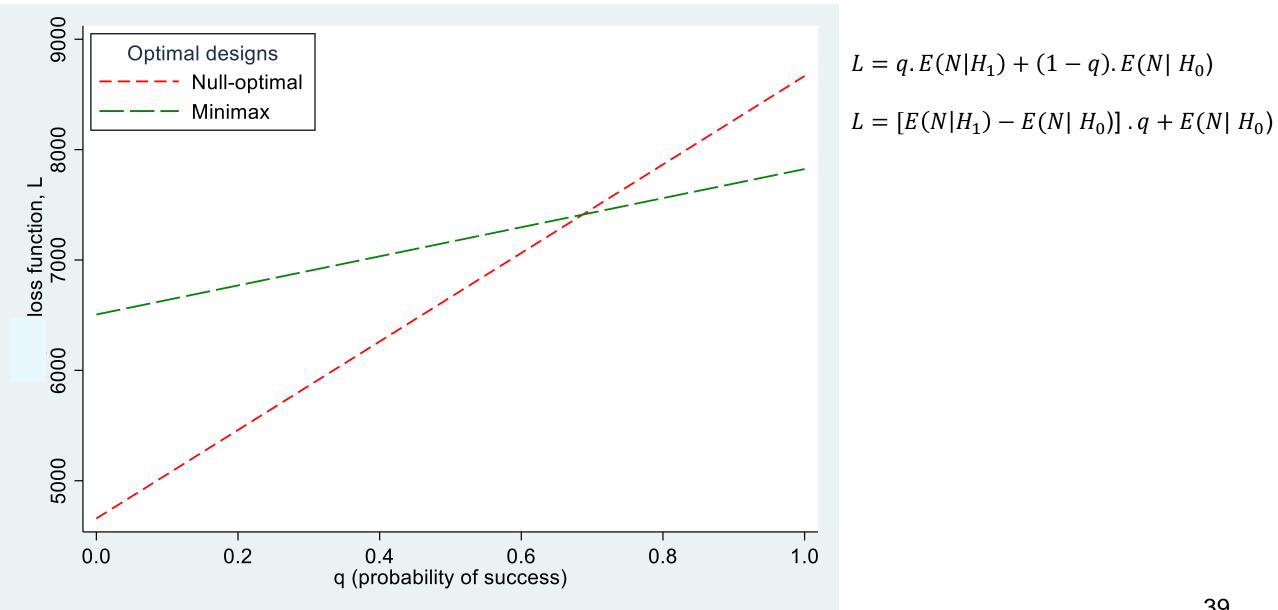
```
nstagebinopt, alpha(0.025) power(0.85) fwer nstage(3) arms(8) theta0(0)
theta1(-0.05) ctrlp(0.15) ltfu(0.04) fu(4) accrate(118 248 248)
aratio(0.5) plot
```

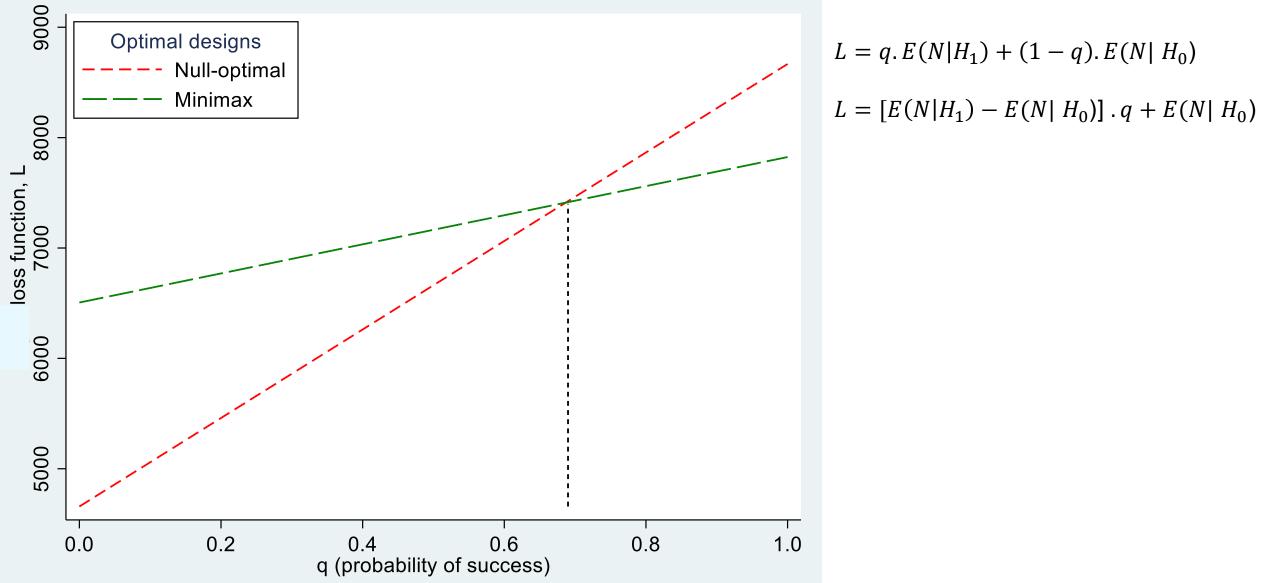
Aim to control of the FWER Remove if aim is to control pairwise error rate (PWER)

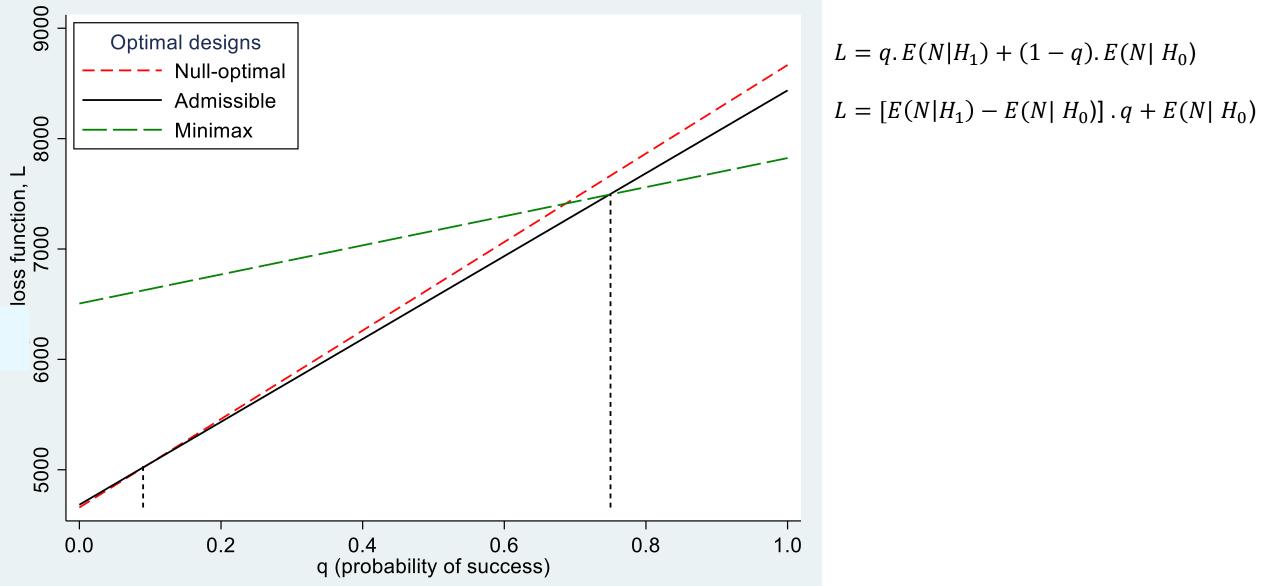

nstagebinopt output

	n-st.	n-stage (binary) trial design				version 1.0.2, 09 June 2023			
		Admissible designs for a 8-arm 3-stage trial with binary outcome based on Choodari-Oskooei, Bratton, and Parmar (2023) Stata Journal 23(3).							
	Desi		Stage	Sig. level	Power	Alloc. ratio	E (N HO)	E(N H1)	FWER (SE)
	1	[0.00,0.09]	1 2 3	0.31 0.16 0.005	0.93 0.93 0.92	0.50	4658	8667	0.0249 (0.0003)
Admissible for wider range of q	2	[0.10,0.65]	1 2 3	0.40 0.14 0.005	0.94 0.94 0.91	0.50	4683	8437	0.0253 (0.0003)
		[0.66,0.77]	1 2 3	0.15 0.08 0.005	0.93 0.93 0.90	0.50	4989	8277	0.0254 (0.0003)
	4	[0.78,1.00]	1 2 3	0.27 0.14 0.004	0.99 0.99 0.85	0.50	6506	7824	0.0253 (0.0003)

Note: each design minimises the loss function (1-q)E(N|H0)+qE(N|H1) for values of q specified in q_range. H1 is the hypothesis that all of the experimental arms are effective.







 $L = q. E(N|H_1) + (1 - q). E(N|H_0)$

 $L = [E(N|H_1) - E(N|H_0)] \cdot q + E(N|H_0)$

Step 2: nstagebin for sample size calculations

Syntax:

nstagebin, alpha(0.40 0.14 0.005) power(0.94 0.94 0.91) nstage(3) theta0(0)
theta1(-0.05) ctrlp(0.15) arms(8 6 4) ltfu(0.04) fu(4) accrate(118 248 248)
aratio(0.5) tunit(4)

Step 2: nstagebin output 1

Output has 2 main sections

n-stage trial design - binary outcome version 1.0.2, 09 June 2023 _____ Sample size for a 8-arm 3-stage trial with binary outcome based on Bratton et al. (2013) BMC Med Res Meth 13:139 and Choodari-Oskooei, Bratton, and Parmar (2023) Stata Journal 23(3). Control arm event rate = 0.15Delay in observing outcome = 4 months Attrition rate for outcome = 0.04Operating characteristics Alpha(1S) Power theta|H0 theta|H1 Length* Time* Stage 1 0.4000 0.940 0.000 -0.050 19.979 19.979

 Stage 1
 0.4000
 0.940
 0.000
 -0.050
 19.979
 19.979

 Stage 2
 0.1400
 0.940
 0.000
 -0.050
 9.165
 29.144

 Stage 3
 0.0050
 0.910
 0.000
 -0.050
 11.994
 41.138

 Pairwise
 0.0253
 (0.0003)
 -0.0253
 -0.0253
 -0.0253
 -0.0253

* Length (duration of each stage) is expressed in month periods

** FWER is calculated using simulations with 250000 replications

Section 1

Step 2: nstagebin output 2

Stage 1	Overall	Control	Exper.
Number of active arms Accrual rate* Active arms		1 26.2	
Patients for analysis Patients recruited** All arms	1809 2358	402 524	201 262
Patients recruited**	2358		
		-Stage 2- Control	
Number of active arms Accrual rate* Active arms	6 248.0		
Patients for analysis Patients recruited** All arms	2989 4108	854 1173	427 587
Patients recruited**	4632		
		-Stage 3- Control	
Number of active arms Accrual rate* Active arms	4 248.0	_	3 148.8
Patients for analysis Patients recruited** All arms	4719 4915		944 983
Patients recruited**	6613		

Section 2

More on nstage, nstagebin & nstagebinopt

- They allow for intermediate outcome (I) observable before definitive outcome (D) for interim Lack-Of-Benefit (LOB) assessment.
 - e.g., culture status (I-outcome) & failure/relapse in tuberculosis
- They use Dunnett's probability to account for multiplicity.
 - Consider the underlying correlation structure between different tests
 - More efficient than Bonferroni or Sidak corrections
- Feasible/admissible designs found by **nstagebinopt** can be saved in a dataset.
 - For further inspection of their properties regarding trial timelines, sample sizes, etc
- Computationally, they are very efficient.
 - 2-arm 2-stage designs: both output the results in less than a second
 - 8-arm 3-stage design: nstagebinopt (95 seconds), nstagebin (5 seconds)

Validating/testing nstage, nstagebin & nstagebinopt

The FWER and overall power:

- Checked against analytical solutions where possible
- Used mvnormal Stata command (Grayling and Mander)

Sample size calculations:

- Compared against Cytel's EAST software and artbin Stata command
- Perfect agreement was achieved for a wide range of design types, taking into account differences in rounding

Re-ran the design do files of *MAMS* trials, compared the outputs/results, and checked for error messages and discrepancies.

The commands have been used to design *MAMS* trials in cancer, TB, maternal health, surgery, infections, vascular diseases, etc.

Resources: Articles and examples on nstage

Link to the latest article: bit.ly/48fdcHq

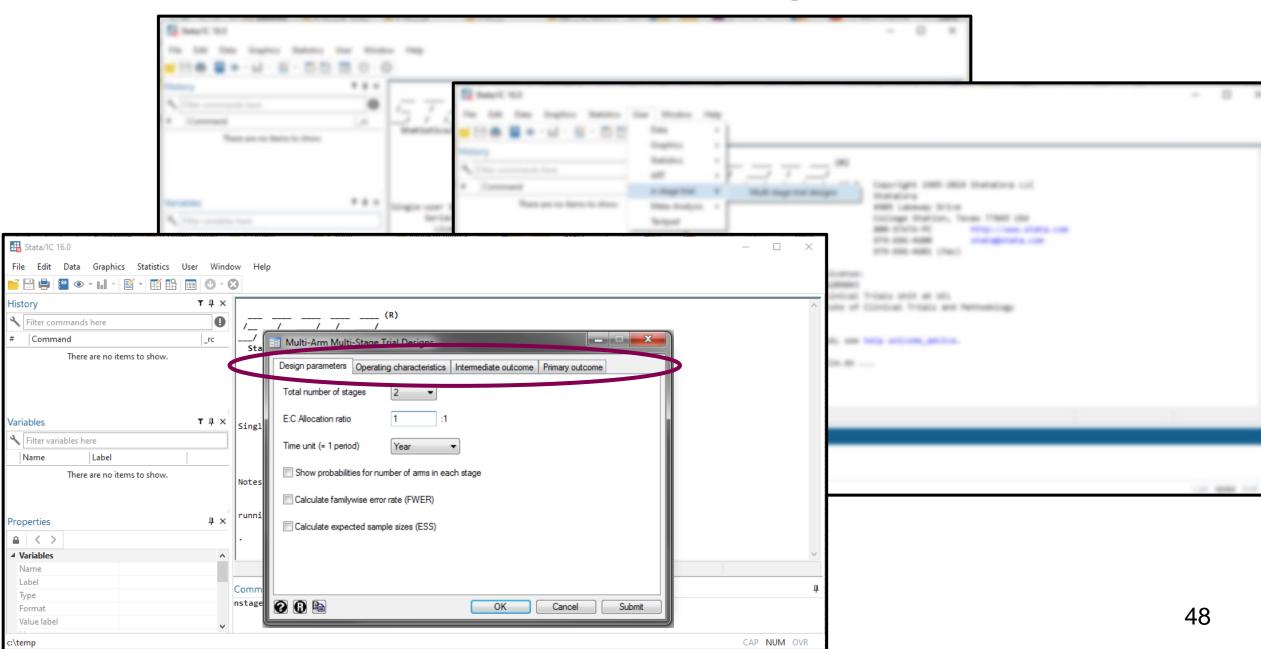
The Stata Journal Volume 23, Issue 3, September 2023, Pages 774-798 © StataCorp LLC 2023, Article Reuse Guidelines https://doi.org/10.1177/1536867X231196295

Sage Journals

Article and Columns

Facilities for optimizing and designing multiarm multistage (MAMS) randomized controlled trials with binary outcomes

Babak Choodari-Oskooei¹, Daniel J. Bratton², and Mahesh K. B. Parmar³


Abstract

We introduce two commands, nstagebin and nstagebinopt, that can be used to facilitate the design of multiarm multistage (MAMS) trials with binary outcomes. MAMS designs are a class of efficient and adaptive randomized clinical trials that have successfully been used in many disease areas, including cancer, tuberculosis, maternal health, COVID-19, and surgery. The nstagebinopt command finds a class of efficient "admissible" designs based on an optimality criterion using a systematic search procedure. The nstagebin command calculates the stagewise sample sizes, trial timelines, and overall operating characteristics of MAMS designs with binary outcomes. Both commands allow the use of Dunnett's correction to account for multiple testing. We also use the ROSSINI 2 MAMS design, an ongoing MAMS trial in surgical wound infection, to illustrate the capabilities of both commands. The new commands facilitate the design of MAMS trials with binary outcomes where more than one research question can be addressed under one protocol.

Keywords

st0728, nstagebin, nstagebin
opt, multiarm multistage, MAMS, familywise type I error rate, FWER,
 α functions, adaptive designs

nstage Stata suite for MAMS designs

nstage Stata suite for MAMS designs

Viewer - help nstagebin	- 0	I X
File Edit History Help		File Edit History Help
\leftarrow \rightarrow C \blacksquare Q help nstagebin	Q-	$\leftarrow \rightarrow C \models Q$ help nstagebin Q.
view examples_v4.smcl help nsta	ge help nstagebin 🗙	help nstagebin X
+	Dialog * Also see * .	Jump to *
help for nstagebin	MRC Clinical Trials	↑ Dialog → Dialog → Also see → Jump to →
Multi-arm, multi-stage (MAMS) tri	al designs for binary outcomes	nstagebin reports the sample size required for each analysis and the cumulative number of patients allocated to each remaining treatment arm at the end of each stage. Also reported is the cumulative number of patients recruited to the trial end of each stage (including those patients allocated to arms dropped in previous stages).
<u>Syntax</u>		Examples
nstagebin, required_optio	ons optional_options	
options	Description	Example of a 4-arm 3-stage trial where the I-outcome and D-outcome is the same and has a follow-up period of 1 month. The accrual rate is assumed to be 10 patients/month in each stage and the loss-to-follow-up rate is 10%. One-sided significance levels of 30%, 15% and 2.5% and
<pre>required nstage(#) accrate(numlist) alpha(numlist) power(numlist) theta0(# [#]) theta1(# [#]) ctrlp(# [#])</pre>	<pre># = J, the number of trial stages overall accrual rate in each stage one-sided alpha (type 1 error probability) for each stage power (one minus type 2 error probability) for each stage number of arms recruiting at each stage (including control arm) target treatment effect under H0 for the I and D outcomes target treatment effect under H1 for the I and D outcomes</pre>	powers of 95%, 95% and 90% are used in the 1st, 2nd and 3rd stages respectively. All four arms are assumed to continue to the second stage of the trial, and only two are assumed to continue to the final stage.
	<pre>(I) and definitive (D) outcomes differ positive predictive value for the control arm positive predictive value for each experimental arm</pre>	Example of a 6-arm 4-stage trial where the I-outcome and D-outcome differ and have target treatment effects of 15% and 10% respectively. Follow-up on the I-outcome is 0.25 years (13 weeks) and 1 year for the D-outcome and the loss-to-follow-up rates are assumed to be 10% and 20% respectively. The positive predictive value is assumed to be 80% for the control and experimental arms. A control:experimental allocation ratio of 2:1 is used.
<u>aratio(#)</u> <u>fu(# [#])</u> <u>extrat(#)</u> <u>l</u> tfu(# [#]) tunit(#) probs ess nofwer	allocation ratio (number of patients allocated to each experimental arm per control arm patient) length of follow-up period for the I and D outcomes delay between observing last required outcome for each analysis and next stage of the trial loss-to-follow-up rate for the I and D outcomes code for units of trial time reports probabilities of the number of arms reaching each stage reports the expected sample sizes suppress the calculation of the familywise error rate	aratio(0.5) ppvc(0.8) ppve(0.8)
		Daniel Bratton, MRC Clinical Trials Unit at UCL, London. daniel.bratton@ucl.ac.uk

Summary

- nstage suite of Stata commands can be used to design efficient MAMS trials with a given accrual pattern - available from the SSC.
- Use simulations (MAMS) and analytical derivations (two-arm setting) to calculate the operating characteristics.
- Validated against numerous other software and published sample sizes.
- The associated Stata Journal article are available with example trials and codes.
- Further work will allow use of any combination of outcomes (e.g. continuous I outcome, binary D outcome) and incorporating treatment selection at early stages.

Key references

<u>Design</u>

- Choodari-Oskooei, et al. (2023) Treatment selection in multi-arm multi-stage designs: With application to a postpartum haemorrhage trial. *Clinical Trials*. 20(1):71-80. doi:10.1177/17407745221136527
- Parmar, et al. (2017) Testing many treatments within a single protocol over 10 years at MRC Clinical Trials Unit at UCL: Multi-arm, multi-stage platform, umbrella and basket protocols. *Clinical Trials*.14(5):451-461. doi:<u>10.1177/1740774517725697</u>
- Royston, et al. (2003) Novel designs for multi-arm clinical trials with survival outcomes with an application in ovarian cancer. Statistics in Medicine. 22:2239–2256. doi: <u>10.1002/sim.143</u>

Key references

<u>Analysis</u>

- Choodari-Oskooei, et al. (2013) Impact of lack-of-benefit stopping rules on treatment effect estimates of two-arm multi-stage (TAMS) trials with time to event outcome. *Trials* 14, 23. <u>https://doi.org/10.1186/1745-6215-14-23</u>
- Barthel, et al. (2009) How do multi-stage, multi-arm trials compare to the traditional two-arm parallel group design a reanalysis of 4 trials. *Trials* 10, 21. <u>https://doi.org/10.1186/1745-6215-10-21</u>

Conduct

- Schiavone, et al. (2019) This is a platform alteration: a trial management perspective on the operational aspects of adaptive and platform and umbrella protocols. *Trials* 20, 264. <u>https://doi.org/10.1186/s13063-019-3216-8</u>
- Morrell, et al. (2019) Mind the gap? The platform trial as a working environment. *Trials* 20, 297.
 https://doi.org/10.1186/s13063-019-3377-5
- Sydes, et al. (2012) Flexible trial design in practice stopping arms for lack-of-benefit and adding research arms mid-trial in STAMPEDE: a multi-arm multi-stage randomized controlled trial. *Trials* 13, 168.

https://doi.org/10.1186/1745-6215-13-168

Key references

Software:

- Choodari-Oskooei, et al. (2023) Facilities for optimizing and designing multi-arm multi-stage (MAMS) randomized controlled trials with binary outcomes. *The Stata Journal*; 23(3), 774–798. doi: https://doi.org/10.1177/1536867X231196295
- Bratton, et al. (2015) A menu-driven facility for sample-size calculation in multi-arm, multi-stage randomized controlled trials with time-to-event outcomes: Update. *The Stata Journal*.15(2):350-368. doi: https://doi.org/10.1177/1536867X1501500202

Book chapter:

 Choodari-Oskooei, et al. (2022) Multi-arm multi-stage (MAMS) platform randomized clinical trials. In: Principles and Practice of Clinical Trials. Springer. <u>bit.ly/3tmx0qT</u>

Video tutorial:

- Tutorial on the nstage suite of commands: <u>bit.ly/3Mxpzal</u>
- Tutorial on MAMS designs: <u>bit.ly/3SEPEGh</u>; <u>bit.ly/3X1Hg5q</u>

Acknowledgements

Thanks to:

- Colleagues & PhD students at the MRC CTU at UCL: Past and present
 - Alexandra Blenkinsop (Imperial College London)
 - Daniel Bratton (GSK)
 - Ian White (UCL)
 - Matthew Sydes (UCL)
 - Max Parmar (UCL)
 - Patrick Royston (UCL)
 - Sophie Barthel (PRA Health Sciences)
- All the collaborators: particularly, those involved in STAMPEDE and ROSSINI-2 trials
- Stata Corps and the organisers of this fantastic symposium

Thank you for your attention

Happy to take questions! Send it to: <u>b.choodari-Oskooei@ucl.ac.uk</u>

