STATA MULTIPLE-IMPUTATION
REFERENCE MANUAL

RELEASE 12

7)" \
o)

A Stata Press Publication
StataCorp LP
College Station, Texas

‘é\?,\ ® Copyright (¢) 1985-2011 StataCorp LP
LEALN \\, All rights reserved
Version 12

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845
Typeset in TeX
Printed in the United States of America

109 87 654321

ISBN-10: 1-59718-089-0
ISBN-13: 978-1-59718-089-4

This manual is protected by copyright. All rights are reserved. No part of this manual may be reproduced, stored
in a retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or
otherwise—without the prior written permission of StataCorp LP unless permitted subject to the terms and conditions
of a license granted to you by StataCorp LP to use the software and documentation. No license, express or implied,
by estoppel or otherwise, to any intellectual property rights is granted by this document.

StataCorp provides this manual “as is” without warranty of any kind, either expressed or implied, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose. StataCorp may make
improvements and/or changes in the product(s) and the program(s) described in this manual at any time and without
notice.

The software described in this manual is furnished under a license agreement or nondisclosure agreement. The software
may be copied only in accordance with the terms of the agreement. It is against the law to copy the software onto
DVD, CD, disk, diskette, tape, or any other medium for any purpose other than backup or archival purposes.

The automobile dataset appearing on the accompanying media is Copyright @ 1979 by Consumers Union of U.S.,
Inc., Yonkers, NY 10703-1057 and is reproduced by permission from CONSUMER REPORTS, April 1979.

Stata, STATQ Stata Press, Mata, MATA and NetCourse are registered trademarks of StataCorp LP.

Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations.
NetCourseNow is a trademark of StataCorp LP.

Other brand and product names are registered trademarks or trademarks of their respective companies.

For copyright information about the software, type help copyright within Stata.

The suggested citation for this software is

StataCorp. 2011. Stata: Release 12. Statistical Software. College Station, TX: StataCorp LP.

Table of contents

intro substantive Introduction to multiple-imputation analysis
IITO .ottt e e Introduction to mi
estimation Estimation commands for use with mi estimate
miadd Add imputations from another mi dataset
Mi APPENA . et Append mi data
ML CONVEIT .« v vttt ettt et et e e et e e e Change style of mi data
TN COPY ottt et e e e et e e e e e e e e e e e Copy mi flongsep data
mi desCribe Describe mi data
INE BIASE . ot vttt ettt e e e e e e e e e e e Erase mi datasets
Mi estimateiurirninnnnaaann Estimation using multiple imputations
mi estimate using Estimation using previously saved estimation results
mi estimate postestimation Postestimation tools for mi estimate
M eXPANA . oottt e Expand mi data
ML BXPOTT . et ettt e e e e e e e e e e e e e Export mi data
ML EXPOTt ICE + ottt et et e e et Export mi data to ice format
mi export nhanesl Export mi data to NHANES format
Mi BXIACt . o \v ettt it Extract original or imputed data from mi data
ML IMPOIT .ottt et e e e e e e e Import data into mi
miimport flong Import flong-like data into mi
mi import flongsep Import flongsep-like data into mi
Mi IMPOIT 1CE « vttt et e e e Import ice-format data into mi
mi import nhanesl Import NHANES-format data into mi
mi import Wide Import wide-like data into mi
M IMPULE .« ottt et e e e e Impute missing values
mi impute chained Impute missing values using chained equations
Mi IMPULe INIEZ . . oo v ettt e et Impute using interval regression
mi impute logit Impute using logistic regression
mi impute mlogit Impute using multinomial logistic regression
mi impute MONOtONE vvvrvenenenennen... Impute missing values in monotone data
miimpute mvn i Impute using multivariate normal regression
mi impute nbreg Impute using negative binomial regression
mi impute ologit Impute using ordered logistic regression
mi impute pmmc.ooieneninnenenan.. Impute using predictive mean matching
mi iMpute POISSON . .o\ v vttt et Impute using Poisson regression
Mi IMPULE TEZTESS v vt vttt ettt et e e e ieeaennn Impute using linear regression
Mi IMPUte tIUNCIEZ . oo e ettt ee e Impute using truncated regression
100Y 00 1<) L Merge mi data
mi misstable Tabulate pattern of missing values
Mi PasSIVE . ..ot Generate/replace and register passive variables
mipredict Obtain multiple-imputation predictions
ML PIACE vttt et e e e e e e Load parameter-trace file into Stata
ML TENAIMIE .« o vttt ettt et e e e e e e e et et e e Rename variable
mi replacel Replace original data
0 I () Reset imputed or passive variables
Mi TeShaPE . ..ottt Reshape mi data
miselect Programmer’s alternative to mi extract
I SEL .ottt ettt e e e e Declare multiple-imputation data
Mi SESPIL ..o Stsplit and stjoin mi data

15
23

26
29
32
35
37
41
42
69
77
79
80
81
83
86
88
91
94
98
102
107
110
135
162
171
176
181
198
224
229
234
240
245
251
257
261
263
268
282
285
288
290
292
294
296
300

M EESE ottt e e e Test hypotheses after mi estimate
MiUPdate . ..ot Ensure that mi data are consistent
Mi Varyingo.venenennnnenennnnnn. Identify variables that vary across imputations
10 (< [Execute command(s) on individual imputations
mi XXXSEt .o Declare mi data to be svy, st, ts, xt, etc.
noupdate OPLioNttt e The noupdate option
Sy S e e Dataset styles
technical Details for programmers
WOrKIIOW L Suggested workflow
GlOSSATY .ttt

Subject and author INAEXttt

302
310
313
316
319

321
323
331
343

Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals. For example,

[U] 26 Overview of Stata estimation commands
[R] regress
[XT] xtreg

The first example is a reference to chapter 26, Overview of Stata estimation commands, in the User’s
Guide; the second is a reference to the regress entry in the Base Reference Manual; and the third
is a reference to the xtreg entry in the Longitudinal-Data/Panel-Data Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM] Getting Started with Stata for Mac
GSU] Getting Started with Stata for Unix
GSW] Getting Started with Stata for Windows

[

[

[U] Stata User’s Guide

[R] Stata Base Reference Manual

[D] Stata Data-Management Reference Manual
[G] Stata Graphics Reference Manual

[XT] Stata Longitudinal-Data/Panel-Data Reference Manual

[MI] Stata Multiple-Imputation Reference Manual

MV] Stata Multivariate Statistics Reference Manual

P] Stata Programming Reference Manual

SEM] Stata Structural Equation Modeling Reference Manual

SVY] Stata Survey Data Reference Manual

ST] Stata Survival Analysis and Epidemiological Tables Reference Manual
TS] Stata Time-Series Reference Manual

[1] Stata Quick Reference and Index

M] Mata Reference Manual

Detailed information about each of these manuals may be found online at

http://www.stata-press.com/manuals/

http://www.stata-press.com/manuals/

Title

intro substantive — Introduction to multiple-imputation analysis

Description

Missing data arise frequently. Various procedures have been suggested in the literature over the
last several decades to deal with missing data (for example, Anderson [1957]; Hartley and Hocking
[1971]; Rubin [1972, 1987]; and Dempster, Laird, and Rubin [1977]). The technique of multiple
imputation, which originated in early 1970 in application to survey nonresponse (Rubin 1976), has
gained popularity increasingly over the years as indicated by literature (for example, Rubin [1976,
1987, 1996]; Little [1992]; Meng [1994]; Schafer [1997]; van Buuren, Boshuizen, and Knook [1999];
Little and Rubin [2002]; Carlin et al. [2003]; Royston [2004, 2005a, 2005b, 2007, 2009]; Reiter and
Raghunathan [2007]; Carlin, Galati, and Royston [2008]; Royston, Carlin, and White [2009]; and
White, Royston, and Wood [2011]).

This entry presents a general introduction to multiple imputation and describes relevant statistical
terminology used throughout the manual. The discussion here, as well as other statistical entries in
this manual, is based on the concepts developed in Rubin (1987) and Schafer (1997).

Remarks

Remarks are presented under the following headings:

Motivating example

What is multiple imputation?

Theory underlying multiple imputation
How large should M be?
Assumptions about missing data
Patterns of missing data

Proper imputation methods

Analysis of multiply imputed data

A brief introduction to MI using Stata
Summary

We will use the following definitions and notation.

An imputation represents one set of plausible values for missing data, and so multiple imputations
represent multiple sets of plausible values. With a slight abuse of the terminology, we will use the
term imputation to mean the data where missing values are replaced with one set of plausible values.

We use M to refer to the number of imputations and m to refer to each individual imputation;
that is, m = 1 means the first imputation, m = 2 means the second imputation, and so on.

Motivating example

Consider a fictional case—control study examining a relationship between smoking and heart attacks.

2 intro substantive — Introduction to multiple-imputation analysis

. use http://www.stata-press.com/data/r12/mheart0
(Fictional heart attack data; bmi missing)

. describe

Contains data from http://www.stata-press.com/data/r12/mheart0.dta

obs: 154 Fictional heart attack data;
bmi missing
vars: 9 19 Jun 2011 10:50
size: 2,310
storage display value
variable name type format label variable label
attack byte %9.0g Outcome (heart attack)
smokes byte %9.0g Current smoker
age float %9.0g Age, in years
bmi float %9.0g Body Mass Index, kg/m"2
female byte %9.0g Gender
hsgrad byte %9.0g High school graduate
marstatus byte %9.0g mar Marital status: single, married,
divorced
alcohol byte %24.0g alc Alcohol consumption: none, <2
drinks/day, >=2 drinks/day
hightar byte %9.0g Smokes high tar cigarettes
Sorted by:

In addition to the primary variables attack and smokes, the dataset contains information about
subjects’ ages, body mass indexes (BMIs), genders, educational statuses, marital statuses, alcohol
consumptions, and the types of cigarettes smoked (low/high tar).

We will use logistic regression to study the relationship between attack, recording heart attacks,
and smokes:

. logit attack smokes age bmi hsgrad female

Iteration O: log likelihood = -91.359017
Iteration 1: log likelihood = -79.374749
Iteration 2: log likelihood = -79.342218
Iteration 3: log likelihood = -79.34221
Logistic regression Number of obs = 132
LR chi2(5) = 24.03
Prob > chi2 = 0.0002
Log likelihood = -79.34221 Pseudo R2 = 0.1315
attack Coef . Std. Err. z P>|z| [95% Conf. Intervall
smokes 1.544053 .3998329 3.86 0.000 .7603945 2.327711
age .026112 .017042 1.53 0.125 -.0072898 .0595137
bmi .1129938 .0500061 2.26 0.024 .0149837 .211004
hsgrad .4048251 .4446019 0.91 0.363 -.4665786 1.276229
female .2255301 .4527558 0.50 0.618 -.6618549 1.1129156
_cons -5.408398 1.810603 -2.99 0.003 -8.957115 -1.85968

The above analysis used 132 observations out of the available 154 because some of the covariates
contain missing values. Let’s examine the data for missing values, something we could have done
first:

intro substantive — Introduction to multiple-imputation analysis 3

. misstable summarize

Obs<.
Unique
Variable Obs=. Obs>. Obs<. values Min Max
bmi 22 132 132 17.22643 38.24214

We discover that bmi is missing in 22 observations. Our analysis ignored the information about the
other covariates in these 22 observations. Can we somehow preserve this information in the analysis?
The answer is yes, and one solution is to use multiple imputation.

What is multiple imputation?

Multiple imputation (MI) is a flexible, simulation-based statistical technique for handling missing
data. Multiple imputation consists of three steps:

1. Imputation step. M imputations (completed datasets) are generated under some chosen
imputation model.

2. Completed-data analysis (estimation) step. The desired analysis is performed separately on
each imputation m = 1, ..., M. This is called completed-data analysis and is the primary
analysis to be performed once missing data have been imputed.

3. Pooling step. The results obtained from M completed-data analyses are combined into a
single multiple-imputation result.

The completed-data analysis step and the pooling step can be combined and thought of generally
as the analysis step.

MI as a missing-data technique has two appealing main features: 1) the ability to perform a
wide variety of completed-data analyses using existing statistical methods; and 2) separation of the
imputation step from the analysis step. We discuss these two features in more detail in what follows.

Among other commonly used missing-data techniques that allow a variety of completed-data
analyses are complete-case analysis or listwise (casewise) deletion, available-case analysis, and single-
imputation methods. Although these procedures share one of MI’s appealing properties, they lack
some of MI’s statistical properties.

For example, listwise deletion discards all observations with missing values and thus all information
contained in the nonmissing values of these observations. With a large number of missing observations,
this may lead to results that will be less efficient (larger standard errors, wider confidence intervals,
less power) than MI results. In situations when the remaining complete cases are not representative
of the population of interest, listwise deletion may also lead to biased parameter estimates.

In our opening logistic analysis of heart attacks, we used listwise deletion. The effect of age
was not statistically significant based on the reduced sample. The MI analysis of these data (see A
brief introduction to MI using Stata below) will reveal the statistical significance of age by using all
available observations after imputing missing values for BMI.

Unlike listwise deletion, single-imputation methods do not discard missing values. They treat the
imputed values as known in the analysis. This underestimates the variance of the estimates and so
overstates precision and results in confidence intervals and significance tests that are too optimistic.
MI rectifies this problem by creating multiple imputations and taking into account the sampling
variability due to the missing data (between-imputation variability). See Little and Rubin (2002) and
Allison (2001), among others, for a more detailed comparison of the methods.

4 intro substantive — Introduction to multiple-imputation analysis

The independence of the imputation step from the analysis step is the property MI shares with
other imputation methods. The imputation step fills in missing values. The analysis step provides
inference about multiply imputed results and does not require any information about the missing-data
aspect of the problem.

The separation of the two steps allows different individuals, a data collector/imputer and a
data analyst, to perform these steps independently of one another. The advantage is that the data
collector/imputer usually has access to more information about the data than may be disclosed to the
data analyst and thus can create more accurate imputations. The data analyst can use the imputed
data released by the data collector in a number of different analyses. Of course, it is crucial that the
imputer make the imputation model as general as possible to accommodate a wide variety of analyses
that the data analyst might choose to perform; see Proper imputation methods below for details.

In our heart attack example, the imputer would create multiple imputations of missing values of
BMI using, for example, a linear regression method, and then release the resulting data to the analyst.
The analyst could then analyze these multiply imputed data using an ordinary logistic regression.
That is, no adjustment is needed to the analysis model itself to account for missing BMI—the pooling
portion of the analysis will account for the increased variability because of imputed missing data.

Theory underlying multiple imputation

MI was derived using the Bayesian paradigm yet was proved to be statistically valid from the
frequentist (randomization-based) perspective. We use the definition from Rubin (1996) of statistical
validity that implies approximately unbiased point estimates and implies confidence intervals achieving
their nominal coverages when averaged over the randomization distributions induced by the known
sampling and the posited missing-data mechanisms.

To explain the role the Bayesian and frequentist concepts play in MI, we need to consider the MI
procedure in more detail. MI requires specification of two models—the imputation model and the
analysis model. The imputation model is the model used to create imputations in the imputation step.
The analysi/s\ model is the completed-data model used during the analysis step to obtain completed-data
estinges, Q, of parameters of interest, (), and the estimate, U, of sampling variability associated
with Q. During the pooling step, the individual completed-data estimates (@, U) are combined into

(Qw, T') to form one repeated-imputation inference. The statistical validity of the repeated-imputation
inference is of interest.

Consider the case when both the imputation model and the analysis model are the same Bayesian
models. Then the repeated imputations (multiple imputations) are repeated draws from the posterior
predictive cgstribution of the missing data under a posited Bayesian model. The combined parameter
estimates, (Q1, and their associated sampling variance estimate, 7' = W + B, are the approximations
to the posterior mean and variance of (). Here W represents the within-imputation variability (average
of the completed-data variance estimates, U), and B represents the between-imputation variability
(variance estimate of @MI over repeated imputations). Provided that the posterior mean and variance
are adequate summaries of the posterior distribution, the repeated-imputation inference based on
these combined estimates can be justified either from a purely Bayesian standpoint or from a purely
frequentist standpoint. Thus a Bayesian apparatus is used to create imputations and also underlies the
rules for combining parameter estimates.

In reality, the analysis model is rarely the same as the imputation model, and neither of them is an
explicit Bayesian model. Repeated-imputation inference is still statistically valid in those cases. The
rigorous justification is given in chapters 3 and 4 of Rubin (1987) from the frequentist perspective.
Below we briefly summarize the conditions under which the repeated-imputation inference from the
pooling step is statistically valid; also see Rubin (1987, 117-119) for more detail.

intro substantive — Introduction to multiple-imputation analysis 5

The repeated-imputation inference is statistically valid if 1) the multiple imputations from the
imputation step are proper (see Proper imputation methods below) and 2) the completed-data inference

based on (Q,U) from the analysis step is randomization valid. Completed-data inference based on

(Q,U) is randomization valid if Q ~ N{Q, Var(Q)} and U is a consistent estimate of Var(Q)
over the distribution of the sampling mechanism.

The randomization validity of MI was derived under the assumption of an infinite number of
imputations. In practice, however, the number of imputations tends to be small and so the finite-
M properties of the MI estimators must be explored. Rubin (1987) derives the fundamental result
underlying the MI inference based on a finite M. We restate it below for a scalar Q:

T]\7[1/2(Q - QM) ~ tl/M

where Q) is the average of M completed-data estimates of Q, Thy = W + (1 4+ 1/M)B, and t,,,
is a Student’s ¢ distribution with degrees of freedom v, that depend on the number of imputations
and rates of missing information (or the fraction of information missing because of nonresponse that
measures the influence of the missing data on parameter estimates). Later, Li, Raghunathan, and
Rubin (1991b) derived an improved procedure for multiple testing, and Barnard and Rubin (1999)
and Reiter (2007) extended the MI inference to account for small samples. For computation details,
see Methods and formulas in [MI] mi estimate.

How large should M be?

The theory underlying the validity of MI relies on an infinite number of imputations, M. The
procedure is also known to have good statistical properties with finite M, but what values of M
should we use in practice? Rubin (1987, 114) answers this question: the asymptotic relative efficiency
(RE) of the MI procedure with finite M compared with infinite M is roughly 90% with only two
imputations for a missing-information rate as high as 50%.

Most literature (for example, Rubin [1987] and van Buuren, Boshuizen, and Knook [1999]) suggests
that M = 5 (corresponding to RE of 95% for 50% of information missing) should be sufficient to
obtain valid inference. In general, however, the actual number of imputations necessary for MI to
perform satisfactorily depends not only on the amount of information missing due to nonresponse but
also on the analysis model and the data. Some analyses may require M to be 50 or more to obtain
stable results (Kenward and Carpenter 2007; Horton and Lipsitz 2001).

Literature with formal recommendations on how to choose M is very sparse. Royston (2004),
Royston, Carlin, and White (2009), and White, Royston, and Wood (2011) discuss the impact of the
number of imputations on the precision of estimates and suggest ways of determining the required
number of imputations by evaluating the sampling error of the MI estimates.

Because it is computationally feasible to obtain more imputations, we recommend using at least
20 imputations to reduce the sampling error due to imputations.

Assumptions about missing data

The theory underlying MI methodology makes no assumption about the missing-data mechanism.
However, many imputation methods (including those provided by Stata) require that the missing-
data mechanism be ignorable. Before we discuss the ignorability conditions, consider the following
definitions.

6 intro substantive — Introduction to multiple-imputation analysis

Missing data are said to be missing completely at random (MCAR) if the probability that data are
missing does not depend on observed or unobserved data. Under MCAR, the missing-data values are a
simple random sample of all data values, and so any analysis that discards the missing values remains
consistent, albeit perhaps inefficient.

Consider a hypothetical longitudinal study comparing different blood-pressure treatments. Suppose
that the follow-up blood-pressure measurements were not collected from some subjects because they
moved to a different area. These missing blood-pressure measurements can be viewed as MCAR as
long as subjects’ decisions to move were unrelated to any item in the study.

Missing data are said to be missing at random (MAR) if the probability that data are missing does
not depend on unobserved data but may depend on observed data. Under MAR, the missing-data values
do not contain any additional information given observed data about the missing-data mechanism.
Note that MCAR can be viewed as a particular case of MAR. When missing data are MAR, listwise
deletion may lead to biased results.

Suppose that some subjects decided to leave the study because of severe side effects from the
assigned treatment of a high dosage of a medicine. Here it is unlikely that missing blood-pressure
measurements are MCAR because the subjects who received a higher dosage of the medicine are more
likely to suffer severe side effects than those who received a lower dosage and thus are more likely
to drop out of the study. Missing blood-pressure measurements depend on the dosage of the received
treatment and therefore are MAR.

On the other hand, if the subjects are withdrawn from the study for ethical reasons because
of extremely high blood pressures, missing blood-pressure measurements would not be MAR. The
measurements for the subjects with very high blood pressures will be missing and thus the reason
for drop out will depend on the missing blood pressures. This type of missing-data mechanism is
called missing not at random (MNAR). For such missing data, the reasons for its missingness must be
accounted for in the model to obtain valid results.

Model parameters are said to be distinct from a Bayesian standpoint if their joint prior distribution
can be factorized into independent marginal prior distributions.

The missing-data mechanism is said to be ignorable if missing data are MAR and the parameters
of the data model and the parameters of the missing-data mechanism are distinct (Rubin 1976).

The ignorability assumption makes it possible to ignore the process that causes missing data in the
imputation model—something not possible with MNAR—which simplifies the imputation step while
still ensuring correct inference. The provided imputation methods assume that missing data are MAR.

In practice, it is difficult to test the ignorability assumption formally because the MAR mechanism
can be distinguished from the MNAR mechanism only through the missing data that are not observed.
Thus careful consideration is necessary before accepting this assumption. If in doubt, sensitivity
analysis—analysis repeated under various missing-data models—needs to be performed to verify the
stability of inference. In the context of MI, sensitivity analysis can be performed by modifying the
imputation step to accommodate the nonignorable missing-data mechanism (for example, Kenward
and Carpenter [2007] and van Buuren, Boshuizen, and Knook [1999]).

Patterns of missing data

Another issue we need to consider related to missing data is a pattern of missingness (or missing-data
pattern).

Consider an N x p data matrix ¥ = (Y1,Y2,...,Y,)" with p variables and N observations.
Consider a permutation of column indices (i1, 42, ..., %p) such that Y;, is at least as observed as Y;,,

which is at least as observed as Y;,, and so on. In other words, Y;, has missing values in the same

intro substantive — Introduction to multiple-imputation analysis 7

observations (and possibly more) as Y;,, Y;, has missing values (and possibly more) in the same
observations as Y;,, and so on. If such a permutation exists, then the pattern of missingness in Y is
said to be monotone. If the pattern of missingness is not monotone, it is assumed to be arbitrary.

For example, consider the following indicator matrix recording the missing pattern in Y:

Ry =

—= = O =

1
1
1
1

oo o

where Rij is 1 if variable Y; is observed (complete) in observation 4 and O otherwise. We can see
that Y has a monotone-missing pattern if we interchange the first and the third columns of R;. In
fact, if we also rearrange the rows such that

R =

_ == =
O ==
SO O

then the monotonicity of missing values becomes even more evident. An example of a nonmonotone
missing-value pattern is

==
o O =

Ry =

—_ O = =

0 0

There is no ordering of the first two columns of Rg such that the missing values in one column imply
missing values in the other column.

Why is it important to consider the monotone missing-value pattern? A monotone-missing pattern
greatly simplifies the imputation task. Under a monotone-missing pattern, a multivariate imputation
task can be formulated as a sequence of independent univariate (conditional) imputation tasks, which
allows the creation of a flexible imputation model; see [MI] mi impute monotone for details, and
see Rubin (1987, 174) for more technical conditions under which such a formulation is applicable.

Proper imputation methods

As we mentioned earlier, a key concept underlying the randomization-based evaluations of the
repeated-imputation inference is proper multiple imputation.

A multiple-imputation method is said to be proper if it produces proper multiple imputations,
which we are about to define. Rubin (1987, 118-119) gives a full technical definition for proper
multiple imputations. Ignoring the more technical definition, Rubin (1996) states the following main
conditions. The multiple imputations are said to be proper if

1. MI estimates (Qyp are asymptotically normal with mean () and a consistent variance—
covariance estimate B.

2. The within-imputation variance estimate W is a consistent estimate of the variance—covariance
estimate U with variability of a lower order than Var(Qwr).

The above statements assume a large number of imputations and the randomization distribution
induced by the missing-data mechanism.

8 intro substantive — Introduction to multiple-imputation analysis

In general, it is difficult to determine if an imputation method is proper using the above definition.
Rubin (1987, sec. 4.3) and Binder and Sun (1996) describe several examples of proper and improper
imputation methods. Rubin (1987, 125-127) recommends drawing imputations from a Bayesian
posterior predictive distribution (or an appropriate approximation to it) of missing values under the
chosen model for the data and the missing-data mechanism. The chosen imputation model must also
be appropriate for the completed-data statistics likely to be used at the analysis stage. Schafer (1997,
145) points out that from a practical standpoint, it is more important that the chosen imputation model
performs well over the repeated samples than that it be technically proper. This can be checked via
simulation.

With the exception of predictive mean matching and chained equations, the imputation methods
available in Stata obtain imputations by simulating from a Bayesian posterior predictive distribution
of the missing data (or its approximation) under the conventional (or chosen) prior distribution; see
Imputation methods in [MI] mi impute for details. To ensure that the multiple imputations are proper,
you must choose an appropriate imputation model, which we briefly discuss next.

The imputation model must include all predictors relevant to the missing-data mechanism, and it
must preserve all data characteristics likely to be explored at the analysis stage. For example, if the
analysis model explores a correlation between two variables, then omitting either of those variables
from the imputation model will lead to estimates of the correlation biased toward zero. Another
common mistake that may lead to biased estimates is when an outcome variable of the analysis model
is not used in the imputation model. In the survey context, all structural variables such as sampling
weights, strata, and cluster identifiers (or at least main strata and main clusters) need to be included
in the imputation model.

In general, any predictors involved in the definition of the completed-data estimators and the
sampling design should be included in the imputation model. If you intend to use the multiply
imputed data in an analysis involving a wide range of completed-data estimators, you should include
as many variables as possible.

Using our heart attack data, if we were to release the multiply imputed version of it for general
analyses, we would have included all available covariates as predictors in the regression model used
to impute BMI and not only the subset of covariates (heart attacks, smoking status, age, gender, and
educational status) used in our specific data analysis.

The severity of the effect of a misspecified imputation model will typically depend on the amount of
imputed data relative to the observed data—a small number of observations with improperly imputed
values may not affect the inference greatly if there is a large number of observations with complete
data.

For more details about imputation modeling, see Rubin (1996), Schafer (1997, 139-144), Schafer
and Olsen (1998), Allison (2001), Schafer and Graham (2002), Kenward and Carpenter (2007),
Graham (2009), and White, Royston, and Wood (2011), among others. For imputation modeling of
large surveys, see, for example, Schafer, Khare, and Ezzati-Rice (1993) and Ezzati-Rice et al. (1995).

Analysis of multiply imputed data

Once we have multiply imputed data, we perform our primary analysis on each completed dataset
and then use Rubin’s combination rules to form one set of results. Assuming that the underlying
imputation model is properly specified (see, for example, Abayomi, Gelman, and Levy [2008] and
Gelman et al. [2005] for multiple-imputation diagnostics), we can choose from a variety of statistical
methods. For example, the methods can include maximum likelihood methods, survey methods,
nonparametric methods, and any other method appropriate for the type of data we have.

intro substantive — Introduction to multiple-imputation analysis 9

Each of the methods have certain concepts associated with them. For example, maximum likelihood
methods use a likelihood function, whereas a deviance is associated with generalized linear models.
While these concepts are well defined within each individual completed-data analysis, they may not
have a clear interpretation when the individual analyses are combined in the pooling step. (Only in
the special case when the imputation and analysis models are compatible Bayesian models can the
estimated parameters be viewed as approximations to the mode of the posterior distribution.)

As a result, various statistical (postestimation) procedures based on these concepts, such as
likelihood-ratio tests, goodness-of-fit tests, etc., are not directly applicable to MI results. Instead,
their “MI” versions are being studied in the literature (Li et al. 1991a; Meng and Rubin 1992).
Another concept that is not uniquely defined within MI is that of prediction; see Carlin, Galati, and
Royston (2008) and White, Royston, and Wood (2011) for one definition.

Donald Bruce Rubin (1943-) was born in Washington, DC. He entered Princeton intending
to become a physicist but ended up majoring in psychology. He entered Harvard intending
to continue as a psychologist, but in the event, gained further degrees in computer science
and statistics. After periods at the Educational Testing Service and the University of Chicago,
Rubin returned to Harvard in 1984. He has had many visiting appointments and has carried out
extensive consultancy work. Rubin has long been a leader in research on causal inference in
experiments and observational studies, and problems of nonresponse and missing data. Among
many major contributions is his formalization of the expectation-maximization algorithm with
Arthur Dempster and Nan Laird. Rubin’s work ranges over a wide variety of sciences and is
often Bayesian in style. Rubin was elected a member of the National Academy of Sciences in
2010.

A brief introduction to Ml using Stata

Stata offers full support for MI analysis from the imputation step to the pooling step.

The imputation step can be performed for one variable or multiple variables. A number of
imputation methods, including flexible methods accommodating variables of different types and an
iterative Markov chain Monte Carlo method based on multivariate normal, are available; see [MI] mi
impute for details.

The analysis and pooling steps are combined into one step and performed by mi estimate;
see [MI] mi estimate. You can fit many commonly used models and obtain combined estimates
of coefficients (or transformed coefficients) (see [MI] estimation for a list of supported estimation
commands), or you can create your own estimation command and use it with the mi estimate prefix.

In addition to the conventional estimation steps, Stata facilitates many data-manipulation routines
for managing your multiply imputed data and verifying its integrity over the imputations; see [MI] intro
for a full list of commands.

As a short demonstration of mi, let’s analyze the heart attack data introduced earlier using MI; see
[MI] workflow for more thorough guidelines.

The goals are 1) to fill in missing values of bmi using, for example, a linear regression imputation
method (mi impute regress) to obtain multiply imputed data and 2) to analyze the multiply imputed
data using logistic regression, which we will do using mi estimate. Before we can accomplish these
two steps, we need to prepare the data so they can be used with mi. First, we declare the data to be
mi data:

10 intro substantive — Introduction to multiple-imputation analysis

. use http://www.stata-press.com/data/r12/mheart0
(Fictional heart attack data; bmi missing)

. mi set mlong

We choose to use the data in the marginal long style (mlong) because it is a memory-efficient style;
see [MI] styles for details.

To use mi impute, we must first register imputation variables. In general, we recommend that you
register all variables relevant to the analysis as imputed, passive, or regular with mi register
(see [MI] mi set), especially if you plan on doing any data management of your multiply imputed
data.

. mi register imputed bmi
(22 m=0 obs. now marked as incomplete)
. mi register regular attack smokes age hsgrad female

We are now ready to use mi impute. To lessen the simulation (Monte Carlo) error, we arbi-
trarily choose to create 20 imputations (add (20) option). We also specify the rseed() option for
reproducibility:

. mi impute regress bmi attack smokes age hsgrad female, add(20) rseed(2232)

Univariate imputation Imputations = 20

Linear regression added = 20

Imputed: m=1 through m=20 updated = 0
Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

From the output, we see that all 22 incomplete values of bmi were successfully imputed. You may
want to examine your imputations to verify that nothing abnormal occurred during imputation. For
example, as a quick check, we can compare main descriptive statistics from some imputations (say,
the first and the last one) to those from the observed data. We use mi xeq (see [MI] mi xeq) to
execute Stata’s summarize command on the original data (m = 0), the first imputation (m = 1),
and the last imputation (m = 20):

. mi xeq 0 1 20: summarize bmi

m=0 data:
-> summarize bmi
Variable Obs Mean Std. Dev. Min Max
bmi 132 25.24136 4.027137 17.22643 38.24214
m=1 data:
-> summarize bmi
Variable Obs Mean Std. Dev. Min Max
bmi 154 25.11855 3.990918 15.47331 38.24214
m=20 data:
-> summarize bmi
Variable Obs Mean Std. Dev. Min Max
bmi 154 25.37117 4.051929 15.4505 38.24214

The summary statistics of the imputed datasets look reasonable.

intro substantive — Introduction to multiple-imputation analysis 11

We now fit the logistic regression using the mi estimate prefix command:

. mi estimate, dots: logit attack smokes age bmi hsgrad female

Imputations (20):

......... 10.........20 done
Multiple-imputation estimates Imputations = 20
Logistic regression Number of obs = 154
Average RVI = 0.0404
Largest FMI = 0.1678
DF adjustment: Large sample DF: min = 694.17
avg = 115477.35
max = 287682.23
Model F test: Equal FMI F(5,43531.9) = 3.74
Within VCE type: 0IM Prob > F = 0.0022
attack Coef . Std. Err. t P>|t| [95% Conf. Intervall
smokes 1.239172 .3630877 3.41 0.001 .5275236 1.950821
age .0354929 .0154972 2.29 0.022 .0051187 .065867
bmi .1184188 .0495676 2.39 0.017 .0210985 .2157391
hsgrad .185709 .4075301 0.46 0.649 -.6130435 .9844615
female -.0996102 .4193583 -0.24 0.812 -.9215408 . 7223204
_cons -5.845855 1.72309 -3.39 0.001 -9.225642 -2.466168

Compared with the earlier logit analysis (using listwise deletion), we detect the significance of age,
whose effect was apparently disguised by the missing data. See [MI] mi estimate for details.

We will be using variations of these data throughout the mi documentation.

Summary

e MI is a simulation-based procedure. Its purpose is not to re-create the individual missing
values as close as possible to the true ones but to handle missing data in a way resulting in
valid statistical inference (Rubin 1987, 1996).

e MI yields valid inference if 1) the imputation method is proper with respect to the posited
missing-data mechanism (see Proper imputation methods above) and 2) completed-data
analysis is valid in the absence of missing data.

e A small number of imputations (5 to 20) may be sufficient when fractions of missing data
are low. High fractions of missing data as well as particular data structures may require up
to 100 (or more) imputations. Whenever feasible to do so, we recommend that you vary the
number of imputations to see if this affects your results.

e With a small number of imputations, the reference distribution for the MI inference is
Student’s ¢ (or F' in multiple-hypothesis testing). The residual degrees of freedom depend
on M and the rates of missing information and thus are different for each parameter of
interest.

e With a large number of imputations, the reference distribution for MI inference is approximately
normal (or x2 in multiple-hypothesis testing).

e When the imputer’s model is more restrictive than the analyst’s model, the MI inference can
be invalid if the imputer’s assumptions are not true. On the other hand, when the analyst’s
model is more restrictive than the imputer’s model, the MI results will be valid but somewhat
conservative if the analyst’s assumptions are true. If the analyst’s assumptions are false, the
results can be biased; see, for example, Schafer (1997) for details.

12 intro substantive — Introduction to multiple-imputation analysis

e MI is relatively robust to departures from the correct specification of the imputation model,
provided the rates of missing information are low and the correct completed-data model is
used in the analysis.

e Certain concepts, for example, likelihood and deviance, do not have clear interpretation
within the MI framework. As such, various statistical (postestimation) procedures based on
these concepts (for example, likelihood-ratio tests, goodness-of-fit tests) are not directly
applicable to MI results.

References

Abayomi, K., A. Gelman, and M. Levy. 2008. Diagnostics for multivariate imputations. Journal of the Royal Statistical
Society, Series C 57: 273-291.

Allison, P. D. 2001. Missing Data. Thousand Oaks, CA: Sage.

Anderson, T. W. 1957. Maximum likelihood estimates for a multivariate normal distribution when some observations
are missing. Journal of the American Statistical Association 52: 200-203.

Arnold, B. C., E. Castillo, and J. M. Sarabia. 1999. Conditional Specification of Statistical Models. New York:
Springer.

——. 2001. Conditionally specified distributions: An introduction. Statistical Science 16: 249-274.

Barnard, J., and D. B. Rubin. 1999. Small-sample degrees of freedom with multiple imputation. Biometrika 86:
948-955.

Binder, D. A., and W. Sun. 1996. Frequency valid multiple imputation for surveys with a complex design. Proceedings
of the Survey Research Methods Section, American Statistical Association 281-286.

Carlin, J. B., J. C. Galati, and P. Royston. 2008. A new framework for managing and analyzing multiply imputed
data in Stata. Stata Journal 8: 49-67.

Carlin, J. B., N. Li, P. Greenwood, and C. Coffey. 2003. Tools for analyzing multiple imputed datasets. Stata Journal
3: 226-244.

Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society, Series B 39: 1-38.

Ezzati-Rice, T. M., W. Johnson, M. Khare, R. J. A. Little, D. B. Rubin, and J. L. Schafer. 1995. A simulation study
to evaluate the performance of model-based multiple imputations in NCHS health examination surveys. Proceedings
of the Annual Research Conference, 257-266. U.S. Bureau of the Census: Washington, DC.

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin. 2004. Bayesian Data Analysis. 2nd ed. London: Chapman
& Hall/CRC.

Gelman, A., and D. B. Rubin. 1992. Inference from iterative simulation using multiple sequences. Statistical Science
7: 457-472.

Gelman, A., I. Van Mechelen, G. Verbeke, D. F. Heitjan, and M. Meulders. 2005. Multiple imputation for model
checking: Completed-data plots with missing and latent data. Biometrics 61: 74-85.

Graham, J. W. 2009. Missing data analysis: Making it work in the real world. Annual Review of Psychology 60:
549-576.

Hartley, H. O., and R. R. Hocking. 1971. The analysis of incomplete data (with discussion). Biometrics 27: 783-823.

Horton, N. J., and K. P. Kleinman. 2007. Much ado about nothing: A comparison of missing data methods and
software to fit incomplete data regression models. American Statistician 61: 79-90.

Horton, N. J., and S. R. Lipsitz. 2001. Multiple imputation in practice: Comparison of software packages for regression
models with missing variables. American Statistician 55: 244-254.

Jenkins, S. P, R. V. Burkhauser, S. Feng, and J. Larrimore. 2011. Measuring inequality using censored data: a
multiple-imputation approach to estimation and inference. Journal of the Royal Statistical Society, Series A 174:
63-81.

Kenward, M. G., and J. R. Carpenter. 2007. Multiple imputation: Current perspectives. Statistical Methods in Medical
Research 16: 199-218.

http://www.stata-journal.com/sjpdf.html?articlenum=st0139
http://www.stata-journal.com/sjpdf.html?articlenum=st0139
http://www.stata-journal.com/sjpdf.html?articlenum=st0042

intro substantive — Introduction to multiple-imputation analysis 13

Lee, K. J., and J. B. Carlin. 2010. Multiple imputation for missing data: Fully conditional specification versus
multivariate normal imputation. American Journal of Epidemiology 171: 624-632.

Li, K.-H. 1988. Imputation using Markov chains. Journal of Statistical Computation and Simulation 30: 57-79.

Li, K.-H., X.-L. Meng, T. E. Raghunathan, and D. B. Rubin. 1991a. Significance levels from repeated p-values with
multiply-imputed data. Statistica Sinica 1: 65-92.

Li, K.-H., T. E. Raghunathan, and D. B. Rubin. 1991b. Large-sample significance levels from multiply imputed data
using moment-based statistics and an F reference distribution. Journal of the American Statistical Association 86:
1065-1073.

Little, R. J. A. 1988. Missing-data adjustments in large surveys. Journal of Business and Economic Statistics 6:
287-296.

——. 1992. Regression with missing X’s: A review. Journal of the American Statistical Association 87: 1227-1237.
Little, R. J. A., and D. B. Rubin. 2002. Statistical Analysis with Missing Data. 2nd ed. Hoboken, NJ: Wiley.

Marchenko, Y. V., and J. P. Reiter. 2009. Improved degrees of freedom for multivariate significance tests obtained
from multiply imputed, small-sample data. Stata Journal 9: 388-397.

Meng, X.-L. 1994. Multiple-imputation inferences with uncongenial sources of input (with discussion). Statistical
Science 9: 538-573.

Meng, X.-L., and D. B. Rubin. 1992. Performing likelihood ratio tests with multiply-imputed data sets. Biometrika
79: 103-111.

Raghunathan, T. E., J. M. Lepkowski, J. Van Hoewyk, and P. Solenberger. 2001. A multivariate technique for multiply
imputing missing values using a sequence of regression models. Survey Methodology 27: 85-95.

Reiter, J. P. 2007. Small-sample degrees of freedom for multi-component significance tests with multiple imputation
for missing data. Biometrika 94: 502-508.

——. 2008. Multiple imputation when records used for imputation are not used or disseminated for analysis. Biometrika
95: 933-946.

Reiter, J. P, and T. E. Raghunathan. 2007. The multiple adaptations of multiple imputation. Journal of the American
Statistical Association 102: 1462-1471.

Royston, P. 2004. Multiple imputation of missing values. Stata Journal 4: 227-241.
——. 2005a. Multiple imputation of missing values: Update. Stata Journal 5: 188-201.
——. 2005b. Multiple imputation of missing values: Update of ice. Stata Journal 5: 527-536.

——. 2007. Multiple imputation of missing values: Further update of ice, with an emphasis on interval censoring.
Stata Journal 7: 445-464.

——. 2009. Multiple imputation of missing values: Further update of ice, with an emphasis on categorical variables.
Stata Journal 9: 466-477.

Royston, P., J. B. Carlin, and I. R. White. 2009. Multiple imputation of missing values: New features for mim. Stata
Journal 9: 252-264.

Rubin, D. B. 1972. A non-iterative algorithm for least squares estimation of missing values in any analysis of variance
design. Journal of the Royal Statistical Society, Series C 21: 136-141.

——. 1976. Inference and missing data. Biometrika 63: 581-592.

——. 1986. Statistical matching using file concatenation with adjusted weights and multiple imputations. Journal of
Business and Economic Statistics 4: 87-94.

——. 1987. Multiple Imputation for Nonresponse in Surveys. New York: Wiley.
——. 1996. Multiple imputation after 18+ years. Journal of the American Statistical Association 91: 473-489.
Schafer, J. L. 1997. Analysis of Incomplete Multivariate Data. Boca Raton, FL: Chapman & Hall/CRC.

Schafer, J. L., and J. W. Graham. 2002. Missing data: Our view of the state of the art. Psychological Methods 7:
147-177.

Schafer, J. L., M. Khare, and T. M. Ezzati-Rice. 1993. Multiple imputation of missing data in NHANES IIL
Proceedings of the Annual Research Conference, 459-487. U.S. Bureau of the Census: Washington, DC.

Schafer, J. L., and M. K. Olsen. 1998. Multiple imputation for multivariate missing-data problems: A data analyst’s
perspective. Multivariate Behavioral Research 33: 545-571.

http://www.stata-journal.com/article.html?article=st0170
http://www.stata-journal.com/article.html?article=st0170
http://www.stata-journal.com/sjpdf.html?articlenum=st0067
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_1
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_2
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_3
http://www.stata-journal.com/article.html?article=st0067_4
http://www.stata-journal.com/article.html?article=st0139_1

14 intro substantive — Introduction to multiple-imputation analysis

Schenker, N., and J. M. G. Taylor. 1996. Partially parametric techniques for multiple imputation. Computational
Statistics & Data Analysis 22: 425-446.

Tanner, M. A., and W. H. Wong. 1987. The calculation of posterior distributions by data augmentation (with discussion).
Journal of the American Statistical Association 82: 528-550.

van Buuren, S. 2007. Multiple imputation of discrete and continuous data by fully conditional specification. Statistical
Methods in Medical Research 16: 219-242.

van Buuren, S., H. C. Boshuizen, and D. L. Knook. 1999. Multiple imputation of missing blood pressure covariates
in survival analysis. Statistics in Medicine 18: 681-694.

van Buuren, S., J. P. L. Brand, C. G. M. Groothuis-Oudshoorn, and D. B. Rubin. 2006. Fully conditional specification
in multivariate imputation. Journal of Statistical Computation and Simulation 76: 1049-1064.

White, I. R., R. Daniel, and P. Royston. 2010. Avoiding bias due to perfect prediction in multiple imputation of
incomplete categorical data. Computational Statistics & Data Analysis 54: 2267-2275.

White, I. R., P. Royston, and A. M. Wood. 2011. Multiple imputation using chained equations: Issues and guidance
for practice. Statistics in Medicine 30: 377-399.

Also see
[MI] intro — Introduction to mi
[MI] workflow — Suggested workflow
[MI] mi impute — Impute missing values
[MI] estimation — Estimation commands for use with mi estimate
[MI] mi estimate — Estimation using multiple imputations
[MI] Glossary

Title

intro — Introduction to mi

Syntax

To become familiar with mi as quickly as possible, do the following:
1. See A simple example under Remarks below.
2. If you have data that require imputing, see [MI] mi set and [MI] mi impute.
3. Alternatively, if you have already imputed data, see [MI] mi import.

4. To fit your model, see [MI] mi estimate.

To create mi data from original data

mi set declare data to be mi data

mi register register imputed, passive, or regular variables
mi unregister unregister previously registered variables

mi unset return data to unset status (rarely used)

See Description below for a summary of mi data and these commands.
See [MiI] Glossary for a definition of terms.

To import data that already have imputations for the missing values (do not mi set the data)

mi import import mi data
mi export export mi data to non-Stata application

Once data are mi set or mi imported

mi query query whether and how mi set

mi describe describe mi data

mi varying identify variables that vary over m
mi misstable tabulate missing values

mi passive create passive variable and register it

15

16

intro — Introduction to mi

To

perform estimation on mi data

mi
mi
mi
mi
mi
mi
mi

impute impute missing values

estimate perform and combine estimation on m > 0
ptrace check stability of MCMC

test perform tests on coefficients
testtransform perform tests on transformed coefficients
predict obtain linear predictions

predictnl obtain nonlinear predictions

To stset, svyset, tsset, or xtset any mi data that were not set at the time they were mi set
mi fvset fvset for mi data

mi svyset svyset for mi data

mi xtset xtset for mi data

mi tsset tsset for mi data

mi stset stset for mi data

mi streset streset for mi data

mi st st for mi data

To perform data management on mi data

mi rename rename variable

mi append append for mi data

mi merge merge for mi data

mi expand expand for mi data

mi reshape reshape for mi data

mi stsplit stsplit for mi data

mi stjoin stjoin for mi data

mi add add imputations from one mi dataset to another
To perform data management for which no mi prefix command exists

mi extract extract m = 0 data

mi

perform data management the usual way
replace0 replace m = 0 data in mi data

intro — Introduction to mi 17

To perform the same data-management or data-reporting command(s) on m =0, m =1, ...

mi xeq: ... execute commandson m =0, m=1,m=2,.... m=M
mi xeq #: ... execute commands on m = #

mixeq## ...t ... execute commands on specified values of m
Useful utility commands

mi convert convert mi data from one style to another

mi extract # extract m = # from mi data

mi select # programmer’s command similar to mi extract
mi copy mi data

mi erase erase files containing mi data

mi update verify/make mi data consistent

mi reset reset imputed or passive variable

For programmers interested in extending mi

[MI] technical Detail for programmers

Summary of styles

There are four styles or formats in which mi data are stored: flongsep, flong, mlong, and wide.

1. Flongsep: m =0, m =1, ..., m = M are each separate .dta datasets. If m = 0 data are

stored in pat.dta, then m = 1 data are stored in _1_pat.dta, m = 2 in _2_pat.dta,
and so on. Flongsep stands for full long and separate.

. Flong: m =0, m =1, ..., m = M are stored in one dataset with _.N = N + M x N

observations, where N is the number of observations in m = 0. Flong stands for full long.

. Mlong: m =0, m=1, ..., m = M are stored in one dataset with _N = N + M xn

observations, where n is the number of incomplete observations in m = 0. Mlong stands
for marginal long.

. Wide: m=0,m=1, ..., m= M are stored in one dataset with _/N = N observations.

Each imputed and passive variable has M additional variables associated with it. If variable
bp contains the values in m = 0, then values for m = 1 are contained in variable _1_bp,
values for m = 2 in _2_bp, and so on. Wide stands for wide.

See style in [MI] Glossary and see [MI] styles for examples. See [MI] technical for programmer’s
details.

18 intro — Introduction to mi

Description

The mi suite of commands deals with multiple-imputation data, abbreviated as mi data.
In summary,

1. mi data may be stored in one of four formats—flongsep, flong, mlong, and wide—known
as styles. Descriptions are provided in Summary of styles directly above.

2. mi data contain M imputations numbered m = 1, 2, ..., M, and contain m = 0, the
original data with missing values.

3. Each variable in mi data is registered as imputed, passive, or regular, or it is unregistered.
a. Unregistered variables are mostly treated like regular variables.

b. Regular variables usually do not contain missing, or if they do, the missing values
are not imputed in m > 0.

c. Imputed variables contain missing in m = 0, and those values are imputed, or are
to be imputed, in m > 0.

d. Passive variables are algebraic combinations of imputed, regular, or other passive
variables.

4. If an imputed variable contains a value greater than . in m = 0—it contains .a, .b, ...,
.z—then that value is considered a hard missing and the missing value persists in m > 0.

See [MI] Glossary for a more thorough description of terms used throughout this manual.

All mi commands are implemented as ado-files.

Remarks

Remarks are presented under the following headings:

A simple example
Suggested reading order

A simple example

We are about to type six commands:

. use http://www.stata-press.com/data/r12/mheart5 (1)
. mi set mlong (2)
. mi register imputed age bmi (3)
. set seed 29390 4
. mi impute mvn age bmi = attack smokes hsgrad female, add(10) (5)
. mi estimate: logistic attack smokes age bmi hsgrad female (6)

The story is that we want to fit

. logistic attack smokes age bmi hsgrad female

but the age and bmi variables contain missing values. Fitting the model by typing logistic ...
would ignore some of the information in our data. Multiple imputation (MI) attempts to recover that
information. The method imputes M values to fill in each of the missing values. After that, statistics
are performed on the M imputed datasets separately and the results combined. The goal is to obtain
better estimates of parameters and their standard errors.

intro — Introduction to mi 19

In the solution shown above,
1. We load the data.
2. We set our data for use with mi.
3. We inform mi which variables contain missing values for which we want to impute values.
4

. We impute values in command 5; we prefer that our results be reproducible, so we set the
random-number seed in command 4. This step is optional.

5. We create M = 10 imputations for each missing value in the variables we registered in
command 3.

6. We fit the desired model separately on each of the 10 imputed datasets and combine the
results.

The results of running the six-command solution are
. use http://www.stata-press.com/data/r12/mheart5
(Fictional heart attack data; bmi and age missing)
. mi set mlong

. mi register imputed age bmi
(28 m=0 obs. now marked as incomplete)

. set seed 29390
. mi impute mvn age bmi = attack smokes hsgrad female, add(10)

Performing EM optimization:
note: 12 observations omitted from EM estimation because of all imputation
variables missing
observed log likelihood = -651.75868 at iteration 7

Performing MCMC data augmentation ...

Multivariate imputation Imputations = 10
Multivariate normal regression added = 10
Imputed: m=1 through m=10 updated = 0
Prior: uniform Iterations = 1000
burn-in = 100
between = 100

Observations per m

Variable Complete Incomplete Imputed Total
age 142 12 12 154
bmi 126 28 28 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

20 intro — Introduction to mi

. mi estimate: logistic attack smokes age bmi hsgrad female

Multiple-imputation estimates Imputations 10
Logistic regression Number of obs = 154
Average RVI = 0.1031

Largest FMI = 0.3256

DF adjustment: Large sample DF: min = 92.90
avg 25990.98

max = T77778.66

Model F test: Equal FMI F(5, 3279.8) = 3.27
Within VCE type: 0IM Prob > F 0.0060
attack Coef. Std. Err. t P>|t| [95% Conf. Intervall
smokes 1.18324 .3605462 3.28 0.001 .4765251 1.889954

age .0321028 .016145 1.99 0.047 .0004071 .0637984

bmi .1100667 .0546424 2.01 0.047 .0015561 .2185772

hsgrad .1413171 .4043884 0.35 0.727 -.6512819 .933916
female -.0759589 .416927 0.18 0.855 -.8931367 .7412189

_cons -5.38815 1.85184 2.91 0.004 -9.047656 -1.728644

Note that the output from the last command,

. mi estimate: logistic attack smokes age bmi hsgrad female

reported coefficients rather than odds ratios, which logistic would usually report. That is because
the estimation command is not logistic, it is mi estimate, and mi estimate happened to use

logistic to obtain results that mi estimate combined into its own estimation results.

mi estimate by default displays coefficients. If we now wanted to see odds ratios, we could type

. mi estimate, or
(output showing odds ratios would appear)

Note carefully: We replay results by typing mi estimate, not by typing logistic. If we had

wanted to see the odds ratios from the outset, we would have typed

. mi estimate, or:

Suggested reading order

The order of suggested reading of this manual is

[MI] intro substantive

[MI] intro

[MI] Glossary
[MI] workflow

[MI] mi set

[MI] mi import
[MI] mi describe
[MI] mi misstable

[MI] mi impute
[MI] mi estimate
[MI] mi estimate postestimation

[MI] styles

[MI] mi convert
[MI] mi update

logistic attack smokes age bmi hsgrad female

intro — Introduction to mi

21

[MI] mi
[MI] mi
[MI] mi
[MI] mi

[MI] mi
[MI] mi

[MI] mi
[MI] mi
[MI] mi
[MI] mi
[MI] mi
[MI] mi

Programmers will want to see [MI] technical.

What’s new

rename
copy
erase
XXXset

extract
replace(

append
add
merge
reshape
stsplit
varying

This section is intended for previous Stata users. If you are new to Stata, you may as well skip it.

1.

2.

Chained equations, which is to say, fully conditional specifications for imputing missing values
given arbitrary patterns for continuous, binary, ordinal, cardinal, or count variables. See [MI] mi
impute chained.

Four new imputation methods. You can impute
1) truncated data,
2) interval-censored data,
3) count data, and
4) overdispersed count data.

See [MI] mi impute truncreg, [MI] mi impute intreg, [MI] mi impute poisson, and [MI] mi

impute nbreg.

3.

Conditional imputation is now supported by all univariate imputation methods, which is to say,
you can impute values for variables with restrictions, such as the number of pregnancies being
imputed only for females, even if female itself is imputed. See Conditional imputation in [MI] mi
impute and new option conditional() in the univariate imputation entries such as [MI] mi
impute regress.

. Panel-data and multilevel models are now supported by mi estimate. Included are xtcloglog,

xtgee, xtlogit, xtmelogit, xtmepoisson, xtmixed, xtnbreg, xtpoisson, xtprobit, xtrc,
and xtreg. See [MI] estimation.

. Linear and nonlinear predictions after MI estimation using new commands mi predict and

mi predictnl. See [MI] mi predict.

. Imputation by groups, which is to say, imputations can be made separately for different groups

of the data. See new option by () in [MI] mi impute.

. Imputation by drawing posterior estimates from bootstrapped samples. See new option boot-

strap in the univariate imputation entries such as [MI] mi impute regress.

. Handling of perfect prediction during imputation of categorical data using logit, ologit, and

mlogit. See The issue of perfect prediction during imputation of categorical data in [MI] mi
impute and see new option augment in [MI] mi impute logit, [MI] mi impute ologit, and [MI] mi
impute mlogit.

22 intro — Introduction to mi

9. Faster imputation. mi impute no longer secretly converts to flongsep and back again.
10. mi estimate now supports total. See [MI] estimation.

11. Monte Carlo jackknife error estimates obtained by omitting one imputation at a time and
reapplying the combination rules. See new option mcerror in [MI] mi estimate.

12. Estimation output improved.

a. Implied zero coefficients now shown. When a coefficient is omitted, it is now shown as being
zero and the reason it was omitted—collinearity, base, empty—is shown in the standard-error
column. (The word “omitted” is shown if the coefficient was omitted because of collinearity.)

b. You can set displayed precision for all values in coefficient tables using set cformat, set
pformat, and set sformat. Or you may use options cformat (), pformat (), and sformat ()
now allowed on all estimation commands. See [R] set cformat and [R] estimation options.

c. Estimation commands now respect the width of the Results window. This feature may be
turned off by new display option nolstretch. See [R] estimation options.

d. You can now set whether base levels, empty cells, and omitted are shown using set
showbaselevels, set showemptycells, and set showomitted. See [R] set showbaselevels.

13. misstable summarize will now create summary variables recording the missing-values pattern.
See new option generate() for summarize in [R] misstable. Note that mi misstable does not
have this new option. The new option is useful before data are imputed.

For a complete list of all the new features in Stata 12, see [U] 1.3 What’s new.

Acknowledgments

We thank Jerry (Jerome) Reiter of Duke University, Patrick Royston of the MRC Clinical Trials Unit,
and Ian White of the MRC Biostatistics Unit for their comments and assistance in the development
of mi. We also thank James Carpenter of the London School of Hygiene and Tropical Medicine and
Jonathan Sterne of the University of Bristol for their comments.

Previous and still ongoing work on multiple imputation in Stata influenced the design of mi.
For their past and current contributions, we thank Patrick Royston and Ian White again for ice;
John Carlin and John Galati, both of the Murdoch Children’s Research Institute and University of
Melbourne, and Patrick Royston and Ian White (yet again) for mim; John Galati for inorm; and
Rodrigo Alfaro of the Banco Central de Chile for mira.

Also see
[MI] intro substantive — Introduction to multiple-imputation analysis
[MI] Glossary
[MiI] styles — Dataset styles
[MI] workflow — Suggested workflow
[U] 1.3 What’s new

Title

estimation — Estimation commands for use with mi estimate

Description

Multiple-imputation data analysis in Stata is similar to standard data analysis. The standard syntax
applies, but you need to remember the following for MI data analysis:

1. The data must be declared as mi data.

If you already have multiply imputed data (saved in Stata format), use mi import to import
it into mi; see [MI] mi import.

If you do not have multiply imputed data, use mi set (see [MI] mi set) to declare your
original data to be mi data and use mi impute (see [MI] mi impute) to fill in missing values.

2. After you have declared mi data, commands such as svyset, stset, and xtset cannot be
used. Instead use mi svyset to declare survey data, use mi stset to declare survival data,
and use mi xtset to declare panel data. See [MI] mi XXXset.

3. Prefix the estimation commands with mi estimate: (see [MI] mi estimate).

23

24 estimation — Estimation commands for use with mi estimate

The following estimation commands support the mi estimate prefix.

Command Entry Description

Linear regression models

regress
cnsreg
mvreg

[R] regress
[R] cnsreg
[R] mvreg

Binary-response regression models

logistic
logit
probit
cloglog
binreg

[R] logistic
[R] logit

[R] probit
[R] cloglog
[R] binreg

Count-response regression models

poisson [R] poisson
nbreg [R] nbreg
gnbreg [R] nbreg
Ordinal-response regression models
ologit [R] ologit
oprobit [R] oprobit
Categorical-response regression models
mlogit [R] mlogit
mprobit [R] mprobit
clogit [R] clogit
Quantile regression models
qreg [R] greg
iqreg [R] qreg
sqreg [R] greg
bsqreg [R] qreg
Survival regression models
stcox [ST] stcox
streg [ST] streg
stcrreg [ST] sterreg

Other regression models

glm

areg
rreg
truncreg

Descriptive statistics
mean
proportion
ratio
total

[R] glm
[R] areg
[R] rreg
[R] truncreg

[R] mean
[R] proportion
[R] ratio
[R] total

Linear regression
Constrained linear regression
Multivariate regression

Logistic regression, reporting odds ratios
Logistic regression, reporting coefficients

Probit regression
Complementary log-log regression
GLM for the binomial family

Poisson regression
Negative binomial regression

Generalized negative binomial regression

Ordered logistic regression
Ordered probit regression

Multinomial (polytomous) logistic regression

Multinomial probit regression

Conditional (fixed-effects) logistic regression

Quantile regression

Interquantile range regression
Simultaneous-quantile regression
Bootstrapped quantile regression

Cox proportional hazards model
Parametric survival models
Competing-risks regression

Generalized linear models

Linear regression with a large dummy-variable set

Robust regression
Truncated regression

Estimate means
Estimate proportions
Estimate ratios
Estimate totals

estimation — Estimation commands for use with mi estimate 25

Panel-data models
xtreg

xtmixed
xtrc
xtlogit

xtprobit
xtcloglog
xtpoisson

xtnbreg
xtmelogit

xtmepoisson
xtgee

[XT] xtreg

[XT] xtmixed
[XT] xtrc
[XT] xtlogit

[XT] xtprobit
[XT] xtcloglog
[XT] xtpoisson

[XT] xtnbreg
[XT] xtmelogit

[XT] xtmepoisson
[XT] xtgee

Survey regression models

svy:

[SVY] svy

Fixed-, between- and random-effects, and
population-averaged linear models

Multilevel mixed-effects linear regression

Random-coefficients regression

Fixed-effects, random-effects, and population-averaged
logit models

Random-effects and population-averaged probit models

Random-effects and population-averaged cloglog models

Fixed-effects, random-effects, and population-averaged
Poisson models

Fixed-effects, random-effects, and population-averaged
negative binomial models

Multilevel mixed-effects logistic regression

Multilevel mixed-effects Poisson regression

Fit population-averaged panel-data models by using GEE

Estimation commands for survey data (excluding commands
that are not listed above)

Also see

[MI] mi estimate — Estimation using multiple imputations

[MI] mi estimate postestimation — Postestimation tools for mi estimate

[MI] mi set — Declare multiple-imputation data

[MI] mi import — Import data into mi

[MI] mi impute — Impute missing values

[MI] workflow — Suggested workflow

[MI] intro substantive — Introduction to multiple-imputation analysis

[MI] intro — Introduction to mi

[MI] Glossary

Title

mi add — Add imputations from another mi dataset

Syntax
mi add varlist using filename [, options]
options Description
assert(master) assert all observations found in master
assert (match) assert all observations found in master and in using
noupdate see [MI] noupdate option
Notes:
1. Jargon:

match variables = varlist, variables on which match performed
master = data in memory
using = data on disk (filename)

2. Master must be mi set.
3. Using must be mi set.

4. filename must be enclosed in double quotes if filename contains blanks or other special
characters.

Menu

Statistics > Multiple imputation

Description

mi add adds the imputations from the using to the end of the master.

Options
assert (results) specifies how observations are expected to match. If results are not as you expect,
an error message will be issued and the master data left unchanged.

assert (master) specifies that you expect a match for every observation in the master, although
there may be extra observations in the using that mi add is to ignore.

assert (match) specifies that you expect every observation in the master to match an observation
in the using and vice versa.

The default is that the master may have observations that are missing from the using and vice
versa. Only observations in common are used by mi add.

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option.

26

mi add — Add imputations from another mi dataset 27

Remarks
Think of the result produced by mi add as being

Result Source

m=0 m = 0 from master
m=1 m = 1 from master

m = m = 2 from master

m = Mmaster m = Mpaster from master
m = Mmaster + 1 m = 1 from using

m = Mmaster +2 m = 2 from using

m = Mpnaster + Musing m = Musing from using

That is, the original data in the master remain unchanged. All that happens is the imputed data from
the using are added to the end of the master as additional imputations.

For instance, say you discover that you and a coworker have been working on the same data. You
have added M = 20 imputations to your data. Your coworker has separately added M = 17. To
combine the data, type something like

. use mydata

. mi add patientid using karensdata
(17 imputations added; M=37)

The only thing changed in your data is M. If your coworker’s data have additional variables, they
are ignored. If your coworker has variables registered differently from how you have them registered,
that is ignored. If your coworker has not yet registered as imputed a variable that you have registered
as imputed, that is noted in the output. You might see

. use mydata

. mi add patientid using karensdata
(17 imputations added; M=37)
(imputed variable grade not found in using data;
added imputations contain m=0 values for that variable)

Saved results

mi add saves the following in r():

Scalars
r(m) number of added imputations
r(unmatched_m) number of unmatched master observations
r(unmatched_u) number of unmatched using observations

Macros
r(imputed_f) variables for which imputed found
r(imputed_nf) variables for which imputed not found

28 mi add — Add imputations from another mi dataset

Also see
[MI] intro — Introduction to mi
[MI] mi append — Append mi data

[MI] mi merge — Merge mi data

Title

mi append — Append mi data

Syntax
mi append using filename [, options]

options Description
generate (newvar) create newvar; 0 = master, 1 = using
nolabel do not copy value labels from using
nonotes do not copy notes from using
force string < numeric not type mismatch error
noupdate see [MI] noupdate option
Notes:

1. Jargon:

master = data in memory
using = data on disk (filename)
2. Master must be mi set; using may be mi set.

3. mi append is syntactically and logically equivalent to append; see [D] append. The resulting

Menu

data have M = max(Mpaster, Musing), not their sum. See [MI] mi add to append imputations
holding m = 0 constant.

. mi append syntactically differs from append in that multiple using files may not be specified

and the keep (varlist) option is not allowed.

. filename must be enclosed in double quotes if filename contains blanks or other special

characters.

Statistics > Multiple imputation

Description

mi append is append for mi data; see [D] append for a description of appending datasets.

Options

generate (newvar) specifies that new variable newvar be created containing 0 for observations from
the master and 1 for observations from the using.

nolabel prevents copying the value-label definitions from the using data to the master. Even if you
do not specify this option, label definitions from the using never replace those of the master.

29

30 mi append — Append mi data

nonotes prevents any notes in the using from being incorporated into the master; see [D] notes.

force allows string variables to be appended to numeric variables and vice versa. The results of
such type mismatches are, of course, missing values. Default behavior is to issue an error message
rather than append datasets with such violently differing types.

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option.

Remarks
Use mi append when you would use append if the data were not mi.
Remarks are presented under the following headings:

Adding new observations

Adding new observations and imputations

Adding new observations and imputations, M unequal
Treatment of registered variables

Adding new observations

Assume that file mymi.dta contains data on three-quarters of the patients in the ICU. The data
are mi set and M = 5. File remaining.dta arrives containing the remaining patients. The data
are not mi set. To combine the datasets, you type

. use mymi, clear

. mi append using remaining

The original mi data had M = 5 imputations, and so do the resulting data. If the new data contain
no missing values of the imputed variables, you are ready to go. Otherwise, you will need to impute
values for the new data.

Adding new observations and imputations

Assume that file westwing.dta contains data on patients in the west wing of the ICU. File
eastwing.dta contains data on patients in the east wing of the ICU. Both datasets are mi set with
M = 5. You originally intended to analyze the datasets separately, but you now wish to combine
them. You type

. use westwing, clear

. mi append using eastwing

The original data had M = 5 imputations, and so do the resulting data.
The data for m = 0 are the result of running an ordinary append on the two m = 0 datasets.

The data for m = 1 are also the result of running an ordinary append, this time on the two m =1
datasets. Thus the result is a combination of observations of westwing.dta and eastwing.dta
in the same way that m = 0 is. Imputations for observations that previously existed are obtained
from westwing.dta, and imputations for the newly appended observations are obtained from
eastwing.dta.

mi append — Append mi data 31

Adding new observations and imputations, M unequal

Consider the same situation as above, but this time assume M = 5 in westwing.dta and M =4
in eastwing.dta. The combined result will still have M = 5. Imputed values in m = 5 will be
missing for imputed variables.

Treatment of registered variables

It is possible that the two datasets will have variables registered inconsistently.

Variables registered as imputed in either dataset will be registered as imputed in the final result
regardless of how they were registered (or unregistered) in the other dataset.

Barring that, variables registered as passive in either dataset will be registered as passive in the
final result.

Barring that, variables registered as regular in either dataset will be registered as regular in the
final result.

Saved results

mi append saves the following in r():

Scalars
r(N_master) number of observations in m=0 in master
r(N_using) number of observations in m=0 in using
r(M_master) number of imputations (M) in master
r(M_using) number of imputations (M) in using

Macros
r(newvars) new variables added

Thus values in the resulting data are
N =# of observations in m = 0
=r(N_master) + r(N_using)

k = # of variables
= k_master + ¢ :word count ‘r(newvars)’’

M = # of imputations
=max (r (M_master), r(M_using))

Also see
[MI] intro — Introduction to mi
[D] append — Append datasets
[MI] mi add — Add imputations from another mi dataset

[MI] mi merge — Merge mi data

Title

mi convert — Change style of mi data

Syntax
mi convert wide [, options]
mi convert mlong [. options]
mi convert flong [, options]

mi convert flongsep name [, options]

options Description

clear okay to convert if data not saved

noupdate see [MI] noupdate option
Menu

Statistics > Multiple imputation

Description

mi convert converts mi data from one style to another.

Options
clear specifies that it is okay to convert the data even if the data have not been saved to disk since
they were last changed.

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option.

Remarks

Remarks are presented under the following headings:

Using mi convert as a convenience tool
Converting from flongsep
Converting to flongsep

32

mi convert — Change style of mi data 33

Using mi convert as a convenience tool

Some tasks are easier in one style than another. mi convert allows you to switch to the more
convenient style. It would not be unreasonable for a snippet of a session to read
. mi convert wide
. drop if sex=="male"
. mi convert mlong, clear
. replace age2 = age”2
This user is obviously exploiting his or her knowledge of [MI] styles. The official way to do the
above would be

. drop if sex=="male"
. mi update

. mi passive: replace age2 = age~2

It does not matter which approach you choose.

Converting from flongsep

If you have flongsep data, it is worth finding out whether you can convert it to one of the other
styles. The other styles are more convenient than flongsep, and mi commands run faster on them.
With your flongsep data in memory, type

. mi convert mlong

The result will be either success or an insufficient-memory error.
If you wish, you can make a crude guess as to how much memory is required as follows:

1. Use your flongsep data. Type mi describe. Write down M, the number of imputations,
and write down the number of complete observations, which we will call N, and the number
of incomplete observations, which we will call n.

2. With your flongsep data still in memory, type memory. Write down the sum of the numbers
reported as “data” and “overhead” under the “used” column. We will call this sum S for
size.

3. Calculate T = S + M xSx(n/N). T is an approximation of the memory your mi data
would consume in the mlong style. To that, we need to add a bit to account for extra memory
used by Stata commands and for variables or observations you might want to add. How
much to add is always debatable. For large datasets, add 10% or 5 MB, whichever is smaller.

For instance, you might have

M 30
N = 10,000
n 1,500
S = 8,040,000 = 8 MB

and thus we would calculate 7' = 8 + 30x8 x (1500/10000) = 44 MB, to which we would
add another 4 or 5 MB, to obtain 48 or 49 MB.

34 mi convert — Change style of mi data

Converting to flongsep

Note that mi convert’s syntax for converting to flongsep is
mi convert flongsep name

You must specify a name, and that name will become the basis for the names of the datasets
that comprise the collection of flongsep data. Data for m = 0 will be stored in name.dta; data for
m = 1, in _1_name.dta; data for m = 2, in _2_name .dta; and so on. The files will be stored in
the current directory; see the pwd command in [D] cd.

If you are going to use flongsep data, see Advice for using flongsep in [MI] styles. Also see
[MI] mi copy and [MI] mi erase.

Also see

[MI] intro — Introduction to mi

[MI] styles — Dataset styles

Title

mi copy — Copy mi flongsep data

Syntax

mi copy newname [, replace]

Menu

Statistics > Multiple imputation

Description
mi copy newname copies flongsep data in memory to newname and sets it so that you are working
with that copy. newname may not be specified with the .dta suffix.

In detail, mi copy newname 1) completes saving the flongsep data to its current name if
that is necessary; 2) copies the data to newname.dta, _1_newname.dta, _2_newname.dta, ...,
_M _newname .dta; and 3) tells mi that you are now working with newname .dta in memory.

mi copy can also be used with wide, mlong, or flong data, although there is no reason you would
want to do so. The data are not saved to the original filename as flongsep data would be, but otherwise
actions are the same: the data in memory are copied to newname .dta, and newname .dta is loaded
into memory.

Option

replace specifies that it is okay to overwrite newname .dta, _1_newname .dta, _2_newname .dta,
..., if they already exist.

Remarks

In Stata, one usually works with a copy of the data in memory. Changes you make to the data
are not saved in the underlying disk file until and unless you explicitly save your data. That is not
true when working with flongsep data.

Flongsep data are a matched set of datasets, one containing m = 0, another containing m = 1,
and so on. You work with one of them in memory, namely, m = 0, but as you work, the other
datasets are automatically updated; as you make changes, the datasets on disk change.

Therefore, it is best to work with a copy of your flongsep data and then periodically save the data
to the real files, thus mimicking how you work with ordinary Stata datasets. mi copy is for just that
purpose. After loading your flongsep data, type, for example,

. use myflongsep
and immediately make a copy,

. mi copy newname

35

36 mi copy — Copy mi flongsep data

You are now working with the same data but under a new name. Your original data are safe.

When you reach a point where you would ordinarily save your data, whether under the original
name or a different one, type

. mi copy original_name_or_different_name, replace

. use newname

Later, when you are done with newname, you can erase it by typing

. mi erase newname

Concerning erasure, you will discover that mi erase will not let you erase the files when you
have one of the files to be erased in memory. Then you will have to type

. mi erase newname, clear
See [MI] mi erase for more information.

For more information on flongsep data, see Advice for using flongsep in [MI] styles.

Also see
[MI] intro — Introduction to mi
[MI] styles — Dataset styles

[MI] mi erase — Erase mi datasets

Title

mi describe — Describe mi data

Syntax

mi query

mi describe [, describe_options]

describe_options Description
detail show missing-value counts for m =1, m =2, ...
noupdate see [MI] noupdate option

Menu

Statistics > Multiple imputation

Description
mi query reports whether the data in memory are mi data and, if they are, reports the style in
which they are set.

mi describe provides a more detailed report on mi data.

Options
detail reports the number of missing values in m =1, m =2, ..., m = M in the imputed and
passive variables, along with the number of missing values in m = 0.

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option.

Remarks
Remarks are presented under the following headings:
mi query
mi describe

mi query

mi query without mi data in memory reports

. mi query
(data not mi set)

37

38 mi describe — Describe mi data

With mi data in memory, you see something like

. mi query
data mi set wide, M = 15
last mi update 30mar2011 12:46:49, approximately 5 minutes ago

mi query does not burden you with unnecessary information. It mentions when mi update was
last run because you should run it periodically; see [MI] mi update.

mi describe

mi describe more fully describes mi data:

. mi describe

Style: mlong
last mi update 30mar2011 10:21:07, approximately 2 minutes ago

Obs.: complete 90
incomplete 10 (M = 20 imputations)
total 100

Vars.: imputed: 2; smokes(10) age(5)
passive: 1; agesq(5)
regular: O
system: 3; _mi_m _mi_id _mi_miss

(there are 3 unregistered variables; gender race chd)

mi describe lists the style of the data, the number of complete and incomplete observations, M
(the number of imputations), the registered variables, and the number of missing values in m = 0 of
the imputed and passive variables. In the output, the line

Vars.: imputed: 2; smokes(10) age(5)

means that the smokes variable contains 10 missing values in m = 0 and that age contains 5. Those
values are soft missings and thus eligible to be imputed. If one of smokes’ missing values in m =0
were hard, the line would read

Vars.: imputed: 2; smokes(9+1) age(5)
mi describe reports information about m = 0. To obtain information about all m’s, use mi
describe, detail:

. mi describe, detail

Style: mlong
last mi update 30mar2011 10:36:50, approximately 3 minutes ago

Obs. : complete 90
incomplete 10 (M = 20 imputations)
total 100

Vars.: imputed: 2; smokes(10; 20%0) age(5; 20%0)
passive: 1; agesq(5; 20%0)
regular: O
system: 3; _mi_m _mi_id _mi_miss

(there are 3 unregistered variables; gender race chd)
In this example, all imputed values are nonmissing. We can see that from

Vars.: imputed: 2; smokes(10; 20*0) age(5; 20%0)

mi describe — Describe mi data 39

Note the 20%0 after the semicolons. That is the number of missing values in m =1, m =2, ...,
m = 20. In the smokes variable, there are 10 missing values in m = 0, then 0 in m = 1, then 0 in
m = 2, and so on. If m = 17 had two missing imputed values, the line would read

Vars.: imputed: 2; smokes(10; 16%0, 2, 3*0) age(5; 20%0)
16%0, 2, 3*0 means that for m =1, m =2, ..., m = 20, the first 16 have 0 missing values, the
next has 2, and the last 3 have 0.

If smokes had 9 4 1 missing values rather than 10—that is, 9 soft missing values plus 1 hard
missing rather than all 10 being soft missing—and all 9 soft missings were filled in, the line would
read

Vars.: imputed: 2; smokes(9+1; 20%0) age(5; 20%0)

The 20 imputations are shown as having no soft missing values. It goes without saying that they
have 1 hard missing. Think of 20*0 as meaning 20* (0+1).

If smokes had 9 + 1 missing values and two of the soft missings in m = 18 were still missing,
the line would read

Vars.: imputed: 2; smokes(9+1; 16%0, 2, 3%0) age(5; 20%0)

Saved results

mi query saves the following in r():

Scalars
r(update) seconds since last mi update
r (m) m if r(style)=="flongsep"
r(M) M if r(style)!="flongsep"
Macros
r(style) style
r(name) name if r(style)=="flongsep"

Note that mi query issues a return code of 0 even if the data are not mi. In that case, r(style) is

[Txt)

mi describe saves the following in r():

Scalars
r(update) seconds since last mi update
r(N) number of observations in m=0
r(N_incomplete) number of incomplete observations in m=0
r(N_complete) number of complete observations in m=0
r(M) M
Macros
r(style) style
r(ivars) names of imputed variables
r(_O_miss_ivars) #=. in each r(ivars) in m=0
r(_O_hard_ivars) #>. in each r(ivars) in m=0
r(pvars) names of passive variables
r(_O_miss_pvars) #>. in each r(pvars) in m=0
r(rvars) names of regular variables
If the detail option is specified, for each m, m =1, 2, ..., M, also saved are
Macros

r(_m_miss_ivars) #=. in each r(ivars) in m
r(—m_miss_pvars) #>. in each r(pvars) in m

40 mi describe — Describe mi data

Also see

[MI] intro — Introduction to mi

Title

mi erase — Erase mi datasets

Syntax

mi erase name [, clear]

Menu

Statistics > Multiple imputation

Description

mi erase erases mi .dta datasets.

Option

clear specifies that it is okay to erase the files even if one of the files is currently in memory. If
clear is specified, the data are dropped from memory and the files are erased.

Remarks

Stata’s ordinary erase (see [D] erase) is not sufficient for erasing mi datasets because an mi
dataset might be flongsep, in which case the single name would refer to a collection of files, one
containing m = 0, another containing m = 1, and so on. mi erase deletes all the files associated
with mi dataset name .dta, which is to say, it erases name.dta, _1_name.dta, _2_name.dta, and
SO on:

. mi erase mysep
(files mysep.dta, _1_mysep.dta _2_mysep.dta _3_mysep.dta erased)

Also see

[MI] intro — Introduction to mi
[MI] styles — Dataset styles
[MI] mi copy — Copy mi flongsep data

M

Title

mi estimate — Estimation using multiple imputations

Syntax
Compute MI estimates of coefficients by fitting estimation command to mi data

mi estimate [, options] . estimation_command . . .

Compute MI estimates of transformed coefficients by fitting estimation command to mi data

mi estimate [spec] [, options] : estimation_command . ..

where spec may be one or more terms of the form ([name:] exp). exp is any function of the
parameter estimates allowed by nlcom; see [R] nlcom.

options Description
Options
nimputations (#) specify number of imputations to use; default is to use all
existing imputations
imputations (numlist) specify which imputations to use
mcerror compute Monte Carlo error estimates
ufmitest perform unrestricted FMI model test
nosmall do not apply small-sample correction to degrees of freedom

saving (miestﬁle[s replace]) save individual estimation results to miestfile . ster

Tables
[@] citable suppress/display standard estimation table containing
parameter-specific confidence intervals; default is citable
dftable display degrees-of-freedom table; dftable implies nocitable
vartable display variance information about estimates; vartable
implies citable
table _options control table output
display_options control column formats, row spacing, and display of omitted
variables and base and empty cells
Reporting
level (#) set confidence level; default is 1level (95)
dots display dots as estimations are performed
noisily display any output from estimation_command (and from nlcom
if transformations specified)
trace trace estimation_command (and nlcom if transformations
specified); implies noisily
nogroup suppress summary about groups displayed for xt commands
M_Uptions control output from mixed-effects commands

42

mi estimate — Estimation using multiple imputations 43

Advanced
esample (newvar)

errorok

esampvaryok
cmdok

coeflegend
nowarning
eform_option
post
noupdate

store estimation sample in variable newvar; available only in the
flong and flongsep styles

allow estimation even when estimation_command (or nlcom)
errors out; such imputations are discarded from the analysis

allow estimation when estimation sample varies across imputations

allow estimation when estimation_command is not one of the
supported estimation commands

display legend instead of statistics

suppress the warning about varying estimation samples
display coefficient table in exponentiated form

post estimated coefficients and VCE to e(b) and e (V)
do not perform mi update; see [MI] noupdate option

You must mi set your data before using mi estimate; see [MI] mi set.

coeflegend, nowarning, eform_option, post, and noupdate do not appear in the dialog box.

table_options

Description

noheader
notable
nocoef
nocmdlegend

notrcoef
nolegend
nocnsreport

suppress table header(s)

suppress table(s)

suppress table output related to coefficients

suppress command legend that appears in the presence of transformed

coefficients when nocoef is used

suppress table output related to transformed coefficients
suppress table legend(s)
do not display constraints

See [MI] mi estimate postestimation for features available after estimation. mi estimate is its
own estimation command. The postestimation features for mi estimate do not include by default
the postestimation features for estimation_command. To replay results, type mi estimate without

arguments.

Menu

Statistics > Multiple imputation

Description

mi estimate: estimation_command runs estimation_command on the imputed mi data, and adjusts
coefficients and standard errors for the variability between imputations according to the combination

rules by Rubin (1987).

44 mi estimate — Estimation using multiple imputations

Options
_ [Options |

nimputations (#) specifies that the first # imputations be used; # must be Mp,i, < # < M, where
Min = 3 if mcerror is specified and Mp,;, = 2, otherwise. The default is to use all imputations,
M. Only one of nimputations() or imputations() may be specified.

imputations (numlist) specifies which imputations to use. The default is to use all of them. numlist
must contain at least two numbers. If mcerror is specified, numlist must contain at least three
numbers. Only one of nimputations() or imputations() may be specified.

mcerror specifies to compute Monte Carlo error (MCE) estimates for the results displayed in the
estimation, degrees-of-freedom, and variance-information tables. MCE estimates reflect variability
of MI results across repeated uses of the same imputation procedure and are useful for determining
an adequate number of imputations to obtain stable MI results; see White, Royston, and Wood (2011)
for details and guidelines.

MCE estimates are obtained by applying the jackknife procedure to multiple-imputation results.
That is, the jackknife pseudovalues of MI results are obtained by omitting one imputation at a
time; see [R] jackknife for details about the jackknife procedure. As such, the MCE computation
requires at least three imputations.

If 1level() is specified during estimation, MCE estimates are obtained for confidence intervals
using the specified confidence level instead of using the default 95% confidence level. If any of
the options described in [R] eform_option is specified during estimation, MCE estimates for the
coefficients, standard errors, and confidence intervals in the exponentiated form are also computed.
mcerror can also be used upon replay to display MCE estimates. Otherwise, MCE estimates are
not reported upon replay even if they were previously computed.

ufmitest specifies that the unrestricted fraction missing information (FMI) model test be used. The
default test performed assumes equal fractions of information missing due to nonresponse for all
coefficients. This is equivalent to the assumption that the between-imputation and within-imputation
variances are proportional. The unrestricted test may be preferable when this assumption is suspect
provided the number of imputations is large relative to the number of estimated coefficients.

nosmall specifies that no small-sample correction be made to the degrees of freedom. The small-
sample correction is made by default to estimation commands that account for small samples. If
the command saves residual degrees of freedom in e(df_r), individual tests of coefficients (and
transformed coefficients) use the small-sample correction of Barnard and Rubin (1999) and the
overall model test uses the small-sample correction of Reiter (2007). If the command does not
save residual degrees of freedom, the large-sample test is used and the nosmall option has no
effect.

saving (miestﬁle[, replace]) saves estimation results from each model fit in miestfile.ster. The
replace suboption specifies to overwrite miestfile . ster if it exists. miestfile.ster can later be
used by mi estimate using (see [MI] mi estimate using) to obtain MI estimates of coefficients
or of transformed coefficients without refitting the completed-data models. This file is written in
the format used by estimates use; see [R] estimates save.

All table options below may be specified at estimation time or when redisplaying previously estimated
results. Table options must be specified as options to mi estimate, not to estimation_command.

citable and nocitable specify whether the standard estimation table containing parameter-specific
confidence intervals is displayed. The default is citable. nocitable can be used with vartable
to suppress the confidence-interval table.

mi estimate — Estimation using multiple imputations 45

dftable displays a table containing parameter-specific degrees of freedom and percentages of increase
in standard errors due to nonresponse. dftable implies nocitable.

vartable displays a table reporting variance information about MI estimates. The table contains
estimates of within-imputation variances, between-imputation variances, total variances, relative
increases in variance due to nonresponse, fractions of information about parameter estimates missing
due to nonresponse, and relative efficiencies for using finite M rather than a hypothetically infinite
number of imputations. vartable implies citable.

table_options control the appearance of all displayed table output:
noheader suppresses all header information from the output. The table output is still displayed.
notable suppresses all tables from the output. The header information is still displayed.

nocoef suppresses the display of tables containing coefficient estimates. This option affects the
table output produced by citable, dftable, and vartable.

nocmdlegend suppresses the table legend showing the specified command line, estima-
tion_command, from the output. This legend appears above the tables containing transformed
coefficients (or above the variance-information table if vartable is used) when nocoef is
specified.

notrcoef suppresses the display of tables containing estimates of transformed coefficients (if
specified). This option affects the table output produced by citable, dftable, and vartable.

nolegend suppresses all table legends from the output.
nocnsreport; see [R] estimation options.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat (% fimt), pformat (%fimt), and sformat (%fint); see [R] estimation options.

Reporting

Reporting options must be specified as options to mi estimate and not as options to estima-
tion_command.

level (#); see [R] estimation options.

dots specifies that dots be displayed as estimations are successfully completed. An x is displayed
if the estimation_command returns an error, if the model fails to converge, or if nlcom fails to
estimate one of the transformed coefficients specified in spec.

noisily specifies that any output from estimation_command and nlcom, used to obtain the estimates
of transformed coefficients if transformations are specified, be displayed.

trace traces the execution of estimation_command and traces nlcom if transformations are specified.
trace implies noisily.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) as well as other command-specific information displayed for xt
commands; see the list of commands under Panel-data models in [MI]| estimation.

Xtme_options: variance, noretable, nofetable, and estmetric. These options are relevant
only with the mixed-effects commands such as xtmixed (see [XT] xtmixed), xtmelogit (see
[XT] xtmelogit), and xtmepoisson (see [XT] xtmepoisson). The estmetric option is implied
when vartable or dftable is used.

46 mi estimate — Estimation using multiple imputations

Advanced

esample (newvar) creates newvar containing e(sample). This option is useful to identify which
observations were used in the estimation, especially when the estimation sample varies across
imputations (see Potential problems that can arise when using mi estimate for details). newvar is
zero in the original data (" = 0) and in any imputations (/m > 0) in which the estimation failed
or that were not used in the computation. esample() may be specified only if the data are flong
or flongsep; see [MI] mi convert to convert to one of those styles. The variable created will be
super varying and therefore must not be registered; see [MI] mi varying for more explanation.
The saved estimation sample newvar may be used later with mi extract (see [MI] mi extract)
to set the estimation sample.

errorok specifies that estimations that fail be skipped and the combined results be based on the
successful individual estimation results. The default is that mi estimate stops if an individual
estimation fails. If errorok is specified with saving(), all estimation results, including failed,
are saved to a file.

esampvaryok allows estimation to continue even if the estimation sample varies across imputations.
mi estimate stops if the estimation sample varies. If esampvaryok is specified, results from all
imputations are used to compute MI estimates and a warning message is displayed at the bottom
of the table. Also see the esample() option. See Potential problems that can arise when using
mi estimate for more information.

cmdok allows unsupported estimation commands to be used with mi estimate; see [MI] estimation
for a list of supported estimation commands. Alternatively, if you want mi estimate to work
with your estimation command, add the property mi to the program properties; see [P] program
properties.

The following options are available with mi estimate but are not shown in the dialog box:

coeflegend; see [R] estimation options. coeflegend implies nocitable and cannot be combined
with citable or dftable.

nowarning suppresses the warning message at the bottom of table output that occurs if the estimation
sample varies and esampvaryok is specified. See Potential problems that can arise when using
mi estimate for details.

eform_option; see [R] eform_option. Regardless of the estimation_command specified, mi estimate
reports results in the coefficient metric under which the combination rules are applied. You may
use the appropriate eform_option to redisplay results in exponentiated form, if desired. If dftable
is also specified, the reported degrees of freedom and percentage increases in standard errors are
not adjusted and correspond to the original coefficient metric.

post requests that MI estimates of coefficients and their respective VCEs be posted in the usual way.
This allows the use of estimation_command-specific postestimation tools with MI estimates. There
are issues; see Using the command-specific postestimation tools in [MI] mi estimate postestimation.
post may be specified at estimation time or when redisplaying previously estimated results.

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option. This option is seldom used.

Remarks

mi estimate requires that imputations be already formed; see [MI] mi impute. To import existing
multiply imputed data, see [MI] mi import.

mi estimate — Estimation using multiple imputations 47

Remarks are presented under the following headings:
Using mi estimate
Example 1: Completed-data logistic analysis
Example 2: Completed-data linear regression analysis
Example 3: Completed-data survival analysis
Example 4: Panel data and multilevel models
Example 5: Estimating transformations
Example 6: Monte Carlo error estimates
Potential problems that can arise when using mi estimate

Using mi estimate

mi estimate estimates model parameters from multiply imputed data and adjusts coefficients and
standard errors for the variability between imputations. It runs the specified estimation_command on
each of the M imputed datasets to obtain the M completed-data estimates of coefficients and their
VCEs. It then computes MI estimates of coefficients and standard errors by applying combination rules
(Rubin 1987, 77) to the M completed-data estimates. See [MI] intro substantive for a discussion of
MI analysis and see Methods and formulas for computational details.

To use mi estimate, your data must contain at least two imputations. The basic syntax of mi
estimate is
. mi estimate: estimation_command . ..
estimation_command is any estimation command from the list of supported estimation commands;
see [MI] estimation.
If you wish to estimate on survey data, type
. mi estimate: svy: estimation_command . . .
If you want to vary the number of imputations or select which imputations to use in the computations,
use the nimputations() or the imputations() option, respectively.
. mi estimate, nimputations(9): estimation_command . ..
Doing so is useful to evaluate the stability of MI results. MCE estimates of the parameters are also

useful for determining the stability of MI results. You can use the mcerror option to obtain these
estimates. Your data must contain at least three imputations to use mcerror.

You can obtain more-detailed information about imputation results by specifying the dftable and
vartable options.

You can additionally obtain estimates of transformed coefficients by specifying expressions with
mi estimate; see Example 5: Estimating transformations for details.

When using mi estimate, keep in mind that
1. mi estimate is its own estimation command.

2. mi estimate uses different degrees of freedom for each estimated parameter when computing
its significance level and confidence interval.

3. mi estimate reports results in the coefficient metric under which combination rules are
applied regardless of the default reporting metric of the specified estimation_command. Use
eform_option with mi estimate to report results in the exponentiated metric, if you wish.

4. mi estimate has its own reporting options and does not respect command-specific reporting
options. The reporting options specified with estimation_command affect only the output of
the command that is displayed when mi estimate’s noisily option is specified. Specify
mi estimate’s options immediately after the mi estimate command:

. mi estimate, options: estimation_command . ..

48 mi estimate — Estimation using multiple imputations

Example 1: Completed-data logistic analysis

Recall the logistic analysis of the heart attack data from [MI] intro substantive. The goal of the
analysis was to explore the relationship between heart attacks and smoking adjusted for other factors
such as age, body mass index (BMI), gender, and educational status. The original data contain missing
values of BMI. The listwise-deletion analysis on the original data determined that smoking and BMI
have significant impact on a heart attack. After imputing missing values of BMI, age was determined
to be a significant factor as well. See A brief introduction to MI using Stata in [MI] intro substantive
for details. The data we used are stored in mheart1s20.dta.

Below we refit the logistic model using the imputed data. We also specify the dots option so that
dots will be displayed as estimations are completed.
. use http://www.stata-press.com/data/r12/mheart1s20
(Fictional heart attack data; bmi missing)
. mi estimate, dots: logit attack smokes age bmi hsgrad female

Imputations (20):

......... 10.........20 done
Multiple-imputation estimates Imputations = 20
Logistic regression Number of obs = 154
Average RVI = 0.0312
Largest FMI = 0.1355
DF adjustment: Large sample DF: min = 1060.38
avg = 223362.56
max = 493335.88
Model F test: Equal FMI F(5,71379.3) = 3.59
Within VCE type: 0IM Prob > F = 0.0030
attack Coef. Std. Err. t P>t [95% Conf. Intervall
smokes 1.198595 .3578195 3.35 0.001 .4972789 1.899911
age .0360159 .0154399 2.33 0.020 .0057541 .0662776
bmi .1039416 .0476136 2.18 0.029 .010514 .1973692
hsgrad .1578992 .4049257 0.39 0.697 -.6357464 .9515449
female -.1067433 .4164735 -0.26 0.798 -.9230191 .7095326
_cons -5.478143 1.685075 -3.25 0.001 -8.782394 -2.173892

The left header column reports information about the fitted MI model. The right header column
reports the number of imputations and the number of observations used, the average relative variance
increase (RVI) due to nonresponse, the largest fraction of missing information (FMI), a summary about
parameter-specific degrees of freedom (DF), and the overall model test that all coefficients, excluding
the constant, are equal to zero.

Notice first that mi estimate reports Student’s ¢t and F' statistics for inference although logit
would usually report Z and x? statistics.

mi estimate: logit is not logit. mi estimate uses Rubin’s combination rules to obtain the
estimates from multiply imputed data. The variability of the MI estimates consists of two components:
variability within imputations and variability between imputations. Therefore, the precision of the MI
estimates is governed not only by the number of observations in the sample but also by the number
of imputations. As such, even if the number of observations is large, if the number of imputations
is small and the FMI are not low, the reference distribution used for inference will deviate from the
normal distribution. Because in practice the number of imputations tends to be small, mi estimate
uses a reference ¢ distribution.

Returning to the output, average RVI reports the average relative increase (averaged over all
coefficients) in variance of the estimates because of the missing bmi values. A relative variance

mi estimate — Estimation using multiple imputations 49

increase is an increase in the variance of the estimate because of the loss of information about the
parameter due to nonresponse relative to the variance of the estimate with no information lost. The
closer this number is to zero, the less effect missing data have on the variance of the estimate. Note
that the reported RVI will be zero if you use mi estimate with the complete data or with missing
data that have not been imputed. In our case, average RVI is small: 0.0312.

Largest FMI reports the largest of all the FMI about coefficient estimates due to nonresponse.
This number can be used to get an idea of whether the specified number of imputations is sufficient
for the analysis. A rule of thumb is that M > 100 x FMI provides an adequate level of reproducibility
of MI analysis. In our example, the largest FMI is 0.14 and the number of imputations, 20, exceeds
the required number of imputations: 14 (= 100 x 0.14) according to this rule.

The coefficient-specific degrees of freedom (DF) averaging 223,363 are large. They are large
because the MI degrees of freedom depends not only on the number of imputations but also on the
RVI due to nonresponse. Specifically, the degrees of freedom is inversely related to RVI. The closer
RVI is to zero, the larger the degrees of freedom regardless of the number of imputations.

To the left of the DF, we see that the degrees of freedom is obtained under a large-sample assumption.
The alternative is to use a small-sample adjustment. Whether the small-sample adjustment is applied
is determined by the type of the reference distribution used for inference by the specified estimation
command. For the commands that use a large-sample (normal) approximation for inference, a large-
sample approximation is used when computing the MI degrees of freedom. For the commands that
use a small-sample (Student’s ¢) approximation for inference, a small-sample approximation is used
when computing the MI degrees of freedom. See Methods and formulas for details. As we already
mentioned, logit assumes large samples for inference, and thus the MI degrees of freedom is
computed assuming a large sample.

The model F' test rejects the hypothesis that all coefficients are equal to zero and thus rules out a
constant-only model for heart attacks. By default, the model test uses the assumption that the fractions
of missing information of all coefficients are equal (as noted by Equal FMI to the left). Although this
assumption may not be supported by the data, it is used to circumvent the difficulties arising with
the estimation of the between-imputation variance matrix based on a small number of imputations.
See Methods and formulas and [MI] mi test for details.

mi estimate also reports the type of variance estimation used by the estimation command to
compute variance estimates in the individual completed-data analysis. These completed-data variance
estimates are then used to compute the within-imputation variance. In our example, the observed-
information-matrix (OIM) method, the default variance-estimation method used by maximum likelihood
estimation, is used to compute completed-data VCEs. This is labeled as Within VCE type: OIM in
the output.

Finally, mi estimate reports a coefficient table containing the combined estimates. Unlike all
other Stata estimation commands, the reported significance levels and confidence intervals in this table
are based on degrees of freedom that is specific to each coefficient. Remember that the degrees of
freedom depends on the relative variance increases and thus on how much information is lost about
the estimated parameter because of missing data. How much information is lost is specific to each
parameter and so is the degrees of freedom.

As we already saw, a summary of the coefficient-specific degrees of freedom (minimum, average,
and maximum) was reported in the header. We can obtain a table containing coefficient-specific
degrees of freedom by replaying the results with the dftable option:

50 mi estimate — Estimation using multiple imputations

. mi estimate, dftable

Multiple-imputation estimates Imputations = 20
Logistic regression Number of obs = 154
Average RVI = 0.0312

Largest FMI = 0.1355

DF adjustment: Large sample DF: min = 1060.38
avg = 223362.56

max = 493335.88

Model F test: Equal FMI F(5,71379.3) = 3.59
Within VCE type: 0IM Prob > F = 0.0030
% Increase

attack Coef. Std. Err. t P>|t| DF Std. Err.
smokes 1.198595 .3578195 3.35 0.001 320019.4 0.39

age .0360159 .0154399 2.33 0.020 493335.9 0.31

bmi .1039416 .0476136 2.18 0.029 1060.4 7.45

hsgrad .1578992 .4049257 0.39 0.697 165126.7 0.54
female -.1067433 .4164735 -0.26 0.798 358078.3 0.37

_cons -5.478143 1.685075 -3.25 0.001 2554.8 4.61

Notice that we type mi estimate to replay the results, not logit.

The header information remains the same. In particular, degrees of freedom ranges from 1,060
to 493,336 and averages 223,363. In the table output, the columns for the confidence intervals are
replaced with the DF and % Increase Std. Err. columns. We now see that the smallest degrees of
freedom corresponds to the coefficient for bmi. We should have anticipated this because bmi is the
only variable containing missing values in this example. The largest degrees of freedom is observed
for the coefficient for age, which suggests that the loss of information due to nonresponse is the
smallest for the estimation of this coefficient.

The last column displays as a percentage the increase in standard errors of the parameters due to
nonresponse. We observe a 7% increase in the standard error for the coefficient of bmi and a 4%
increase in the standard error for the constant. Increases in standard errors of other coefficients are
negligible.

In this example, we displayed a degrees-of-freedom table on replay by specifying the dftable
option. We could also obtain this table if we specified this option at estimation time. Alternatively,
if desired, we could display both tables by specifying the citable and dftable options together.

We can obtain more detail about imputation results by specifying the vartable option. We specify
this option on replay and also use the nocitable option to suppress the default confidence-interval
table:

. mi estimate, vartable nocitable

Multiple-imputation estimates Imputations = 20
Logistic regression
Variance information

Imputation variance Relative

Within Between Total RVI FMI efficiency

smokes .127048 .00094 .128035 .007765 .007711 .999615

age .000237 1.4e-06 .000238 .006245 .00621 .99969

bmi .001964 .000289 .002267 .154545 .135487 .993271

hsgrad .162206 .001675 .163965 .010843 .010739 .999463

female .172187 .001203 .17345 .007338 .00729 .999636

_cons 2.5946 .233211 2.83948 .094377 .086953 .995671

mi estimate — Estimation using multiple imputations 51

The first three columns of the table provide the variance information specific to each parameter. As
we already discussed, MI variance contains two sources of variation: within imputation and between
imputation. The first two columns provide estimates for the within-imputation and between-imputation
variances. The third column is a total variance that is the sum of the two variances plus an adjustment
for using a finite number of imputations. The next two columns are individual RVIs and fractions of
missing information (FMIs) due to nonresponse. The last column records relative efficiencies for using
a finite number of imputations (20 in our example) versus the theoretically optimal infinite number
of imputations.

We notice that the coefficient for age has the smallest within-imputation and between-imputation
variances. The between-imputation variability is very small relative to the within-imputation variability,
which is why age had such a large estimate of the degrees of freedom we observed earlier.
Correspondingly, this coefficient has the smallest values for RVI and FMI. As expected, the coefficient
for bmi has the highest RVI and FML

The reported relative efficiencies are high for all coefficient estimates, with the smallest relative
efficiency, again, corresponding to bmi. These estimates, however, are only approximations and thus
should not be used exclusively to determine the required number of imputations. See Royston, Carlin,
and White (2009) and White, Royston, and Wood (2011) for other ways of determining a suitable
number of imputations.

Example 2: Completed-data linear regression analysis

Recall the data on house resale prices from example 3 of [MI] mi impute mvn. We use the imputed
data stored in mhouses1993s30.dta to examine the relationship of various predictors on price via
linear regression:

. use http://www.stata-press.com/data/r12/mhouses1993s30
(Albuquerque Home Prices Feb15-Apr30, 1993)
. mi estimate, ni(5): regress price tax sqft age nfeatures ne custom corner

Multiple-imputation estimates Imputations = 5

Linear regression Number of obs = 117
Average RVI = 0.0685

Largest FMI = 0.2075

Complete DF = 109

DF adjustment: Small sample DF: min = 48.59
avg 85.22

max = 104.79

Model F test: Equal FMI F(7, 103.9) = 67.50
Within VCE type: OLS Prob > F 0.0000
price Coef. Std. Err. t P>|t] [95% Conf. Intervall

tax .6631356 .122443 5.42 0.000 .4195447 .9067265

sqft .2185884 .0670182 3.26 0.002 .0856051 .3515718

age -.0395402 1.613185 0.02 0.981 -3.28205 3.202969
nfeatures 8.735622 13.42251 0.65 0.517 -18.01198 35.48323

ne 4.069381 36.94491 0.11 0.913 -69.4355 77.57426

custom 130.4925 42.93286 3.04 0.003 45.36257 215.6225
corner -71.25406 40.06697 1.78 0.078 -150.7152 8.207084

_cons 130.2002 70.38012 1.85 0.068 -9.624642 270.025

By default, mi estimate uses all available imputations in the analysis. For the purpose of illustration,
we use only the first 5 imputations out of the available 30 by specifying the nimputations(5)
option, which we abbreviated as ni(5).

52 mi estimate — Estimation using multiple imputations

Compared with the output from the previous example, an additional result, Complete DF, is
reported. Also notice that the adjustment for the degrees of freedom is now labeled as Small sample.
Remember that mi estimate determines what adjustment to use based on the reference distribution
used for inference by the specified estimation command.

regress uses a reference ¢ distribution with 117 — 8 = 109 residual degrees of freedom. Thus a
small-sample adjustment is used by mi estimate for the MI degrees of freedom.

Complete DF contains the degrees of freedom used for inference with complete data. It corresponds
to the completed-data residual degrees of freedom saved by the command in e(df_r). In most
applications, the completed-data residual degrees of freedom will be the same, and so Complete DF
will correspond to the complete degrees of freedom, the degrees of freedom that would have been
used for inference if the data were complete. In the case when the completed-data residual degrees of
freedom varies across imputations (as may happen when the estimation sample varies; see Potential
problems that can arise when using mi estimate), Complete DF reports the smallest of them.

In our example, all completed-data residual degrees of freedom are equal, and Complete DF is
equal to 109, the completed-data residual degrees of freedom obtained from regress. mi estimate
uses the complete degrees of freedom to adjust the MI degrees of freedom for a small sample (Barnard
and Rubin 1999).

Example 3: Completed-data survival analysis

Consider survival data on 48 participants in a cancer drug trial. The dataset contains information
about participants’ ages, treatments received (drug or placebo), times to death measured in months,
and a censoring indicator. The data are described in more detail in Cox regression with censored data
of [ST] stcox. We consider a version of these data containing missing values for age. The imputed
data are saved in mdrugtrs25.dta:

. use http://www.stata-press.com/data/r12/mdrugtrs25
(Patient Survival in Drug Trial)
. mi describe

Style: mlong
last mi update 30mar2011 12:46:48, 1 day ago

Obs.: complete 40
incomplete 8 (M = 25 imputations)
total 48

Vars.: imputed: ; age(8)

1
passive: O
regular: 3; studytime died drug

system: 3; _mi_m _mi_id _mi_miss

(there are no unregistered variables)

The dataset contains 25 imputations for 8 missing values of age. Missing values were imputed
following guidelines in White and Royston (2009).

We analyze these data using stcox with mi estimate. These data have not yet been stset,
so we use mi stset (see [MI] mi XXXset) to set them and then perform the analysis using mi
estimate: stcox:

mi estimate — Estimation using multiple imputations

. mi stset studytime, failure(died)

failure event:

died != 0 & died < .

obs. time interval: (0, studytime]
exit on or before: failure
48 total obs.
0 exclusions
48 obs. remaining, representing
31 failures in single record/single failure data
744 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0
last observed exit t = 39
. mi estimate, dots: stcox drug age
Imputations (25):
......... 10.........20..... done
Multiple-imputation estimates Imputations = 25
Cox regression: Breslow method for ties Number of obs = 48
Average RVI = 0.1059
Largest FMI 0.1567
DF adjustment: Large sample DF: min = 998.63
avg = 11621.53
max = 22244 .42
Model F test: Equal FMI F(2, 4448.6) = 13.43
Within VCE type: 0IM Prob > F = 0.0000
_t Coef. Std. Err. t P>|t] [95% Conf. Intervall
drug -2.204572 .4589047 -4.80 0.000 -3.104057 -1.305086
age .1242711 .040261 3.09 0.002 .0452652 .2032771

Notice that mi estimate displays the results in the coefficient metric and not in the hazard-ratio
metric. By default, mi estimate reports results in the metric under which the combination rules
were applied. To obtain the results as hazard ratios, we can use the hr option with mi estimate:

. mi estimate, hr

Multiple-imputation estimates Imputations = 25
Cox regression: Breslow method for ties Number of obs = 48
Average RVI = 0.1059

Largest FMI = 0.1567

DF adjustment: Large sample DF: min = 998.63
avg = 11621.583

max = 22244 .42

Model F test: Equal FMI F(2, 4448.6) = 13.43
Within VCE type: 0IM Prob > F = 0.0000
_t | Haz. Ratio Std. Err. t P>|t| [95% Conf. Intervall

drug .1102977 .0506161 -4.80 0.000 .0448668 .2711491

age 1.132323 .0455885 3.09 0.002 1.046305 1.225412

We obtain results similar to those from the corresponding example in [ST] stcox.
We specified the hr option above on replay. We can also specify it at estimation time:

. mi estimate, hr: stcox drug age
(output omitted)

54 mi estimate — Estimation using multiple imputations

Notice that the hr option must be specified with mi estimate to obtain hazard ratios. Specifying it
with the command itself,

. mi estimate: stcox drug age, hr
(output omitted)

will not affect the output from mi estimate but only that of the command, stcox. You see stcox’s
output only if you specify mi estimate’s noisily option.

See Cleves et al. (2010, sec. 9.6) for more information on Cox regression with multiply imputed
data.

Example 4: Panel data and multilevel models

We have data on the math scores of students in their third and fifth years of education. There are
887 students from 48 schools in inner London; see Mortimore et al. (1988) for more information
on the study. We would like to fit a random-effects model to the fifth-year score, math5, on the
third-year score, math3, using a random effect at the school level.

We created a version of the data that contains missing values for math3 and then performed
imputation following guidelines from the Stata FAQ “How can I account for clustering when creating
imputations with mi impute?”’; see http://www.stata.com/support/fags/stat/impute_cluster.html. The
resulting imputed data are saved in mjsps5.dta:

. use http://www.stata-press.com/data/ri2/mjspsb, clear
(LEA Junior School Project data (Mortimore et al., 1988) with missing values)
. mi describe

Style: mlong
last mi update 30mar2011 12:46:49, 1 day ago

Obs.: complete 705
incomplete 182 (M = 5 imputations)
total 887

Vars.: imputed: ; math3(182)

1
passive: 0
regular: 2; school mathb

system: 3; _mi_m _mi_id _mi_miss

(there are no unregistered variables)

There are five imputations for 182 missing values of the third-year score, math3. Variable math3
is an imputed variable, whereas variable math5 and variable school, recording school identifiers,
are complete and are registered as regular.

Our random-effects model includes only a random intercept, the school effect, so we can use the
xtreg command, or more specifically mi estimate: xtreg, for our primary analysis.

Without imputed data, to use xtreg or any other panel-data command, we must first declare data
to be panel (xt) data by using xtset. With imputed data, we should use the mi xtset command
instead. We declare school as our panel variable:

. mi xtset school
panel variable: school (unbalanced)

http://www.stata.com/support/faqs/stat/impute_cluster.html

mi estimate — Estimation using multiple imputations 55

Next we use mi estimate: xtreg to regress the fifth-year math score on the third-year score.

. mi estimate: xtreg math5 math3

Multiple-imputation estimates Imputations = 5
Random-effects GLS regression Number of obs = 887
Group variable: school Number of groups = 48
Obs per group: min = 5

avg = 18.5

max = 62

Average RVI = 0.0595

Largest FMI = 0.1071

DF adjustment: Large sample DF: min = 381.40
avg = 85771.71

max = 171162.01

Model F test: Equal FMI F(1, 381.4) = 305.71
Within VCE type: Conventional Prob > F = 0.0000
mathb Coef. Std. Err. t P>t [95% Conf. Intervall

math3 .6101277 .0348951 17.48 0.000 .5415168 .6787385

_cons 30.48295 .3576417 85.23 0.000 29.78198 31.18392

sigma_u 2.0684286
sigma_e 5.3206673
rho .13128791 (fraction of variance due to u_i)

Note: sigma_u and sigma_e are combined in the original metric.

Third-year math scores are positively associated with fifth-year math scores. Because we use a
random-effects model, the coefficient on math3 is for comparison of students from the same school
or from different schools.

In the above results, multiple-imputation estimates of variance components sigma_u and sigma_e
are obtained by applying Rubin’s combination rules to the completed-data estimates in the original,
standard-deviation metric.

Alternatively, we can use the xtmixed command to fit our two-level random-effects model and to
obtain variance-component estimates of the school effect. xtmixed can be used to fit more complicated
multilevel models; see [XT] xtmixed for details.

We fit a two-level linear model with mi estimate: xtmixed and specify school as our second-
level variable. xtmixed does not require prior declaration of the data, so we do not need to use mi
xtset with mi estimate: xtmixed:

56 mi estimate — Estimation using multiple imputations

. mi estimate: xtmixed math5 math3 || school: , reml
Multiple-imputation estimates Imputations = 5
Mixed-effects REML regression Number of obs = 887
Group variable: school Number of groups = 48
Obs per group: min = 5
avg = 18.5
max = 62
Average RVI = 0.0574
Largest FMI = 0.1079
DF adjustment: Large sample DF: min = 376.05
avg = 44112.02
max = 167428.86
Model F test: Equal FMI F(1, 376.0) = 305.41
Prob > F = 0.0000
mathb Coef. Std. Err. t P>|t| [95% Conf. Intervall
math3 .6100335 .0349069 17.48 0.000 .5413963 .6786708
_cons 30.48217 .3536049 86.20 0.000 29.78911 31.17522
Random-effects Parameters Estimate Std. Err. [95% Conf. Intervall

school: Identity

sd(_cons) 2.033826 .3069989 1.512894 2.734129
sd (Residual) 5.321503 .1355669 5.061821 5.594508

The estimated coefficients, error standard deviations, and other statistics are similar to those from mi
estimate: xtreg. Unlike mi estimate: xtreg, the mi estimate: xtmixed command combines
variance components in the estimation metric described in [XT] xtmixed and then back-transforms the
estimates to display results in the original metric. In our example, the reported standard deviations
are exponentiated multiple-imputation estimates of the log-standard deviations.

mi estimate — Estimation using multiple imputations 57

The random-effects parameters are displayed as standard deviations. We can display variances
instead by replaying the mi estimate command with the variance option:

. mi estimate, variance

Multiple-imputation estimates Imputations = 5

Mixed-effects REML regression Number of obs = 887

Group variable: school Number of groups = 48

Obs per group: min = 5

avg = 18.5

max = 62

Average RVI = 0.0574

Largest FMI = 0.1079

DF adjustment: Large sample DF: min = 376.05

avg = 44112.02

max = 167428.86

Model F test: Equal FMI F(1, 376.0) = 305.41

Prob > F = 0.0000

mathb5 Coef. Std. Err. t P>|t| [95% Conf. Intervall

math3 .6100335 .0349069 17.48 0.000 .5413963 .6786708

_cons 30.48217 .3536049 86.20 0.000 29.78911 31.17522

Random-effects Parameters Estimate Std. Err. [95% Conf. Intervall
school: Identity

var (_cons) 4.136447 1.248765 2.288848 7.475462

var (Residual) 28.3184 1.442839 25.62204 31.29852

Although the random-effects parameters are now displayed as variances, they are still combined and
stored in the log—standard-deviation metric.

To obtain variance components, we should specify the variance option with mi estimate,

. mi estimate, variance: xtmixed ...

and not with xtmixed:

. mi estimate: xtmixed ..., variance

Example 5: Estimating transformations

Stata estimation commands usually support 1incom and nlcom (see [R] lincom and [R] nlcom) to
obtain estimates of the transformed coefficients after estimation by using the delta method. Because
MI estimates based on a small number of imputations may not yield a valid VCE, this approach is not
generally viable. Also, transformations applied to the combined coefficients are only asymptotically
equivalent to the combined transformed coefficients. With a small number of imputations, these two
ways of obtaining transformed coefficients can differ significantly.

Thus mi estimate provides its own way of combining transformed coefficients. You need to use
mi estimate’s method for both linear and nonlinear combinations of coefficients. We are about to
demonstrate how to use the method using the ratio of coefficients as an example, but what we are
about to do would be equally necessary if we wanted to obtain the difference in two coefficients.

58 mi estimate — Estimation using multiple imputations

For the purpose of illustration, suppose that we want to estimate the ratio

age and sqft from example 2. We can do this by typing

. use http://www.stata-press.com/data/r12/mhouses1993s30

(Albuquerque Home Prices Feb15-Apr30, 1993)
. mi estimate (ratio: _bl[agel/_b[sqft]):

> regress price tax sqft age nfeatures ne custom corner

of the coefficients, say,

Multiple-imputation estimates Imputations 30

Linear regression Number of obs = 117

Average RVI = 0.0648

Largest FMI = 0.2533

Complete DF = 109

DF adjustment: Small sample DF: min = 69.12

avg = 94.02

max = 105.51

Model F test: Equal FMI F(7, 106.5) = 67.18

Within VCE type: 0LS Prob > F = 0.0000

price Coef. Std. Err. t P>t [95% Conf. Intervall

tax .6768015 .1241568 5.45 0.000 .4301777 .9234253

sqft .2118129 .069177 3.06 0.003 .0745091 .3491168

age .2471445 1.653669 0.15 0.882 -3.051732 3.546021

nfeatures 9.288033 13.30469 0.70 0.487 -17.12017 35.69623

ne 2.518996 36.99365 0.07 0.946 -70.90416 75.94215

custom 134.2193 43.29755 3.10 0.002 48.35674 220.0818

corner -68.58686 39.9488 -1.72 0.089 -147.7934 10.61972

_cons 123.9118 71.05816 1.74 0.085 -17.19932 265.0229

Transformations Average RVI 0.2899

Largest FMI 0.2316

Complete DF = 109

DF adjustment: Small sample DF: min 72.51

avg = 72.51

Within VCE type: 0Ls max = 72.51
ratio: _blagel/_blsqft]

price Coef. Std. Err. t P>t [95% Conf. Intervall

ratio 1.44401 8.217266 0.18 0.861 -14.93485 17.82287

We use the nlcom syntax to specify the transformation: (ratio: _b[agel/_b[sqft]) defines the
transformation and its name is ratio. All transformations must be specified following mi estimate
and before the colon, and must be bound in parentheses.

A separate table containing the estimate of the ratio is displayed following the estimates of
coefficients. If desired, we can suppress the table containing the estimates of coefficients by specifying
the nocoef option. The header reports the average RVI due to nonresponse, the largest FMI, and the
summaries of the degrees of freedom specific to the estimated transformations. Because we specified
only one transformation, the minimum, average, and maximum degrees of freedom are the same.
They correspond to the individual degrees of freedom for ratio.

See [MI] mi test for an example of linear transformation.

mi estimate — Estimation using multiple imputations 59

Example 6: Monte Carlo error estimates

Multiple imputation is a stochastic procedure. Each time we reimpute our data, we get different
sets of imputations because of the randomness of the imputation step, and therefore we get different
multiple-imputation estimates. However, we want to be able to reproduce MI results. Of course, we
can always set the random-number seed to ensure reproducibility by obtaining the same imputed
values. However, what if we use a different seed? Would we not want our results to be similar
regardless of what seed we use? This leads us to a notion we call statistical reproducibility—we
want results to be similar across repeated uses of the same imputation procedure; that is, we want to
minimize the simulation error associated with our results.

To assess the level of simulation error, White, Royston, and Wood (2011) propose to use a Monte
Carlo error of the MI results, defined as the standard deviation of the results across repeated runs
of the same imputation procedure using the same data. The authors suggest evaluating Monte Carlo
error estimates not only for parameter estimates but also for other statistics, including p-values and
confidence intervals, as well as MI statistics including RVI and FMI.

Clearly, as the number of imputations increases, the simulation error decreases. Consider the total
Ml variance T' = U + B+ B/M of a single parameter, where U is the within-imputation variance and
B is the between-imputation variance; see Methods and formulas for details. The term B/M reflects
the increase in variance due to using a finite number of imputations, and its square root defines the
Monte Carlo error associated with a single parameter. In general, Monte Carlo error estimates are
obtained by applying a jackknife procedure to MI results. That is, an MCE estimate of an MI statistic
is the standard error of the mean of the pseudovalues for that statistic, computed by omitting one
imputation at a time; see [R] jackknife for technical details.

Consider our heart attack data analysis from example 1. Let’s compute Monte Carlo error estimates
of MI results. To obtain MCE estimates, we specify the mcerror option during estimation:

60

mi estimate — Estimation using multiple imputations

. use http://www.stata-press.com/data/r12/mheart1s20
(Fictional heart attack data; bmi missing)

. mi estimate, dots mcerror: logit attack smokes age bmi hsgrad female

Imputations (20):
......... 10.........20 done

Multiple-imputation estimates Imputations 20
Logistic regression Number of obs = 154
Average RVI = 0.0312

Largest FMI = 0.1355

DF adjustment: Large sample DF: min = 1060.38
avg = 223362.56

max = 493335.88

Model F test: Equal FMI F(5,71379.3) = 3.59
Within VCE type: 0IM Prob > F 0.0030
attack Coef. Std. Err. t P>|t| [95% Conf. Intervall
smokes 1.198595 .3578195 3.35 0.001 .4972789 1.899911
.0068541 .0008562 0.01 0.000 .0056572 .0082212

age .0360159 .0154399 2.33 0.020 .0057541 .0662776

.0002654 .0000351 0.01 0.001 .0002319 .0003108

bmi .1039416 .0476136 2.18 0.029 .010514 .1973692

.0038014 .0008904 0.09 0.006 .0039928 .0044049

hsgrad .1578992 .4049257 0.39 0.697 -.6357464 .9515449
.0091517 .0010209 0.02 0.016 .0086215 .0100602

female -.1067433 .4164735 -0.26 0.798 -.9230191 .7095326
.0077566 .0009279 0.02 0.015 .006985 .0088408

_cons -5.478143 1.685075 -3.26 0.001 -8.782394 -2.173892
.1079841 .0248274 0.07 0.000 .1310618 .1050817

Note: values displayed beneath estimates are Monte Carlo error estimates.

we can be reasonably sure about the statistical reproducibility of our results.

suppress the coefficient table by using the nocitable option.

As the note describes, MCE estimates are displayed beneath parameter estimates. Following practical
guidelines from White, Royston, and Wood (2011), MCE estimates of coefficients should be less than
10% of the standard errors of the coefficients; MCE estimates of test statistics should be approximately
0.1; and MCE estimates of p-values should be approximately 0.01 when the true p-value is 0.05 and
0.02 when the true p-value is 0.1. Our results based on 20 imputations satisfy these conditions, so

We can also see Monte Carlo error estimates for other MI statistics reported by the vartable
option. To redisplay Monte Carlo error estimates, we use the mcerror option upon replay. We also

mi estimate — Estimation using multiple imputations 61

. mi estimate, vartable mcerror nocitable

Multiple-imputation estimates Imputations = 20
Logistic regression
Variance information

Imputation variance Relative

Within Between Total RVI FMI efficiency

smokes .127048 .00094 .128035 .007765 .007711 .999615

.000559 .000211 .000613 .001744 .00172 .00009

age .000237 1.4e-06 .000238 .006245 .00621 .99969

8.6e-07 4.6e-07 1.1e-06 .002054 .002033 .000107

bmi .001964 .000289 .002267 .154545 .135487 .993271

.000026 .000077 .000085 .04134 .031986 .00166

hsgrad .162206 .001675 .163965 .010843 .010739 .999463

.000521 .000552 .000827 .003579 .003516 .000185

female .172187 .001203 .17345 .007338 .00729 .999636

.000614 .000297 .000773 .001811 .001788 .000094

_cons 2.5946 .233211 2.83948 .094377 .086953 .995671

.029651 .070081 .083436 .028332 .024216 .001263

Note: values displayed beneath estimates are Monte Carlo error estimates.

MCE estimates of all statistics are small.

What if we want to see MCE estimates of odds ratios? We know that we can use the or option on
replay to redisplay results as odds ratios. However, using this option in combination with mcerror
upon replay will not display MCE estimates of odds ratios:

. mi estimate, or mcerror

Multiple-imputation estimates Imputations = 20
Logistic regression Number of obs = 154
Average RVI = 0.0312

Largest FMI = 0.1355

DF adjustment: Large sample DF: min = 1060.38
avg = 223362.56

max = 493335.88

Model F test: Equal FMI F(5,71379.3) = 3.59
Within VCE type: 0IM Prob > F = 0.0030
attack | Odds Ratio Std. Err. t P>|t| [95% Conf. Intervall
smokes 3.315455 1.186334 3.35 0.001 1.644241 6.685298

age 1.036672 .0160061 2.33 0.020 1.005771 1.068523

bmi 1.109536 .052829 2.18 0.029 1.010569 1.218194

hsgrad 1.171048 .4741875 0.39 0.697 .5295401 2.589707
female .8987564 .3743082 -0.26 0.798 .3973177 2.033041

_cons .0041771 .0070387 -3.25 0.001 .0001534 .1137342

Note: Monte Carlo error estimates are not available for exponentiated

coefficients.

The same applies to a combination of the level() and mcerror options specified on replay to
try to display MCE estimates of confidence intervals for a confidence level other than the one used
during estimation.

62 mi estimate — Estimation using multiple imputations

To compute MCE estimates for odds ratios in addition to coefficients, you need to specify the
or option in combination with mcerror during estimation. Similarly, to compute MCE estimates for
confidence intervals with a specific confidence level, you need to specify the level() option in
combination with mcerror during estimation. Otherwise, MCE estimates of 95% confidence intervals
are computed.

. mi estimate, mcerror or level(90): logit attack smokes age bmi hsgrad female

Multiple-imputation estimates Imputations = 20
Logistic regression Number of obs = 154
Average RVI = 0.0312

Largest FMI = 0.1355

DF adjustment: Large sample DF: min = 1060.38
avg = 223362.56

max = 493335.88

Model F test: Equal FMI F(5,71379.3) = 3.59
Within VCE type: 0IM Prob > F = 0.0030
attack | Odds Ratio Std. Err. t P>|t] [90% Conf. Intervall
smokes 3.315455 1.186334 3.35 0.001 1.840491 5.97245
.0227267 .0104806 0.01 0.000 .0107398 .0477351

age 1.036672 .0160061 2.33 0.020 1.010676 1.063337

.0002752 .000039 0.01 0.001 .0002388 .0003221

bmi 1.109536 .052829 2.18 0.029 1.025885 1.200007

.0042178 .001033 0.09 0.006 .0040064 .0051089

hsgrad 1.171048 .4741875 0.39 0.697 .6016087 2.279478
.0107188 .0049031 0.02 0.016 .0052248 .02254

female .8987564 .3743082 -0.26 0.798 .4530363 1.782998
.0069686 .00341 0.02 0.015 .0032087 .0154128

_cons .0041771 .0070387 -3.25 0.001 .000261 .0668412
.0004519 .0007338 0.07 0.000 .0000336 .0068716

Note: values displayed beneath estimates are Monte Carlo error estimates.

Similarly to the MCE estimates for coefficients, the MCE estimates for odds ratios are within acceptable
limits.

If you wish to obtain Monte Carlo error estimates of confidence intervals for a number of different
confidence levels, a more computationally efficient way of doing so is to use mi estimate using
(see [MI] mi estimate using).

First, use mi estimate to save individual estimation results from a model to an estimation file:
. mi estimate, saving(miest): ...
Then use mi estimate using to obtain MCE estimates for different confidence intervals,

. mi estimate using miest, mcerror level(90) ...
. mi estimate using miest, mcerror level(80) ...

or for odds ratios,

. mi estimate using miest, mcerror or ...

without refitting the model.

mi estimate — Estimation using multiple imputations 63

Potential problems that can arise when using mi estimate

There are two problems that can arise when using mi estimate:
1. The estimation sample varies across imputations.
2. Different covariates are omitted across the imputations.

mi estimate watches for and issues an error message if either of these problems occur. Below we
explain how each can arise and what to do about it. If you see one of these messages, be glad
that mi estimate mentioned the problem, because otherwise, it might have gone undetected. A
varying-estimation sample may result in biased or inefficient estimates. Different covariates being
omitted always results in the combined results being biased.

If the first problem arises, mi estimate issues the error message “estimation sample varies between
m = # and m = #”. mi estimate expects that when it runs the estimation command on the first
imputation, on the second, and so on, the estimation command will use the same observations in each
imputation. mi estimate does not just count, it watches which observations are used.

Perhaps the difference is due to a past mistake, such as not having imputed all the missing values.
Perhaps you even corrupted your mi data so that the imputed variable is missing in some imputations
and not in others.

Another reason the error can arise is because you specified an if condition based on imputed or
passive variables. mi estimate considers this a mistake but, if this is your intent, you can reissue
the mi estimate command and include the esampvaryok option.

Finally, it is possible that the varying observations are merely a characteristic of the estimator
when combined with the two different imputed datasets. In this case, just as in the previous one, you
can reissue mi estimate with the esampvaryok option.

The easy way to diagnose why you got this error is to use mi xeq (see [MI] mi xeq) to run the
estimation command separately on the two imputations mentioned in the error message. Alternatively,
you can rerun the mi estimate command immediately with the esampvaryok option and with the
esample (varname) option, which will create in new variable varname the e (sample) from each of
the individual estimations. If you use the second approach, you must first mi convert your data to
flong or flongsep if they are not recorded in that style already; see [MI] mi convert for details.

The second problem we mentioned concerns omitted variables as opposed to omitted observations.
mi estimate reports that “omitted variables vary” and goes on to mention the two imputations
between which the variation was detected.

This can be caused when you include factor variables but did not specify base categories. It was
the base categories that differed in the two imputations. That could happen if you specified i.group.
By default, Stata chooses to omit the most frequent category. If group were imputed or passive, then
the most frequent category could vary between two imputations. The solution is to specify the base
category for yourself by typing, for instance, b2.group; see [U] 11.4.3 Factor variables.

There are other possible causes. Varying omitted variables 1) includes different variables being
omitted in the two imputations and 2) includes no variables being omitted in one imputation and, in
the other, one or more variables being omitted.

When different variables are being omitted, it is usually caused by collinearity, and one of the
variables needs to be dropped from the model. Variables x1 and x2 are collinear; sometimes the
estimation command is choosing to omit x1 and other times, x2. The solution is that you choose
which to omit by removing it from your model.

If no variables were omitted in one of the imputations, the problem is more difficult to explain.
Say that you included i.group in your model, the base category remained the same for the two

64 mi estimate — Estimation using multiple imputations

imputations, but in one of the imputations, no one is observed in group 3, and thus no coefficient for
group 3 could be estimated. You choices are to accept that you cannot estimate a group 3 coefficient
and combine group 3 with, say, group 4, or to drop all imputations in which there is no one in group
3. If you want to drop imputations 3, 9, and 12, you type mi set m —-= (3,9,12); see [MI] mi set.

Q Technical note

As we already mentioned, mi estimate obtains MI estimates by using the combination rules to
pool results from the specified command executed separately on each imputation. As such, certain
concepts (for example, likelihood function) and most postestimation tools specific to the command
may not be applicable to the MI estimates; see Analysis of multiply imputed data in [MI] intro
substantive. MI estimates may not even have a valid variance—covariance matrix associated with
them when the number of imputations is smaller than the number of estimated parameters. For these
reasons, the system matrices e(b) and e(V) are not set by mi estimate. If desired, you can save
the MI estimates and their variance—covariance estimates in e(b) and e (V) by specifying the post
option. See [MI] mi estimate postestimation for postestimation tools available after mi estimate.

a
Saved results
mi estimate saves the following in e():
Scalars
e(df _avg[_Q]_mi) average degrees of freedom
e(df _c_mi) complete degrees of freedom (if originally saved by estimation_command in e (df_r))
e (df max[_Q]_mi) maximum degrees of freedom
e(df _min[_Q]_mi) minimum degrees of freedom
e(df _m_mi) MI model test denominator (residual) degrees of freedom
e(df _r_mi) MI model test numerator (model) degrees of freedom
e(esampvary_mi) varying-estimation sample flag (0 or 1)
e(F_mi) model test F statistic
e(k_exp_mi) number of expressions (transformed coefficients)
e(M_mi) number of imputations
e(N_mi) number of observations (minimum, if varies)
e(N_min_mi) minimum number of observations
e(N_max_mi) maximum number of observations
e(N_g_mi) number of groups
e(g_min_mi) smallest group size
e(g_avg_mi) average group size
e(g_max_mi) largest group size
e(p_mi) MI model test p-value
e(cilevel_mi) confidence level used to compute Monte Carlo error estimates of confidence intervals
e(fmi_max[_Q]_mi) largest FMI
e(rvi_avg[_Q]_mi) average RVI
e(rvi_avg_F_mi) average RVI associated with the residual degrees of freedom for model test

e(ufmi_mi) 1 if unrestricted FMI model test is performed, O if equal FMI model test is performed

mi estimate — Estimation using multiple imputations 65

Macros
e(mi)
e(cmdline_mi)
e(prefix_mi)
e(cmd_mi)
e(cmd)
e(title_mi)
e(wvce_mi)
e(modeltest_mi)
e(dfadjust_mi)
e(expnames_mi)
e(exp#_mi)
e(rc_mi)
e(m_mi)
e(m_est_mi)
e(names_vvl_mi)
e(names_vvm_mi)

e(names_vvs_mi)

Matrices
e(b)
e(V)
e(Cns)

e(N_g_mi)
e(g_min_mi)
e(g—_avg-mi)
e(g_max_mi)

e (b[-Q]-mi)
e(V[-Q]mi)
e(Cns_mi)

e (W[-Q]mi)
e(B[-Q]-mi)
e(re[_Q]_mi)
e(rvi[_Q]-mi)
e(fmi[_Q]—mi)
e(df[_Q]_mi)
e(pise[-Q]-mi)
e (vs_names_vs_mi)

mi

command as typed

mi estimate

name of estimation_command

mi estimate (equals e(cmd_mi) when post is used)
“Multiple-imputation estimates”

title used to label within-imputation variance in the table header

title used to label the model test in the table header

title used to label the degrees-of-freedom adjustment in the table header
names of expressions specified in spec

expressions of the transformed coefficients specified in spec

return codes for each imputation

specified imputation numbers

imputation numbers used in the computation

command-specific e() macro names that contents varied across imputations

command-specific e() matrix names that values varied across imputations
(excluding b, V, and Cns)

command-specific e() scalar names that values varied across imputations

MI estimates of coefficients (equals e(b_mi), saved only if post is used)

variance—covariance matrix (equals e(V_mi), saved only if post is used)

constraint matrix (for constrained estimation only; equals e (Cns_mi),
saved only if post is used)

group counts

group-size minimums

group-size averages

group-size maximums

MI estimates of coefficients (or transformed coefficients)

variance—covariance matrix (total variance)

constraint matrix (for constrained estimation only)

within-imputation variance matrix

between-imputation variance matrix

parameter-specific relative efficiencies

parameter-specific RVIs

parameter-specific FMIs

parameter-specific degrees of freedom

parameter-specific percentages increase in standard errors

values of command-specific e() scalar vs_names that varied across imputations

vs_names include (but are not restricted to) df _r, N, N_strata, N_psu, N_pop, N_sub, N_postrata,
N_stdize, N_subpop, N_over, and converged.

Results N_g_mi, g_min_mi, g_avg_mi, and g_max_mi are saved for panel-data models only. The
results are saved as matrices for mixed-effects models and as scalars for other panel-data models.

If transformations are specified, the corresponding estimation results are saved with the _Q_mi suffix,

as described above.

Command-specific e() results that remain constant across imputations are also saved. Command-
specific results that vary from imputation to imputation are posted as missing, and their
names are saved in the corresponding macros e(names_vvl_mi), e(names_vvm_mi), and
e(names_vvs_mi). For some command-specific e() scalars (see vs_names above), their val-
ues from each imputation are saved in a corresponding matrix with the _vs_mi suffix.

Methods and formulas

Let q define a column vector of parameters of interest. For example, q may be a vector of
coefficients (or functions of coefficients) from a regression model. Let {(q;, U;):i=1,2,..., M}

66 mi estimate — Estimation using multiple imputations

be the completed-data estimates of q and the respective variance—covariance estimates from M
imputed datasets.

The MI estimate of q is
M
ady = i z; qdi
1=

The variance—covariance estimate (VCE) of q;, (total variance) is

— 1
T=U+(1+—)B
+ (+M)

where U = Zf\il U, /M is the within-imputation variance—covariance matrix and B = Zfil(qi -
dn)(qi —day)’/(M — 1) is the between-imputation variance—covariance matrix.

Methods and formulas are presented under the following headings:

Univariate case
Multivariate case

Univariate case

Let Q, Q. B, U, and T correspond to the scalar analogues of the above formulas. Univariate
inferences are based on the approximation

T7V2(Q-Qu)’ ~t (1)
where ?,, denotes a Student’s ¢ distribution with v degrees of freedom, which depends on the number of

imputations, M, and the increase in variance of estimates due to missing data. Under the large-sample
assumption with respect to complete data, the degrees of freedom is

Viarge = (M — 1) (1 + i)Q (2)

where .
1+M~)B
U
is an RVI due to missing data. Under the small-sample assumption, the degrees of freedom is
1 1\
Vgmall = (+ =) (4)
Vlarge Vobs

where Upps = Ve(Ve+1)(1 —7)/(ve+3), v = (14 1/M)B/T, and v, are the complete degrees of
freedom, the degrees of freedom used for inference when data are complete (Barnard and Rubin 1999).

The small-sample adjustment (4) is applied to the degrees of freedom v when the specified command
saves the residual degrees of freedom in e(df_r). This number of degrees of freedom is used as
the complete degrees of freedom, v, in the computation. (If e (df _r) varies across imputations, the
smallest is used in the computation, resulting in conservative inference.) If e (df _r) is not set by the
specified command or if the nosmall option is specified, then (2) is used to compute the degrees of
freedom, v.

mi estimate — Estimation using multiple imputations 67

Parameter-specific significance levels, confidence intervals, and degrees of freedom as reported by
mi estimate are computed using the formulas above.
The percentage of standard-error increase due to missing data, as reported by mi estimate,
—1/2
dftable, is computed as {(T/U) 2 1} x 100%.

The FMIs due to missing data and relative efficiencies reported by mi estimate, vartable are
computed as follows.

In the large-sample case, the fraction of information about () missing due to nonresponse (Ru-
bin 1987, 77) is
7+ 2/(Marge +3)
r+1
where the RVI, r, is defined in (3). In the small-sample case, the fraction of information about ()
missing due to nonresponse (Barnard and Rubin 1999, 953) is

A=

)\(Vsmall) U
A=1— S fomall) =
T

)‘(VC)
where A\(u) = (u+1)/(u+ 3).

The relative (variance) efficiency of using M imputations versus the infinite number of imputations
is RE= (1 + \/M)~! (Rubin 1987, 114).

Also see Rubin (1987, 76-77) and Schafer (1997, 109-111) for details.

Multivariate case

The approximation (1) can be generalized to the multivariate case:

(@—ay)T (@ —au) [k~ Frn (5)

where F},, denotes an F' distribution with & = rank(7") numerator degrees of freedom and v

denominator degrees of freedom defined as in (2), where the RVI, 7, is replaced with the average RVI,
Tave-

Fave = (1 + 1/M)te(BU ') /k

The approximation (5) is inadequate with a small number of imputations because the between-
imputation variance, B, cannot be estimated reliably based on small M. Moreover, when M is smaller
than the number of estimated parameters, B does not have a full rank. As such, the total variance,
T, may not be a valid variance—covariance matrix for q,,.

One solution is to assume that the between-imputation and within-imputation matrices are pro-
portional, that is B = A x U (Rubin 1987, 78). This assumption implies that FMIs of all estimated
parameters are equal. Under this assumption, approximation (5) becomes

(14 7ave) M@= @)U (a—ay)'/k ~ Fr, (6)

where k& = rank(U) and v, is computed as described in Li et al. (1991, 1067).
Also see Rubin (1987, 77-78) and Schafer (1997, 112-114) for details.

We refer to (6) as an equal FMI test and to (5) as the unrestricted FMI test. By default, mi
estimate uses the approximation (6) for the model test. If the ufmitest option is specified, it uses
the approximation (5) for the model test.

68 mi estimate — Estimation using multiple imputations

Similar to the univariate case, the degrees of freedom v, and v are adjusted for small samples
when the command saves the completed-data residual degrees of freedom in e(df_r).

In the small-sample case, the degrees of freedom v, is computed as described in Reiter (2007)
(in the rare case, when k(M — 1) < 4, v, = (k + 1)v1/2, where vy is the degrees of freedom
from Barnard and Rubin [1999]). In the small-sample case, the degrees of freedom v is computed as
described in Barnard and Rubin (1999) and Marchenko and Reiter (2009).

Acknowledgments

The mi estimate command was inspired by the user-written command mim by John Carlin and
John Galati, both of the Murdoch Children’s Research Institute and University of Melbourne, Patrick
Royston of the MRC Clinical Trials Unit, and Ian White of the MRC Biostatistics Unit. We greatly
appreciate the authors for their extensive body of work in Stata in the multiple-imputation area.

References

Barnard, J., and D. B. Rubin. 1999. Small-sample degrees of freedom with multiple imputation. Biometrika 86:
948-955.

Cleves, M. A.,, W. W. Gould, R. G. Gutierrez, and Y. V. Marchenko. 2010. An Introduction to Survival Analysis
Using Stata. 3rd ed. College Station, TX: Stata Press.

Li, K.-H., X.-L. Meng, T. E. Raghunathan, and D. B. Rubin. 1991. Significance levels from repeated p-values with
multiply-imputed data. Statistica Sinica 1: 65-92.

Marchenko, Y. V., and J. P. Reiter. 2009. Improved degrees of freedom for multivariate significance tests obtained
from multiply imputed, small-sample data. Stata Journal 9: 388-397.

Mortimore, P., P. Sammons, L. Stoll, D. Lewis, and R. Ecob. 1988. School Matters. Berkeley, CA: University of
California Press.

Reiter, J. P. 2007. Small-sample degrees of freedom for multi-component significance tests with multiple imputation
for missing data. Biometrika 94: 502-508.

Royston, P, J. B. Carlin, and I. R. White. 2009. Multiple imputation of missing values: New features for mim. Stata
Journal 9: 252-264.

Rubin, D. B. 1987. Multiple Imputation for Nonresponse in Surveys. New York: Wiley.
Schafer, J. L. 1997. Analysis of Incomplete Multivariate Data. Boca Raton, FL: Chapman & Hall/CRC.

White, I. R., and P. Royston. 2009. Imputing missing covariate values for the Cox model. Statistics in Medicine 28:
1982-1998.

White, I. R., P. Royston, and A. M. Wood. 2011. Multiple imputation using chained equations: Issues and guidance
for practice. Statistics in Medicine 30: 377-399.

Also see
[MI] mi estimate using — Estimation using previously saved estimation results
[MI] mi estimate postestimation — Postestimation tools for mi estimate
[MI] intro substantive — Introduction to multiple-imputation analysis
[MI] intro — Introduction to mi

[MI] Glossary

http://www.stata-press.com/books/saus3.html
http://www.stata-press.com/books/saus3.html
http://www.stata-journal.com/article.html?article=st0170
http://www.stata-journal.com/article.html?article=st0170
http://www.stata-journal.com/article.html?article=st0139_1

Title

mi estimate using — Estimation using previously saved estimation results

Syntax

Compute MI estimates of coefficients using previously saved estimation results

mi estimate using miestfile [, options]

Compute MI estimates of transformed coefficients using previously saved estimation results

mi estimate [spec] using miestfile [, options]

where spec may be one or more terms of the form ([name:] exp). exp is any function of the
parameter estimates allowed by nlcom; see [R] nlcom.

miestfile .ster contains estimation results previously saved by mi estimate, saving(miestfile);
see [MI] mi estimate.

options Description
Options
nimputations (#) specify number of imputations to use; default is to use all saved
imputations

imputations (numlist) specify which imputations to use
estimations (numlist) specify which estimation results to use

mcerror compute Monte Carlo error estimates
ufmitest perform unrestricted FMI model test
nosmall do not apply small-sample correction to degrees of freedom
Tables
[@] citable suppress/display standard estimation table containing
parameter-specific confidence intervals; default is citable
dftable display degrees-of-freedom table; dftable implies nocitable
vartable display variance information about estimates; vartable implies citable
table_options control table output
display_options control column formats, row spacing, and display of omitted

variables and base and empty cells

Reporting
level (#) set confidence level; default is 1level (95)
dots display dots as estimations are performed
noisily display any output from nlcom if transformations are specified
trace trace nlcom if transformations are specified; implies noisily
replay replay command-specific results from each individual estimation in

miestfile . ster; implies noisily

cmdlegend display the command legend
nogroup suppress summary about groups displayed for xt commands
Xtme_options control output from mixed-effects commands

69

70 mi estimate using — Estimation using previously saved estimation results

Advanced

errorok allow estimation even when nlcom errors out in some imputations;
such imputations are discarded from the analysis

coeflegend display legend instead of statistics

nowarning suppress the warning about varying estimation samples

noerrnotes suppress error notes associated with failed estimation results in
miestfile . ster

showimputations show imputations saved in miestfile . ster

eform_option display coefficient table in exponentiated form

post post estimated coefficients and VCE to e(b) and e (V)

coeflegend, nowarning, noerrnotes, showimputations, eform_option, and post do not appear in the dialog

box.
table_options Description
noheader suppress table header(s)
notable suppress table(s)
nocoef suppress table output related to coefficients
nocmdlegend suppress command legend that appears in the presence of

transformed coefficients when nocoef is used

notrcoef suppress table output related to transformed coefficients
nolegend suppress table legend(s)
nocnsreport do not display constraints

See [MI] mi estimate postestimation for features available after estimation. To replay results, type
mi estimate without arguments.

Menu

Statistics > Multiple imputation

Description

mi estimate using miestfile is for use after mi estimate, saving(miestfile) : It allows
obtaining multiple-imputation (MI) estimates, including standard errors and confidence intervals, for
transformed coefficients or the original coefficients, this time calculated on a subset of the imputations.
The transformation can be linear or nonlinear.

Options

_ [Opions|
nimputations (#) specifies that the first # imputations be used; # must be My, < # < M, where
Min = 3 if mcerror is specified and M,;, = 2, otherwise. The default is to use all imputations,

M. Only one of nimputations(), imputations(), or estimations() may be specified.

mi estimate using — Estimation using previously saved estimation results 71

imputations (numlist) specifies which imputations to use. The default is to use all of them. numlist
must contain at least two numbers corresponding to the imputations saved in miestfile.ster.
If mcerror is specified, numlist must contain at least three numbers. You can use the show-
imputations option to display imputations currently saved in miestfile.ster. Only one of
nimputations(), imputations(), or estimations() may be specified.

estimations (numlist) does the same thing as imputations (numlist), but this time the imputations
are numbered differently. Say that miestfile . ster was created by mi estimate and mi estimate
was told to limit itself to imputations 1, 3, 5, and 9. With imputations(), the imputations are
still numbered 1, 3, 5, and 9. With estimations (), they are numbered 1, 2, 3, and 4. Usually,
one does not specify a subset of imputations when using mi estimate, and so usually, the
imputations() and estimations() options are identical. The specified numlist must contain
at least two numbers. If mcerror is specified, numlist must contain at least three numbers. Only
one of nimputations(), imputations(), or estimations() may be specified.

mcerror specifies to compute Monte Carlo error (MCE) estimates for the results displayed in the
estimation, degrees-of-freedom, and variance-information tables. MCE estimates reflect variability
of MI results across repeated uses of the same imputation procedure and are useful for determining
an adequate number of imputations to obtain stable MI results; see White, Royston, and Wood (2011)
for details and guidelines.

MCE estimates are obtained by applying the jackknife procedure to multiple-imputation results.
That is, the jackknife pseudovalues of MI results are obtained by omitting one imputation at a
time; see [R] jackknife for details about the jackknife procedure. As such, the Monte Carlo error
computation requires at least three imputations.

If 1level() is specified during estimation, MCE estimates are obtained for confidence intervals
with the specified confidence level instead of using the default 95% confidence level. If any of
the options described in [R] eform_option is specified during estimation, MCE estimates for the
coefficients, standard errors, and confidence intervals in the exponentiated form are also computed.
mcerror can also be used upon replay to display MCE estimates. Otherwise, MCE estimates are
not reported upon replay even if they were previously computed.

ufmitest specifies that the unrestricted fraction missing information (FMI) model test be used. The
default test performed assumes equal fractions of information missing due to nonresponse for all
coefficients. This is equivalent to the assumption that the between-imputation and within-imputation
variances are proportional. The unrestricted test may be preferable when this assumption is suspect
provided the number of imputations is large relative to the number of estimated coefficients.

nosmall specifies that no small-sample correction be made to the degrees of freedom. By default,
individual tests of coefficients (and transformed coefficients) use the small-sample correction
of Barnard and Rubin (1999), and the overall model test uses the small-sample correction of
Reiter (2007).

All table options below may be specified at estimation time or when redisplaying previously estimated
results.

citable and nocitable specify whether the standard estimation table containing parameter-specific
confidence intervals is displayed. The default is citable. nocitable can be used with vartable
to suppress the confidence-interval table.

dftable displays a table containing parameter-specific degrees of freedom and percentages of increase
in standard errors due to nonresponse. dftable implies nocitable.

72 mi estimate using — Estimation using previously saved estimation results

vartable displays a table reporting variance information about MI estimates. The table contains
estimates of within-imputation variances, between-imputation variances, total variances, relative
increases in variance due to nonresponse, fractions of information about parameter estimates missing
due to nonresponse, and relative efficiencies for using finite M rather than a hypothetically infinite
number of imputations. vartable implies citable.

table_options control the appearance of all displayed table output:
noheader suppresses all header information from the output. The table output is still displayed.
notable suppresses all tables from the output. The header information is still displayed.

nocoef suppresses the display of tables containing coefficient estimates. This option affects the
table output produced by citable, dftable, and vartable.

nocmdlegend suppresses the table legend showing the command line, used to produce results in
miestfile . ster, from the output. This legend appears above the tables containing transformed
coefficients (or above the variance-information table if vartable is used) when nocoef is
specified.

notrcoef suppresses the display of tables containing estimates of transformed coefficients (if
specified). This option affects the table output produced by citable, dftable, and vartable.

nolegend suppresses all table legends from the output.
nocnsreport; see [R] estimation options.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat (% fint), pformat (% fimt), and sformat (%fmt); see [R] estimation options.

Reporting

level (#); see [R] estimation options.

dots specifies that dots be displayed as estimations of transformed coefficients are successfully
completed. An x is displayed if nlcom fails to estimate one of the transformed coefficients
specified in spec. This option is relevant only if transformations are specified.

noisily specifies that any output from nlcom, used to obtain the estimates of transformed coefficients,
be displayed. This option is relevant only if transformations are specified.

trace traces the execution of nlcom. trace implies noisily and is relevant only if transformations
are specified.

replay replays estimation results from miestfile.ster, previously saved by mi estimate, sav-
ing (miestfile) . This option implies noisily.

cmdlegend requests that the command line corresponding to the estimation command used to produce
the estimation results saved in miestfile .ster be displayed. cmdlegend may be specified at run
time or when redisplaying results.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) as well as other command-specific information displayed for xt
commands.

Xtme_options: variance, noretable, nofetable, and estmetric. These options are relevant
only with the mixed-effects commands such as xtmixed (see [XT] xtmixed), xtmelogit (see
[XT] xtmelogit), and xtmepoisson (see [XT]| xtmepoisson). The estmetric option is implied
when vartable or dftable is used.

mi estimate using — Estimation using previously saved estimation results 73

Advanced

errorok specifies that estimations of transformed coefficients that fail be skipped and the combined
results be based on the successful estimation results. The default is that mi estimate stops if an
individual estimation fails. If the miestfile . ster file contains failed estimation results, mi estimate
using does not error out; it issues notes about which estimation results failed and discards these
estimation results in the computation. You can use the noerrnotes option to suppress the display
of the notes.

The following options are available with mi estimate using but are not shown in the dialog box:

coeflegend; see [R] estimation options. coeflegend implies nocitable and cannot be combined
with citable or dftable.

nowarning suppresses the warning message at the bottom of table output that occurs if the estimation
sample varies and esampvaryok is specified. See Potential problems that can arise when using
mi estimate in [MI] mi estimate for details.

noerrnotes suppresses notes about failed estimation results. These notes appear when miestfile . ster
contains estimation results, previously saved by mi estimate, saving(miestfile), from imputations
for which the estimation command used with mi estimate failed to estimate parameters.

showimputations displays imputation numbers corresponding to the estimation results saved in
miestfile . ster. showimputations may be specified at run time or when redisplaying results.

eform_option; see [R] eform_option. mi estimate using reports results in the coefficient metric
under which the combination rules are applied. You may use the appropriate eform_option to
redisplay results in exponentiated form, if desired. If dftable is also specified, the reported
degrees of freedom and percentage increases in standard errors are not adjusted and correspond to
the original coefficient metric.

post requests that MI estimates of coefficients and their respective VCEs be posted in the usual way.
This allows the use of estimation_command-specific postestimation tools with MI estimates. There
are issues; see Using the command-specific postestimation tools in [MI] mi estimate postestimation.
post may be specified at estimation time or when redisplaying previously estimated results.

Remarks

mi estimate using is convenient when refitting models using mi estimate would be tedious or
time consuming. In such cases, you can perform estimation once and save the uncombined, individual
results by specifying mi estimate’s saving(miestfile) option. After that, you can repeatedly use
mi estimate using miestfile to estimate linear and nonlinear transformations of coefficients or to
obtain MI estimates using a subset of saved imputations.

mi estimate using performs the pooling step of the MI procedure; see [MI] intro substantive.
That is, it combines completed-data estimates from the miestfile.ster file by applying Rubin’s
combination rules (Rubin 1987, 77).

74 mi estimate using — Estimation using previously saved estimation results

> Example 1
Recall the analysis of house resale prices from Example 2: Completed-data linear regression
analysis in [MI] mi estimate:

. use http://www.stata-press.com/data/r12/mhouses1993s30
(Albuquerque Home Prices Feb15-Apr30, 1993)

. mi estimate, saving(miest): regress price tax sqft age nfeatures ne custom cormer

Multiple-imputation estimates Imputations = 30
Linear regression Number of obs = 117
Average RVI = 0.0648

Largest FMI = 0.2533

Complete DF = 109

DF adjustment: Small sample DF: min = 69.12
avg = 94.02

max = 105.51

Model F test: Equal FMI F(7, 106.5) = 67.18
Within VCE type: OLS Prob > F = 0.0000
price Coef. Std. Err. t P>t [95% Conf. Intervall

tax .6768015 .1241568 5.45 0.000 .4301777 .9234253

sqft .2118129 .069177 3.06 0.003 .0745091 .3491168

age .2471445 1.653669 0.15 0.882 -3.051732 3.546021
nfeatures 9.288033 13.30469 0.70 0.487 -17.12017 35.69623

ne 2.518996 36.99365 0.07 0.946 -70.90416 75.94215

custom 134.2193 43.29755 3.10 0.002 48.35674 220.0818
corner -68.58686 39.9488 -1.72 0.089 -147.7934 10.61972

_cons 123.9118 71.05816 1.74 0.085 -17.19932 265.0229

In the above, we use the saving() option to save the individual completed-data estimates from a
regression analysis in Stata estimation file miest.ster. We can now use mi estimate using to
recombine the first 5 imputations, and ignore the remaining 25, without reestimation:

. mi estimate using miest, ni(5)

Multiple-imputation estimates Imputations = 5
Linear regression Number of obs = 117
Average RVI = 0.0685

Largest FMI = 0.2075

Complete DF = 109

DF adjustment: Small sample DF: min = 48.59
avg = 85.22

max = 104.79

Model F test: Equal FMI F(7, 103.9) = 67.50
Within VCE type: 0LS Prob > F = 0.0000
price Coef. Std. Err. t P>|t] [95% Conf. Intervall

tax .6631356 .122443 5.42 0.000 .4195447 .9067265

sqft .2185884 .0670182 3.26 0.002 .0856051 .3515718

age -.0395402 1.613185 -0.02 0.981 -3.28205 3.202969
nfeatures 8.735622 13.42251 0.65 0.517 -18.01198 35.48323

ne 4.069381 36.94491 0.11 0.913 -69.4355 T77.57426

custom 130.4925 42.93286 3.04 0.003 45.36257 215.6225
corner -71.25406 40.06697 -1.78 0.078 -150.7152 8.207084

_cons 130.2002 70.38012 1.85 0.068 -9.624642 270.025

We obtain results identical to those shown in the example in [MI] mi estimate.

mi estimate using — Estimation using previously saved estimation results 75

We can also obtain estimates of transformed coefficients without refitting the models to the imputed
dataset. Recall the example from Example 5: Estimating transformations in [MI] mi estimate, where
we estimated the ratio of the coefficients for age and sqft. We can obtain the same results by using
the following:

. mi estimate (ratio: _blagel/_b[sqft]) using miest

Multiple-imputation estimates Imputations = 30

Linear regression Number of obs = 117

Average RVI = 0.0648

Largest FMI = 0.2533

Complete DF = 109

DF adjustment: Small sample DF: min = 69.12

avg = 94.02

max = 105.51

Model F test: Equal FMI F(7, 106.5) = 67.18

Within VCE type: OLS Prob > F = 0.0000

price Coef. Std. Err. t P>|t| [95% Conf. Intervall

tax .6768015 .1241568 5.45 0.000 .4301777 .9234253

sqft .2118129 .069177 3.06 0.003 .0745091 .3491168

age .2471445 1.653669 0.15 0.882 -3.051732 3.546021

nfeatures 9.288033 13.30469 0.70 0.487 -17.12017 35.69623

ne 2.518996 36.99365 0.07 0.946 -70.90416 75.94215

custom 134.2193 43.29755 3.10 0.002 48.35674 220.0818

corner -68.58686 39.9488 -1.72 0.089 -147.7934 10.61972

_cons 123.9118 71.05816 1.74 0.085 -17.19932 265.0229

Transformations Average RVI = 0.2899

Largest FMI = 0.2316

Complete DF = 109

DF adjustment: Small sample DF: min = 72.51

avg = 72.51

Within VCE type: 0LS max = 72.51
ratio: _blagel/_bl[sqft]

price Coef. Std. Err. t P>t [95% Conf. Intervall

ratio 1.44401 8.217266 0.18 0.861 -14.93485 17.82287

The results are the same as in the example in [MI] mi estimate.

For more examples, see [MI] mi test.

Saved results

See Saved results in [MI] mi estimate.

Methods and formulas

See Methods and formulas in [MI] mi estimate.

76 mi estimate using — Estimation using previously saved estimation results

References

Barnard, J., and D. B. Rubin. 1999. Small-sample degrees of freedom with multiple imputation. Biometrika 86:
948-955.

Reiter, J. P. 2007. Small-sample degrees of freedom for multi-component significance tests with multiple imputation
for missing data. Biometrika 94: 502-508.

Rubin, D. B. 1987. Multiple Imputation for Nonresponse in Surveys. New York: Wiley.

White, I. R., P. Royston, and A. M. Wood. 2011. Multiple imputation using chained equations: Issues and guidance
for practice. Statistics in Medicine 30: 377-399.

Also see
[MI] mi estimate — Estimation using multiple imputations
[MI] mi estimate postestimation — Postestimation tools for mi estimate
[MI] intro substantive — Introduction to multiple-imputation analysis
[MI] intro — Introduction to mi

[MI] Glossary

Title

mi estimate postestimation — Postestimation tools for mi estimate

Description

The following postestimation commands are available after mi estimate and mi estimate using;:

Command Description

mi test perform tests on coefficients

mi testtransform perform tests on transformed coefficients
mi predict obtain linear predictions

mi predictnl obtain nonlinear predictions

See [MI] mi test and [MI] mi predict.

Remarks

After estimation by mi estimate: estimation—_command, in general, you may not use the standard
postestimation commands such as test, testnl, or predict; nor may you use estimation_command-
specific postestimation commands such as estat. As we have mentioned often, mi estimate is its
own estimation command, and the postestimation commands available after mi estimate (and mi
estimate using) are listed in the table above.

Using the command-specific postestimation tools

After mi estimate: estimation_command, you may not use estimation_command’s postestimation
features. More correctly, you may not use them unless you specify mi estimate’s post option:

. mi estimate, post: estimation_command ...

Specifying post causes many statistical issues, so do not be casual about specifying it.

First, the MI estimate of the VCE is poor unless the number of imputations, M, is sufficiently large.
How large is uncertain, but you should not be thinking M = 20 rather than M = 5; you should be
thinking of M in the hundreds. What is statistically true is that, asymptotically in M (and in the
number of observations, V), the MI estimated coefficients approach normality and the VCE becomes
well estimated.

Second, there are substantive issues about what is meant by estimation_command’s prediction
after MI estimation that you are going to have to resolve for yourself. There is no one estimation
sample. There are M of them, and as we have just argued, M is large. Do not expect postestimation
commands that depend on predicted values such as margins, lroc, and the like, to produce correct
results, if they produce results at all.

Which brings us to the third point. Even when you specify mi estimate’s post option, mi
estimate still does not post everything the estimation command expects to see. It does not post
likelihood values, for instance, because there is no counterpart after MI estimation. Thus, you should
be prepared to see unexpected and inelegant error messages if you use a postestimation command
that depends on an unestimated and unposted result.

77

78 mi estimate postestimation — Postestimation tools for mi estimate

All of which is to say that if you specify the post option, you have a responsibility beyond the
usual to ensure the validity of any statistical results.

Also see

[MI] mi test — Test hypotheses after mi estimate

[MI] mi predict — Obtain multiple-imputation predictions

[MI] mi estimate — Estimation using multiple imputations

[MI] mi estimate using — Estimation using previously saved estimation results
[MI] intro substantive — Introduction to multiple-imputation analysis

[MI] intro — Introduction to mi

[MI] Glossary

Title

mi expand — Expand mi data

Syntax
mi expand [=]exp [lf] [, options]
options Description
generate (newvar) create newvar; 0 = original, 1 = expanded
noupdate see [MI] noupdate option
Menu

Statistics > Multiple imputation

Description

mi expand is expand (see [D] expand) for mi data. The syntax is identical to expand except
that in range is not allowed and the noupdate option is allowed.

mi expand replaces each observation in the dataset with n copies of the observation, where n is
equal to the required expression rounded to the nearest integer. If the expression is less than 1 or
equal to missing, it is interpreted as if it were 1, meaning that the observation is retained but not
duplicated.

Options
generate (newvar) creates new variable newvar containing 0 if the observation originally appeared
in the dataset and 1 if the observation is a duplication.

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option.

Remarks
mi expand amounts to performing expand on m = 0, then duplicating the result on m = 1,
m =2, ..., m = M, and then combining the result back into mi format. Thus if the requested

expansion specified by exp is a function of an imputed, passive, varying, or super-varying variable,
then it is the values of the variable in m = 0 that will be used to produce the result for m = 1,
m=2,..., m= M, too.

Also see

[MI] intro — Introduction to mi

[D] expand — Duplicate observations

79

Title

mi export — Export mi data

Syntax

mi export nhanesl ...
mi export ice ...

See [MI] mi export nhanesl and [MI] mi export ice.

Description
Use mi export nhanes1 to export data in the format used by the National Health and Nutrition
Examination Survey.

Use mi export ice to export data in the format used by ice (Royston 2004, 2005a, 2005b, 2007,
2009).

If and when other standards develop for recording multiple-imputation data, other mi export
subcommands will be added.

Remarks
If you wish to send data to other Stata users, ignore mi export and just send them your mi
dataset(s).

To send data to users of other packages, however, you will have to negotiate the format you will
use. The easiest way to send data to non—Stata users is probably to mi convert (see [MI] mi convert)
your data to flongsep and then use outfile (see [D] outfile), outsheet (see [D] outsheet), or a
transfer program such as Stat/Transfer. Also see [U] 21 Inputting and importing data.

References

Royston, P. 2004. Multiple imputation of missing values. Stata Journal 4: 227-241.
——. 2005a. Multiple imputation of missing values: Update. Stata Journal 5: 188-201.
——. 2005b. Multiple imputation of missing values: Update of ice. Stata Journal 5: 527-536.

——. 2007. Multiple imputation of missing values: Further update of ice, with an emphasis on interval censoring.
Stata Journal 7: 445-464.

—— 2009. Multiple imputation of missing values: Further update of ice, with an emphasis on categorical variables.
Stata Journal 9: 466-477.

Also see

[MI] intro — Introduction to mi
[MI] mi export nhanesl — Export mi data to NHANES format

[MI] mi export ice — Export mi data to ice format

80

http://www.stata-journal.com/sjpdf.html?articlenum=st0067
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_1
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_2
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_3
http://www.stata-journal.com/article.html?article=st0067_4

Title

mi export ice — Export mi data to ice format

Syntax

mi export ice [, clear}

Menu

Statistics > Multiple imputation

Description

mi export ice converts the mi data in memory to ice format. See Royston (2004, 2005a, 2005b,

2007, 2009) for a description of ice.

Option

clear specifies that it is okay to replace the data in memory even if they have changed since they

were last saved to disk.

Remarks

mi export ice is the inverse of mi import ice (see [MI] mi import ice). Below we use mi
export ice to convert miproto.dta to ice format. miproto.dta happens to be in wide form, but

that is irrelevant.

. use http://www.stata-press.com/data/r12/miproto
(mi prototype)

. mi describe

Style: wide
last mi update 30mar2011 12:46:49, 1 day ago
Obs.: complete 1
incomplete 1 (M = 2 imputations)
total 2
Vars.: imputed: ; b(1)

1
passive: 1; c(1)
1

regular: ; a

system: 1; _mi_miss

(there are no unregistered variables)

. list
a b c 1_b 2_b _1.c 2_c _mi_miss
1 1 2 3 2 2 3 3
2 4 4.5 5.5 8.5 9.5 1

81

82 mi export ice — Export mi data to ice format

. mi export ice

. list, separator(2)

a b [¢ _mj _mi
1 1 2 3 0 1
2 4 0 2
3 1 2 3 1 1
4 4.5 8.5 1 2
5 1 2 3 2 1
6 4 5.5 9.5 2 2

References

Royston, P. 2004. Multiple imputation of missing values. Stata Journal 4: 227-241.
——. 2005a. Multiple imputation of missing values: Update. Stata Journal 5: 188-201.
——. 2005b. Multiple imputation of missing values: Update of ice. Stata Journal 5: 527-536.

——. 2007. Multiple imputation of missing values: Further update of ice, with an emphasis on interval censoring.
Stata Journal 7: 445-464.

——. 2009. Multiple imputation of missing values: Further update of ice, with an emphasis on categorical variables.
Stata Journal 9: 466-477.

Also see
[MI] intro — Introduction to mi
[MI] mi export — Export mi data

[MI] mi import ice — Import ice-format data into mi

http://www.stata-journal.com/sjpdf.html?articlenum=st0067
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_1
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_2
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_3
http://www.stata-journal.com/article.html?article=st0067_4

Title

mi export nhanes1 — Export mi data to NHANES format

Syntax
mi export nhanesl filenamestub [, options odd_options]
options Description
replace okay to replace existing files
uppercase uppercase prefix and suffix
passiveok include passive variables

odd_options

Description

nacode (#)
obscode (#)
impcode (#)

impprefix ("string" "string")
impsuffix ("string" "string")

not applicable code; default is O
observed code; default is 1
imputed code; default is 2

variable prefix; default is "" ""
variable suffix; default is "if" "mi"

Note: The odd_options are not specified unless you want to create results that are nhanesl-like but not really nhanesl

format.

Menu

Statistics > Multiple imputation

Description

mi export nhanes1 writes the mi data in memory to disk files in nhanesl format. The files will
be named filenamestub .dta, filenamestubl.dta, filenamestub2.dta, and so on. In addition to the
variables in the original mi data, new variable seqn will be added to record the sequence number. After
using mi export nhanesi, you can use outfile (see [D] outfile) or outsheet (see [D] outsheet)
or a transfer program such as Stat/Transfer to convert the resulting .dta files into a format suitable
for sending to a non-Stata user. Also see [U] 21 Inputting and importing data.

mi export nhanes1 leaves the data in memory unchanged.

Options

replace indicates that it is okay to overwrite existing files.

uppercase specifies that the new sequence variable SEQN and the variable suffixes IF and MI be in
uppercase. The default is lowercase. (More correctly, when generalizing beyond nhanes1 format,
the uppercase option specifies that SEQN be created in uppercase along with all prefixes and

suffixes.)

83

84 mi export nhanes1 — Export mi data to NHANES format

passiveok specifies that passive variables are to be written as if they were imputed variables. The
default is to issue an error if passive variables exist in the original data.

nacode (#), obscode (#), and impcode (#) are optional and are never specified when reading true
nhanes1 data. The default nacode(0) obscode(1) impcode(2) corresponds to the nhanesl
definition. These options allow changing the codes for not applicable, observed, and imputed.

impprefix ("string" "string") and impsuffix("string" "string") are optional and are never spec-
ified when reading true nhanesl data. The default impprefix("" "") impsuffix("if" "mi")
corresponds to the nhanes1 definition. These options allow setting different prefixes and suffixes.

Remarks

mi export nhanesl is the inverse of mi import nhanes1; see [MI] mi import nhanesl for a
description of the nhanesl format.

Below we use mi export nhanesl to convert miproto.dta to nhanesl format. miproto.dta
happens to be in wide form, but that is irrelevant.
. use http://www.stata-press.com/data/r12/miproto
(mi prototype)
. mi describe

Style: wide
last mi update 30mar2011 12:46:49, 1 day ago

Obs.: complete 1
incomplete 1 (M = 2 imputations)
total 2

Vars.: imputed:

1; b(1)
passive: 1; c(1)
regular: 1; a
system: 1; _mi_miss

(there are no unregistered variables)

. list
a b c _1b _2_b _1.c _2_c _mi_miss
1 1 2 3 2 2 3 3 0
2 4 4.5 5.5 8.5 9.5 1

. mi export nhanesl mynh, passiveok replace
files mynh.dta mynhl.dta mynh2.dta created

mi export nhanes1 — Export mi data to NHANES format 85

. use mynh
(mi prototype)

. list

seqn a bif cif

e
e
e
e
e

. use mynhl
(mi prototype)

. list

seqn a bmi cmi

1 1 1 2 3
2 2 4 4.5 8.5
. use mynh2

(mi prototype)
. list

seqn a bmi cmi

1 1 1 2 3
2 2 4 5.5 9.5
Also see

[MI] intro — Introduction to mi
[MI] mi export — Export mi data

[MI] mi import nhanesl — Import NHANES-format data into mi

Title

mi extract — Extract original or imputed data from mi data

Syntax

mi extract # [, options]

where 0 < # < M

options Description

clear okay to replace unsaved data in memory

esample(...) rarely specified option

esample (varname) ... syntax when # > 0

esample (varname #.) ... syntax when # =0; 1 < # < M
Menu

Statistics > Multiple imputation

Description

mi extract # replaces the data in memory with the data for m = #. The data are not mi set.

Options

clear specifies that it is okay to replace the data in memory even if the current data have not been
saved to disk.

esample (varname [#e]) is rarely specified. It is for use after mi estimate (see [MI] mi estimate)
when the esample (newvar) option was specified to save in newvar the e(sample) for m =1,
m =2, ..., m = M. It is now desired to extract the data for one m and for e(sample) set
correspondingly.
mi extract #, esample(varname), # > 0, is the usual case in this unlikely event. One extracts
one of the imputation datasets and redefines e (sample) based on the e (sample) previously saved
for m = #.

The odd case is mi extract O, esample(varname #.), where #. > 0. One extracts the original
data but defines e (sample) based on the e (sample) previously saved for m = #,.

Specifying the esample () option changes the sort order of the data.

86

mi extract — Extract original or imputed data from mi data 87

Remarks

If you wanted to give up on mi and just get your original data back, you could type
. mi extract O
You might do this if you wanted to send your original data to a coworker or you wanted to try a
different approach to dealing with the missing values in these data. Whatever the reason, the result

is that the original data replace the data in memory. The data are not mi set. Your original mi data
remain unchanged.

If you suspected there was something odd about the imputations in m = 3, you could type

. mi extract 3

You would then have a dataset in memory that looked just like your original, except the missing
values of the imputed and passive variables would be replaced with the imputed and passive values
from m = 3. The data are not mi set. Your original data remain unchanged.

Also see

[MI] intro — Introduction to mi

Title

mi import — Import data into mi

Syntax

mi import nhanesl ...
mi import ice ...

mi import flong ...
mi import flongsep ...

mi import wide ...

See [MI] mi import nhanesl, [MI] mi import ice, [MI] mi import flong, [MI] mi import flongsep,
and [MI] mi import wide.

Description

mi import imports into mi data that contain original data and imputed values.

Remarks

Remarks are presented under the following headings:

When to use which mi import command
Import data into Stata before importing into mi
Using mi import nhanesl, ice, flong, and flongsep

When to use which mi import command

mi import nhanes1 imports data recorded in the format used by the National Health and Nutrition
Examination Survey (NHANES) produced by the National Center for Health Statistics of the U.S.
Centers for Disease Control and Prevention (CDC); see http://www.cdc.gov/nchs/nhanes.htm.

mi import ice imports data recorded in the format used by ice (Royston 2004, 2005a, 2005b,
2007, 2009).

mi import flong and mi import flongsep import data that are in flong- and flongsep-like
format, which is to say, the data are repeated for m =0, m =1, ..., and m = M. mi import
flong imports data in which the information is contained in one file. mi import flongsep imports
data in which the information is recorded in a collection of files.

mi import wide imports data that are in wide-like format, where additional variables are used to
record the imputed values.

88

http://www.cdc.gov/nchs/nhanes.htm

mi import — Import data into mi 89

Import data into Stata before importing into mi

With the exception of mi import ice, you must import the data into Stata before you can use
mi import to import the data into mi. mi import ice is the exception only because the data are
already in Stata format. That is, mi import requires that the data be stored in Stata-format .dta
datasets. You perform the initial import into Stata by using any method described in [D] import or
a transfer program such as Stat/Transfer.

Using mi import nhanes1, ice, flong, and flongsep

Import commands mi import nhanesl and mi import flongsep produce an flongsep result; mi
import ice and mi import flong produce an flong result. You can use mi convert (see [MI] mi
convert) afterward to convert the result to another style, and we usually recommend that. Before
doing that, however, you need to examine the freshly imported data and verify that all imputed and
passive variables are registered correctly. If they are not registered correctly, you risk losing imputed
values.

To perform this verification, use the mi describe (see [MI] mi describe) and mi varying (see
[MI] mi varying) commands immediately after mi import:
. mi import
. mi describe
. mi varying
mi describe will list the registration status of the variables. mi varying will report the varying
and super-varying variables. Verify that all varying variables are registered as imputed or passive. If
one or more is not, register them now:
. mi register imputed forgottenvar
. mi register passive another_forgottenvar
There is no statistical distinction between imputed and passive variables, so you may register

variables about which you are unsure either way. If an unregistered variable is found to be varying
and you are convinced that is an error, register the variable as regular:

. mi register regular variable_in_error

Next, if mi varying reports that your data contain any super-varying variables, determine whether
the variables are due to errors in the source data or really are intended to be super varying. If they
are errors, register the variables as imputed, passive, or regular, as appropriate. Leave any intended
super-varying variables unregistered, however, and make a note to yourself: never convert these data
to the wide or mlong styles. Data with super-varying variables can be stored only in the flong and
flongsep styles.

Now run mi describe and mi varying again:
. mi describe
. mi varying
Ensure that you have registered variables correctly, and, if necessary, repeat the steps above to fix
any remaining problems.

After that, you may use mi convert to switch the data to a more convenient style. We generally
start with style wide:

. mi convert wide

90 mi import — Import data into mi

Do not switch to wide, however, if you have any super-varying variables. Try flong instead:
. mi convert flong

Whichever style you choose, if you get an insufficient-memory error, you will have to either
increase the amount of memory dedicated to Stata or use these data in the more inconvenient, but
perfectly workable, flongsep style. Concerning increasing memory, see Converting from flongsep in
[MI] mi convert. Concerning the workability of flongsep, see Advice for using flongsep in [MI] styles.

We said to perform the checks above before using mi convert. It is, however, safe to convert the
just-imported flongsep data to flong, perform the checks, and then convert to the desired form. The
checks will run more quickly if you convert to flong first.

You can vary how you perform the checks. The logic underlying our recommendations is as
follows:

e It is possible that you did not specify all the imputed and passive variables when you
imported the data, perhaps due to errors in the data’s documentation. It is also possible that
there are errors in the data that you imported. It is worth checking.

e Aslong as the imported data are recorded in the flongsep or flong style, unregistered variables
will appear exactly as they appeared in the original source. It is only when the data are
converted to the wide or mlong style that assumptions about the structure of the data are
exploited to save memory. Thus you need to perform checks before converting the data to
the more convenient wide or mlong style.

e If you find errors, you could go back and reimport the data correctly, but it is easier to use
mi register after the fact. When you type mi register you are not only informing mi
about how to deal with the variable but also asking mi register to examine the variable
and fix any problems given its new registration status.

References

Royston, P. 2004. Multiple imputation of missing values. Stata Journal 4: 227-241.
——. 2005a. Multiple imputation of missing values: Update. Stata Journal 5: 188-201.
——. 2005b. Multiple imputation of missing values: Update of ice. Stata Journal 5: 527-536.

——. 2007. Multiple imputation of missing values: Further update of ice, with an emphasis on interval censoring.
Stata Journal 7: 445-464.

——. 2009. Multiple imputation of missing values: Further update of ice, with an emphasis on categorical variables.
Stata Journal 9: 466-477.

Also see

[MI] intro — Introduction to mi

[MI] mi import nhanesl — Import NHANES-format data into mi
[MI] mi import ice — Import ice-format data into mi

[MI] mi import flong — Import flong-like data into mi

[MI] mi import flongsep — Import flongsep-like data into mi
[MI] mi import wide — Import wide-like data into mi

[MI] styles — Dataset styles

http://www.stata-journal.com/sjpdf.html?articlenum=st0067
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_1
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_2
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_3
http://www.stata-journal.com/article.html?article=st0067_4

Title

mi import flong — Import flong-like data into mi

Syntax
mi import flong, required_options [true_options]

required_options Description

m(varname) name of variable containing m

id (varlist) identifying variable(s)

true_options Description

imputed (varlist) imputed variables to be registered

passive (varlist) passive variables to be registered

clear okay to replace unsaved data in memory
Menu

Statistics > Multiple imputation

Description
mi import flong imports flong-like data, that is, data in whichm =0, m =1, ..., m =M
are all recorded in one .dta dataset.

mi import flong converts the data to mi flong style. The data are mi set.

Options

m(varname) and id(varlist) are required. m(varname) specifies the variable that takes on values O,
1, ..., M, the variable that identifies observations correspondingtom =0, m =1, ..., m = M.
varname = 0 identifies the original data, varname = 1 identifies m = 1, and so on.

id (varlist) specifies the variable or variables that uniquely identify observations within m().

imputed (varlist) and passive (varlist) are truly optional options, although it would be unusual if
imputed () were not specified.

imputed (varlist) specifies the names of the imputed variables.
passive (varlist) specifies the names of the passive variables, if any.

clear specifies that it is okay to replace the data in memory even if they have changed since they
were saved to disk. Remember, mi import flong starts with flong-like data in memory and ends
with mi flong data in memory.

91

92 mi import flong — Import flong-like data into mi

Remarks

The procedure to convert flong-like data to mi flong is this:
1. use the unset data.
2. Issue the mi import flong command.

3. Perform the checks outlined in Using mi import nhanesl, ice, flong, and flongsep of [MI] mi
import.
4. Use mi convert (see [MI] mi convert) to convert the data to a more convenient style, such
as wide or mlong.
For instance, you have the following unset data:

. use http://www.stata-press.com/data/r12/ourunsetdata
(mi prototype)

. list, separator(2)

m subject a b [¢
1. 0 101 1 2 3
2. 0 102
3. 1 101 1 2 3
4. 1 102 4 4.5 8.5
5. 2 101 1 2 3
6. 2 102 4 5.5 9.5

You are told that these data contain the original data (m = 0) and two imputations (m = 1 and
m = 2), that variable b is imputed, and that variable c is passive and in fact equal to a + b. These
are the same data discussed in [MI] styles but in unset form.

The fact that these data are nicely sorted is irrelevant. To import these data, type
. mi import flong, m(m) id(subject) imputed(b) passive(c)
These data are short enough that we can list the result:

. list, separator(2)

m subject a b [¢ _mim _mi_id _mi_miss
1. 0 101 1 2 3 0 1 0
2. 0 102 4 . . 0 2 1
3. 1 101 1 2 3 1 1
4. 1 102 4 4.5 8.5 1 2
5. 2 101 1 2 3 2 1
6. 2 102 4 5.5 9.5 2 2

We will now perform the checks outlined in Using mi import nhanesl, ice, flong, and flongsep
of [MI] mi import, which are to run mi describe and mi varying to verify that variables are
registered correctly:

mi import flong — Import flong-like data into mi 93

. mi describe

Style: flong
last mi update 30mar2011 11:54:58, O seconds ago

Obs.: complete 1
incomplete 1 (M = 2 imputations)
total 2

Vars.: imputed:

1; b(1)
passive: 1; c(1)
regular: O
system: 3; _mi_m _mi_id _mi_miss
(there are 3 unregistered variables; m subject a)
. mi varying

Possible problem variable names

imputed nonvarying: (none)

passive nonvarying: (none)

unregistered varying: (none)

*unregistered super/varying: (none)
unregistered super varying: m

* super/varying means super varying but would be varying if registered as
imputed; variables vary only where equal to soft missing in m=0.

We discover that unregistered variable m is super varying (see [MI] Glossary). Here we no longer
need m, so we will drop the variable and rerun mi varying. We will find that there are no remaining
problems, so we will convert our data to our preferred wide style:

. drop m
. mi varying

Possible problem variable names

imputed nonvarying: (none)

passive nonvarying: (none)
unregistered varying: (none)
*unregistered super/varying: (none)
unregistered super varying: (none)

* super/varying means super varying but would be varying if registered as
imputed; variables vary only where equal to soft missing in m=0.

. mi convert wide, clear

. list
subject a b c _mi_miss _1b _1_c _2.b _2_c
1. 1060 1 2 3 0 2 3 2 3
2. 102 4 . . 1 4.5 8.5 5.5 9.5
Also see

[MI] intro — Introduction to mi

[MI] mi import — Import data into mi

Title

mi import flongsep — Import flongsep-like data into mi

Syntax

mi import flongsep name, required_options [true_options]

where name is the name of the flongsep data to be created.

required_options Description
using (filenamelist) input filenames for m =1, m =2, ...
id (varlist) identifying variable(s)

Note: use the input file for mm=0 before issuing mi import flongsep.

true_options Description

imputed (varlist) imputed variables to be registered

passive (varlist) passive variables to be registered

clear okay to replace unsaved data in memory
Menu

Statistics > Multiple imputation

Description

mi import flongsep imports flongsep-like data, that is, data in which m =0, m =1, ...,
m = M are each recorded in separate .dta datasets.

mi import flongsep converts the data to mi flongsep and mi sets the data.

Options

using(filenamelist) is required; it specifies the names of the .dta datasets containing m = 1,
m =2, ..., m = M. The dataset corresponding to m = 0 is not specified; it is to be in memory
at the time the mi import flongsep command is given.

The filenames might be specified as

using(dsl ds2 ds3 ds4 dsb5)

which states that m = 1 is in file ds1.dta, m = 2 is in file ds2.dta, ..., and m = 5 is in file
dsb.dta. Also, {#-#} is understood, so the above could just as well be specified as

using(ds{1-5})

94

mi import flongsep — Import flongsep-like data into mi 95

The braced numeric range may appear anywhere in the name, and thus

using(ds{1-5}imp)
would mean that dslimp.dta, ds2imp.dta, ..., dsbimp.dta contain m =1, m = 2, ...,
m =5.

Alternatively, a comma-separated list can appear inside the braces. Filenames dsfirstm.dta,
dssecondm.dta, ..., dsfifthm.dta can be specified as

using(ds{first,second,third,fourth,fifth}m)
Filenames can be specified with or without the .dta suffix and may be enclosed in quotes if they
contain special characters.

id(varlist) is required; it specifies the variable or variables that uniquely identify the observations
in each dataset. The coding must be the same across datasets.

imputed (varlist) and passive (varlist) are truly optional options, although it would be unusual if
imputed () were not specified.

imputed (varlist) specifies the names of the imputed variables.
passive (varlist) specifies the names of the passive variables.

clear specifies that it is okay to replace the data in memory even if they have changed since they
were saved to disk.

Remarks

The procedure to convert flongsep-like data to mi flongsep is this:
1. use the dataset corresponding to m = 0.

2. Issue the mi import flongsep name command, where name is the name of the mi flongsep
data to be created.

3. Perform the checks outlined in Using mi import nhanesl, ice, flong, and flongsep of [MI] mi
import.

4. Use mi convert (see [MI] mi convert) to convert the data to a more convenient style such
as wide, mlong, or flong.

For instance, you have been given the unset datasets imorig.dta, iml1.dta, and im2.dta. You
are told that these datasets contain the original data and two imputations, that variable b is imputed,
and that variable c is passive and in fact equal to a + b. Here are the datasets:

. use http://www.stata-press.com/data/r12/imorig
. list

subject a b c

[ure

101 1 2 3
2. 102 4

96 mi import flongsep — Import flongsep-like data into mi

. use http://www.stata-press.com/data/r12/imil

. list
subject a b c
1. 101 1 2 3
2. 102 4 4.5 8.5

. use http://www.stata-press.com/data/r12/im2

. list
subject a b c
1. 101 1 2 3
2. 102 4 5.5 9.5

These are the same data discussed in [MI] styles but in unset form.
The fact that these datasets are nicely sorted is irrelevant. To import these datasets, you type

. use http://www.stata-press.com/data/r12/imorig
. mi import flongsep mymi, using(iml im2) id(subject) imputed(b) passive(c)

We will now perform the checks outlined in Using mi import nhanesl, ice, flong, and flongsep
of [MI] mi import, which are to run mi describe and mi varying to verify that variables are
registered correctly:

. mi describe
Style: flongsep mymi
last mi update 30mar2011 13:21:08, O seconds ago

Obs.: complete 1
incomplete 1 (M = 2 imputations)
total 2

Vars.: imputed:

1; b(1)
passive: 1; c(1)
regular: O
system: 2; _mi_id _mi_miss
(there are 2 unregistered variables; subject a)
. mi varying

Possible problem variable names

imputed nonvarying: (none)

passive nonvarying: (none)
unregistered varying: (none)
*unregistered super/varying: (none)
unregistered super varying: (none)

* super/varying means super varying but would be varying if registered as
imputed; variables vary only where equal to soft missing in m=0.

mi import flongsep — Import flongsep-like data into mi

mi varying reported no problems. We finally convert to our preferred wide style:

. mi convert wide, clear

. list
subject a b c _mi_miss _1b _1_c _2.b _2_c
1. 101 1 2 3 0 2 3 2 3
2. 102 4 . . 1 4.5 8.5 5.5 9.5

We are done with the converted data in flongsep format, so we will erase the files:

. mi erase mymi
(files mymi.dta _1_mymi.dta _2_mymi.dta erased)

Also see
[MI] intro — Introduction to mi

[MI] mi import — Import data into mi

Title

mi import ice — Import ice-format data into mi

Syntax
mi import ice [s options]
options Description
automatic register variables automatically
imputed (varlist) imputed variables to be registered
passive (varlist) passive variables to be registered
clear okay to replace unsaved data
Menu

Statistics > Multiple imputation

Description

mi import ice converts the data in memory to mi data, assuming the data in memory are in ice
format. See Royston (2004, 2005a, 2005b, 2007, 2009) for a description of ice.

mi import ice converts the data to mi style flong. The data are mi set.

Options

automatic determines the identity of the imputed variables automatically. Use of this option is
recommended.

imputed (varlist) specifies the names of the imputed variables. This option may be used with
automatic, in which case automatic is taken to mean automatically determine the identity of
imputed variables in addition to the imputed () variables specified. It is difficult to imagine why
one would want to do this.

passive (varlist) specifies the names of the passive variables. This option may be used with auto-
matic and usefully so. automatic cannot distinguish imputed variables from passive variables,
so it assumes all variables that vary are imputed. passive() allows you to specify the subset of
varying variables that are passive.

Concerning the above options: If none are specified, all variables are left unregistered in the result.
You can then use mi varying to determine the varying variables and use mi register to register
them appropriately; see [MI] mi varying and [MI] mi set. If you follow this approach, remember to
register imputed variables before registering passive variables.

clear specifies that it is okay to replace the data in memory even if they have changed since they
were last saved to disk. Remember, mi import ice starts with ice data in memory and ends
with mi data in memory.

98

mi import ice — Import ice-format data into mi 929

Remarks
The procedure to convert ice data to mi flong is
1. use the ice data.

2. Issue the mi import ice command, preferably with the automatic option and perhaps
with the passive () option, too, although it really does not matter if passive variables are
registered as imputed, so long as they are registered.

3. Perform the checks outlined in Using mi import nhanesl, ice, flong, and flongsep of [MI] mi
import.

4. Use mi convert (see [MI] mi convert) to convert the data to a more convenient style such
as wide or mlong.

For instance, you have the following ice data:

. use http://www.stata-press.com/data/ri2/icedata
. list, separator(2)

_mj _mi a b c
1. 0 1 1 2 3
2. 0 2 4
3 1 1 1 2 3
4 1 2 4 4.5 8.5
5 2 1 1 2 3
6 2 2 4 5.5 9.5

—mj and _mi are ice system variables. These data contain the original data and two imputations.
Variable b is imputed, and variable c is passive and in fact equal to a 4+ b. These are the same data
discussed in [MI] styles but in ice format.

The fact that these data are nicely sorted is irrelevant. To import these data, you type

. mi import ice, automatic
(1 m=0 obs. now marked as incomplete)

although it would be even better if you typed

. mi import ice, automatic passive(c)
(1 m=0 obs. now marked as incomplete)

With the first command, both b and ¢ will be registered as imputed. With the second, c will
instead be registered as passive. Whether c is registered as imputed or passive makes no difference
statistically.

100 mi import ice — Import ice-format data into mi

These data are short enough that we can list the result:

. list, separator(2)

a b c _mi_m _mi_id _mi_miss
1 1 2 3 0 1 0
2 4 0 2 1
3 1 2 3 1 1
4 4 4.5 8.5 1 2
5 1 2 3 2 1
6 4 5.5 9.5 2 2

We will now perform the checks outlined in Using mi import nhanesl, ice, flong, and flongsep
of [MI] mi import, which are to run mi describe and mi varying to verify that variables are
registered correctly:

. mi describe

Style: flong
last mi update 30mar2011 11:54:58, O seconds ago

Obs.: complete 1
incomplete 1 (M = 2 imputations)
total 2

Vars.: imputed:

1; b(1)
passive: 1; c(1)
regular: O
system: 3; _mi_m _mi_id _mi_miss
(there is one unregistered variable; a)
. mi varying

Possible problem variable names

imputed nonvarying: (none)

passive nonvarying: (none)
unregistered varying: (none)
*unregistered super/varying: (none)
unregistered super varying: (none)

* super/varying means super varying but would be varying if registered as
imputed; variables vary only where equal to soft missing in m=0.

We find that there are no remaining problems, so we convert our data to our preferred wide style:

. mi convert wide, clear

. list
a b c _mi_miss _1.b _1.c _2_b _2_c
1 1 2 3 0 2 3 2 3
2 1 4.5 8.5 5.5 9.5

mi import ice — Import ice-format data into mi 101

References

Royston, P. 2004. Multiple imputation of missing values. Stata Journal 4: 227-241.
——. 2005a. Multiple imputation of missing values: Update. Stata Journal 5: 188-201.
——. 2005b. Multiple imputation of missing values: Update of ice. Stata Journal 5: 527-536.

——. 2007. Multiple imputation of missing values: Further update of ice, with an emphasis on interval censoring.
Stata Journal 7: 445-464.

—— 2009. Multiple imputation of missing values: Further update of ice, with an emphasis on categorical variables.
Stata Journal 9: 466-477.

Also see

[MI] intro — Introduction to mi

[MI] mi import — Import data into mi

http://www.stata-journal.com/sjpdf.html?articlenum=st0067
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_1
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_2
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_3
http://www.stata-journal.com/article.html?article=st0067_4

Title

mi import nhanes1 — Import NHANES-format data into mi

Syntax

mi import nhanesl name, required_options [true_options odd_options]

where name is the name of the flongsep data to be created.

required_options Description
using(filenamelist) input filenames for m =1, m =2, ...
id(varlist) identifying variable(s)

Note: use the input file for m=0 before issuing mi import nhanesl.

true_options Description

uppercase prefix and suffix in uppercase

clear okay to replace unsaved data in memory
odd_options Description

nacode (#) not applicable code; default is O
obscode (#) observed code; default is 1

impcode (#) imputed code; default is 2

impprefix ("string" "string") variable prefix; default is "" ""
impsuffix ("string" "string") variable suffix; default is "if" "mi"

Note: The odd_options are not specified unless you need to import data that are nhanesl-like but not really nhanesl
format.

Menu

Statistics > Multiple imputation

Description

mi import nhanes1 imports data recorded in the format used by the National Health and Nutrition
Examination Survey (NHANES) produced by the National Center for Health Statistics (NCHS) of the U.S.
Centers for Disease Control and Prevention (CDC); see http://www.cdc.gov/nchs/nhanes/nh3data.htm.

Options
using/(filenamelist) is required; it specifies the names of the .dta datasets containing m = 1,
m =2, ..., m = M. The dataset corresponding to m = 0 is not specified; it is to be in memory

at the time the mi import nhanesl command is given.

102

http://www.cdc.gov/nchs/nhanes/nh3data.htm

mi import nhanes1 — Import NHANES-format data into mi 103

The filenames might be specified as

using(nhl nh2 nh3 nh4 nhb5)

which states that m =1 is in file nhl.dta, m = 2 is in file nh2.dta, ..., and m = 5 is in file
nh5.dta. Also, {#-#2} is understood, so the files could just as well be specified as

using(nh{1-53})
The braced numeric range may appear anywhere in the name, and thus
using (nh{1-5}imp)

would mean that nhlimp.dta, nh2imp.dta, ..., nhbimp.dta contain m =1, m = 2, ...,
m =>5.

Alternatively, a comma-separated list can appear inside the braces. Filenames nhfirstm.dta,
nhsecondm.dta, ..., nhfifthm.dta can be specified as

using(nh{first,second,third,fourth,fifth}m)

Filenames can be specified with or without the .dta suffix and must be enclosed in quotes if they
contain special characters.

id(varlist) is required and is usually specified as id(seqn) or id(SEQN) depending on whether
your variable names are in lowercase or uppercase. id() specifies the variable or variables that
uniquely identify the observations in each dataset. Per the nhanesl standard, the variable should
be named seqn or SEQN.

uppercase is optional; it specifies that the variable suffixes IF and MI of the nhanes! standard are in
uppercase. The default is lowercase. (More correctly, when generalizing beyond nhanes1 format,
the uppercase option specifies that all prefixes and suffixes are in uppercase.)

nacode (#), obscode (#), and impcode (#) are optional and are never specified when reading true
nhanes1 data. The defaults nacode (0), obscode (1), and impcode (2) correspond to the nhanes1
definition. These options allow changing the codes for not applicable, observed, and imputed.

impprefix ("string" "string") and impsuffix("string" "string") are optional and are never spec-
ified when reading true nhanesl data. The defaults impprefix("" "") and impsuffix("if"
"mi") correspond to the nhanesl definition. These options allow setting different prefixes and
suffixes.

clear specifies that it is okay to replace the data in memory even if they have changed since they
were saved to disk. Remember, mi import nhanes1 starts with the first of the NHANES data in
memory and ends with mi data in memory.

Remarks

Remarks are presented under the following headings:

Description of the nhanesl format
Importing nhanes! data

104 mi import nhanes1 — Import NHANES-format data into mi

Description of the nhanes1 format

Nhanesl is not really an official format; it is the format used for a particular dataset distributed
by NCHS. Because there currently are no official or even informal standards for multiple-imputation
data, perhaps the method used by the NCHS for NHANES will catch on, so we named it nhanesl. We
included the 1 on the end of the name in case the format is modified.

Data in nhanes1 format consist of a collection of M + 1 separate files. The first file contains the
original data. The remaining M files contain the imputed values for m =1, m =2, ..., m = M.

The first file contains a variable named seqn containing a sequence number. The file also contains
other variables that comprise the nonimputed variables. Imputed variables, however, have their names
suffixed with IF, standing for imputation flag, and those variables contain 1s, 2s, and 0s. 1 means that
the value of the variable in that observation was observed, 2 means that the value was missing, and
0 means not applicable. Think of 0 as being equivalent to hard missing. The value is not observed
for good reason and therefore was not imputed.

The remaining M files contain seqn and the imputed variables themselves. In these files, unobserved
values are imputed. This time, imputed variable names are suffixed with MI.

Here is an example:

. use http://www.stata-press.com/data/r12/nhorig
. list

seqn a DbIF cIF

The above is the first of the M + 1 datasets. The seqn variable is the sequence number. The
a variable is a regular variable; we know that because the name does not end in IF. The b and c
variables are imputed, and this dataset contains their imputation flags. Both variables are observed in
the first observation and unobserved in the second.

Here is the corresponding dataset for m = 1:

. use http://www.stata-press.com/data/r12/nhil
. list

seqn bMI cMI

e
e
N
w

This dataset states that in m = 1, b is equal to 2 and 4.5 and c is equal to 3 and 8.5.

We are about to show you the dataset for m = 2. Even before looking at it, however, we know
that 1) it will have two observations; 2) it will have the seqn variable containing 1 and 2; 3) it will
have two more variables named bMI and cMI; and 4) bMI will be equal to 2 and cMI will be equal
to 3 in observations corresponding to seqn = 1. We know the last because in the first dataset, we
learned that b and ¢ were observed in seqn = 1.

mi import nhanes1 — Import NHANES-format data into mi 105

. use http://www.stata-press.com/data/r12/nh2
. list

seqgn a bMI cMI

[ure
[ure
[y
[N
N
w

Importing nhanes1 data

The procedure to import nhanesl data is this:
1. use the dataset corresponding to m = 0; see [D] use.

2. Issue mi import nhanesl name ..., where name is the name of the mi flongsep dataset
to be created.

3. Perform the checks outlined in Using mi import nhanesl, ice, flong, and flongsep of [MI] mi
import.

4. Use mi convert (see [MI] mi convert) to convert the data to a more convenient style such
as wide, mlong, or flong.

To import the nhorig.dta, nhl.dta, and nh2.dta datasets described in the section above, we
will specify mi import nhanes1’s uppercase option because the suffixes were in uppercase. We
type

. use http://www.stata-press.com/data/r12/nhorig

. mi import nhanesl mymi, using(nhl nh2) id(seqn) uppercase

The lack of any error message means that we have successfully converted nhanesl-format
files nhorig.dta, nhl.dta, and nh2.dta to mi flongsep files mymi.dta, _1_mymi.dta, and
_2_mymi.dta.

We will now perform the checks outlined in Using mi import nhanesl, ice, flong, and flongsep of
[MI] mi import, which are to run mi describe and mi varying (see [MI] mi describe and [MI] mi
varying) to verify that variables are registered correctly:

. mi describe

Style: flongsep mymi
last mi update 30mar2011 12:58:46, O seconds ago

Obs.: complete 1
incomplete 1 (M = 2 imputations)
total 2

Vars.: imputed: 2; b(1) c(1)
passive: O
regular: O
system: 2; _mi_id _mi_miss

(there are 2 unregistered variables; seqn a)

106 mi import nhanes1 — Import NHANES-format data into mi

. mi varying

Possible problem variable names

imputed nonvarying: (none)

passive nonvarying: (none)
unregistered varying: (none)
*unregistered super/varying: (none)
unregistered super varying: (none)

* super/varying means super varying but would be varying if registered as
imputed; variables vary only where equal to soft missing in m=0.

mi varying reported no problems.

We finally convert to style flong, although in real life we would choose styles mlong or wide. We
are choosing flong because it is more readable:

. mi convert flong, clear

. list, separator(2)

seqn a b ¢ _mi_id _mi_miss _mi_m
1. 1 1 2 3 1 0 0
2. 2 14 . . 2 1 0
3 1 1 2 3 1 1
4 2 14 4.5 8.5 2 1
5 1 1 2 3 1 2
6 2 14 5.5 9.5 2 2

The flong data are in memory. We are done with the converted data in flongsep format, so we
erase the files:

. mi erase mymi
(files mymi.dta _1_mymi.dta _2_mymi.dta erased)

Also see

[MI] intro — Introduction to mi

[MI] mi import — Import data into mi

Title

mi import wide — Import wide-like data into mi

Syntax

mi import wide [, opzions]

options Description

imputed (mvlist) imputed variables

passive (mvlist) passive variables

asok allow variable to be posted repeatedly
@ drop imputed and passive after posting
clear okay to replace unsaved data in memory

See description of options below for definition of mvlist.

Menu

Statistics > Multiple imputation

Description

mi import wide imports wide-like data, that is, data in which m =0, m =1, ..., m = M
values of imputed and passive variables are recorded in separate variables.

mi import wide converts the data to mi wide style and mi sets the data.

Options

imputed (mvlist) and passive (mvlist) specify the imputed and passive variables.

For instance, if the data had two imputed variables, x and y; x and y contained the m = 0 values;
the corresponding m = 1, m = 2, and m = 3 values of x were in x1, x2, and x3; and the
corresponding values of y were in y1, y2, and y3, then the imputed () option would be specified
as

imputed(x=x1 x2 x3 y=yl y2 y3)

If variable y2 were missing from the data, you would specify
imputed(x=x1 x2 x3 y=yl . y3)

The same number of imputations must be specified for each variable.

dupsok specifies that it is okay if you specify the same variable name for two different imputations.
This would be an odd thing to do, but if you specify dupsok, then you can specify

imputed(x=x1 x1 x3 y=yl y2 y3)

Without the dupsok option, the above would be treated as an error.

107

108 mi import wide — Import wide-like data into mi

drop specifies that the original variables containing values for m =1, m =2, ..., m = M are to be
dropped from the data once mi import wide has recorded the values. This option is recommended.

clear specifies that it is okay to replace the data in memory even if they have changed since they
were last saved to disk.

Remarks

The procedure to convert wide-like data to mi wide style is this:
1. use the unset data; see [D] use.
2. Issue the mi import wide command.

3. Use mi describe (see [MI] mi describe) and mi varying (see [MI] mi varying) to verify
that the result is as you anticipated.

4. Optionally, use mi convert (see [MI] mi convert) to convert the data to what you consider
a more convenient style.

For instance, you have been given unset dataset wi.dta and have been told that it contains variables
a, b, and c; that variable b is imputed and contains m = 0 values; that variables b1 and b2 contain
the m = 1 and m = 2 values; that variable c is passive (equal to a 4 b) and contains m = 0 values;
and that variables c1 and c2 contain the corresponding m = 1 and m = 2 values. Here are the data:
. use http://www.stata-press.com/data/ri12/wi
(mi prototype)
. list

[ure
[ure
N
w
N
N
w
w

These are the same data discussed in [MI] styles. To import these data, type

. mi import wide, imputed(b=bl b2 c=cl c2) drop

These data are short enough that we can list the result:

. list
a b c _mi_miss _1.b _2_b _1.c _2_c
1 1 2 3 0 2 2 3 3
2 4 1 4.5 5.5 8.5 9.5

mi import wide — Import wide-like data into mi

109

Returning to the procedure, we run mi describe and mi varying on the result:

. mi describe

Style: wide

last mi update 30mar2011 08:51:09, O seconds ago
Obs.: complete 1

incomplete 1 (M = 2 imputations)

total 2

Vars.: imputed: 2; b(1) c(1)
passive: O
regular: O
system: 1; _mi_miss
(there is one unregistered variable; a)
. mi varying

Possible problem variable names

imputed nonvarying: (none)
passive nonvarying: (none)

Perhaps you would prefer seeing these data in flong style:

. mi convert flong, clear

. list, separator(2)

a b [_mi_miss _mi_m _mi_id
1 1 2 3 0 0 1
2 4 1 0 2
3 1 2 3 1 1
4 4.5 8.5 1 2
5 1 2 3 2 1
6 4 5.5 9.5 2 2

Also see

[MI] intro — Introduction to mi

[MI] mi import — Import data into mi

Title

mi impute — Impute missing values

Syntax
mi impute method ... [, impute_options . ..]
method Description
Univariate
regress linear regression for a continuous variable
pmm predictive mean matching for a continuous variable
truncreg truncated regression for a continuous variable with a restricted range
intreg interval regression for a continuous partially observed (censored) variable
logit logistic regression for a binary variable
ologit ordered logistic regression for an ordinal variable
mlogit multinomial logistic regression for a nominal variable
poisson Poisson regression for a count variable
nbreg negative binomial regression for an overdispersed count variable
Multivariate
monotone sequential imputation using a monotone-missing pattern
chained sequential imputation using chained equations
mvn multivariate normal regression
impute_options Description
Main
*add (#) specify number of imputations to add; required when no imputations exist
*replace replace imputed values in existing imputations
rseed (#) specify random-number seed
double save imputed values in double precision; the default is to save them

as float
by(varlist[, byopts]) impute separately on each group formed by varlist

Reporting
dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends
Advanced
force proceed with imputation, even when missing imputed values are
encountered
noupdate do not perform mi update; see [MI] noupdate option

*add (#) is required when no imputations exist; add(#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.
You must mi set your data before using mi impute; see [MI] mi set.

110

mi impute — Impute missing values 111

Menu

Statistics > Multiple imputation

Description

mi impute fills in missing values (.) of a single variable or of multiple variables using the
specified method. The available methods (by variable type and missing-data pattern) are summarized
in the tables below.

Single imputation variable (univariate imputation)

Pattern Type Imputation method

continuous regress, pmm,

truncreg, intreg

always monotone binary logit
categorical ologit, mlogit
count poisson, nbreg

Multiple imputation variables (multivariate imputation)

Pattern Type Imputation method

monotone missing mixture monotone
arbitrary missing mixture chained
arbitrary missing continuous mvn

The suggested reading order of mi impute’s subentries is
[MI] mi impute regress
[MI] mi impute pmm
[MI] mi impute truncreg
[MI] mi impute intreg
[MI] mi impute logit
[MI] mi impute ologit
[MI] mi impute mlogit
[MI] mi impute poisson

[MI] mi impute nbreg

[MI] mi impute monotone
[MI] mi impute chained

[MI] mi impute mvn

112 mi impute — Impute missing values

Options

Main

add (#) specifies the number of imputations to add to the mi data. This option is required if there
are no imputations in the data. If imputations exist, then add () is optional. The total number of
imputations cannot exceed 1,000.

replace specifies to replace existing imputed values with new ones. One of replace or add () must
be specified when mi data already have imputations.

rseed (#) sets the random-number seed. This option can be used to reproduce results. rseed (#) is
equivalent to typing set seed # prior to calling mi impute; see [R] set seed.

double specifies that the imputed values be stored as doubles. By default, they are stored as floats.
mi impute makes this distinction only when necessary. For example, if the 1logit method is used,
the imputed values are stored as bytes.

by (varlist[s byopts]) specifies that imputation be performed separately for each by-group. By-groups
are identified by equal values of the variables in varlist in the original data (m = 0). Missing
categories in varlist are omitted, unless the missing suboption is specified within by (). Imputed
and passive variables may not be specified within by ().

byopts are missing, noreport, nolegend, and nostop.

missing specifies that missing categories in varlist are not omitted.
noreport suppresses reporting of intermediate information about each group.

nolegend suppresses the display of group legends that appear before the imputation table
when long group descriptions are encountered.

nostop specifies to proceed with imputation when imputation fails in some groups. By default,
mi impute terminates with error when this happens.

Reporting

dots specifies to display dots as imputations are successfully completed. An x is displayed if any of
the specified imputation variables still have missing values.

noisily specifies that intermediate output from mi impute be displayed.

nolegend suppresses the display of all legends that appear before the imputation table.

Advanced

force specifies to proceed with imputation even when missing imputed values are encountered. By
default, mi impute terminates with error if missing imputed values are encountered.

The following option is available with mi impute but is not shown in the dialog box:

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option. This option is rarely used.

mi impute — Impute missing values 113

Remarks

Remarks are presented under the following headings:

Imputation methods
Imputation modeling
Model building
Outcome variables
Transformations
Categorical variables
The issue of perfect prediction during imputation of categorical data
Convergence of iterative methods
Imputation diagnostics
Using mi impute
Univariate imputation
Multivariate imputation
Imputing on subsamples
Conditional imputation
Imputation and estimation samples
Imputing transformations of incomplete variables

Imputation methods

mi impute supports both univariate and multivariate imputation under the missing at random
assumption (see Assumptions about missing data under Remarks in [MI] intro substantive).

Univariate imputation is used to impute a single variable. It can be used repeatedly to impute
multiple variables only when the variables are independent and will be used in separate analyses. To
impute a single variable, you can choose from the following methods: regress, pmm, truncreg,
intreg, logit, ologit, mlogit, poisson, and nbreg; see [MI] mi impute regress, [MI] mi impute
pmm, [MI] mi impute truncreg, [MI] mi impute intreg, [MI] mi impute logit, [MI] mi impute ologit,
[MI] mi impute mlogit, [MI] mi impute poisson, and [MI] mi impute nbreg.

For a continuous variable, either regress or pmm can be used (for example, Rubin [1987] and
Schenker and Taylor [1996]). For a continuous variable with a restricted range, a truncated variable,
either pmm or truncreg (Raghunathan et al. 2001) can be used. For a continuous partially observed
or censored variable, intreg can be used (Royston 2007). For a binary variable, logit can be
used (Rubin 1987). For a categorical variable, ologit can be used to impute missing categories
if they are ordered, and mlogit can be used to impute missing categories if they are unordered
(Raghunathan et al. 2001). For a count variable, either poisson (Raghunathan et al. 2001) or nbreg
(Royston 2009), in the presence of overdispersion, is often suggested. Also see van Buuren (2007)
for a detailed list of univariate imputation methods.

Theory dictates that multiple variables usually must be imputed simultaneously, and that requires
using a multivariate imputation method. The choice of an imputation method in this case also depends
on the pattern of missing values.

If variables follow a monotone-missing pattern (see Patterns of missing data under Remarks in
[MI] intro substantive), they can be imputed sequentially using univariate conditional distributions,
which is implemented in the monotone method (see [MI] mi impute monotone). A separate univariate
imputation model can be specified for each imputation variable, which allows simultaneous imputation
of variables of different types (Rubin 1987).

When a pattern of missing values is arbitrary, iterative methods are used to fill in missing values.
The mvn method (see [MI] mi impute mvn) uses multivariate normal data augmentation to impute
missing values of continuous imputation variables (Schafer 1997). Allison (2001), for example, also
discusses how to use this method to impute binary and categorical variables.

114 mi impute — Impute missing values

Another multivariate imputation method that accommodates arbitrary missing-value patterns is
imputation using chained equations (ICE), also known as imputation using fully conditional specifications
(van Buuren, Boshuizen, and Knook 1999) and as sequential regression multivariate imputation
(Raghunathan et al. 2001) in the literature. The ICE method is implemented in the chained method
(see [MI] mi impute chained) and uses a Gibbs-like algorithm to impute multiple variables sequentially
using univariate fully conditional specifications. Despite a lack of rigorous theoretical justification,
the flexibility of ICE has made it one of the most popular choices used in practice.

For a recent comparison of ICE and multivariate normal imputation, see Lee and Carlin (2010).

Imputation modeling

As discussed in [MI] intro substantive, imputation modeling is important to obtain proper im-
putations. Imputation modeling is not confined to the specification of an imputation method and an
imputation model. It also requires careful consideration of how to handle complex data structures,
such as survey or longitudinal data, and how to preserve existing relationships in the data during
the imputation step. Rubin (1987), Meng (1994), Schafer (1997), Allison (2001), Royston (2007),
Graham (2009), White, Royston, and Wood (2011), and others provide guidelines about imputation
modeling. We summarize some of them below.

As with any statistical procedure, choosing an appropriate imputation approach is an art, and the
choice should ultimately be determined by your data and research objectives. Regardless of which
imputation approach you decide to pursue, it is good practice to check that your imputations are
sensible before performing primary data analysis (see Imputation diagnostics) and to perform sensitivity
analysis (for example, Kenward and Carpenter [2007]).

Model building

Perhaps the most important component of imputation modeling is the construction of an imputation
model that preserves all the main characteristics of the observed data. This includes the following:

1. Use as many predictors as possible in the model to avoid making incorrect assumptions
about the relationships between the variables. Omitting key predictors from the imputation
model may lead to biased estimates for these predictors in the analysis. On the other hand,
including insignificant predictors will result in less efficient yet still statistically valid results.

2. Include design variables representing the structure of the data in your imputation model. For
example, sampling weights, strata and cluster identifiers of survey data, repeated-measures
identifiers of longitudinal data must be included in the imputation model.

3. Specify the correct functional form of an imputation model. For example, include interactions
of variables (or impute missing values separately using different subsamples; see Imputing
on subsamples) to preserve higher-order dependencies.

The imputation model must be compatible with any model that can be used for the analysis. If
variable X is to be included in the analysis model, it should also be used in the imputation model.
If the analysis model estimates a correlation of X; and X5, then both variables should be present in
the imputation model. Accordingly, the outcome variable should always be present in the imputation
model. Also, in addition to all the variables that may be used in the analysis model, you should
include any auxiliary variables that may contain information about missing data. This will make
the MAR assumption more plausible and will improve the quality of the imputed values. For more
information about congeniality between the imputation and complete-data models, see Meng (1994).

mi impute — Impute missing values 115

As we mentioned above, it is important to specify the correct functional form of an imputation
model to obtain proper imputations. The failure to accommodate such model features as interactions
and nonlinearities during imputation may lead to severely biased results. There is no definitive
recommendation for the best way to incorporate various functional forms into the imputation model.
Currently, two main approaches are the joint modeling of all functional terms and modeling using
passive variables (variables derived from imputation variables) also known as passive imputation. The
joint modeling approach simply treats all functional terms as separate variables and imputes them
together with the underlying imputation variables using a multivariate model, often a multivariate
normal model. On the other hand, passive imputation—available within the ICE framework—fills in
only the underlying imputation variables and computes the respective functional terms from the imputed
variables, maintaining functional dependencies between the imputed and derived variables. The joint
modeling approach imposes a rather stringent assumption of multivariate normality for possibly
highly nonlinear terms and does not recognize functional dependencies between the imputed and
derived variables. The naive application of passive imputation, however, may omit certain functional
relationships and thus lead to biased results. So, careful consideration for the specification of each
conditional model is important. See White, Royston, and Wood (2011) for more details and some
guidelines.

Outcome variables

Imputing outcome variables receive special attention in the literature because of the controversy
about whether they should be imputed. As we already mentioned, it is important to include the outcome
variable in the imputation model to obtain valid results. But what if the outcome variable itself has
missing values? Should it be imputed? Should missing values be discarded from the analysis? There
is no definitive answer to this question. The answer ultimately comes down to whether the specified
imputation model describes the missing data adequately. When the percentage of missing values is
low, using an incorrect imputation model may have little effect on the resulting repeated-imputation
inference. With a large fraction of missing observations, a misspecified imputation model may distort
the observed relationship between the outcome and predictor variables. In general, with large fractions
of missing observations on any variable, the imputed values have more influence on the results, and
thus more careful consideration of the imputation probability model is needed.

Transformations

Although the choice of an imputation method may not have significant impact on the results with
low fractions of missing data, it may with larger fractions. A number of different imputation methods
are available to model various types of imputation variables: continuous, categorical, count, and so
on. However, in practice, these methods in no way cover all possible distributions that imputation
variables may have. Often, the imputation variables can be transformed to the scale appropriate for an
imputation method. For example, a log transformation (or, more generally, a Box—Cox transformation)
can be used for highly skewed continuous variables to make them suitable for imputation using the
linear regression method. If desired, the imputed values can be transformed back after the imputation.
Transformations are useful when a variable has a restricted range. For instance, a preimputation
logit transformation and a postimputation inverse logit transformation can be used to ensure that the
imputed values are between O and 1.

It is important to remember that although the choice of a transformation is often determined based
on the variable of interest alone, it is the conditional distribution of that variable given other predictors
that is being modeled, and so the transformation must be suitable for it.

116 mi impute — Impute missing values

Categorical variables

To impute one categorical variable, you can use one of the categorical imputation methods: logistic,
ordered logistic, or multinomial logistic regressions (see [MI] mi impute logit, [MI] mi impute ologit,
or [MI] mi impute mlogit). These methods can also be used to impute multiple categorical variables
with a monotone missing-data pattern using monotone imputation (see [MI] mi impute monotone)
and with an arbitrary missing-data pattern using ICE (see [MI] mi impute chained). Also, for multiple
categorical variables with only two categories (binary or dummy variables), a multivariate normal
approach (see [MI] mi impute mvn) can be used to impute missing values and then, if needed, the
imputed values can be rounded to O if the value is smaller than 0.5, or 1 otherwise. For categorical
variables with more than two categories, Allison (2001) describes how to use the normal model to
impute missing values.

The issue of perfect prediction during imputation of categorical data

Perfect prediction (or separation—for example, see Albert and Anderson [1984]) occurs often in
the analysis of categorical data. The issue of perfect prediction is inherent to the discrete nature of
categorical data and arises in the presence of covariate patterns for which outcomes of a categorical
variable can be predicted almost perfectly. Perfect prediction usually leads to infinite coefficients
with infinite standard errors and often causes numerical instability during estimation. This issue is
often resolved by discarding the observations corresponding to offending covariate patterns as well as
the independent variables perfectly predicting outcomes during estimation; see, for example, Model
identification in [R] logit.

Perfect prediction is even more likely to arise during imputation because imputation models, per
imputation modeling guidelines, tend to include many variables and thus may include many categorical
variables. Perfect prediction may arise when variables are imputed using one of these imputation
methods: logit, ologit, or mlogit.

Let’s discuss how perfect prediction affects imputation. Recall that to obtain proper imputations
(Proper imputation methods in [MI] intro substantive), imputed values must be simulated from
the posterior predictive distribution of missing data given observed data. The categorical imputation
methods achieve this by first drawing a new set of regression coefficients from a normal distribution (a
large-sample approximation to their posterior distribution) with mean and variance determined by the
maximum likelihood estimates of the coefficients from the observed data and their variance—covariance
matrix. The imputed values are then obtained using the new set of coefficients; see Methods and
formulas in the method-specific manual entries for details.

In the presence of perfect prediction, very large estimates of coefficients and their standard errors
arise during estimation. As a result, new coefficients, drawn from the corresponding asymptotic normal
distribution, will either be large and positive or large and negative. As such, missing values—say,
of a binary imputation variable—may all be imputed as ones in some imputations and may all be
imputed as zeros in other imputations. This will clearly bias the multiple-imputation estimate of the
proportion of ones (or zeros) in the sample of perfectly predicted cases.

To eliminate the issue of perfect prediction during imputation, we cannot, unfortunately, drop
observations and variables when estimating model parameters as is normally done during estimation
using, for example, the logit command. Doing so would violate one of the main requirements of
imputation modeling: all variables and cases that may be used during primary, completed-data analysis
must be included in the imputation model. So, what can you do?

mi impute — Impute missing values 117

When perfect prediction is detected, mi impute issues an error message:

. mi impute logit x1 z1 z2 ..., ..

mi impute logit: perfect predlctor(s) detected
Variables that perfectly predict an outcome were detected when logit
executed on the observed data. First, specify mi impute’s option noisily
to identify the problem covariates. Then either remove perfect predictors
from the model or specify mi impute logit’s option augment to perform
augmented regression; see The issue of perfect prediction during imputation
of categorical data under Remarks in [MI] mi impute for details.

r(498);

You have two alternatives at this point.

You can fit the specified imputation model to the observed data using the corresponding command
(in our example, logit) to identify the observations and variables causing perfect prediction in your
data. Depending on the research objective and specifics of the data collection process, it may be
reasonable to omit the offending covariate patterns and perfect predictors from your analysis. If you
do so, you must carefully document which observations and variables were removed and adjust your
inferential conclusions accordingly. Once offending instances are removed, you can proceed with
imputation followed by your primary data analysis. Make sure that the instances you removed from
the imputation model are not used in your further analysis.

The above approach may be difficult to pursue when imputing a large number of variables, among
which are many categorical variables. Another option is to handle perfect prediction directly during
imputation via the augment option, which is available for all categorical imputation methods: logit,
ologit, and mlogit.

mi impute ..., augment ... implements an augmented-regression approach, an ad hoc but
computationally convenient approach suggested by White, Daniel, and Royston (2010). According to
this approach, a few extra observations with small weights are added to the data during estimation of
model parameters in a way that prevents perfect prediction. See White, Daniel, and Royston (2010)
for simulation results and computational details.

Convergence of iterative methods

When the missing-value pattern is arbitrary, iterative Markov chain Monte Carlo (MCMC-like)
imputation methods are used to simulate imputed values from the posterior predictive distribution of
the missing data given the observed data; also see Multivariate imputation. In this case, the resulting
sequences (chains) of simulated parameters or imputed values should be examined to verify the
convergence of the algorithm. The modeling task may be influenced by the convergence process of
the algorithm given the data. For example, a different prior distribution for the model parameters may
be needed with mi impute mvn when some aspects of the model cannot be estimated because of the
sparseness of the missing data.

Markov chain simulation is often done in one of two ways: subsampling a single chain or running
multiple independent chains. Subsampling a chain involves running a single chain for a prespecified
number of iterations 7', discarding the first b iterations until the chain reaches stationarity (the
burn-in period) and sampling the chain each kth iteration to produce a final sequence of independent
draws {X b) X (b+k) X (b+2k) } from the target distribution. The number of between iterations
k is chosen such that draws X() and X (%) are approximately independent. Alternatively, one
can obtain independent draws by running multiple independent chains using different starting values
{XE@H .t =0,1,...}, i = 1,2,..., and discarding the first b iterations of each to obtain a final
sample {X(l’b), X (2:0) X(3:b) } from the target distribution.

118 mi impute — Impute missing values

mi impute mvn subsamples the chain, whereas mi impute chained runs multiple independent
chains; see [MI] mi impute mvn and [MI] mi impute chained for details on how to monitor convergence
of each method.

Imputation diagnostics

After imputation, it is important to examine the sensibility of the obtained imputed values. If any
abnormalities are detected, the imputation model must be revised. Diagnostics for imputations is still
an ongoing research topic, but two general recommendations are to check model fit of the specified
imputation model to the observed data and to compare distributions of the imputed and observed
data. To check model fit of an imputation model to the observed data, you can use any standard
postestimation tools usually used with that type of model. Also see, for example, [R] mfp to help
determine an appropriate functional form of the imputation model. The differences (if any) between
the distributions of the observed and of the imputed data should be plausible within the context of
your study. For more information, see for example, Gelman et al. (2005), Abayomi, Gelman, and
Levy (2008), and Marchenko and Eddings (2011) for how to perform multiple-imputation diagnostics
in Stata.

Using mi impute

To use mi impute, you first mi set your data; see [MI] mi set. Next you register all variables
whose missing values are to be imputed; see mi register in [MI] mi set.

mi impute has two main options: add () and replace. If you do not have imputations, use add ()
to create them. If you already have imputations, you have three choices:

1. Add new imputations to the existing ones by specifying the add () option.

2. Add new imputations and also replace the existing ones by specifying both the add() and
the replace options.

3. Replace existing imputed values by specifying the replace option.

add () is required if no imputations exist in the mi data, and either add() or replace must be
specified if imputations exist. See Univariate imputation for examples. Note that with replace, only
imputed values of the specified imputation variables within the specified subsample will be updated.

For reproducibility, use the rseed() option to set the random-number seed, or equivalently, set
the seed by using set seed immediately before calling mi impute. If you forget and still have mi
impute’s saved results in memory, you can retrieve the seed from the saved result r(rseed); see
Saved results below.

By default, mi impute saves the imputed values using float precision. If you need more accuracy,
you can specify the double option. Depending on the mi data style, the type of the imputed variable
may change in the original data, m = 0. For example, if your data are in the mlong (or flong) style
and you are imputing a binary variable using the regression method, the type of the variable will
become float. If you are using the logistic method, the type of the variable may become byte even
if originally your variable was declared as float or int. mi impute will never demote a variable
if that would result in loss of precision.

Use the by (varlist) option to perform imputation separately on each group formed by varlist.
Specifying by () is equivalent to the repeated use of an if condition with mi impute to restrict
the imputation sample to each of the categories formed by varlist. Use the missing option within
by () to prevent mi impute from omitting missing categories in varlist. By default, mi impute
terminates with error if imputation fails in any of the groups; use by ()’s nostop option to proceed
with imputation. You may not specify imputation and passive variables within by ().

mi impute — Impute missing values 119

mi impute terminates with error if the imputation procedure results in missing imputed values.
This may happen if you include variables containing missing values as predictors in your imputation
model. If desired, you can override this behavior with the force option.

mi impute may change the sort order of the data.

Univariate imputation

Univariate imputation by itself has limited application in practice. The situations in which only one
variable needs to be imputed or in which multiple incomplete variables can be imputed independently
are rare in real-data applications. Univariate imputation is most useful when it is used as a building
block of sequential multivariate imputation methods; see Multivariate imputation. It is thus beneficial
to first become familiar with univariate imputation.

Consider the heart attack data in which bmi contains missing values, as described in A brief
introduction to MI using Stata of [MI] intro substantive. Here we use the already mi set version of
the data with a subset of covariates of interest:

. use http://www.stata-press.com/data/r12/mheart1s0
(Fictional heart attack data; bmi missing)
. mi describe

Style: mlong
last mi update 30mar2011 12:46:48, 1 day ago

Obs.: complete 132
incomplete 22 (M = 0 imputations)
total 154

Vars.: imputed: 1; bmi(22)
passive: O
regular: b5; attack smokes age female hsgrad
system: 3; _mi_m _mi_id _mi_miss

(there are no unregistered variables)

According to mi describe, the mi data style is mlong, and the dataset contains no imputations and
22 incomplete observations. The only registered imputed variable is bmi containing the 22 missing
values. The other variables are registered as regular. See [MI] mi describe for details.

In the example in [MI] intro substantive, we used mi impute regress to impute missing values
of bmi. Let’s concentrate on the imputation step in more detail here:

. mi impute regress bmi attack smokes age female hsgrad, add(20)

Univariate imputation Imputations = 20

Linear regression added = 20

Imputed: m=1 through m=20 updated = 0
Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observationmns.)

120 mi impute — Impute missing values

The above output is common to all imputation methods of mi impute. In the left column, mi
impute reports information about which imputation method was used and which imputations were
created or updated. The right column contains the total number of imputations, and how many of
them are new and how many are updated. The table contains the number of complete, incomplete, and
imputed observations, and the total number of observations in the imputation sample, per imputation
for each variable (see Imputation and estimation samples below). As indicated by the note, complete
and incomplete observations sum to the total number of observations. The imputed column reports
how many incomplete observations were actually imputed. This number represents the minimum
across all imputations used (m = 1 through m = 20 in our example).

In the above example, we used add (20) to create 20 new imputations. Suppose that we decided
that 20 is not enough and we want to add 30 more:

. mi impute regress bmi attack smokes age female hsgrad, add(30)

Univariate imputation Imputations = 50

Linear regression added = 30

Imputed: m=21 through m=50 updated = 0
Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

The table output is unchanged, but the header reports that total number of imputations is now 50.
Thirty new imputations (from m = 21 to m = 50) were added, and the existing 20 imputations were
left unchanged.

Suppose that we decide we want to impute bmi using the predictive mean matching (PMM) imputation
method instead of the regression method. We use mi impute pmm and specify the replace option
to update all existing imputations with new ones:

. mi impute pmm bmi attack smokes age female hsgrad, replace

Univariate imputation Imputations = 50
Predictive mean matching added = 0
Imputed: m=1 through m=50 updated = 50

]
-

Nearest neighbors

Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

The header reports that all 50 existing imputations, from m = 1 to m = 50, are replaced with
new ones.

Later we decide to use more nearest neighbors than the default with mi impute pmm and also add
15 more imputations. We can do the latter by combining replace and add(). We specify replace
to update the existing imputations with imputations from PMM with 3 nearest neighbors (knn(3))
and use add(15) to add 15 more imputations.

mi impute — Impute missing values 121

. mi impute pmm bmi attack smokes age female hsgrad, add(15) replace knn(3) dots
Imputing m=1 through m=65:

......... 10.........20.........30.........40.........50.........60..... done
Univariate imputation Imputations = 65
Predictive mean matching added = 15
Imputed: m=1 through m=65 updated = 50
Nearest neighbors = 3

Observations per m

Variable Complete Incomplete Imputed Total
bmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

The header reports a total of 65 imputations, among which 15 are new and 50 are updated. In this
example, we also used the dots option to see the imputation progress. This option is useful with
larger datasets to monitor the imputation process.

See Imputing on subsamples for other usage of add() and replace.

Multivariate imputation

When imputing multiple variables, their missing-data pattern must first be considered. As we
briefly mentioned in Patterns of missing data in [MI] intro substantive, when a missing-data pattern
is monotone distinct, multiple variables can be imputed sequentially without iteration using univariate
conditional models (or monotone imputation). That is, a complicated multivariate imputation task can
be replaced with a sequence of simpler univariate imputation tasks; see [MI] mi impute monotone.

Monotone missing-data patterns rarely arise naturally in practice. As such, it is important to be able
to handle arbitrary missing-data patterns during imputation. Before we describe imputation methods
accommodating arbitrary missing-data patterns, we will first discuss the difficulties arising with such
patterns during imputation.

Monotone imputation is possible because variables can be ordered such that the complete observations
of a variable being imputed are also complete in all prior imputed variables used to predict it. This
means that the estimates of the parameters, which are obtained from complete data, do not depend
on any previously imputed values (see Rubin [1987] for details). With an arbitrary pattern of missing
data, such an ordering may not be possible because some variables may contain incomplete values in
observations for which other variables are complete (and vice versa), resulting in estimated parameters
being dependent on imputed values. The simultaneous imputation of multiple variables becomes more
challenging when missingness is nonmonotone.

Consider the following example. Variable X; is complete in observation 1 and missing in ob-
servation 2, and variable X5 is missing in observation 1 and complete in observation 2. We need
to impute the two variables simultaneously. Suppose that we impute variable Xo using previously
imputed variable X;. Observation 1, which contains an imputed value of X7, is used to estimate the
model parameters for X5. As a result, the model parameters are obtained by treating the imputed
value of X, as if it were true, thus ignoring the imputation variability in X;. To account for the
uncertainty in the imputed values during estimation, we need to iterate between the estimation step
and the imputation step until the estimates of the model parameters depend only on the observed data.

Two main approaches for multivariate imputation with arbitrary missing-data patterns are joint
modeling (JM) and fully conditional specification (FCS).

122 mi impute — Impute missing values

The JM approach assumes a genuine multivariate distribution for all imputation variables and
imputes missing values as draws from the resulting posterior predictive distribution of the missing
data given the observed data. The predictive distribution is often difficult to draw from directly, so the
imputed values are often obtained by approximating this distribution using one of the MCMC methods.
One such JM approach for continuous data is based on the multivariate normal distribution, the MVN
method (Schafer 1997). The MVN method is implemented in [MI] mi impute mvn and uses the data
augmentation MCMC method.

The FCS approach does not assume an explicit multivariate distribution for all imputation variables.
Instead, it provides a set of chained equations, that is, univariate conditional distributions of each
variable with fully conditional specifications of prediction equations. This approach is also known
as ICE (van Buuren, Boshuizen, and Knook 1999) or sequential regression multivariate imputation
(SRML; Raghunathan et al. 2001). We will be using the terms ICE, FCS, and SRMI interchangeably
throughout the documentation. ICE is similar in spirit to the Gibbs sampler, a popular MCMC method
for simulating data from complicated multivariate distributions. Unlike the Gibbs sampler, however,
conditional specifications within the ICE method are not guaranteed to correspond to a genuine
multivariate distribution because ICE does not start from an explicit multivariate density. Regardless,
ICE remains one of the popular imputation methods in practice. The ICE method is implemented in
[MI] mi impute chained.

Currently, there is no definitive recommendation in the literature as to which approach, JM or FCS,
is preferable. The JM approach ensures that imputed values are drawn from a genuine multivariate
distribution, and it thus may be more attractive from a theoretical standpoint. However, except for
simpler cases such as a multivariate normal model for continuous data, it may not be feasible to
formulate a joint model for general data structures. In this regard, the FCS approach is more appealing
because it not only can accommodate mixtures of different types of variables, but also can preserve
some important characteristics often observed in real data, such as restrictions to subpopulations for
certain variables and range restrictions. The tradeoff for such flexibility is a current lack of theoretical
justification. See Lee and Carlin (2010) and references therein for more discussion about the two
approaches.

Consider the heart attack data in which both bmi and age contain missing values. Again we will
use data that have already been mi set.
. use http://www.stata-press.com/data/r12/mheart5s0, clear
(Fictional heart attack data; bmi and age missing)
. mi describe

Style: mlong
last mi update 30mar2011 12:46:48, 1 day ago

Obs.: complete 126
incomplete 28 (M = 0 imputations)
total 154

Vars.: imputed: 2; bmi(28) age(12)
passive: O
regular: 4; attack smokes female hsgrad
system: 3; _mi_m _mi_id _mi_miss

(there are no unregistered variables)

There are 28 incomplete observations in the dataset. The bmi variable contains 28 missing values
and the age variable contains 12 missing values. Both bmi and age are registered as imputed. If
we assume that age and BMI are independent, we can impute each of them separately by using the
previously described univariate imputation methods. It is likely, however, that these variables are
related, and so we use multivariate imputation.

mi impute — Impute missing values 123

First, we examine missing-value patterns of the data.

. mi misstable patterns

Missing-value patterns
(1 means complete)

Pattern
Percent 1 2
82% 1 1
10 1 0
8 0 O
100%

Variables are (1) age (2) bmi

From the output, 82% of observations are complete, 10% of observations contain missing values
for bmi, and 8% of observations have both bmi and age missing. We can see that the dataset has
a monotone-missing pattern (see [MI] intro substantive), that is, missing values of age are nested
within missing values of bmi. Another way to see if the pattern of missingness is monotone is to use
mi misstable nested ([MI] mi misstable):

. mi misstable nested
1. age(12) -> bmi(28)

Because the missing-data pattern is monotone, we can use mi impute monotone to impute missing
values of bmi and age simultaneously:

. mi impute monotone (regress) age bmi = attack smokes hsgrad female, add(10)

Conditional models:
age: regress age attack smokes hsgrad female
bmi: regress bmi age attack smokes hsgrad female

Multivariate imputation Imputations = 10
Monotone method added = 10
Imputed: m=1 through m=10 updated = 0

age: linear regression
bmi: linear regression

Observations per m

Variable Complete Incomplete Imputed Total
age 142 12 12 154
bmi 126 28 28 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

Without going into detail, mi impute monotone imputes missing values of multiple variables
by performing a sequence of independent univariate conditional imputations. In the above example,
the regression method is used to impute missing values of both variables. age is imputed first from
the observed variables attack, smokes, hsgrad, and female. Then bmi is imputed using the
imputed age variable in addition to other observed variables. The output is consistent with that of
the univariate imputation methods described earlier, with some additional information. See [MI] mi
impute monotone for details.

124 mi impute — Impute missing values

We can also impute missing values of bmi and age simultaneously using either mi impute mvn

. mi impute mvn age bmi = attack smokes hsgrad female, replace nolog

Multivariate imputation Imputations = 10
Multivariate normal regression added = 0
Imputed: m=1 through m=10 updated = 10
Prior: uniform Iterations = 1000
burn-in = 100
between = 100

Observations per m

Variable Complete Incomplete Imputed Total
age 142 12 12 154
bmi 126 28 28 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

or mi impute chained
. mi impute chained (regress) age bmi = attack smokes hsgrad female, replace
note: missing-value pattern is monotone; no iteration performed

Conditional models (monotone):
age: regress age attack smokes hsgrad female
bmi: regress bmi age attack smokes hsgrad female

Performing chained iterations

Multivariate imputation Imputations = 10
Chained equations added = 0
Imputed: m=1 through m=10 updated = 10
Initialization: monotone Iterations = 0

burn-in = 0

age: linear regression
bmi: linear regression

Observations per m

Variable Complete Incomplete Imputed Total
age 142 12 12 154
bmi 126 28 28 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

Neither mi impute mvn nor mi impute chained requires the missing-data pattern to be monotone.
mi impute mvn iterates to produce imputations. When the data are monotone missing, however, no
iteration is required, and because mi impute monotone executes more quickly, it is preferred. mi
impute chained also iterates to produce imputations, unless the missing-data pattern is monotone.
However, mi impute monotone is still faster because it performs estimation only once on the original
data, whereas mi impute chained performs estimation on each imputation. Use mi impute mvn
and mi impute chained when there is an arbitrary missing-data pattern. See [MI] mi impute mvn
and [MI] mi impute chained for details.

mi impute — Impute missing values 125

Imputing on subsamples

Consider the earlier example of the univariate imputation of bmi. Suppose that we want to perform
imputation separately for females and males. Imputation on subsamples is useful when the imputation
model must accommodate the interaction effects (see, for example, Allison [2001]). For example, if
we want the effect of bmi on attack to vary by gender, we can perform imputation of bmi separately
for females and males.

We first show how to do it manually using if and the add() and replace options:

. use http://www.stata-press.com/data/ri12/mheart1s0, clear
(Fictional heart attack data; bmi missing)

. mi impute regress bmi attack smokes age hsgrad if female==1, add(20)
Univariate imputation Imputations = 20
Linear regression added = 20
Imputed: m=1 through m=20 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

bmi 33 5 5 38

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observationmns.)

. mi impute regress bmi attack smokes age hsgrad if female==0, replace
Univariate imputation Imputations = 20
Linear regression added = 0
Imputed: m=1 through m=20 updated = 20

Observations per m

Variable Complete Incomplete Imputed Total

bmi 99 17 17 116

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observationmns.)

First, we created 20 imputations and filled in the missing values of bmi for females by using
the corresponding subset of observations. Then we filled in the remaining missing values of bmi for
males in the existing imputations by using the subset of male observations. We will now be able to
include the interaction between bmi and female in our logistic model.

126 mi impute — Impute missing values

A much easier way to do the above is to use by ():
. use http://www.stata-press.com/data/r12/mheartis0O
(Fictional heart attack data; bmi missing)
. mi impute regress bmi attack smokes age hsgrad, add(20) by(female)
Performing setup for each by() group:
-> female = 0

-> female = 1

Univariate imputation Imputations = 20
Linear regression added = 20
Imputed: m=1 through m=20 updated = 0
Observations per m
by ()
Variable Complete Incomplete Imputed Total

female = 0

bmi 99 17 17 116
female = 1

bmi 33 5 5 38
Overall

bmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observationmns.)

Conditional imputation

Often in practice, some variables are defined only within what we call a conditional sample, a
subset of observations satisfying certain restrictions (Raghunathan et al. 2001, Royston 2009). For
example, the number of cigarettes smoked is relevant to smokers only, the number of pregnancies is
relevant to females only, etc. Outside the conditional sample, such variables are assumed to contain
soft missing values and a nonmissing constant value, further referred to as a conditional constant,
which represents a known value or an inadmissible value. We will refer to conditional imputation as
imputation of such variables. So, the task of conditional imputation is to impute missing values of a
variable within a conditional sample using only observations from that sample and to replace missing
values outside the conditional sample with a conditional constant.

In the previous section, we learned that we can specify an if condition with mi impute to restrict
imputation of variables to a subset of observations. Is this sufficient to accommodate conditional
imputation? To answer this question, let’s consider several examples.

We use our heart attack data as an example. Suppose that our only variable containing missing
values is hightar, the indicator for smoking high-tar cigarettes. We want to impute missing values
in hightar and use it among other predictors in the logistic analysis of heart attacks. Because
hightar is relevant to smokers only, we want to impute hightar using the subset of observations
with smokes==1.

Thus to impute hightar, we restrict our imputation sample to smokers:

. mi impute logit hightar attack age bmi ... if smokes==1,

mi impute — Impute missing values 127

Are we now ready to proceed with our primary logistic analysis of heart attacks? Not quite.
Recall that we wish to use all observations of hightar in our analysis. If hightar contains missing
values only in the conditional sample, smokes==1, we are finished. Otherwise, we need to replace
all remaining missing values outside the conditional sample, for smokes==0, with the conditional
constant, the nonmissing value of hightar in observations with smokes==0. In our example, this
value is zero, so our final step is

. mi xeq: replace hightar = 0 if smokes==

What if we have several imputation variables? Suppose now that age and bmi also contain missing
values. Without making any assumptions about a missing-data pattern, we use mi impute chained
to impute variables of different types: age, bmi, and hightar. We need to impute hightar for
smokes==1 but use the unrestricted sample to impute age and bmi. Can we still accomplish this by
specifying an if condition? The answer is yes, but we need to replace missing values of hightar for
smokes==0 before imputation to ensure that age and bmi are imputed properly, using all observations,
when hightar is used in their prediction equations:

. mi xXeq: replace hightar = 0 if smokes==
. mi impute chained (regress) bmi age (logit if smokes==1) hightar = ..., ...

It seems that we can get away with using if to perform conditional imputation. What is the catch?
So far, we assumed that smokes does not contain any missing values. Let’s see what happens if it
does.

Because hightar depends on smokes, we must first impute missing values of smokes before
we can impute missing values of hightar. As such, the set of observations for which smokes==
will vary from imputation to imputation and, in the case of mi impute chained, from iteration to
iteration. The replacement of missing values of hightar outside the conditional sample should be
performed each time a new set of imputed values is obtained for smokes, and thus must be directly
incorporated into the imputation procedure.

The answer to our earlier question about using an if condition to perform conditional imputation
is no, in general. To perform conditional imputation, use the conditional() option:

. mi imp chained (reg) bmi age (logit) smokes (logit, conditional(if smokes==1))
> hightar ...

Every univariate imputation method supports option conditional (). This option is most useful
within specifications of univariate methods when multiple variables are being imputed using mi
impute monotone or mi impute chained, as we showed above. Although in some cases, as we
saw earlier, specifying an if condition in combination with manual replacement of missing values
outside the conditional sample may produce equivalent results, such use should generally be avoided
and conditional() should be used instead.

When you specify option conditional(), mi impute performs checks necessary for proper
conditional imputation. For example, the imputed variable is verified to be constant outside the
conditional sample and an error message is issued if it is not:

. mi impute logit hightar age bmi ..., conditional(if smokes==1)
conditional(): imputation variable not constant outside conditional sample;
hightar is not constant outside the subset identified by (smokes==1)

within the imputation sample
r(459);

128 mi impute — Impute missing values

mi impute also requires that missing values of all variables involved in conditional specifications
(restrictions)—that is, conditioning variables—be nested within missing values of the conditional
variable being imputed. If this does not hold true, mi impute issues an error message:

. mi impute logit hightar age bmi ..., conditional(if smokes==1)
conditional(): conditioning variables not nested;

conditioning variable smokes is not nested within hightar
r(459);

Because missing values of all conditioning variables are assumed to be nested within missing
values of a conditional variable, that conditional variable is not included in the prediction equations
of the corresponding conditioning variables.

As an example, let’s continue with our heart attack data, in which variables hightar and smokes
contain missing values, as do age and bmi:
. use http://www.stata-press.com/data/r12/mheart7s0
(Fictional heart attack data; bmi, age, hightar, and smokes missing)
. mi describe

Style: mlong
last mi update 25mar2011 11:00:38, 3 days ago

Obs.: complete 124
incomplete 30 (M = 0 imputations)
total 154

Vars.: imputed: 4; bmi(24) age(30) hightar(8) smokes(5)
passive: O
regular: 3; attack female hsgrad
system: 3; _mi_m _mi_id _mi_miss
(there are no unregistered variables)
. mi misstable nested

1. smokes(5) -> hightar(8) -> bmi(24) -> age(30)

Our data are already mi set, so we proceed with imputation. According to mi misstable nested,
all imputation variables are monotone missing, so we use mi impute monotone for imputation. For
the purpose of illustration, we create only two imputations:

mi impute — Impute missing values 129

. mi impute monotone (regress) bmi age

> (logit, conditional(if smokes==1)) hightar
> (logit) smokes
> = attack hsgrad female, add(2)

Conditional models:
smokes: logit smokes attack hsgrad female
hightar: logit hightar i.smokes attack hsgrad female ,
conditional(if smokes==1)
bmi: regress bmi i.hightar i.smokes attack hsgrad female
age: regress age bmi i.hightar i.smokes attack hsgrad female

note: 1.smokes omitted because of collinearity

Multivariate imputation Imputations = 2
Monotone method added = 2
Imputed: m=1 through m=2 updated = 0
Conditional imputation:
hightar: incomplete out-of-sample obs. replaced with value 0O
bmi: linear regression
age: linear regression
hightar: logistic regression
smokes: logistic regression
Observations per m
Variable Complete Incomplete Imputed Total
bmi 130 24 24 154
age 124 30 30 154
hightar 146 8 8 154
smokes 149 5 5 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

For each variable that was imputed conditionally, mi impute reports the conditional value used to
replace all missing observations outside the conditional sample in a legend about conditional imputation.
In our example, all missing values of hightar outside smokes==1 are replaced with zero. The reported
numbers of complete, incomplete, and imputed observations for hightar correspond to the entire
imputation sample (see Imputation and estimation samples) and not only to the conditional sample.
For example, there are 146 complete and 8 incomplete observations of hightar in the combined
sample of smokers and nonsmokers. The minimum number of imputed values across imputations is 8,
so all incomplete observations of hightar were filled in—either imputed directly or replaced with a
conditional value—in both imputations. Because smokes is being imputed, the numbers of incomplete
and imputed observations of hightar for smokers and nonsmokers will vary across imputations.

You can accommodate more complicated restrictions or skip patterns, which often arise with
questionnaire data, by specifying more elaborate restrictions within conditional () or by specifying
the conditional() option with other variables. For example, suppose that the information about
cigarette tar level (hightar) was collected only for heavy smokers, identified by an indicator variable
heavysmoker. The heavysmoker variable contains missing values and needs to be imputed before
hightar can be imputed. To impute heavysmoker, we need to restrict our sample to smokers only.
Then to impute hightar, we need to use only heavy smokers among all smokers. We can do so as
follows:

. mi impute chained (logit) smokes ///
(logit, conditional(if smokes==1)) heavysmoker ///
(logit, conditional(if smokes==1 & heavysmoker==1)) hightar ...

130 mi impute — Impute missing values

Imputation and estimation samples

Rubin (1987, 160-166) describes the imputation process as three tasks: modeling, estimation,
and imputation. We concentrate on the latter two tasks here. The posterior distribution of the model
parameters is estimated during the estimation task. This posterior distribution is used in the imputation
task to simulate the parameters of the posterior predictive distribution of the missing data from which an
imputed value is drawn. Accordingly, mi impute distinguishes between two main samples: imputation
and estimation.

The imputation sample is determined by the imputation variables used in the imputation task. It
is comprised of all observations for which the imputation variables contain no hard missing values
(or no extended missing values). In other words, the imputation sample consists of the complete and
incomplete observations as identified by the specified imputation variables. The estimation sample is
comprised of all observations used by the model fit to the observed data during the estimation task.

For example,

. use http://www.stata-press.com/data/r12/mheartis0, clear
(Fictional heart attack data; bmi missing)
. mi impute regress bmi attack smokes age hsgrad female, add(1l) noisily

Running regress on observed data:

Source SS df MS Number of obs = 132

F(C 5, 126) = 1.24

Model 99.5998228 5 19.9199646 Prob > F = 0.2946

Residual 2024.93667 126 16.070926 R-squared = 0.0469

Adj R-squared = 0.0091

Total 2124.5365 131 16.2178358 Root MSE 4.0089

bmi Coef. Std. Err. t P>|t| [95% Conf. Intervall

attack 1.71356 .7515229 2.28 0.024 .2263179 3.200801

smokes -.5153181 .761685 -0.68 0.500 -2.02267 .9920341

age -.033553 .0305745 -1.10 0.275 -.0940591 .026953

hsgrad -.4674308 .8112327 -0.58 0.566 -2.072836 1.137975

female -.3072767 .8074763 -0.38 0.704 -1.905249 1.290695

_cons 26.96559 1.884309 14.31 0.000 23.2366 30.69458
Univariate imputation Imputations = 1
Linear regression added = 1
Imputed: m=1 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total
bmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

The imputation sample contains 154 observations and the estimation sample contains 132 observations
(from the regression output). The estimation task of mi impute regress consists of fitting a linear
regression of bmi on other variables to the observed data. We specified the noisily option to see
results from the estimation task. Usually, the number of complete observations in the imputation
sample (132 in this example) will be equal to the number of observations used in the estimation.
Sometimes, however, observations may be dropped from the estimation—for example, if independent
variables contain missing values. In this case, the number of complete observations in the imputation

mi impute — Impute missing values 131

sample and the number of observations used in the estimation will be different, and the following
note will appear following the table output:

Note: right-hand-side variables (or weights) have missing values;
model parameters estimated using listwise deletion

You should evaluate such cases to verify that results are as expected.

In general, missing values in independent variables (or in a weighting variable) do not affect
the imputation sample but they may lead to missing imputed values. In the above example, if age
contained missing values in incomplete observations of bmi, the linear prediction for those observations
would have been missing and thus the resulting imputed values would have been missing, too.

Imputing on subsamples, or in other words, using an if condition with mi impute, restricts
both imputation and estimation samples to include only observations satisfying the if condition.
Conditional imputation (the conditional () option), on the other hand, affects only the estimation
sample. All values, within and outside of a conditional sample, except extended missing values, are
included in the imputation sample. With conditional imputation, the reported number of complete
observations will almost always be different from the number of observations in the estimation sample,
unless the conditional sample coincides with the imputation sample. In the case of observations being
dropped from a conditional sample during estimation, a note as shown above will appear following
the table output.

Imputing transformations of incomplete variables

Continuing with the univariate example above, say that we discover that the distribution of bmi
is skewed to the right, and thus we decide to impute bmi on the logarithmic scale instead of the
original one. We can do this by creating a new variable, 1nbmi, and imputing it instead of bmi.

What we will do is create 1nbmi, register it as imputed, impute it, and then create bmi as a passive
variable based on the formula bmi = exp(lnbmi).

We need to be careful when we create Inbmi to get its missing values right. mi respects two kinds
of missing values, called soft and hard missing. Soft missing values are missing values eligible for
imputation. Hard missing values are missing values that are to remain missing even in the imputed
data. Soft missing are recorded as ordinary missing (.), and hard missing are recorded as any of
extended missing (.a—.z).

The issue here is that missing values could arise because of our application of the transform
1nbmi = In(bmi). In the case of the In() transform, missing values will be created whenever
bmi < 0. (In general, transformations leading to undefined values should be avoided so that all
available observed data are used during imputation.) Body mass index does not contain such values,
but let’s pretend it did. Here is what we would do:

1. Create 1nbmi = In(bmi).

2. Replace 1nbmi to contain .z in observations for which 1nbmi contains missing but bmi
does not.

3. Register 1nbmi as an imputed variable and impute it.
4. Create passive variable newbmi = exp(lnbmi).
5. Replace newbmi equal to bmi in observations for which newbmi is missing and bmi is not.

Alternatively, to avoid creating hard missing values in step 2, we could consider a different
transformation; see, for example, [R] Inskew0.

132 mi impute — Impute missing values

As we said, for 1nbmi = In(bmi) we need not perform all the steps above because bmi > 0. In
the bmi case, all we need to do is

1. Create 1nbmi = In(bmi).
2. Register 1nbmi as an imputed variable and impute it.
3. Create passive variable newbmi = exp(lnbmi).

If all we wanted to do was impute 1nbmi = ln(bmi) and, from that point on, just work with
1nbmi, we would perform only the first two steps of the three-step procedure.

All that said, we are going to perform the five-step procedure because it will always work. We
will continue from where we left off in the last example, so we will discard our previous imputation
efforts by typing mi set M = 0. (Instead of typing mi set M = 0, we could just as easily begin by
typing use http://www.stata-press.com/data/r12/mheart1s0.)

. mi set M=0 // start again

. mi unregister bmi // we do not impute bmi
. generate lnbmi = 1ln(bmi) // create lnbmi

. replace lnbmi = .z if lnbmi==. & bmi!=.

. mi register imputed lnbmi
. mi impute regress lnbmi attack smokes age hsgrad female, add(5)
. mi passive: gen newbmi = exp(lbmi)

. mi passive: replace newbmi = bmi if bmi!=.

The important thing about the above is the mechanical definition of an imputed variable. An
imputed variable is a variable we actually impute, not a variable we desire to impute. In this case, we
imputed 1nbmi and derived bmi from it. Thus the variable we desired to impute became, mechanically,
a passive variable.

Saved results

mi impute saves the following in r():

Scalars

r(M) total number of imputations

r(M_add) number of added imputations

r(M_update) number of updated imputations

r(k_ivars) number of imputed variables

r(N_g) number of imputed groups (1 if by () is not specified)
Macros

r (method) name of imputation method

r(ivars) names of imputation variables

r(rseed) random-number seed

r(by) names of variables specified within by ()
Matrices

r(N) number of observations in imputation sample in each group (per variable)

r(N_complete) number of complete observations in imputation sample in each group (per variable)
r(N_incomplete) number of incomplete observations in imputation sample in each group (per variable)
r(N_imputed) number of imputed observations in imputation sample in each group (per variable)

Also see Saved results in the method-specific manual entries for additional saved results.

mi impute — Impute missing values 133

Methods and formulas

All imputation methods (except predictive mean matching) are based on simulating from a Bayesian
(approximate) posterior predictive distribution of missing data. Univariate imputation methods and the
sequential monotone method use noniterative techniques for simulating from the posterior predictive
distribution of missing data. The imputation method based on multivariate normal regression uses an
iterative MCMC technique to simulate from the posterior predictive distribution of missing data. The
ICE method uses a Gibbs-like algorithm to obtain imputed values.

See Methods and formulas in the method-specific manual entries for details.

Herman Otto Hartley (1912-1980) was born in Germany as Herman Otto Hirschfeld and
immigrated to England in 1934 after completing his PhD in mathematics at Berlin University. He
completed a second PhD in mathematical statistics under John Wishart at Cambridge in 1940 and
went on to hold positions at Harper Adams Agricultural College, Scientific Computing Services
(London), University College (London), Iowa State College, Texas A&M University, and Duke
University. Among other awards he received and distinguished titles he held, Professor Hartley
served as the president of the American Statistical Association in 1979. Known affectionately
as HOH by almost all who knew him, he founded the Institute of Statistics, later to become the
Department of Statistics, at Texas A&M University. His contributions to statistical computing
are particularly notable considering the available equipment at the time. Professor Hartley is
best known for his two-volume Biometrika Tables for Statisticians (jointly written with Egon
Pearson) and for his fundamental contributions to sampling theory, missing-data methodology,
variance-component estimation, and computational statistics.

References

Abayomi, K., A. Gelman, and M. Levy. 2008. Diagnostics for multivariate imputations. Journal of the Royal Statistical
Society, Series C 57: 273-291.

Albert, A., and J. A. Anderson. 1984. On the existence of maximum likelihood estimates in logistic regression models.
Biometrika 71: 1-10.

Allison, P. D. 2001. Missing Data. Thousand Oaks, CA: Sage.

Gelman, A., I. Van Mechelen, G. Verbeke, D. F. Heitjan, and M. Meulders. 2005. Multiple imputation for model
checking: Completed-data plots with missing and latent data. Biometrics 61: 74-85.

Graham, J. W. 2009. Missing data analysis: Making it work in the real world. Annual Review of Psychology 60:
549-576.

Kenward, M. G., and J. R. Carpenter. 2007. Multiple imputation: Current perspectives. Statistical Methods in Medical
Research 16: 199-218.

Lee, K. J., and J. B. Carlin. 2010. Multiple imputation for missing data: Fully conditional specification versus
multivariate normal imputation. American Journal of Epidemiology 171: 624-632.

Marchenko, Y. V., and W. D. Eddings. 2011. A note on how to perform multiple-imputation diagnostics in Stata.
http://www.stata.com/users/ymarchenko/midiagnote.pdf.

Meng, X.-L. 1994. Multiple-imputation inferences with uncongenial sources of input (with discussion). Statistical
Science 9: 538-573.

Raghunathan, T. E., J. M. Lepkowski, J. Van Hoewyk, and P. Solenberger. 2001. A multivariate technique for multiply
imputing missing values using a sequence of regression models. Survey Methodology 27: 85-95.

Royston, P. 2007. Multiple imputation of missing values: Further update of ice, with an emphasis on interval censoring.
Stata Journal 7: 445-464.

——. 2009. Multiple imputation of missing values: Further update of ice, with an emphasis on categorical variables.
Stata Journal 9: 466-477.

http://www.stata.com/users/ymarchenko/midiagnote.pdf
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_3
http://www.stata-journal.com/article.html?article=st0067_4

134 mi impute — Impute missing values

Rubin, D. B. 1987. Multiple Imputation for Nonresponse in Surveys. New York: Wiley.
Schafer, J. L. 1997. Analysis of Incomplete Multivariate Data. Boca Raton, FL: Chapman & Hall/CRC.

Schenker, N., and J. M. G. Taylor. 1996. Partially parametric techniques for multiple imputation. Computational
Statistics & Data Analysis 22: 425-446.

van Buuren, S. 2007. Multiple imputation of discrete and continuous data by fully conditional specification. Statistical
Methods in Medical Research 16: 219-242.

van Buuren, S., H. C. Boshuizen, and D. L. Knook. 1999. Multiple imputation of missing blood pressure covariates
in survival analysis. Statistics in Medicine 18: 681-694.

White, I. R., R. Daniel, and P. Royston. 2010. Avoiding bias due to perfect prediction in multiple imputation of
incomplete categorical data. Computational Statistics & Data Analysis 54: 2267-2275.

White, I. R., P. Royston, and A. M. Wood. 2011. Multiple imputation using chained equations: Issues and guidance
for practice. Statistics in Medicine 30: 377-399.

Also see
[MI] mi estimate — Estimation using multiple imputations
[MI] intro substantive — Introduction to multiple-imputation analysis
[MI] intro — Introduction to mi

[MI] Glossary

Title

mi impute chained — Impute missing values using chained equations

Syntax
Detault specification of prediction equations, basic syntax

mi impute chained (uvmethod) ivars [= indepvars} [zf] [weight} [, impute_options opt[(ms]

Deftault specification of prediction equations, full syntax

mi impute chained lhs [= indepvars] [zf} [weighz} [, impute_options opzions]

Custom specification of prediction equations

mi impute chained lhsc [= indepvars] [lf] [weight] [, impute_options ()pti()ns]

where lhs is lhs_spec [lhs_spec [..]] and lhs_spec is

(uvmethod [lf] [, uvspec_options]) ivars

lhsc is lhsc_spec [lhsc-spec [..] } and lhsc_spec is
(uvmethod [zf] [, include (xspec) omit (varlist) noimputed uvspec_options]) ivars
ivars (or newivar if uvmethod is intreg) are the names of the imputation variables.

uvspec_options are ascontinuous, noisily, and the method-specific options as described in the
manual entry for each univariate imputation method.

The include(), omit(), and noimputed options allow you to customize the default prediction

equations.
uvmethod Description
regress linear regression for a continuous variable; [MI] mi impute regress
pmm predictive mean matching for a continuous variable;
[MI] mi impute pmm
truncreg truncated regression for a continuous variable with a restricted range;
[MI] mi impute truncreg
intreg interval regression for a continuous censored variable;
[MI] mi impute intreg
logit logistic regression for a binary variable; [MI] mi impute logit
ologit ordered logistic regression for an ordinal variable; [MI] mi impute ologit
mlogit multinomial logistic regression for a nominal variable;
- [MI] mi impute mlogit
poisson Poisson regression for a count variable; [MI] mi impute poisson
nbreg negative binomial regression for an overdispersed count variable;

[MI] mi impute nbreg

135

136 mi impute chained — Impute missing values using chained equations

impute_options

Description

Main

*add (#)

*replace
rseed (#)
double

by(varlist[, byopts])

Reporting
dots
noisily
nolegend

Advanced
force

noupdate

specify number of imputations to add; required when no imputations exist
replace imputed values in existing imputations
specify random-number seed

save imputed values in double precision; the default is to save them
as float

impute separately on each group formed by varlist

display dots as imputations are performed
display intermediate output
suppress all table legends

proceed with imputation, even when missing imputed values are
encountered

do not perform mi update; see [MI] noupdate option

*add (#) is required when no imputations exist; add (#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.

options Description
ICE options

burnin (#) specify number of iterations for the burn-in period;
default is burnin(10)

chainonly perform chained iterations for the length of the burn-in period
without creating imputations in the data

augment perform augmented regression in the presence of perfect prediction for
all categorical imputation variables

noimputed do not include imputation variables in any prediction equation

bootstrap estimate model parameters using sampling with replacement

savetrace(...)

Reporting
dryrun
report
chaindots
showevery (#)
showiter (numlist)

Advanced
orderasis
nomonotone

nomonotonechk

save summaries of imputed values from each iteration in filename .dta

show conditional specifications without imputing data
show report about each conditional specification

display dots as chained iterations are performed

display intermediate results from every #th iteration
display intermediate results from every iteration in numlist

impute variables in the specified order

impute using chained equations even when variables follow a
monotone-missing pattern; default is to use monotone method

do not check whether variables follow a monotone-missing pattern

mi impute chained — Impute missing values using chained equations 137

You must mi set your data before using mi impute chained; see [MI] mi set.
You must mi register ivars as imputed before using mi impute chained; see [MI] mi set.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

fweights, aweights (regress, pmm, truncreg, and intreg only), iweights, and pweights are allowed; see
[U] 11.1.6 weight.

Menu

Statistics > Multiple imputation

Description

mi impute chained fills in missing values in multiple variables iteratively by using chained
equations, a sequence of univariate imputation methods with fully conditional specification (FCS)
of prediction equations. It accommodates arbitrary missing-value patterns. You can perform separate
imputations on different subsets of the data by specifying the by () option. You can also account for
frequency, analytic (with continuous variables only), importance, and sampling weights.

Options

Main

Is

add(), replace, rseed(), double, by(); see [MI] mi impute.

The following options appear on a Specification dialog that appears when you click on the Create ...
button on the Main tab. The include(), omit (), and noimputed options allow you to customize
the default prediction equations.

include (xspec) specifies that xspec be included in prediction equations of all imputation variables
corresponding to the current left-hand-side specification lhsc_spec. xspec includes complete vari-
ables and expressions of imputation variables bound in parentheses. If the noimputed option is
specified within lhsc_spec or with mi impute chained, then xspec may also include imputation
variables. xspec may contain factor variables; see [U] 11.4.3 Factor variables.

omit (varlist) specifies that varlist be omitted from the prediction equations of all imputation variables
corresponding to the current left-hand-side specification lhsc_spec. varlist may include complete
variables or imputation variables. varlist may contain factor variables; see [U] 11.4.3 Factor
variables. In omit (), you should list variables to be omitted exactly as they appear in the
prediction equation (abbreviations are allowed). For example, if variable x1 is listed as a factor
variable, use omit (i.x1) to omit it from the prediction equation.

noimputed specifies that no imputation variables automatically be included in prediction equations
of imputation variables corresponding to the current uvmethod.

uvspec_options are options specified within each univariate imputation method, wuvmethod.
uvspec_options include ascontinuous, noisily, and the method-specific options as described
in the manual entry for each univariate imputation method.

ascontinuous specifies that categorical imputation variables corresponding to the current uvmethod
be included as continuous in all prediction equations. This option is only allowed when uvmethod
is logit, ologit, or mlogit.

noisily specifies that the output from the current univariate model fit to the observed data be
displayed. This option is useful in combination with the showevery (#) or showiter (numlist)
option to display results from a particular univariate imputation model for specific iterations.

138 mi impute chained — Impute missing values using chained equations

ICE options

burnin(#) specifies the number of iterations for the burn-in period for each chain (one chain per
imputation). The default is burnin (10). This option specifies the number of iterations necessary
for a chain to reach approximate stationarity or, equivalently, to converge to a stationary distribution.
The required length of the burn-in period will depend on the starting values used and the missing-
data patterns observed in the data. It is important to examine the chain for convergence to determine
an adequate length of the burn-in period prior to obtaining imputations; see Convergence of ICE.
The provided default is what current literature recommends. However, you are responsible for
determining that sufficient iterations are performed.

chainonly specifies that mi impute chained perform chained iterations for the length of the burn-in
period and then stop. This option is useful in combination with savetrace() to examine the
convergence of the method prior to imputation. No imputations are created when chainonly is
specified, so add() or replace is not required with mi impute chained, chainonly and they
are ignored if specified.

augment specifies that augmented regression be performed if perfect prediction is detected. By default,
an error is issued when perfect prediction is detected. The idea behind the augmented-regression
approach is to add a few observations with small weights to the data during estimation to avoid
perfect prediction. See The issue of perfect prediction during imputation of categorical data under
Remarks in [MI] mi impute for more information. augment is not allowed with importance weights.
This option is equivalent to specifying augment within univariate specifications of all categorical
imputation methods: logit, ologit, and mlogit.

noimputed specifies that no imputation variables automatically be included in any of the prediction
equations. This option is seldom used. This option is convenient if you wish to use different sets
of imputation variables in all prediction equations. It is equivalent to specifying noimputed within
all univariate specifications.

bootstrap specifies that posterior estimates of model parameters be obtained using sampling with
replacement; that is, posterior estimates are estimated from a bootstrap sample. The default is to
sample the estimates from the posterior distribution of model parameters or from the large-sample
normal approximation of the posterior distribution. This option is useful when asymptotic normality
of parameter estimates is suspect. This option is equivalent to specifying bootstrap within all
univariate specifications.

savetrace(ﬁlename[, traceopts}) specifies to save the means and standard deviations of imputed
values from each iteration to a Stata dataset called filename.dta. If the file already exists, the
replace suboption specifies to overwrite the existing file. savetrace() is useful for monitoring
convergence of the chained algorithm.

traceopts are replace, double, and detail.
replace indicates that filename.dta be overwritten if it exists.

double specifies that the variables be stored as doubles, meaning 8-byte reals. By default,
they are stored as floats, meaning 4-byte reals. See [D] data types.

detail specifies that additional summaries of imputed values including the smallest and the
largest values and the 25th, 50th, and 75th percentiles are saved in filename .dta.

Reporting
dots, noisily, nolegend; see [MI] mi impute. noisily specifies that the output from all univariate

conditional models fit to the observed data be displayed. nolegend suppresses all imputation table
legends that include a legend with the titles of the univariate imputation methods used, a legend

mi impute chained — Impute missing values using chained equations 139

about conditional imputation when conditional() is used within univariate specifications, and
group legends when by () is specified.

dryrun specifies to show the conditional specifications that would be used to impute each vari-
able without actually imputing data. This option is recommended for checking specifications of
conditional models prior to imputation.

report specifies to show a report about each univariate conditional specification. This option, in
combination with dryrun, is recommended for checking specifications of conditional models prior
to imputation.

chaindots specifies that all chained iterations be displayed as dots. An x is displayed for every
failed iteration.

showevery (#) specifies that intermediate regression output be displayed for every #th iteration.
This option requires noisily. If noisily is specified with mi impute chained, then the output
from the specified iterations is displayed for all univariate conditional models. If noisily is used
within a univariate specification, then the output from the corresponding univariate model from
the specified iterations is displayed.

showiter (numlist) specifies that intermediate regression output be displayed for each iteration in
numlist. This option requires noisily. If noisily is specified with mi impute chained, then the
output from the specified iterations is displayed for all univariate conditional models. If noisily
is used within a univariate specification, then the output from the corresponding univariate model
from the specified iterations is displayed.

Advanced

force; see [MI] mi impute.

orderasis requests that the variables be imputed in the specified order. By default, variables are
imputed in order from the most observed to the least observed.

nomonotone, a rarely used option, specifies not to use monotone imputation and to proceed with
chained iterations even when imputation variables follow a monotone-missing pattern. mi impute
chained checks whether imputation variables have a monotone missing-data pattern and, if they
do, imputes them using the monotone method (without iteration). If nomonotone is used, mi
impute chained imputes variables iteratively even if variables are monotone-missing.

nomonotonechk specifies not to check whether imputation variables follow a monotone-missing
pattern. By default, mi impute chained checks whether imputation variables have a monotone
missing-data pattern and, if they do, imputes them using the monotone method (without iteration).
If nomonotonechk is used, mi impute chained does not check the missing-data pattern and
imputes variables iteratively even if variables are monotone-missing. Once imputation variables are
established to have an arbitrary missing-data pattern, this option may be used to avoid potentially
time-consuming checks; the monotonicity check may be time consuming when a large number of
variables is being imputed.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

140 mi impute chained — Impute missing values using chained equations

Remarks

Remarks are presented under the following headings:

Multivariate imputation using chained equations
Compatibility of conditionals

Convergence of ICE

First use

Using mi impute chained

Default prediction equations

Custom prediction equations

Link between mi impute chained and mi impute monotone
Examples

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute_options. Also see [MI] workflow for general advice on working with mi.

Multivariate imputation using chained equations

When a missing-data structure is monotone distinct, multiple variables can be imputed sequentially
without iteration by using univariate conditional models (see [MI] mi impute monotone). Such
monotone imputation is impossible with arbitrary missing-data patterns, and simultaneous imputation
of multiple variables in such cases requires iteration. We described the impact of an arbitrary missing-
data pattern on multivariate imputation and two common imputation approaches used in such cases, the
multivariate normal method and imputation using chained equations (ICE), in Multivariate imputation
in [MI] mi impute. In this entry, we describe ICE, also known as imputation using FCS (van Buuren,
Boshuizen, and Knook 1999) or sequential regression multivariate imputation (SRMI; Raghunathan
et al. 2001), in more detail. We use the terms ICE, FCS, and SRMI interchangeably throughout the
documentation.

ICE is similar to monotone imputation in the sense that it is also based on a series of univariate
imputation models. Unlike monotone imputation, ICE uses FCSs of prediction equations (chained
equations) and requires iteration. Iteration is needed to account for possible dependence of the
estimated model parameters on the imputed data when a missing-data structure is not monotone
distinct.

The general idea behind ICE is to impute multiple variables iteratively via a sequence of univariate
imputation models, one for each imputation variable, with fully conditional specifications of prediction
equations: all variables except the one being imputed are included in a prediction equation. Formally,
for imputation variables X, X5,..., X, and complete predictors (independent variables) Z, this
procedure can be described as follows. Imputed values are drawn from

XY~ g (XX, X Z, ¢y)
Xétﬂ) ~ 92(X2\X1(t+1 (t) X(t) Z,¢,)

X<t+1) ~ gp(Xp| XD XY XD 7,0

for iterations t = 0,1,...,7T until convergence at t = T', where ¢; are the corresponding model
parameters with a uniform prior. The univariate imputation models, g;(+), can each be of a different
type (normal, logistic, etc.), as is appropriate for imputing X ;.

mi impute chained — Impute missing values using chained equations 141

Fully conditional specifications (1) are similar to the Gibbs sampling algorithm (Geman and
Geman 1984; Gelfand and Smith 1990), one of the MCMC methods for simulating from complicated
multivariate distributions. In fact, in certain cases these specifications do correspond to a genuine Gibbs
sampler. For example, when all X ;s are continuous and all g;(-)s are normal linear regressions with
constant variances, then (1) corresponds to a Gibbs sampler based on a multivariate normal distribution
with a uniform prior for model parameters. Such correspondence does not hold in general because
unlike the Gibbs sampler, the conditional densities {g;(-), j = 1,2,...,p} may not correspond
to any multivariate joint conditional distribution of X1, X5,..., X, given Z (Arnold, Castillo, and
Sarabia 2001). This issue is known as incompatibility of conditionals (for example, Arnold, Castillo,
and Sarabia [1999]). When conditionals are not compatible, the ICE procedure may not converge
to any stationary distribution, which can raise concerns about its validity as a principled statistical
method; see Compatibility of conditionals and Convergence of ICE for more details.

Despite the lack of a general theoretical justification, ICE is very popular in practice. Its popularity
is mainly due to the tremendous flexibility it offers for imputing various types of data arising in
observational studies. Similarly to monotone imputation, the variable-by-variable specification of ICE
allows practitioners to simultaneously impute variables of different types by choosing from several
univariate imputation methods appropriate for each variable. Being able to specify a separate model
for each variable provides an imputer with great flexibility in incorporating certain characteristics
specific to each variable. For example, we can use predictive mean matching ([MI] mi impute pmm)
or truncated regression ([MI] mi impute truncreg) to impute a variable with a restricted range. We
can impute variables defined on a subsample using only observations in that subsample while using
the entire sample to impute other variables; see Conditional imputation in [MI] mi impute for details.
For more information about imputation using chained equations, see van Buuren, Boshuizen, and
Knook (1999); Raghunathan et al. (2001); van Buuren et al. (2006); van Buuren (2007); White,
Royston, and Wood (2011); and Royston (2004, 2005a, 2005b, 2007, 2009), among others.

The specification of a conditional imputation model g;(-) includes an imputation method and a
prediction equation relating an imputation variable to other explanatory variables. In what follows,
we distinguish between the default specification (of prediction equations) in which the identities
of the complete explanatory variables are the same across all prediction equations, and the custom
specification in which the identities are allowed to differ.

Under the default specification, prediction equations of each imputation variable include all complete
independent variables and all imputation variables except the one being imputed. Under the custom
specification, each prediction equation may include a subset of the predictors that would be used under
the default specification. The custom specification also allows expressions of imputation variables in
prediction equations.

Model (1) corresponds to the default specification. For example, consider imputation variables
X1, X9, and X3 and complete predictors Z; and Z5. Under the default specification, the individual
prediction equations are determined as follows. The most observed variable—say, X1—is predicted
from X5, X3, Z1, and Zs. The next most observed variable—say, Xo—is predicted from X3, Z1,
Zs, and previously imputed X;. The least observed variable, X3, is predicted from Z;, Z5, and
previously imputed X; and X5. (A constant is included in all prediction equations, by default.) We
use the following notation to refer to the above sequence of prediction equations (imputation sequence):
X11X21,21, 2y — Xo|X 9, 21,2y — X3|X_3,Z1,Zo, where X_; denotes all imputed or to-
be-imputed variables except X ;.

A sequence such as X1|X_1, 71 — X5|X_ 3,721,722 — X3|X_35,Z5 would correspond to a

custom specification. Here X is assumed to be conditionally independent of Zs, and X3 is assumed
to be conditionally independent of Z7.

142 mi impute chained — Impute missing values using chained equations

Compatibility of conditionals

A concern with ICE is its lack of a formal theoretical justification. Its theoretical weakness is
possible incompatibility of fully conditional specifications (1). As we briefly mentioned earlier, it is
possible to specify a set of full conditionals with ICE for which no multivariate distribution exists
(for example, van Buuren et al. [2006] and van Buuren [2007]). In such a case, the validity of ICE
as a statistical procedure is questionable.

The impact of incompatibility of conditional specifications in practice is still under investigation.
For example, van Buuren et al. (2006) performed several simulations to investigate the consequences
of strongly incompatible specifications on multiple-imputation (MI) results in a simple setting and
found very little impact of it on estimated parameters. The effect of incompatible conditionals on the
quality of imputations and final MI inference in general is not yet known. Of course, if a joint model
is of main scientific interest, then incompatibility of conditionals poses a problem. In the discussion
of Arnold, Castillo, and Sarabia (2001), Andrew Gelman and Trivellore Raghunathan mention that
the existence of an underlying joint distribution may be less important within the imputation context
than the ability to incorporate the unique features of the data.

For more information about the compatibility of conditional specifications, see Arnold, Castillo,
and Sarabia (2001); van Buuren (2007); and Arnold, Castillo, and Sarabia (1999) and references
therein.

Convergence of ICE

ICE is an iterative method and is similar in spirit to the Gibbs sampler, an MCMC method. Similarly

to MCMC methods, ICE builds a sequence of draws {Xgﬁ) :t=1,2,...}, a chain, and iterates until
this chain reaches a stationary distribution. So as with any MCMC method, monitoring convergence
is important with ICE.

ICE performs simulation by running multiple independent chains (see Convergence of iterative
methods in [MI] mi impute). To assess convergence of multiple chains, we need to examine the
stationarity of each chain by the end of the specified burn-in period b. In practice, convergence of
ICE is often examined visually. Trace plots—plots of summaries of the distribution (means, standard
deviations, quantiles, etc.) of imputed values against iteration numbers—are used to examine stationarity
of the chain. Long-term trends in trace plots are indicative of slow convergence to stationarity. A
suitable value for the burn-in period b can be inferred from a trace plot as the earliest iteration after
which each chain does not exhibit a visible trend and the fluctuations in values become more regular.
When the initial values are close to the mode of the target posterior distribution (when one exists), b
will generally be small. When the initial values are far off in the tails of the posterior distribution,
the initial number of iterations b will generally be larger.

The number of iterations necessary for ICE to converge depends on, among other things, the fractions
of missing information and initial values. The higher the fractions of missing information and the
farther the initial values are from the mode of the posterior predictive distribution of missing data,
the slower the convergence, and thus the larger the number of iterations required. Current literature
suggests that in many practical applications a low number of burn-in iterations, somewhere between
5 and 20 iterations, is usually sufficient for convergence (for example, van Buuren [2007]). In any
case, examination of the data and missing-data patterns is highly recommended when investigating
convergence of ICE.

The convergence of ICE may not be achieved when specified conditional models are incompatible,
as described in Compatibility of conditionals. The simulation draws will depend on the order in which
variables are imputed and on the chosen length of the burn-in period. It is important to evaluate the

mi impute chained — Impute missing values using chained equations 143

quality of imputations (see Imputation diagnostics in [MI] mi impute) to determine the impact of
incompatibility on MI analysis.

First use
Before we describe various uses of mi impute chained, let’s look at a simple example first.

Consider the heart attack data example examining the relationship between heart attacks and
smoking from Multivariate imputation of [MI] mi impute, where the age and bmi variables contain
missing values. In another version of the dataset, bmi and age have a nonmonotone missing-data
pattern, and thus monotone imputation is not possible:

. use http://www.stata-press.com/data/r12/mheart8s0
(Fictional heart attack data; bmi and age missing; arbitrary pattern)
. mi misstable patterns, frequency

Missing-value patterns
(1 means complete)

Pattern
Frequency 1 2
118 11
24 1 0
8 0 1
4 0 0
154

Variables are (1) age (2) bmi

mi impute chained does not require missing data to be monotone, so we can use it to impute
missing values of age and bmi in this dataset. We use the same model specification as before:

. mi impute chained (regress) bmi age = attack smokes hsgrad female, add(10)

Conditional models:
age: regress age bmi attack smokes hsgrad female
bmi: regress bmi age attack smokes hsgrad female

Performing chained iteratioms ...

Multivariate imputation Imputations = 10
Chained equations added = 10
Imputed: m=1 through m=10 updated = 0
Initialization: monotone Iterations = 100

burn-in = 10

bmi: linear regression
age: linear regression

Observations per m

Variable Complete Incomplete Imputed Total
bmi 126 28 28 154
age 142 12 12 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

As before, 10 imputations are created (the add (10) option). The linear regression imputation method
(regress) is used to impute both continuous variables. The attack, smokes, hsgrad, and female
variables are used as complete predictors (independent variables).

144 mi impute chained — Impute missing values using chained equations

mi impute chained reports the conditional specifications used to impute each variable and the
order in which they were imputed. By default, mi impute chained imputes variables in order from
the most observed to the least observed. In our example, age has the least number of missing values
and so is imputed first, even though we listed bmi before age in the command specification.

With the default specification, mi impute chained builds appropriate FCSs automatically using
the supplied imputation variables and complete predictors, specified as right-hand-side variables. The
default prediction equation for age includes bmi and all the complete predictors, and the default
prediction equation for bmi includes age and all the complete predictors.

The main header and table output were described in detail in [MI] mi impute. The information
specific to mi impute chained includes the type of initialization, the burn-in period, and the number
of iterations. By default, mi impute chained uses 10 burn-in iterations (also referred to as cycles in
the literature) before drawing imputed values. The total number of iterations performed by mi impute
chained to obtain 10 imputations is 100. Also, similarly to mi impute monotone, the additional
information above the table includes the legend describing what univariate imputation method was
used to impute each variable. (If desired, this legend may be suppressed by specifying the nolegend
option.)

Using mi impute chained
Below we summarize general capabilities of mi impute chained.

1. mi impute chained offers two main syntaxes—one using the default prediction equations
and the other allowing customization of prediction equations. We will refer to the two
syntaxes as default and custom, respectively. We describe the two syntaxes in detail in the
next two sections.

2. mi impute chained allows specification of a global (outer) if condition,
. mi impute chained ... if exp ...
and equation-specific (inner) if conditions,

. mi impute chained ... (... if exp ...) ...

A global if is applied to all equations. You may combine global and equation-specific if
conditions:

. mi impute chained ... (... if exp ...) ... if exp ...

3. mi impute chained allows specification of global weights, which are applied to all equations:
. mi impute chained ... [weighs] ...
4. mi impute chained uses fully specified prediction equations by default. Customize prediction
equations by including or omitting desired terms:
. mi imp chain (... , include(z3) ...) (..., omit(zl) ...) ...
5. mi impute chained automatically includes appropriate imputation variables in prediction

equations. Use a global noimputed option to prevent inclusion of imputation variables in
all prediction equations:

. mi impute chained ..., noimputed ...

Or use an equation-specific noimputed option to prevent inclusion of imputation variables
in only some prediction equations:

. mi impute chained ... (..., noimputed ...) ...

mi impute chained — Impute missing values using chained equations 145

As we mentioned earlier, mi impute chained is an iterative imputation method. By default, it
performs 10 burn-in iterations for each imputation before drawing the final set of imputed values.
The number of iterations is determined by the length of the burn-in period after which a random
sequence (chain) is assumed to converge to its stationary distribution. The provided default may not
be applicable to all situations, so you can use the burnin() option to modify it.

Use the chainonly and savetrace() options to determine the appropriate burn-in period. For
example,

. mi impute chained ..., burnin(100) chainonly savetrace(impstats) ...

saves summaries of imputed values from 100 iterations for each of the imputation variables to
impstats.dta without proceeding to impute data. You can apply techniques from Convergence of
ICE to the data in impstats.dta to determine an adequate burn-in period.

Use a combination of the dryrun and report options to check the specification of each univariate
imputation model prior to imputing data.

In the next two sections, we describe the use of mi impute chained first using hypothetical
situations and then using real examples.

Default prediction equations

We showed in First use an example of mi impute chained with default prediction equations
using the heart attack data. Here we provide more details about this default specification.

By default, mi impute chained imputes missing values by using the default prediction equations.
It builds the corresponding univariate imputation models based on the supplied information: uvmethod,
the imputation method; ivars, the imputation variables; and indepvars, the complete predictors or
independent variables.

Suppose that continuous variables x1, x2, and x3 contain missing values and are ordered from the
most observed to the least observed. We want to impute these variables, and we decide to use the
same univariate imputation method, say, linear regression, for all. We can do this by typing

. mi impute chained (regress) x1 x2 x3 ...

The above command corresponds to the first syntax diagram of mi impute chained: uvmethod
is regress and ivars is x1 x2 x3. Relating the above to the model notation used in (1), g1, g2,
g3 represent linear regression imputation models and the prediction sequence is X1|Xs2, X3 —
Xo| X1, X3 — X3] X1, Xo.

By default, mi impute chained imputes variables in order from the most observed to the least
observed, regardless of the order in which variables were specified. For example, we can list imputation
variables in the reverse order,

. mi impute chained (regress) x3 x2 x1 ...
and mi impute chained will still impute x1 first, x2 second, and x3 last. You can use the orderasis
option to instruct mi impute chained to perform imputation of variables in the specified order.

If we have additional covariates containing no missing values (say, z1 and z2) that we want to
include in the imputation model, we can do so by typing

. mi impute chained (regress) x1 x2 x3 = z1 z2 ...
Now indepvars is z1 z2 and the prediction sequence is X1|Xs, X3, Z1, Z2 — Xo|X1, X3, Z1, 22 —

X3|X1, Xo, Z1, Z5. Independent variables are included in the prediction equations of all univariate
models.

146 mi impute chained — Impute missing values using chained equations

Suppose that we want to use a different imputation method for one of the variables—we want to
impute x3 using predictive mean matching. We can do this by typing

. mi impute chained (regress) x1 x2 (pmm) x3 =zl z2 ...

The above corresponds to the second syntax diagram of mi impute chained, a generalization of
the first that accommodates differing imputation methods. The right-hand side of the equation is
unchanged. z1 and z2 are included in all three prediction equations. The left-hand side now has two
specifications: (regress) x1 x2 and (pmm) x3. In previous examples, we had only one left-hand-side
specification, lhs_spec— (regress) x1 x2 x3. (The number of left-hand-side specifications does not
necessarily correspond to the number of univariate models; the latter is determined by the number
of imputation variables.) In this example, x1 and x2 are imputed using linear regression, and x3 is
imputed using predictive mean matching.

Now, instead of using the default one nearest neighbor with pmm, say that we want to use three, which
requires pmm’s knn (3) option. All method-specific options must be specified within the parentheses
surrounding the method:

. mi impute chained (regress) x1 x2 (pmm, knn(3)) x3 = z1 z2 ...

Suppose now we want to restrict the imputation sample for x2 to observations where z1 is one;
also see Imputing on subsamples of [MI] mi impute. (We also omit pmm’s knn () option here.) The
corresponding syntax is

. mi impute chained (regress) x1 (regress if zil==1) x2 (pmm) x3 =zl z2 ...

If, in addition to the above, we want to impute all variables using an overall subsample where z3
is one, we can specify the global if z3==1 condition:

. mi impute chained (regress) x1 (regress if zl==1) x2 (pmm) x3 = zl z2
> if z3==

In the above, restrictions included only complete variables. When restrictions include imputation
variables, you should use the conditional() option instead of an if condition; see Conditional
imputation in [MI] mi impute. Suppose that we need to impute x2 using only observations for which
x1 is positive, provided that missing values of x1 are nested within missing values of x2. We can do
this by typing

. mi impute chained (regress) x1 (regress, cond(if x1>0)) x2 (pmm) x3 = z1 z2 ...

When any imputation variable is imputed using a categorical method, mi impute chained
automatically includes it as a factor variable in the prediction equations of other imputation variables.
Suppose that x1 is a categorical variable and is imputed using the multinomial logistic method:

. mi impute chained (mlogit) x1 (regress) x2 x3

The above will result in the prediction sequence Xi|Xo, X3 — Xo|i. X1, X5 — X3]i.X5, X0
where i.X; denotes the factors of X7.

If you wish to include a factor variable as continuous in prediction equations, you can use the
ascontinuous option within the specification of the univariate imputation method for that variable:

. mi impute chained (mlogit, ascontinuous) x1 (regress) x2 x3

As we discussed in The issue of perfect prediction during imputation of categorical data of [MI] mi
impute, perfect prediction often occurs during imputation of categorical variables. One way of dealing
with it is to use the augmented-regression approach (White, Daniel, and Royston 2010), available
through the augment option. For example, if perfect prediction occurs during imputation of x1 in
the above, you can specify augment within the method specification of x1 to perform augmented
regression:

mi impute chained — Impute missing values using chained equations 147

. mi impute chained (mlogit, augment) x1 (regress) x2 x3
Alternatively, you can use the augment option with mi impute chained to perform augmented
regression for all categorical variables for which the issue of perfect prediction arises:
. mi impute chained (mlogit) x1 (logit) x2 (regress) x3 ..., augment ...
The above is equivalent to specifying augment within each specification of a univariate categorical
imputation method:

. mi impute chained (mlogit, augment) x1 (logit, augment) x2 (regress) x3

Custom prediction equations

In the previous section, we considered various uses of mi impute chained with default prediction
equations. Often, however, you may want to use different prediction equations for some or even all
imputation variables. We can easily modify the above specifications to accommodate this.

Let’s consider situations in which we want to use different sets of complete variables for some
imputation variables first. Recall our following hypothetical example:

. mi impute chained (regress) x1 x2 x3 = z1 22 ... M1)

Suppose that we want to omit z2 from the prediction equation for x3. To accommodate this, we
need to include two separate specifications: one for x1 and x2 and one for x3:

. mi impute chained (regress) x1 x2 (regress, omit(z2)) x3 = z1 z2 ...

The above corresponds to the custom specification, the third syntax diagram, of mi impute
chained. As before, we list all the complete variables indepvars to be included in all prediction
equations to the right of the = sign. So, indepvars is still z1 z2. The prediction equation for x3,
however, omits variable z2, specified within the omit () option. The prediction sequence for the
above speciﬁcation is X1|X2, Xg, Zl, Zz — AX'2|)(17 Xg, Zl, ZQ — X3|X1, XQ, Zl.

Alternatively, we could have achieved the above by including variable z1 in all prediction equations,
as a right-hand-side specification indepvars, and using the include() option to add variable z2 to
the prediction equations of x1 and x2:

. mi impute chained (regress, include(z2)) x1 x2 (regress) x3 =zl ...
You may also want to modify the sets of imputation variables to be included in prediction equations.

By default, mi impute chained automatically includes the appropriate fully conditional specifications
of imputation variables in all prediction equations.

Suppose that in addition to different sets of complete predictors, we assume that X; and X5 are
conditionally independent given X3, which implies that prediction equations for x1 and x2 include
only x3 and not each other. We can accommodate this with the command

. mi impute chained (regress, include(x3 z2) noimputed) x1 x2 (regress) x3 =zl ...

which corresponds to the prediction sequence X1|X3, Z1, Zo — Xo| X3, 21, Z2 — X3| X1, X2, Z1.
The above is also equivalent to the command
. mi impute chained (regress, omit(xl x2)) x1 x2 (regress, omit(z2)) x3 = z1 z2 ...
There are other equivalent ways of achieving the above custom specifications by using various
combinations of include(), omit (), and noimputed. The most convenient specification will depend

on your particular structure of the prediction equations. You can also combine these options within
the same univariate specification.

148 mi impute chained — Impute missing values using chained equations

It is important to realize that equivalent syntaxes may produce different (yet equivalent with
stable imputation models) sequences of imputed values when they have different ordering of variables
in prediction equations. mi impute chained builds prediction equations as follows. Appropriate
imputation variables are included first, unless the noimputed option is specified. By default, imputation
variables are included in order from the most observed to the least observed. If the orderasis option
is used, the variables are included in the specified order. Next, terms specified in the include()
option are included in the listed order. Then right-hand-side variables (indepvars) are included in the
listed order. Finally, variables listed in the omit () option are removed from the prediction equation.
When you specify omit (), it is important to specify variables as they are included in the prediction
equation; if x1 is included as a factor variable, omit (i.x1) should be used.

You can also include functions of imputation variables in prediction equations with the custom
specification of mi impute chained. As we discussed in Model building in [MI] mi impute, there
are two ways to do that. You can include functions of imputation variables as separate imputation
variables directly in your imputation model or you can impute them passively using mi impute
chained.

For example, using model (M1), suppose that we would like to include the interaction between
x1 and x2 in the conditional model for x3:

. mi impute chained (regress) x1 x2 11/
(regress, include((x1%x2))) x3 /1/
=zl z2 ...

The expression x1*x2, specified in the include () option, is enclosed in parentheses.
We also could have typed
. mi impute chained (regress, include((x1*x2))) x1 x2 x3 = z1 z2 ...
and mi impute chained would appropriately include the interaction term X7 X5 only in the prediction
equation of X3.

You can include any other expressions of imputation variables in include() within any of the
left-hand-side specifications. Just remember to enclose such expressions in parentheses.

All the examples we considered in Default prediction equations are also applicable to mi impute
chained with custom prediction equations. For example, to restrict imputation of x2 to observations
where z1==1 in one of our earlier examples, we can type

. mi impute chained (reg) x1 (reg if zl==1) x2 (reg, omit(z2)) x3 =zl 22 ...

Link between mi impute chained and mi impute monotone

Similarly to mi impute monotone (see [MI] mi impute monotone), mi impute chained uses a
sequence of univariate imputation models to impute variables. So the use of mi impute chained is
very similar to that of mi impute monotone except:

1. mi impute chained does not require that the specified imputation variables follow a
monotone-missing pattern.

2. mi impute chained requires iteration to accommodate arbitrary missing-data patterns.

3. mi impute chained, by default, uses FCSs of the prediction equations where all specified
complete variables and all imputation variables except the one being imputed are included
in prediction equations.

4. mi impute chained provides an alternative way of specifying custom prediction equations
to accommodate FCS of imputation variables.

mi impute chained — Impute missing values using chained equations 149

When a missing-value pattern is monotone, mi impute chained defaults to the monotone method
(unless nomonotone is specified) and produces the same results as mi impute monotone. However,
using mi impute monotone in this case is faster because it performs the estimation step only once,
on the original data, whereas mi impute chained performs estimation on every chained iteration.

The best approach to follow is

1. Check the missing-data pattern using misstable nested (or mi misstable nested if the
data are already mi set; see [R] misstable or [MI] mi misstable) first.

2. If the missing-data pattern is monotone, use mi impute monotone to impute variables. If
the missing-data pattern is not monotone, use mi impute chained to impute variables.

It is worth mentioning the difference between the documented custom syntaxes of mi impute
chained and mi impute monotone.

With monotone imputation, variables are imputed in a particular, monotone-missing order and
prediction equations are built in a particular way: previously imputed variables are added sequentially to
the prediction equations of other imputation variables. So when building custom prediction equations,
it is easier to construct one equation at a time in the order of the monotone missing pattern. As such,
the custom syntax of mi impute monotone, as documented in [MI] mi impute monotone, requires
full specification of a separate conditional model for each imputation variable in the monotone-missing
order.

Imputation using chained equations does not require specific ordering in which variables must be
imputed, although imputing variables in order from the most observed to the least observed usually
leads to faster convergence. Also, because all imputation variables except the one being imputed are
included in prediction equations, it does not matter in what order prediction equations are specified.
The custom syntax of mi impute chained reflects this.

Examples

For the purpose of illustration, we use five imputations in our examples.

> Example 1: Different imputation methods

Recall the heart attack example from First use. If we wanted to impute bmi using predictive mean
matching with, say, three nearest neighbors instead of linear regression, we could type

150 mi impute chained — Impute missing values using chained equations

. use http://www.stata-press.com/data/r12/mheart8s0

(Fictional heart attack data; bmi and age missing; arbitrary pattern)

. mi impute chained (pmm, knn(3)) bmi (reg) age = attack smokes hsgrad female,

> add(5)

Conditional models:

age: regress age bmi attack smokes hsgrad female

bmi: pmm bmi age attack smokes hsgrad female , knn(3)

Performing chained iteratioms ...

Multivariate imputation Imputations = 5
Chained equations added 5
Imputed: m=1 through m=5 updated = 0
Initialization: monotone Iterations = 50
burn-in 10

bmi: predictive mean matching

age: linear regression
Observations per m

Variable Complete Incomplete Imputed Total
bmi 126 28 28 154
age 142 12 12 154

(complete + incomplete = total; imputed is the minimum across m

of the number of filled-in observations.)

As shown previously, mi impute chained imputed age first and bmi second, because age is the

variable with the fewest missing values.

> Example 2: Convergence of ICE

4

In Convergence of ICE, we described ways to assess convergence of the ICE algorithm. Continuing
our previous example, let’s investigate the trends in the summaries of imputed values of age and bmi

over iterations.

Following the recommendation from Using mi impute chained, we use a combination of chainonly
and savetrace() to perform chained iterations without creating imputations in the data and save
summaries of imputed values to the new dataset impstats.dta. We perform 100 iterations and

specify a random-number seed for reproducibility:

. use http://www.stata-press.com/data/r12/mheart8s0

(Fictional heart attack data; bmi and age missing; arbitrary pattern)

. mi impute chained (pmm, knn(3)) bmi (reg) age = attack smokes hsgrad female,

> chainonly burnin(100) savetrace(impstats) rseed(1359)

Conditional models:

age: regress age bmi attack smokes hsgrad female

bmi: pmm bmi age attack smokes hsgrad female , knn(3)

Performing chained iteratioms ...

Note: no imputation performed.

By default, means and standard deviations of imputed values for each imputation variable are
saved along with iteration and imputation numbers (imputation number is always 0 when chainonly

is used):

mi impute chained — Impute missing values using chained equations 151

. use impstats
(Summaries of imputed values from -mi impute chained-)

. describe

Contains data from impstats.dta

obs: 101 Summaries of imputed values
from -mi impute chained-
vars: 6 2 Apr 2011 11:02
size: 1,818
storage display value
variable name type format label variable label
iter byte %12.0g Iteration numbers
m byte %12.0g Imputation numbers
age_mean float %9.0g Mean of age
age_sd float %9.0g Std. Dev. of age
bmi_mean float %9.0g Mean of bmi
bmi_sd float %9.0g Std. Dev. of bmi
Sorted by:

We use the time-series command tsline (see [TS] tsline) to plot summaries of imputed values
with respect to the iteration number. We first use tsset to set iter as the “time” variable and then
use tsline to obtain trace plots. We create trace plots for all variables and combine them in one
graph using graph combine:

. tsset iter

time variable: iter, 0 to 100
delta: 1 unit

. tsline bmi_mean, name(grl) nodraw
. tsline bmi_sd, name(gr2) nodraw
. tsline age_mean, name(gr3) nodraw
. tsline age_sd, name(gr4) nodraw

. graph combine grl gr2 gr3 gr4, title(Trace plots of summaries of imputed values)
> rows(2)

Trace plots of summaries of imputed values

&1 o
Ewn
E& 591
g k]
S | Y7
gd 8w |
o Lo
=y 2
] D e 4
@] v
L T T T T T T Sl T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Iteration numbers Iteration numbers
g 7 sg 4
(=3 o< |
38 g
8 o
S | =7
c o I
. a2
Zo | 2
) D oo
v | 4
<

20 40 6 8 100 0 20 4 60 8 100
Iteration numbers Iteration numbers

o

The trace plots show no apparent trends in the summaries of the imputed values, so the default
number of burn-in iterations, 10, seems adequate. Although a low number of burn-in iterations may
be sufficient in some applications, there are situations when larger numbers are required (for example,
van Buuren [2007]).

152 mi impute chained — Impute missing values using chained equations

It is also useful to look at several chains, each obtained using a different set of initial values, to
check convergence and stability of the algorithm.

Let’s look at three separate chains. The easiest way to do this is to use the add () option instead of
chainonly to create three imputations. Remember that mi impute chained starts a new chain for
each imputation, so a different set of initial values is used for each imputation. When savetrace ()
is specified, mi impute chained stores summaries of imputed values for each imputation.

. use http://www.stata-press.com/data/r12/mheart8s0
(Fictional heart attack data; bmi and age missing; arbitrary pattern)

. qui mi impute chained (pmm, knn(3)) bmi (reg) age = attack smokes hsgrad female,
> add(3) burnin(100) savetrace(impstats, replace) rseed(1359)

The results are saved in a long form. If we want to overlay separate chains in one graph, we need
to convert our data to a wide form first—one variable per chain. We use the reshape command for
this (see [D] reshape):

. use impstats, clear
(Summaries of imputed values from -mi impute chained-)

. reshape wide *mean *sd, i(iter) j(m)
(note: j =12 3)

Data long -> wide

Number of obs. 303 > 101

Number of variables 6 - 13

j variable (3 values) m -> (dropped)

xij variables:
age_mean -> age_meanl age_mean2 age_mean3
bmi_mean -> bmi_meanl bmi_mean2 bmi_mean3

age_sd > age_sdl age_sd2 age_sd3
bmi_sd -> bmi_sdl bmi_sd2 bmi_sd3

We can now plot the three chains for, say, the mean of bmi using tsline:

. tsset iter
time variable: iter, O to 100
delta: 1 unit

. tsline bmi_meanl bmi_mean2 bmi_mean3, ytitle(Mean of bmi) yline(25.24)
> legend(rows(1) label(l "Chain 1") label(2 "Chain 2") label(3 "Chain 3"))

28

Mean of bmi
26 27

25

24

23

mi impute chained — Impute missing values using chained equations 153

There are no apparent trends in any of the chains. All three chains seem to oscillate around the
observed mean estimate of bmi of 25.24, providing some evidence of convergence of the algorithm.

N

> Example 3: Custom prediction equations

Continuing example 1, we believe that there is no association between bmi and hsgrad conditional
on other predictors, so we want to use hsgrad to model only age and omit it from the model for
bmi:

. use http://www.stata-press.com/data/r12/mheart8s0
(Fictional heart attack data; bmi and age missing; arbitrary pattern)

. mi impute chained
> (pmm, knn(3) omit(hsgrad)) bmi
> (regress) age
> = attack smokes hsgrad female, add(5)
Conditional models:
age: regress age bmi attack smokes hsgrad female
bmi: pmm bmi age attack smokes female , knn(3)

Performing chained iteratioms ...

Multivariate imputation Imputations = 5
Chained equations added = 5
Imputed: m=1 through m=5 updated = 0
Initialization: monotone Iterations = 50
burn-in = 10

bmi: predictive mean matching

age: linear regression
Observations per m

Variable Complete Incomplete Imputed Total
bmi 126 28 28 154
age 142 12 12 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

All right-hand-side complete predictors (attack, smokes, and female) are used in both prediction
equations. The prediction equation for age additionally includes the hsgrad variable.

4

> Example 4: Imputing variables of different types

We now consider an mi set version of the heart attack data containing an indicator for smoking
high-tar cigarettes (variable hightar):

154 mi impute chained — Impute missing values using chained equations

. use http://www.stata-press.com/data/r12/mheart9s0
(Fictional heart attack data; bmi, age, and hightar missing; arbitrary pattern)

. mi describe

Style: mlong
last mi update 25mar2011 11:00:38, 3 days ago
Obs.: complete 98
incomplete 56 (M = 0 imputations)
total 154
Vars.: imputed: 3; bmi(24) age(30) hightar(12)
passive: O
regular: 4; attack smokes female hsgrad
system: 3; _mi_m _mi_id _mi_miss

(there are no unregistered variables)

. mi misstable nested

1. hightar(12)
2. bmi(24)
3. age(30)

According to mi describe, there are no imputations, three registered imputed variables (age, bmi,
and hightar), and four registered regular variables. mi misstable nested reports that missing
values of the three imputation variables are not nested.

The hightar variable is a binary variable, so we choose the logistic method to impute its values
(see [MI] mi impute logit). Because hightar records whether a subject smokes high-tar cigarettes,
we use only those who smoke to impute its missing values. As such, including smokes as a predictor
of hightar is redundant, so we omit this variable from the prediction equation for hightar:

mi impute chained
(pmm, knn(3) omit(hsgrad)) bmi
(regress) age
(logit if smokes==1, omit(smokes)) hightar
= attack smokes hsgrad female, add(5)

VvV V V V.

Conditional models:

hightar: logit hightar bmi age attack hsgrad female if smokes==
bmi: pmm bmi i.hightar age attack smokes female , knn(3)
age: regress age i.hightar bmi attack smokes hsgrad female
Performing chained iteratioms ...
Multivariate imputation Imputations = 5
Chained equations added = 5
Imputed: m=1 through m=5 updated = 0
Initialization: monotone Iterations = 50
burn-in = 10
bmi: predictive mean matching
age: linear regression
hightar: logistic regression
Observations per m
Variable Complete Incomplete Imputed Total
bmi 130 24 24 154
age 124 30 30 154
hightar 52 12 12 64

(complete + incomplete

total; imputed is the minimum across m

of the number of filled-in observations.)

mi impute chained — Impute missing values using chained equations 155

From the output, we see that all incomplete values of each of the variables are imputed in all
imputations. Because we restricted the imputation sample of hightar to smokers, the total number
of observations reported for hightar is 64 and not 154. mi impute chained also automatically
included the binary variable hightar as a factor variable in prediction equations for age and bmi
because we used logit to impute it.

As we described in Conditional imputation, you should be careful when using an if statement
for imputing variables conditionally on other variables. It was safe to use if here, because smokes
did not contain missing values and there were no missing values of hightar for the subjects who
do not smoke.

4

> Example 5: Conditional imputation

Continuing example 4, suppose now that the smokes variable also contains missing values:
. use http://www.stata-press.com/data/r12/mheart10s0
(Fict. heart attack data; bmi, age, hightar, & smokes missing; arbitrary pattern)
. mi describe

Style: mlong
last mi update 25mar2011 11:00:38, 3 days ago

Obs.: complete 92
incomplete 62 (M = 0 imputations)
total 154

Vars.: imputed: 4; bmi(24) age(30) hightar(19) smokes(14)
passive: O
regular: 3; attack female hsgrad
system: 3; _mi_m _mi_id _mi_miss
(there are no unregistered variables)
. mi misstable nested

1. smokes(14) -> hightar(19)
2. bmi(24)
3. age(30)

The smokes variable is now registered as imputed and the three regular variables are now attack,
female, and hsgrad. mi misstable nested reports that although the missing-data pattern with
respect to all four imputation variables is not monotone, the missing-data pattern with respect to
smokes and hightar is monotone. Recall from Conditional imputation that one of the requirements
of conditional imputation is that missing values of all conditioning variables (smokes) are nested
within missing values of the conditional variable (hightar). So this requirement is satisfied in our
data.

Because smokes contains missing values, we cannot use an if condition to restrict the imputation
sample of hightar to those who smoke. We must use the conditional() option. We use the
logistic method (see [MI] mi impute logit) to fill in missing values of smokes.

156 mi impute chained — Impute missing values using chained equations

mi impute chained

> (pmm, knn(3) omit(hsgrad)) bmi

> (regress) age

> (logit, cond(if smokes==1) omit(i.smokes)) hightar

> (logit) smokes

> = attack hsgrad female, add(5)

Conditional models:
smokes: logit smokes bmi age attack hsgrad female
hightar: logit hightar bmi age attack hsgrad female , cond(if smokes==1)
bmi: pmm bmi i.smokes i.hightar age attack female , knn(3)
age: regress age i.smokes i.hightar bmi attack hsgrad female

Performing chained iteratiomns ...

Multivariate imputation Imputations = 5
Chained equations added = 5
Imputed: m=1 through m=5 updated = 0
Initialization: monotone Iterations = 50
burn-in = 10
Conditional imputation:
hightar: incomplete out-of-sample obs. replaced with value O
bmi: predictive mean matching
age: linear regression
hightar: logistic regression
smokes: logistic regression
Observations per m
Variable Complete Incomplete Imputed Total
bmi 130 24 24 154
age 124 30 30 154
hightar 135 19 19 154
smokes 140 14 14 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

With conditional imputation, a legend appears before the imputation table, reporting the conditional
constant, the value that was used to replace all incomplete values of an imputation variable outside
the conditional sample. The missing values of hightar in that sample were replaced with 0.

The smokes variable is imputed using logit and thus is included in prediction equations as a factor
variable, i.smokes. As such, we specified omit (i.smokes) to omit smokes from the prediction
equation for hightar.

Also notice that compared with imputation on a restricted subsample using an if condition,
the reported total number of observations in the imputation sample for hightar is still 154. All
incomplete observations, within and outside the conditional sample, are included in the imputation
sample during conditional imputation. So the reported numbers of complete, incomplete, and imputed
observations correspond with observations within and outside the conditional sample.

N

> Example 6: Including expressions of imputation variables

In Model building of [MI] mi impute, we described two ways of accommodating functional
relationships during imputation. Here we demonstrate a passive imputation approach that includes
expressions of imputation variables directly into the imputation model.

mi impute chained — Impute missing values using chained equations 157

Continuing example 5, suppose we assume that the conditional distribution of bmi exhibits some
curvature with respect to age. We want to include age~2 in the prediction equation for bmi. If the
relationship between bmi and age is indeed curvilinear, it would be unreasonable to assume that
the conditional distribution of age given bmi is linear. One possibility is to determine what the
relationship is between age and bmi given other predictors in the observed data (see, for example,
[R] mfp) and include the appropriate functional terms of bmi in the prediction equation for age.
Following White, Royston, and Wood (2011) to relax the linearity assumption, we use predictive
mean matching instead of linear regression to impute age:

mi impute chained

> (pmm, knn(3) omit(hsgrad) incl((age~2))) bmi

> (pmm) age

> (logit, cond(if smokes==1) omit(i.smokes)) hightar

> (logit) smokes

> = attack hsgrad female, replace

Conditional models:
smokes: logit smokes bmi age attack hsgrad female
hightar: logit hightar bmi age attack hsgrad female , cond(if smokes==1)
bmi: pmm bmi i.smokes i.hightar age (age”2) attack female , knn(3)
age: pmm age i.smokes i.hightar bmi attack hsgrad female

Performing chained iteratioms ...

Multivariate imputation Imputations = 5
Chained equations added = 0
Imputed: m=1 through m=5 updated = 5
Initialization: monotone Iterations = 50
burn-in = 10
Conditional imputation:
hightar: incomplete out-of-sample obs. replaced with value 0
bmi: predictive mean matching
age: predictive mean matching
hightar: logistic regression
smokes: logistic regression
Observations per m
Variable Complete Incomplete Imputed Total
bmi 130 24 24 154
age 124 30 30 154
hightar 135 19 19 154
smokes 140 14 14 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observationmns.)

We included the expression term in parentheses in the include () option in the prediction equation
for bmi.

4

> Example 7: Imputing on subsamples

Suppose that in our primary logistic analysis of heart attacks, we are planning to investigate
various interaction effects with respect to gender. The female variable is complete, so the best way
to accommodate such interactions is to use the by () option to perform imputation separately for
females and males.

158 mi impute chained — Impute missing values using chained equations

We continue example 3. Before imputing missing values, let’s review our conditional specifications
for each group. We can use the dryrun option to see univariate conditional models that will be used
during imputation without actually imputing data:

. use http://www.stata-press.com/data/r12/mheart8s0, clear
(Fictional heart attack data; bmi and age missing; arbitrary pattern)

. mi impute chained

> (pmm, knn(3) omit(hsgrad)) bmi

> (regress) age

> = attack smokes hsgrad, by(female) dryrun
Performing setup for each by() group:

-> female = 0

Conditional models:
age: regress age bmi attack smokes hsgrad
bmi: pmm bmi age attack smokes , knn(3)

-> female = 1

Conditional models:
age: regress age bmi attack smokes hsgrad
bmi: pmm bmi age attack smokes , knn(3)

Conditional specifications are as we expected, so we can proceed to imputation.

. mi impute chained
> (pmm, knn(3) omit(hsgrad)) bmi
> (regress) age
> = attack smokes hsgrad
> , add(5) by(female, noreport) dots
-> female = 0
Performing chained iterationms:
imputing m=1 through m=5 done
-> female = 1
Performing chained iterationms:

imputing m=1 through m=5 done
Multivariate imputation Imputations = 5
Chained equations added = 5
Imputed: m=1 through m=5 updated = 0
Initialization: monotone Iterations = 50
burn-in = 10
bmi: predictive mean matching
age: linear regression
Observations per m
by ()
Variable Complete Incomplete Imputed Total
female = 0
bmi 95 21 21 116
age 106 10 10 116
female = 1
bmi 31 7 7 38
age 36 2 2 38
Overall
bmi 126 28 28 154
age 142 12 12 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observationmns.)

mi impute chained — Impute missing values using chained equations 159

To avoid longer output, we specified the noreport option within by () to suppress information
about the setup and imputation steps that otherwise would have been reported for each group.

d
Saved results
mi impute chained saves the following in r():
Scalars
r (M) total number of imputations
r(M_add) number of added imputations
r(M_update) number of updated imputations
r(k_ivars) number of imputed variables
r(burnin) number of burn-in iterations
r(N_g) number of imputed groups (1 if by () is not specified)
Macros
r(method) name of imputation method (chained)
r(ivars) names of imputation variables
r (uvmethods) names of univariate imputation methods
r(init) type of initialization
r(rseed) random-number seed
r(by) names of variables specified within by ()
Matrices
r(N) number of observations in imputation sample in each group (per variable)
r(N_complete) number of complete observations in imputation sample in each group (per variable)
r(N_incomplete) number of incomplete observations in imputation sample in each group (per variable)
r(N_imputed) number of imputed observations in imputation sample in each group (per variable)
Methods and formulas
Let X1, X5,...,X, denote imputation variables ordered from the most observed to the least
observed and let Z denote the set of complete independent variables. (If X, X», ..., X, are monotone-

missing and neither nomonotone nor nomonotonechk is used, then mi impute chained uses
monotone imputation; see Methods and formulas of [MI] mi impute monotone for details.)

With the default specification of prediction equations, the chained-equation algorithm proceeds as
follows. First, at iteration ¢ = 0, missing values are initialized using monotone imputation. That is,

missing values of XZ-(O), i =1,...,p, are simulated from conditional densities of the form
0 0 0
fZ(Xl|X£)7X§)avXq,(f)laZ701) (2)

where the conditional density f;(-) is determined according to the chosen univariate imputation method
and 6; is its corresponding set of parameters with uniform prior; see Methods and formulas of chosen
univariate imputation methods for details.

At iteration ¢, missing values of X; for all # = 1,...,p are simulated from full conditionals,
conditional densities of the form:

g(Xa X\ xP L x P XD XY Z,6,) (3)

where again the conditional density g;(-) is determined according to the chosen univariate imputation
method and ¢, is its corresponding set of parameters with uniform prior.

160 mi impute chained — Impute missing values using chained equations

The algorithm iterates for a prespecified number of iterations b, ¢ = 1,...,b, and a final set of
imputed values is obtained from the last iteration. At each iteration, the imputation process consists
of steps 1-3 described in Methods and formulas of each respective univariate imputation method’s
manual entry.

Each imputation is obtained independently by repeating (2) and (3).

Conditional specifications in (2) and (3) correspond to the default specification of prediction
equations. With the custom specification, the sets of complete predictors Z = Z; and imputation
variables may differ across univariate specifications, and prediction equations may additionally include
functions of imputation variables.

X .

In summary, mi impute chained follows the steps below to fill in missing values in X1, ..., X,;:

)

1. mi impute chained first builds appropriate univariate imputation models using the supplied
information about imputation methods, imputation variables X, and complete predictors
Z. By default, fully conditional specification of prediction equations is used. The order in
which imputation variables are listed is ignored unless the orderasis option is used. By
default, mi impute chained imputes variables in order from the most observed to the least
observed.

2. Initialize missing values at ¢ = 0 using monotone imputation (2).

3. Perform the iterative procedure (3) for ¢ = 1,...,b, for the length of the burn-in period, to
obtain imputed values. At each iteration ¢,

3.1. Fit a univariate model for X; to the observed data to obtain the estimates of ¢,. See
step 1 in Methods and formulas of each respective univariate imputation method’s
manual entry for details.

3.2. Fill in missing values of X; according to the specified imputation model. See
step 2 and step 3 in Methods and formulas of each respective univariate imputation
method’s manual entry for details.

3.3. Repeat steps 3.1 and 3.2 for each imputation variable X;, ¢ = 1,...,p.
4. Repeat steps 2 and 3 to obtain M multiple imputations.

The iterative procedure (3) may not always correspond to a genuine simulation of imputed values from
their predictive distribution f(X,,|X,,Z) because the set of full conditionals {g; : i = 1,2,...,p}
may not correspond to this distribution or, in fact, to any proper multivariate distribution. The extent
to which this is a problem in practical applications is still an open research problem. Some limited
simulation studies reported only minimal effect of such incompatibility on final MI estimates (for
example, van Buuren et al. [2006]).

Acknowledgments

The mi impute chained command was inspired by the user-written command ice by Patrick
Royston of the MRC Clinical Trials Unit and Ian White of the MRC Biostatistics Unit. We are indebted
to them for their extensive work in the multiple-imputation area in Stata. We are also grateful to them
for their comments and advice on mi impute chained.

References

Arnold, B. C., E. Castillo, and J. M. Sarabia. 1999. Conditional Specification of Statistical Models. New York:
Springer.

——. 2001. Conditionally specified distributions: An introduction. Statistical Science 16: 249-274.

mi impute chained — Impute missing values using chained equations 161

Gelfand, A. E., and A. F. M. Smith. 1990. Sampling-based approaches to calculating marginal densities. Journal of
the American Statistical Association 85: 398—409.

Geman, S., and D. Geman. 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images.
IEEE Transactions on Pattern Analysis and Machine Intelligence 6: 721-741.

Raghunathan, T. E., J. M. Lepkowski, J. Van Hoewyk, and P. Solenberger. 2001. A multivariate technique for multiply
imputing missing values using a sequence of regression models. Survey Methodology 27: 85-95.

Royston, P. 2004. Multiple imputation of missing values. Stata Journal 4: 227-241.
——. 2005a. Multiple imputation of missing values: Update. Stata Journal 5: 188-201.
——. 2005b. Multiple imputation of missing values: Update of ice. Stata Journal 5: 527-536.

—. 2007. Multiple imputation of missing values: Further update of ice, with an emphasis on interval censoring.
Stata Journal 7: 445-464.

——. 2009. Multiple imputation of missing values: Further update of ice, with an emphasis on categorical variables.
Stata Journal 9: 466-477.

van Buuren, S. 2007. Multiple imputation of discrete and continuous data by fully conditional specification. Statistical
Methods in Medical Research 16: 219-242.

van Buuren, S., H. C. Boshuizen, and D. L. Knook. 1999. Multiple imputation of missing blood pressure covariates
in survival analysis. Statistics in Medicine 18: 681-694.

van Buuren, S., J. P. L. Brand, C. G. M. Groothuis-Oudshoorn, and D. B. Rubin. 2006. Fully conditional specification
in multivariate imputation. Journal of Statistical Computation and Simulation 76: 1049-1064.

White, I. R., R. Daniel, and P. Royston. 2010. Avoiding bias due to perfect prediction in multiple imputation of
incomplete categorical data. Computational Statistics & Data Analysis 54: 2267-2275.

White, I. R., P. Royston, and A. M. Wood. 2011. Multiple imputation using chained equations: Issues and guidance
for practice. Statistics in Medicine 30: 377-399.

Also see
[MI] mi impute — Impute missing values
[MI] mi impute monotone — Impute missing values in monotone data
[MI] mi impute mvn — Impute using multivariate normal regression
[MI] mi estimate — Estimation using multiple imputations
[MI] intro substantive — Introduction to multiple-imputation analysis
[MI] intro — Introduction to mi

[MI] Glossary

http://www.stata-journal.com/sjpdf.html?articlenum=st0067
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_1
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_2
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_3
http://www.stata-journal.com/article.html?article=st0067_4

Title

mi impute intreg — Impute using interval regression

Syntax

mi impute intreg newivar [indepvars] [zf] [weight] [, impute_options options}

impute_options Description
Main
*add (#) specify number of imputations to add; required when no imputations exist
*replace replace imputed values in existing imputations
rseed (#) specify random-number seed
double save imputed values in double precision; the default is to save them
as float

by(vurlist[, byopts]) impute separately on each group formed by varlist

Reporting
dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends
Advanced
force proceed with imputation, even when missing imputed values are
encountered
noupdate do not perform mi update; see [MI] noupdate option

*add(#) is required when no imputations exist; add(#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.

options Description
Main
noconstant suppress constant term
*11 (varname) lower limit for interval censoring
*ul (varname) upper limit for interval censoring
offset (varname,) include varname, in model with coefficient constrained to 1
conditional (if) perform conditional imputation
bootstrap estimate model parameters using sampling with replacement
Maximization
maximize_options control the maximization process; seldom used

You must mi set your data before using mi impute intreg; see [MI] mi set.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

162

mi impute intreg — Impute using interval regression 163

Menu

Statistics > Multiple imputation

Description
mi impute intreg fills in missing values of a continuous partially observed (censored) variable
using an interval regression imputation method. You can perform separate imputations on different

subsets of the data by using the by () option. You can also account for analytic, frequency, importance,
and sampling weights.

Options
Main

r

noconstant; see [R] estimation options.

11 (varname) and ul (varname) specify variables containing the lower and upper limits for interval
censoring. You must specify both. Nonmissing observations with equal values in 11() and ul ()
are fully observed observations with missing values in both 11() and ul() are unobserved
(missing), and the remaining observations are partially observed (censored). Partially observed
cases are left-censored when 11 () contains missing, right-censored when ul() contains missing,
and interval-censored when 11() <ul(). Fully observed cases are also known as point data; also
see Description in [R] intreg. In addition to newivar, mi impute intreg fills in unobserved
(missing) values of variables supplied in 11() and ul(); censored values remain unchanged.

add (), replace, rseed(), double, by(); see [MI] mi impute.
offset (varname,); see [R] estimation options.

conditional (if) specifies that the imputation variable be imputed conditionally on observations
satisfying exp; see [U] 11.1.3 if exp. That is, missing values in a conditional sample, the sample
identified by the exp expression, are imputed based only on data in that conditional sample.
Missing values outside the conditional sample are replaced with a conditional constant, the value
of the imputation variable in observations outside the conditional sample. As such, the imputation
variable is required to be constant outside the conditional sample. Also, if any conditioning variables
(variables involved in the conditional specification if exp) contain soft missing values (.), their
missing values must be nested within missing values of the imputation variables. See Conditional
imputation under Remarks in [MI] mi impute.

bootstrap specifies that posterior estimates of model parameters be obtained using sampling with
replacement; that is, posterior estimates are estimated from a bootstrap sample. The default is to
sample the estimates from the posterior distribution of model parameters or from the large-sample
normal approximation of the posterior distribution. This option is useful when asymptotic normality
of parameter estimates is suspect.

Reporting

dots, noisily, nolegend; see [MI] mi impute. noisily specifies that the output from the interval
regression fit to the observed data be displayed. nolegend suppresses all legends that appear before
the imputation table. Such legends include a legend about conditional imputation that appears when
the conditional () option is specified and group legends that may appear when the by () option
is specified.

164 mi impute intreg — Impute using interval regression

Maximization

maximize—_options; see [R] intreg. These options are seldom used.

Advanced

force; see [MI] mi impute.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

Remarks

Remarks are presented under the following headings:

Univariate imputation using interval regression
Using mi impute intreg
Example

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute_options. Also see [MI] workflow for general advice on working with mi.

Univariate imputation using interval regression

The interval regression imputation method can be used to fill in missing values of a continuous
partially observed (censored) variable (Royston 2007). It is a parametric method that assumes an
underlying normal model for the partially observed imputed variable (given other predictors). This
method is based on the asymptotic approximation of the posterior predictive distribution of the missing
data.

Partially observed data arise when instead of observing an actual value, we observe the range
where that value can lie. Such data include interval-censored, left-censored, and right-censored data;
see [R] intreg for a more detailed discussion of censored data.

Do not confuse censoring with truncation. Truncated data are observed and are known to be in a
certain range. Censored data come from a mixture of a continuous distribution and point masses at
censoring limits. Truncated data come from a continuous truncated distribution. See the technical note
in Remarks of [R] truncreg for details. Use mi impute truncreg (see [MI] mi impute truncreg)
to impute truncated data.

The imputation of censored data has certain unique characteristics. First, censored data are recorded
in two variables containing the lower and the upper interval-censoring limits. So technically, there are
two imputation variables. Second, in addition to complete observations (point data) and incomplete
observations (“truly” missing data), there are partially complete (censored) observations for which
only the lower and upper limits are known, not the values themselves. We can treat partially observed
cases as “missing” and impute them along with other completely unobserved data, provided we respect
their observed limits during imputation. As a result, we will end up with a single imputed variable
where missing and partially observed cases are replaced with plausible values consistent with the
observed censoring limits. See Methods and formulas for technical details.

In what follows, when referring to missing data (or missing observations) we will mean completely
unobserved, truly missing data and when referring to incomplete data (or incomplete observations)
we will mean both censored and truly missing data.

mi impute intreg — Impute using interval regression 165

Using mi impute intreg

To accommodate the above characteristics, mi impute intreg requires modifications to the
standard syntax of univariate imputation methods. First, mi impute intreg requires that variables
containing interval-censoring limits be specified in the 11() and ul () options; see the description of
11() and ul () in Options. Second, mi impute intreg requires you to specify a new variable name
newivar to store the resulting imputed values. mi impute intreg creates a new variable, newivar,
and registers it as imputed.

The values of newivar are determined by 11() and ul(). Observations of newivar for which
11() and ul() are different or for which both contain soft missing are set to soft missing (.) and
considered incomplete. Observations for which either 11() or ul () contains hard missing are set to
the extended missing value . a and, as usual, are omitted from imputation. The remaining observations,
corresponding to the observed point data, are complete.

After imputation, mi impute intreg stores imputed values in newivar. It also registers variables
in 11() and ul() as passive (see mi register in [MI] mi set), if they are not already registered
as passive, and replaces observations for which 11() and ul() both contain soft missing with the
corresponding imputed values. That is, only missing data are replaced in these variables; censored
data are not changed.

Later, you may decide to add more imputations or to revise your imputation model and replace
existing imputations with new ones. In such cases, you do not need to provide a new variable name.
You can reuse the name of the variable created previously by mi impute intreg. mi impute intreg
will check that the variable is registered as imputed and that it is consistent in the observed data
with the variables supplied in 11() and ul(). That is, the variable must have the same values as
11() and ul () in the observations where 11() and ul() are equal, and soft missing values in the
remaining observations. If 11() or ul () contain hard missing values, the variable must contain hard
missing values in the corresponding observations as well.

Example

We continue the example of imputing missing values of variable bmi from [MI] mi impute pmm.
The primary analysis of interest is the logistic model investigating the effect of smoking adjusted for
other predictors (including bmi) on heart attacks; see [MI] intro substantive for details.

The bmi variable is not censored in the original data. For the purpose of illustration, we use a
version of the dataset in which the first three observations are censored:
. use http://www.stata-press.com/data/r12/mheartintreg
(Fictional heart attack data; BMI censored and missing)
. list lbmi ubmi in 1/10

1bmi ubmi
. 22

20 .
30 31

24.62917 24.62917
22.52744 22.52744

G WN -

21.87975 21.87975
17.77057 17.77057

23.47249 23.47249
24.48916 24.48916

O © 0N O

-

166 mi impute intreg — Impute using interval regression

Rather than a single bmi variable, we have 1bmi and ubmi variables containing lower and upper
interval-censoring limits of BMI. The first observation is left-censored with an upper limit of 22, the
second observation is right-censored with a lower limit of 20, and the third observation is interval-
censored with the range [30, 31]. Observation 8, for which both 1bmi and ubmi are missing, is
missing.

Let’s impute censored BMI values:

. mi set mlong

. mi impute intreg newbmi attack smokes age hsgrad female, add(20) 11(lbmi) ul(ubmi)

Univariate imputation Imputations = 20
Interval regression added = 20
Imputed: m=1 through m=20 updated = 0
Limit: lower = 1bmi Number missing = 22
upper = ubmi Number censored = 3
interval = 1

left = 1

right = 1

Observations per m

Variable Complete Incomplete Imputed Total

newbmi 129 25 25 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

Following mi impute intreg, we provided a new variable name, newbmi, to contain imputed values.
Because newbmi did not exist we did not need to register it before using mi impute intreg. We
also specified the lower and upper interval-censoring limits in the 11() and ul() options. These
options are required with mi impute intreg.

mi impute intreg reported that 25 incomplete BMI values were imputed. Among these incomplete
observations, there are 22 missing observations and 3 censored observations (one interval-censored,
one left-censored, and one right-censored).

Let’s describe our mi data:

. mi describe, detail

Style: mlong
last mi update 02apr2011 11:02:32, 0 seconds ago

Obs.: complete 129
incomplete 25 (M = 20 imputations)
total 154

Vars.: imputed: 1; newbmi(25; 20%0)
passive: 2; 1bmi(23; 20%1) ubmi(23; 20%1)
regular: O
system: 3; _mi_m _mi_id _mi_miss

(there are 5 unregistered variables)

We used the detail option to also see missing-value counts in the imputed data.

According to mi describe, the new variable newbmi is registered as imputed and contains 25
incomplete observations in the original data. It does not contain incomplete values in any of the 20
imputations. 1bmi and ubmi are registered as passive. Each of 1bmi and ubmi contains 23 incomplete
values in the original data and one incomplete value in each imputation. The 22 missing values for

mi impute intreg — Impute using interval regression 167

1bmi and ubmi are imputed. The incomplete value for each of these variables that is not imputed
corresponds to a censored observation (left-censored observation 1 for 1bmi and right-censored
observation 2 for ubmi). mi impute intreg replaces only missing observations of 1bmi and ubmi
with imputed data and leaves censored observations unchanged.

As described in Methods and formulas, missing observations are simulated from an unrestricted
normal distribution. So, the 22 imputed values may contain any value on the whole real line. This
may not be desirable because the BMI measure is positive and, in fact, has a limited range.

To restrict imputed values to a certain range, we may replace 1bmi and ubmi with lower and
upper limits in observations for which these variables are missing. For example, let’s restrict imputed
values to be between 17 and 39, consistent with the observed range of BMI.

. use http://www.stata-press.com/data/ri12/mheartintreg, clear
(Fictional heart attack data; BMI censored and missing)

. replace 1lbmi = 17 if 1bmi==.
(23 real changes made)

. replace ubmi = 39 if ubmi==.
(23 real changes made)

. list lbmi ubmi in 1/10

1bmi ubmi
1. 17 22
2. 20 39
3. 30 31
4. 24.62917 24.62917
5. 22.52744 22.52744
6. 21.87975 21.87975
7. 17.77057 17.77057
8. 17 39
9. 23.47249 23.47249
10. 24.48916 24.48916

We replace missing lower limits with 17 and missing upper limits with 39 and proceed with imputation:

. mi set mlong

. mi impute intreg newbmi attack smokes age hsgrad female, add(20) 11(lbmi) ul(ubmi)

Univariate imputation Imputations = 20
Interval regression added = 20
Imputed: m=1 through m=20 updated = 0
Limit: lower = 1bmi Number missing = 0
upper = ubmi Number censored = 25
interval = 25
left = 0
right = 0

Observations per m
Variable Complete Incomplete Imputed Total
newbmi 129 25 25 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

All the incomplete observations are now interval-censored on [17, 39].

168 mi impute intreg — Impute using interval regression

We can analyze these multiply imputed data using logistic regression with mi estimate:

. mi estimate: logit attack smokes age newbmi female hsgrad
(output omitted)

In [MI] mi impute truncreg, we used mi impute truncreg to accommodate a restricted range
of BMI during imputation. In the code above, we showed how to use mi impute intreg to ensure
that imputed values are within a specified range. Which one should be used?

The answer to this question depends on our belief about the distribution of the imputation variable.
If we believe that the underlying distribution of BMI is a normal distribution and we happened to only
observe values within a certain range, then mi impute intreg should be used to impute BMI. We
know, however, that BMI is positive and has an upper limit. As such, the assumption of a truncated
distribution for BMI is more plausible, in which case mi impute truncreg should be used to impute
its missing values.

Saved results

mi impute intreg saves the following in r():

Scalars
r(M) total number of imputations
r(M_add) number of added imputations
r(M_update) number of updated imputations
r(N_miss) number of missing observations
r(N_cens) number of censored observations
r(N_lcens) number of left-censored observations
r(N_rcens) number of right-censored observations
r(N_intcens) number of interval-censored observations
r(k_ivars) number of imputed variables (always 1)
r(N_g) number of imputed groups (1 if by () is not specified)
Macros
r (method) name of imputation method (intreg)
r(ivars) names of imputation variables
r(1llname) name of variable containing lower interval-censoring limits
r (ulname) name of variable containing upper interval-censoring limits
r(rseed) random-number seed
r(by) names of variables specified within by ()
Matrices
r(N) number of observations in imputation sample in each group

r(N_complete) number of complete observations in imputation sample in each group
r(N_incomplete) number of incomplete observations in imputation sample in each group
r(N_imputed) number of imputed observations in imputation sample in each group

Methods and formulas

Consider a latent univariate variable x* = (z¥, 2%, ..., ")’ that follows a normal linear regression
u / 2
i'|z; ~ N(z;8,07) (1)
where z; = (21, 2i2, - - - » ziq)’ records values of predictors of x“ for observation ¢, 3 is the ¢ X 1

vector of unknown regression coefficients, and o2 is the unknown scalar variance. (When a constant
is included in the model—the default—z;; =1, i =1,...,n.)

mi impute intreg — Impute using interval regression 169

Instead of x“, we observe (x11 X“l), where a:“ = x“l = x“ for point (observed) data j € C;
x;-l = —oo and x}‘l < o0 for left censored data j € L; :c > —oo and ' = +o0 for right-censored
data j € R; .Z’j = —o0 and xj = +o0 for missing data je M. Observations from subset C are

considered complete and the remaining observations are considered incomplete.

Let x = x" for observations in subset C, and let x contain missing values in the remaining
observations. We want to fill in missing values in x. Consider the partition of x = (x,’,X,,’) into
ng X 1 and n; X 1 vectors containing the complete and the incomplete observations. Consider a
similar partition of Z = (Z,, Z,,) into ng X g and n1 X ¢ submatrices.

mi impute intreg follows the steps below to fill in x;,:

11

1. Fit an interval regression to the interval-censored data (x",x"!) to obtain the maximum

likelihood estimates of parameters in (1), 0= (B/, Ing)’, and their asymptotic sampling
variance, U. See [R] intreg for details.

o~ A~

2. Simulate new parameters, 0,, from the large-sample normal approximation, N (0, U), to its
posterior distribution, assuming the noninformative prior Pr(6) const.

3. Let p,; = z;3,. Obtain one set of imputed values, x. ., by simulating from a truncated
normal model with the density

ul oy n_ ., \)!
flan omy(2]2i) = 7¢ (N“) x {@ <w> _ P <$l““)} ’
o Ox Oy O

ol <z <2
for every incomplete observation i ¢ C. For missing observations i € M, when 7! = —oco
and aci = 400, the above density reduces to a normal density. Thus missing observations
are simulated from the corresponding unrestricted normal distribution.

4. Repeat steps 2 and 3 to obtain M sets of imputed values, x} ,x2, ... xM.

Steps 2 and 3 above correspond to only approximate draws from the posterior predictive distribution
of the missing data, Pr(x,,|X,, Z,), because 0, is drawn from the asymptotic approximation to its
posterior distribution.

If weights are specified, a weighted regression model is fit to the observed data in step 1 (see

[R] intreg for details). Also, in the case of aweights, o, is replaced with o, w, /2

w; is the analytic weight for observation .

in step 3, where

Reference

Royston, P. 2007. Multiple imputation of missing values: Further update of ice, with an emphasis on interval censoring.
Stata Journal 7: 445-464.

http://www.stata-journal.com/sjpdf.html?articlenum=st0067_3

170 mi impute intreg — Impute using interval regression

Also see

[MI] mi impute — Impute missing values

[MI] mi impute pmm — Impute using predictive mean matching
[MI] mi impute regress — Impute using linear regression

[MI] mi impute truncreg — Impute using truncated regression
[MI] mi estimate — Estimation using multiple imputations

[MI] intro — Introduction to mi

[MI] intro substantive — Introduction to multiple-imputation analysis

Title

mi impute logit — Impute using logistic regression

Syntax

mi impute logit ivar [indepvars] [lf] [weight] [, impute_options options]

impute_options Description
Main
*add (#) specify number of imputations to add; required when no imputations exist
*replace replace imputed values in existing imputations
rseed (#) specify random-number seed
double save imputed values in double precision; the default is to save them
as float

by(vurlist[, byopts]) impute separately on each group formed by varlist

Reporting
dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends
Advanced
force proceed with imputation, even when missing imputed values are
encountered
noupdate do not perform mi update; see [MI] noupdate option

*add(#) is required when no imputations exist; add(#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.

options Description
Main
noconstant suppress constant term
offset (varname) include varname in model with coefficient constrained to 1
augment perform augmented regression in the presence of perfect prediction
conditional (if) perform conditional imputation
bootstrap estimate model parameters using sampling with replacement
Maximization
maximize_options control the maximization process; seldom used

You must mi set your data before using mi impute logit; see [MI] mi set.

You must mi register ivar as imputed before using mi impute logit; see [MI] mi set.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

171

172 mi impute logit — Impute using logistic regression

Menu

Statistics > Multiple imputation

Description

mi impute logit fills in missing values of a binary variable by using a logistic regression imputation
method. You can perform separate imputations on different subsets of the data by specifying the by ()
option. You can also account for frequency, importance, and sampling weights.

Options

Main

noconstant; see [R] estimation options.
add (), replace, rseed(), double, by (); see [MI] mi impute.
offset (varname); see [R] estimation options.

augment specifies that augmented regression be performed if perfect prediction is detected. By default,
an error is issued when perfect prediction is detected. The idea behind the augmented-regression
approach is to add a few observations with small weights to the data during estimation to avoid
perfect prediction. See The issue of perfect prediction during imputation of categorical data under
Remarks in [MI] mi impute for more information. augment is not allowed with importance weights.

conditional (if) specifies that the imputation variable be imputed conditionally on observations
satisfying exp; see [U] 11.1.3 if exp. That is, missing values in a conditional sample, the sample
identified by the exp expression, are imputed based only on data in that conditional sample.
Missing values outside the conditional sample are replaced with a conditional constant, the value
of the imputation variable in observations outside the conditional sample. As such, the imputation
variable is required to be constant outside the conditional sample. Also, if any conditioning variables
(variables involved in the conditional specification if exp) contain soft missing values (.), their
missing values must be nested within missing values of the imputation variables. See Conditional
imputation under Remarks in [MI] mi impute.

bootstrap specifies that posterior estimates of model parameters be obtained using sampling with
replacement; that is, posterior estimates are estimated from a bootstrap sample. The default is to
sample the estimates from the posterior distribution of model parameters or from the large-sample
normal approximation of the posterior distribution. This option is useful when asymptotic normality
of parameter estimates is suspect.

Reporting
dots, noisily, nolegend; see [MI] mi impute. noisily specifies that the output from the logistic
regression fit to the observed data be displayed. nolegend suppresses all legends that appear before
the imputation table. Such legends include a legend about conditional imputation that appears when
the conditional () option is specified and group legends that may appear when the by () option
is specified.

Maximization

maximize_options; see [R] logit. These options are seldom used.

mi impute logit — Impute using logistic regression 173

Advanced

force; see [MI] mi impute.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

Remarks

Remarks are presented under the following headings:

Univariate imputation using logistic regression
Using mi impute logit

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute_options. Also see [MI] workflow for general advice on working with mi.

Univariate imputation using logistic regression

The logistic regression imputation method can be used to fill in missing values of a binary variable
(for example, Rubin [1987]; Raghunathan et al. [2001]; and van Buuren [2007]). It is a parametric
method that assumes an underlying logistic model for the imputed variable (given other predictors).

Unlike the linear regression method, the logistic imputation method is based on the asymptotic ap-
proximation of the posterior predictive distribution of the missing data. The actual posterior distribution
of the logistic model parameters, 3, does not have a simple form under the common noninformative
prior distribution. Thus a large-sample normal approximation to the posterior distribution of 3 is used
instead. Rubin (1987, 169) points out that although the actual posterior distribution may be far from
normal (for example, when the number of observed cases is small or when the fraction of ones in the
observed data is close to zero or one), the use of the normal approximation is common in practice.

Using mi impute logit

Continuing our heart attack example from [MI] intro substantive and [MI] mi impute, suppose that
hsgrad, a binary variable recording whether subjects graduated from high school, contains missing
values:

. use http://www.stata-press.com/data/r12/mheart2
(Fictional heart attack data; hsgrad missing)
. mi set mlong

. mi misstable summarize

Obs<.
Unique
Variable Obs=. Obs>. Obs<. values Min Max
hsgrad 18 136 2 0 1

Thus we want to impute missing values of hsgrad, because hsgrad was one of the predictors in
our logistic model (logit attack smokes age bmi female hsgrad). From our previous analysis
of the heart attack data, we recall that hsgrad was not a significant predictor. So, we could have
omitted hsgrad from the logistic model in the casewise-deletion analysis to avoid the reduction in

174 mi impute logit — Impute using logistic regression

sample size, and then imputing hsgrad would not have been needed. In general, the imputer rarely
has such knowledge, and omitting hsgrad from the imputation model would prevent this predictor
from being used in later analysis by the analyst (see, for example, Imputation modeling in [MI] mi
impute). Thus we proceed with imputation.

We use mi impute logit to create 10 imputations of hsgrad:

. mi register imputed hsgrad
(18 m=0 obs. now marked as incomplete)

. mi impute logit hsgrad attack smokes age bmi female, add(10)

Univariate imputation Imputations = 10
Logistic regression added = 10
Imputed: m=1 through m=10 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

hsgrad 136 18 18 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

We can now use the imputed hsgrad in our analysis, for example,

. mi estimate: logit attack smokes age bmi female hsgrad
(output omitted)

Saved results

mi impute logit saves the following in r():

Scalars

r(M) total number of imputations

r(M_add) number of added imputations

r(M_update) number of updated imputations

r(k_ivars) number of imputed variables (always 1)

r(pp) 1 if perfect prediction detected, O otherwise

r(N_g) number of imputed groups (1 if by () is not specified)
Macros

r (method) name of imputation method (logit)

r(ivars) names of imputation variables

r(rseed) random-number seed

r(by) names of variables specified within by ()
Matrices

r(N) number of observations in imputation sample in each group

r(N_complete) number of complete observations in imputation sample in each group
r(N_incomplete) number of incomplete observations in imputation sample in each group
r(N_imputed) number of imputed observations in imputation sample in each group

Methods and formulas

Consider a univariate variable x = (21, X2, ...,Z,) that follows a logistic model

Pr(z; # 0|z;) = % !

mi impute logit — Impute using logistic regression 175

where z; = (21, 2i2, - - .,ziq)’ records values of predictors of x for observation ¢ and 3 is the
g x 1 vector of unknown regression coefficients. (When a constant is included in the model—the
default—z;y =1, 1 =1,...,n.)

X contains missing values that are to be filled in. Consider the partition of x = (x],x/,) into
ng X 1 and n; X 1 vectors containing the complete and the incomplete observations. Consider a
similar partition of Z = (Z,, Z,,) into ng X ¢ and n1 X g submatrices.

mi impute logit follows the steps below to fill in x,,:

1. Fit a logistic model (1) to the observed data (x,,Z,) to obtain the maximum likelihood

estimates, 3, and their asymptotic sampling variance, U.

o~ o~

2. Simulate new parameters, (3,, from the large-sample normal approximation, N (3, U), to its
posterior distribution assuming the noninformative prior Pr(3) o const.

3. Obtain one set of imputed values, X} , by simulating from the logistic distribution:

Pr(z;, =1) =exp(z; B,)/{1+exp(z;, B,)}

for every missing observation %,.

2 M

Xy X+

4. Repeat steps 2 and 3 to obtain M sets of imputed values, x.

m?

Steps 2 and 3 above correspond to only approximate draws from the posterior predictive distribution
of the missing data Pr(x,,|x,,Z,) because B3, is drawn from the asymptotic approximation to its
posterior distribution.

If weights are specified, a weighted logistic regression model is fit to the observed data in step 1
(see [R] logit for details).

References

Raghunathan, T. E., J. M. Lepkowski, J. Van Hoewyk, and P. Solenberger. 2001. A multivariate technique for multiply
imputing missing values using a sequence of regression models. Survey Methodology 27: 85-95.

Rubin, D. B. 1987. Multiple Imputation for Nonresponse in Surveys. New York: Wiley.

van Buuren, S. 2007. Multiple imputation of discrete and continuous data by fully conditional specification. Statistical
Methods in Medical Research 16: 219-242.

Also see

[MI] mi impute — Impute missing values
[MI] mi estimate — Estimation using multiple imputations
[MI] intro — Introduction to mi

[MI] intro substantive — Introduction to multiple-imputation analysis

Title

mi impute mlogit — Impute using multinomial logistic regression

Syntax

mi impute mlogit ivar [indepvars} [lf] [weighl] [, impute_options options]

impute_options Description
Main
*add (#) specify number of imputations to add; required when no imputations exist
*replace replace imputed values in existing imputations
rseed (#) specify random-number seed
double save imputed values in double precision; the default is to save them
as float

by(vurlist[, byopts]) impute separately on each group formed by varlist

Reporting
dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends
Advanced
force proceed with imputation, even when missing imputed values are
encountered
noupdate do not perform mi update; see [MI] noupdate option

*add(#) is required when no imputations exist; add(#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.

options Description
Main

noconstant suppress constant term

baseoutcome (#) specify value of ivar that will be the base outcome

augment perform augmented regression in the presence of perfect prediction

conditional (if) perform conditional imputation

bootstrap estimate model parameters using sampling with replacement
Maximization

maximize_options control the maximization process; seldom used

You must mi set your data before using mi impute mlogit; see [MI] mi set.

You must mi register ivar as imputed before using mi impute mlogit; see [MI] mi set.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

176

mi impute mlogit — Impute using multinomial logistic regression 177

Menu

Statistics > Multiple imputation

Description

mi impute mlogit fills in missing values of a nominal variable by using the multinomial

(polytomous) logistic regression imputation method. You can perform separate imputations on different
subsets of the data by specifying the by () option. You can also account for frequency, importance,
and sampling weights.

Options

Main

r

Reporting

dots, noisily, nolegend; see [MI] mi impute. noisily specifies that the output from the multino-

noconstant; see [R] estimation options.
add (), replace, rseed(), double, by(); see [MI|] mi impute.

baseoutcome (#) specifies the value of ivar to be treated as the base outcome. The default is to

choose the most frequent outcome.

augment specifies that augmented regression be performed if perfect prediction is detected. By default,

an error is issued when perfect prediction is detected. The idea behind the augmented-regression
approach is to add a few observations with small weights to the data during estimation to avoid
perfect prediction. See The issue of perfect prediction during imputation of categorical data under
Remarks in [MI] mi impute for more information. augment is not allowed with importance weights.

conditional (if) specifies that the imputation variable be imputed conditionally on observations

satisfying exp; see [U] 11.1.3 if exp. That is, missing values in a conditional sample, the sample
identified by the exp expression, are imputed based only on data in that conditional sample.
Missing values outside the conditional sample are replaced with a conditional constant, the value
of the imputation variable in observations outside the conditional sample. As such, the imputation
variable is required to be constant outside the conditional sample. Also, if any conditioning variables
(variables involved in the conditional specification if exp) contain soft missing values (.), their
missing values must be nested within missing values of the imputation variables. See Conditional
imputation under Remarks in [MI] mi impute.

bootstrap specifies that posterior estimates of model parameters be obtained using sampling with

replacement; that is, posterior estimates are estimated from a bootstrap sample. The default is to
sample the estimates from the posterior distribution of model parameters or from the large-sample
normal approximation of the posterior distribution. This option is useful when asymptotic normality
of parameter estimates is suspect.

mial logistic regression fit to the observed data be displayed. nolegend suppresses all legends that
appear before the imputation table. Such legends include a legend about conditional imputation
that appears when the conditional() option is specified and group legends that may appear
when the by () option is specified.

178 mi impute mlogit — Impute using multinomial logistic regression

Maximization

maximize_options; see [R] mlogit. These options are seldom used.

Advanced

force; see [MI] mi impute.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

Remarks
Remarks are presented under the following headings:

Univariate imputation using multinomial logistic regression
Using mi impute mlogit

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute_options. Also see [MI] workflow for general advice on working with mi.

Univariate imputation using multinomial logistic regression

The multinomial logistic regression imputation method can be used to fill in missing values of a
nomial variable (for example, Raghunathan et al. [2001] and van Buuren [2007]). It is a parametric
method that assumes an underlying multinomial logistic model for the imputed variable (given other
predictors). Similarly to the logistic imputation method, this method is based on the asymptotic

approximation of the posterior predictive distribution of the missing data.

Using mi impute mlogit

Consider the heart attack data introduced in [MI] intro substantive and discussed in [MI] mi impute.
Suppose that we want our logistic model of interest to also include information about marital status
(categorical variable marstatus)—logit attack smokes age bmi female hsgrad i.marstatus.

We first tabulate values of marstatus:

. use http://www.stata-press.com/data/r12/mheart3
(Fictional heart attack data; marstatus missing)

. tabulate marstatus, missing

Marital
status:
single,
married,
divorced Freq. Percent Cum.
Single 53 34.42 34.42
Married 48 31.17 65.58
Divorced 46 29.87 95.45
7 4.55 100.00
Total 154 100.00

mi impute mlogit — Impute using multinomial logistic regression 179

From the output, the marstatus variable has three unique categories and seven missing observations.
Because marstatus is a categorical variable, we use the multinomial logistic imputation method to
fill in its missing values.

We mi set the data, register marstatus as an imputed variable, and then create 10 imputations
by specifying the add(10) option with mi impute mlogit:
. mi set mlong

. mi register imputed marstatus
(7 m=0 obs. now marked as incomplete)

. mi impute mlogit marstatus attack smokes age bmi female hsgrad, add(10)

Univariate imputation Imputations = 10
Multinomial logistic regression added = 10
Imputed: m=1 through m=10 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

marstatus 147 7 7 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observationms.)

We can now analyze these multiply imputed data using logistic regression via mi estimate:

. mi estimate: logit attack smokes age bmi female hsgrad i.marstatus
(output omitted)

Saved results

mi impute mlogit saves the following in r():

Scalars

r(M) total number of imputations

r(M_add) number of added imputations

r(M_update) number of updated imputations

r(k_ivars) number of imputed variables (always 1)

r(pp) 1 if perfect prediction detected, O otherwise

r(N_g) number of imputed groups (1 if by() is not specified)
Macros

r(method) name of imputation method (mlogit)

r(ivars) names of imputation variables

r(rseed) random-number seed

r(by) names of variables specified within by ()
Matrices

r(N) number of observations in imputation sample in each group

r(N_complete) number of complete observations in imputation sample in each group
r(N_incomplete) number of incomplete observations in imputation sample in each group
r(N_imputed) number of imputed observations in imputation sample in each group

Methods and formulas

Consider a univariate variable x = (x1,x2,...,x,)" that contains K categories (without loss of
generality, let k = 1 be the base outcome) and follows a multinomial logistic model

180 mi impute mlogit — Impute using multinomial logistic regression

< ! yifk=1
L+ 2020 exp(2iB))
Pr(x; = k|z;) = exp(z.3,) (1)
DL Jif k> 1
1+, exp(zi3)
where z; = (21, Zi2, . - ., Ziq)’ records values of predictors of x for observation ¢ and 3; is the ¢ x 1
vector of unknown regression coefficients for outcome [= 2, ..., K. (When a constant is included
in the model—the default—z;; =1, ¢ =1,...,n.)

X contains missing values that are to be filled in. Consider the partition of x = (x],x/.) into
ng X 1 and n; X 1 vectors containing the complete and the incomplete observations. Consider a
similar partition of Z = (Z,, Z,,) into ng X ¢ and nq X g submatrices.

mi impute mlogit follows the steps below to fill in X;,:
1. Fit a multinomial logistic model (1) to the observed data (x,,Z,) to obtain the maximum
~ ~/ —~/ ~
likelihood estimates, 3 = (83, ..., Bx)’, and their asymptotic sampling variance, U.
2. Simulate new parameters, 3, , from the large-sample normal approximation, N (El, ﬁ), to its
posterior distribution assuming the noninformative prior Pr(3) o const.

3. Obtain one set of imputed values, x_. , by simulating from the multinomial logistic distribution:
one of K categories is randomly assigned to a missing category, %,,, using the cumulative
probabilities computed from (1) with 3; = 3,; and z; = z;,,.

4. Repeat steps 2 and 3 to obtain M sets of imputed values, x},,x2, ... xM.

Steps 2 and 3 above correspond to only approximate draws from the posterior predictive distribution
of the missing data Pr(x,,|x,,Z,) because 3, is drawn from the asymptotic approximation to its
posterior distribution.

If weights are specified, a weighted multinomial logistic regression model is fit to the observed
data in step 1 (see [R] mlogit for details).

References

Raghunathan, T. E., J. M. Lepkowski, J. Van Hoewyk, and P. Solenberger. 2001. A multivariate technique for multiply
imputing missing values using a sequence of regression models. Survey Methodology 27: 85-95.

van Buuren, S. 2007. Multiple imputation of discrete and continuous data by fully conditional specification. Statistical
Methods in Medical Research 16: 219-242.

Also see

[MI] mi impute — Impute missing values

[MI] mi impute ologit — Impute using ordered logistic regression
[MI] mi estimate — Estimation using multiple imputations

[MI] intro — Introduction to mi

[MI] intro substantive — Introduction to multiple-imputation analysis

Title

mi impute monotone — Impute missing values in monotone data

Syntax
Deftault specification of prediction equations, basic syntax

mi impute monotone (uvmethod) ivars [= indepvars] [lf} [weight] [, impute_options ()pti()ns]

Default specification of prediction equations, full syntax

mi impute monotone lhs [= indepvars] [l_'f] [Weight] [, impute_options options}

Custom specification of prediction equations

mi impute monotone cmodels [lf} [weight] , custom [impute_options options]

where lhs is lhs_spec [lhs_spec [..]] and lhs_spec is
(uvmethod [zf] [, uvspec_options]) ivars

cmodels is (cond_spec) [(cond_spec) [..]] and a conditional specification, cond_spec, is
uvmethod ivar [rhs_spec] [lf] [, uvspec_()pti()ns]

rhs_spec includes varlist and expressions of imputation variables bound in parentheses.

ivar(s) (or newivar if uvmethod is intreg) is the name(s) of the imputation variable(s).

uvspec_options are ascontinuous, noisily, and the method-specific options as described in the
manual entry for each univariate imputation method.

uvmethod Description
regress linear regression for a continuous variable; [MI] mi impute regress
pmm predictive mean matching for a continuous variable;
[MI] mi impute pmm
truncreg truncated regression for a continuous variable with a restricted range;
[MI] mi impute truncreg
intreg interval regression for a continuous censored variable;
[MI] mi impute intreg
logit logistic regression for a binary variable; [MI] mi impute logit
mit ordered logistic regression for an ordinal variable; [MI] mi impute ologit
@it multinomial logistic regression for a nominal variable;
S [MI] mi impute mlogit
poisson Poisson regression for a count variable; [MI] mi impute poisson
nbreg negative binomial regression for an overdispersed count variable;

[MI] mi impute nbreg

181

182

mi impute monotone — Impute missing values in monotone data

impute_options

Description

Main

*add (#)

*replace
rseed (#)
double

by(varlist[, byopts])

Reporting
dots
noisily
nolegend

Advanced
force

noupdate

specify number of imputations to add; required when no imputations exist
replace imputed values in existing imputations
specify random-number seed

save imputed values in double precision; the default is to save them
as float

impute separately on each group formed by varlist

display dots as imputations are performed
display intermediate output
suppress all table legends

proceed with imputation, even when missing imputed values are
encountered

do not perform mi update; see [MI] noupdate option

*add(#) is required when no imputations exist; add (#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.

options Description
Main
*custom customize prediction equations of conditional specifications
augment perform augmented regression in the presence of perfect prediction for
all categorical imputation variables
bootstrap estimate model parameters using sampling with replacement
Reporting
dryrun show conditional specifications without imputing data
verbose show conditional specifications and impute data; implied when custom
prediction equations are not specified
report show report about each conditional specification
Advanced
nomonotonechk do not check whether variables follow a monotone-missing pattern

*custom is required when specifying customized prediction equations.

You must mi set your data before using mi impute monotone; see [MI] mi set.

You must mi register ivars as imputed before using mi impute monotone; see [MI] mi set.

indepvars and rhs_spec may contain factor variables; see [U] 11.4.3 Factor variables.

fweights, aweights (regress, pmm, truncreg, and intreg only), iweights, and pweights are allowed; see

[U] 11.1.6 weight.

mi impute monotone — Impute missing values in monotone data 183

Menu

Statistics > Multiple imputation

Description

mi impute monotone fills in missing values in multiple variables by using a sequence of
independent univariate conditional imputation methods. Variables to be imputed, ivars, must follow
a monotone-missing pattern (see [MI] intro substantive). You can perform separate imputations on
different subsets of the data by specifying the by () option. You can also account for frequency,
analytic (with continuous variables only), importance, and sampling weights.

Options

Main

custom is required to build customized prediction equations within the univariate conditional speci-
fications. Otherwise, the default specification of prediction equations is assumed.

add (), replace, rseed(), double, by(); see [MI|] mi impute.

augment specifies that augmented regression be performed if perfect prediction is detected. By default,
an error is issued when perfect prediction is detected. The idea behind the augmented-regression
approach is to add a few observations with small weights to the data during estimation to avoid
perfect prediction. See The issue of perfect prediction during imputation of categorical data under
Remarks in [MI] mi impute for more information. augment is not allowed with importance weights.
This option is equivalent to specifying augment within univariate specifications of all categorical
imputation methods.

bootstrap specifies that posterior estimates of model parameters be obtained using sampling with
replacement; that is, posterior estimates are estimated from a bootstrap sample. The default is to
sample the estimates from the posterior distribution of model parameters or from the large-sample
normal approximation of the posterior distribution. This option is useful when asymptotic normality
of parameter estimates is suspect. This option is equivalent to specifying bootstrap within all
univariate specifications.

The following options appear on a Specification dialog that appears when you click on the Create
... button on the Main tab.

uvspec_options are options specified within each univariate imputation method, wuvmethod.
uvspec_options include ascontinuous, noisily, and the method-specific options as described
in the manual entry for each univariate imputation method.

ascontinuous specifies that categorical imputation variables corresponding to the current uvmethod
be included as continuous in all prediction equations. This option is only allowed when uvmethod
is logit, ologit, or mlogit.

noisily specifies that the output from the current univariate model fit to the observed data be
displayed.

184 mi impute monotone — Impute missing values in monotone data

Reporting

dots, noisily, nolegend; see [MI] mi impute. noisily specifies that the output from all univariate
conditional models fit to the observed data be displayed. nolegend suppresses all imputation table
legends which include a legend with the titles of the univariate imputation methods used, a legend
about conditional imputation when conditional() is used within univariate specifications, and
group legends when by () is specified.

dryrun specifies to show the conditional specifications that would be used to impute each vari-
able without actually imputing data. This option is recommended for checking specifications of
conditional models prior to imputation.

verbose specifies to show conditional specifications and impute data. verbose is implied when
custom prediction equations are not specified.

report specifies to show a report about each univariate conditional specification. This option, in
combination with dryrun, is recommended for checking specifications of conditional models prior
to imputation.

Advanced

force; see [MI] mi impute.

nomonotonechk specifies not to check that imputation variables follow a monotone-missing pattern.
This option may be used to avoid potentially time-consuming checks. The monotonicity check may
be time consuming when a large number of variables is being imputed. If you use nomonotonechk
with a custom specification, make sure that you list the univariate conditional specifications in the
order of monotonicity or you might obtain incorrect results.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

Remarks

Remarks are presented under the following headings:

Multivariate imputation when a missing-data pattern is monotone

First use

Using mi impute monotone

Default syntax of mi impute monotone

The alternative syntax of mi impute monotone—custom prediction equations
Examples of using default prediction equations

Examples of using custom prediction equations

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute_options. Also see [MI] workflow for general advice on working with mi.

Multivariate imputation when a missing-data pattern is monotone

When a pattern of missingness in multiple variables is monotone (or, more rigorously, when the
missingness-modeling structure is monotone distinct), a multivariate imputation can be replaced with
a set of conditional univariate imputations (Rubin 1987, 170-178). Let X, X»,..., X, be ordered
such that if Xq; is missing, then Xo; is also missing, although X5 may also be missing in other
observations; if Xo; is missing, then X3; is missing, although X3 may also be missing in other
observations; and so on. Then a simultaneous imputation of variables X, X», ..., X, according to
a model, fx(-), and complete predictors (independent variables), Z, is equivalent to the sequential
conditional imputation

mi impute monotone — Impute missing values in monotone data 185

X7 ~ f1(X1]Z)

X5 ~ h{X|X7.2) "

X;NfP(XP|X{(7X577 ;,172)

where for brevity we omit conditioning on the model parameters. The univariate conditional imputation
models f;(-) can each be of a different type (normal, logistic, etc.), as is appropriate for imputing
j .

The specification of a conditional imputation model f;(-) includes an imputation method and a
prediction equation relating an imputation variable to other explanatory variables. In what follows,
we distinguish between the default specification in which the identities of the complete explanatory
variables are the same for all imputed variables, and the custom specification in which the identities
are allowed to differ.

Under the default specification, prediction equations of each imputation variable include all complete
independent variables and all preceding imputation variables that have already been imputed. Under
the custom specification, each prediction equation may include a subset of the predictors that would
be used under the default specification. The custom specification implies nothing more than the
assumption of conditional independence between certain imputation variables and certain sets of
predictors.

Model (1) corresponds to the default specification. For example, consider imputation variables X1,
Xo, and X3, ordered from the most observed to the least observed, and complete predictors Z; and
Zy. Under the default specification, the individual prediction equations are determined as follows.
The most observed variable, X7, is predicted from Z; and Z5. The next most observed variable, Xo,
is predicted from Z1, Z5, and previously imputed X;. The least observed variable, X3, is predicted
from Z;, Z5, and previously imputed X; and X5. (A constant is included in all prediction equations,
by default.) We use the following notation to refer to the above sequence of prediction equations
(imputation sequence): X1|Z1, Zo — Xo|X1, 721, Z2 — X3|X1, Xo, Z1, Z>.

A sequence such as Xi|Z; — Xo|X1,721, 72> — X3|X1,Z> would correspond to a custom
specification. Here X; is assumed to be independent of Z given Zj, and X3 is assumed to be
independent of Z; and X5 given X; and Zs.

The monotone-distinct structure offers much flexibility in building a multivariate imputation model.
It simplifies the often intractable multivariate imputation task to a set of simpler univariate imputation
tasks. In addition, it accommodates imputation of a mixture of types of variables. So, what’s the catch?
The catch is that the pattern of missingness is rarely monotone in practice. There are types of data for
which a monotone-missing data pattern can occur naturally (for example, follow-up measurements).
Usually, however, this happens only by chance.

There are several ways to proceed if your data are not monotone missing. You can discard
the observations that violate the monotone-missing pattern, especially if there are very few such
observations. You can assume independence among the sets of variables to create independent
monotone patterns. For example, the missingness pattern for X;, X5, X3, X4, X5 may not be
monotone, but it may be for X7, X3 and for Xo, X4, X5. If it is reasonable to assume independence
between these two sets of variables, you can then impute each set separately by using monotone
imputation. Other alternatives are to use certain techniques to complete the missing-data pattern to
monotone (see, for example, Schafer 1997), to use an iterative sequential (fully conditional) imputation
(see [MI] mi impute chained; Royston 2005, 2007, 2009; van Buuren, Boshuizen, and Knook 1999;
Raghunathan et al. 2001), or to assume an explicit multivariate parametric model for the imputation

186 mi impute monotone — Impute missing values in monotone data

variables (see [MI] mi impute mvn; Schafer 1997). Also see Multivariate imputation of [MI] mi
impute for a general discussion of multivariate imputation.

Throughout this entry, we will assume that the considered imputation variables are monotone
missing.

First use
Before we describe various uses of mi impute monotone, let’s look at an example.

Consider the heart attack data examining the relationship between heart attack and smoking. The age
and bmi variables contain missing values and follow a monotone-missing pattern. Recall multivariate
imputation of bmi and age using mi impute monotone described in Multivariate imputation of
[MI] mi impute:

. use http://www.stata-press.com/data/r12/mheart5s0
(Fictional heart attack data; bmi and age missing)
. mi impute monotone (regress) bmi age = attack smokes hsgrad female, add(10)

Conditional models:
age: regress age attack smokes hsgrad female
bmi: regress bmi age attack smokes hsgrad female

Multivariate imputation Imputations = 10

Monotone method added = 10

Imputed: m=1 through m=10 updated = 0
bmi: linear regression
age: linear regression

Observations per m

Variable Complete Incomplete Imputed Total

bmi 126 28 28 154

age 142 12 12 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

The age and bmi variables have monotone missingness, and so mi impute monotone is used to
fill in missing values. Ten imputations are created (add (10) option). The linear regression imputation
method (regress) is used to impute both continuous variables. The attack, smokes, hsgrad, and
female variables are used as complete predictors (independent variables).

The conditional models legend shows that age (having the least number of missing values) is
imputed first using the regress method, even though we specified bmi before age on the mi impute
command. After that, bmi is imputed using the regress method and the previously imputed variable
age and the other predictors.

The header and table output were described in detail in [MI] mi impute. The additional information
above the imputation table is the legend describing what univariate imputation method was used to
impute each variable. (If desired, this legend may be suppressed by specifying the nolegend option.)

mi impute monotone — Impute missing values in monotone data 187

Using mi impute monotone

Below we summarize general capabilities of mi impute monotone.

1. mi impute monotone requires that the specified imputation variables follow a monotone-
missing pattern. If they do not, it will stop with an error:

. mi impute monotone x1 x2 ...

x1 x2: not monotone;
imputation variables must have a monotone-missing structure;
see mi misstable nested

r(459);

As indicated by the error message, we can use mi misstable nested to verify for ourselves
that the imputation variables are not monotone missing. We could also use other features of
mi misstable to investigate the pattern.

2. mi impute monotone offers two main syntaxes—one using the default prediction equations,

. mi impute monotone ...

and the other allowing customization of prediction equations,

. mi impute monotone ..., custom ...

We will refer to the two syntaxes as default and custom, respectively.
3. mi impute monotone allows specification of a global (outer) if condition,

. mi impute monotone ... if exp ...

and equation-specific (inner) if conditions,

. mi impute monotone ... (... if exp ...) ...

A global if is applied to all equations (conditional specifications). You may combine global
and equation-specific if conditions:

. mi impute monotone ... (... if exp ...) ... if exp ...
4. mi impute monotone allows specification of global weights, which are applied to all
equations,
. mi impute monotone ... [weight] ...
Use a combination of options dryrun and report to check the specification of each univariate
imputation model prior to imputing data.

In the next two sections, we describe the use of mi impute monotone first using hypothetical
situations and then using real examples.

Default syntax of mi impute monotone

We showed in First use an example of mi impute monotone with default prediction equations
using the heart attack data. Here we provide more details about this default specification.

By default, mi impute monotone imputes missing values by using the full specification of
prediction equations. It builds the corresponding univariate conditional imputation models based on
the supplied information: uvmethod, the imputation method; ivars, the imputation variables; and
indepvars, the complete predictors or independent variables.

188 mi impute monotone — Impute missing values in monotone data

Suppose that continuous variables x1, x2, and x3 contain missing values with a monotone-missing
pattern. We want to impute these variables, and we decide to use the same univariate imputation
method, say, linear regression, for all. We can do this by typing

. mi impute monotone (regress) x1 x2 x3 ...

The above corresponds to the first syntax diagram of mi impute monotone: uvmethod is regress
and ivars is x1 x2 x3. Relating the above to the model notation used in (1), f1, fo, and f3 represent
linear regression imputation models and the prediction sequence is X7 — Xo|X; — X3|Xo, X;.

If we have additional covariates containing no missing values (say, z1 and z2) that we want to
include in the imputation model, we can do it by typing

. mi impute monotone (regress) x1 x2 x3 = zl1 z2 ...

Now indepvars is z1 z2 and the prediction sequence is X1|Z1,Z2 — Xs3|X1,71,7Z2 —
X35| X, X1, Z1, Z>. Independent variables are included in the prediction equations of all condi-
tional models.

Suppose that we want to use a different imputation method for one of the variables—we want to
impute x3 using predictive mean matching. We can do this by typing

. mi impute monotone (regress) x1 x2 (pmm) x3 =zl z2 ...

The above corresponds to the second syntax diagram of mi impute monotone, a generalization
of the first that accommodates differing imputation methods. The right-hand side of the equation is
unchanged. z1 and z2 are included in all three prediction equations. The left-hand side now has two
specifications: (regress) x1 x2 and (pmm) x3. In previous examples, we had only one left-hand-side
specification, lhs_spec— (regress) x1 x2 x3. (Note that the number of left-hand-side specifications
does not necessarily correspond to the number of conditional models; the latter is determined by the
number of imputation variables.) In this example, x1 and x2 are imputed using linear regression, and
x3 is imputed using predictive mean matching.

Now, instead of using the default one nearest neighbor with pmm, say that we want to use three, which
requires pmm’s knn (3) option. All method-specific options must be specified within the parentheses
surrounding the method:

. mi impute monotone (regress) x1 x2 (pmm, knn(3)) x3 =zl z2 ...

Under the default specification, you can list imputation variables in any order and mi impute
monotone will determine the correct ordering that follows the monotone-missing pattern.

Suppose now we want to restrict the imputation sample for x2 to observations where z1 is one;
also see Imputing on subsamples of [MI] mi impute. (We also omit pmm’s knn() option here.) The
corresponding syntax is

. mi impute monotone (regress) x1 (regress if zl==1) x2 (pmm) x3 =zl z2 ...

If, in addition to the above, we want to impute all variables using an overall subsample where z3
is one, we can specify the global if z3==1 condition:

. mi impute monotone (regress) x1 (regress if zl==1) x2 (pmm) x3 = zl1 22
> if z3==

When any imputation variable is imputed using a categorical method, mi impute monotone
automatically includes it as a factor variable in the prediction equations of other imputation variables.
Suppose that x1 is a categorical variable and is imputed using the multinomial logistic method:

. mi impute monotone (mlogit) x1 (regress) x2 x3 ...

mi impute monotone — Impute missing values in monotone data 189

The above will result in the prediction sequence X; — Xo|i.X; — X3|X2,1.X7 where i.X;
denotes the factors of Xj.

If you wish to include factor variables as continuous in prediction equations, you can use the
ascontinuous option within a specification of the univariate imputation method for that variable:

. mi impute monotone (mlogit, ascontinuous) x1 (regress) x2 x3 ...

As we discussed in The issue of perfect prediction during imputation of categorical data of [MI] mi
impute, perfect prediction often occurs during imputation of categorical variables. One way of dealing
with it is to use the augmented-regression approach (White, Daniel, and Royston 2010), available
through the augment option. For example, if perfect prediction occurs during imputation of x1 in
the above, you can specify augment within the method specification of x1 to perform augmented
regression:

. mi impute monotone (mlogit, augment) x1 (regress) x2 x3 ...

Alternatively, you can use the augment option with mi impute monotone to perform augmented
regression for all categorical variables for which the issue of perfect prediction arises:

. mi impute monotone (mlogit) x1 (logit) x2 (regress) x3 ..., augment ...

The above command is equivalent to specifying augment within each specification of a univariate
categorical imputation method:

. mi impute monotone (mlogit, augment) x1 (logit, augment) x2 (regress) x3 ...

Also see Default prediction equations in [MI] mi impute chained for other uses of the default
syntax.

The alternative syntax of mi impute monotone—custom prediction equations

Consider the prediction sequence X; — Xa|X; — X3| X5, X1. Suppose that we want to predict
X3 from X rather than from X7 and X5. This could be achieved by simply imputing X; and X5
and then X3 given X separately because of the implied assumption that X3 and X are independent
given X7. However, with a larger number of variables and more complicated prediction rules, separate
imputations may not be appealing. So customization of the prediction equations is a good alternative.

You customize prediction equations using the custom syntax (the third syntax) of mi impute
monotone. You must specify the custom option to notify mi impute monotone that you are
specifying custom prediction equations.

Under the custom syntax, you specify a separate conditional imputation model for each imputation
variable. The specification of a conditional model is the same as that for the chosen univariate
imputation method, but the entire model must be bound in parentheses, for example,

. mi impute monotone (regress x1)
(regress x2 x1)

(regress x3 x1)
, custom ...

Here we have three conditional specifications: (regress x1), (regress x2 x1), and (regress x3
x1). The corresponding prediction sequence is X7 — X2|X; — X3|X7. Prediction equations have
the syntax ivar [rhs_spec].

When specifying custom prediction equations, you are required to list the conditional models in
the correct order of missing monotonicity. mi impute monotone will issue an error if you are wrong:

190 mi impute monotone — Impute missing values in monotone data

mi impute monotone: incorrect equation order
equations must be listed in the monotone-missing order of the imputation
variables (from most observed to least observed); x2(2) -> x1(5) -> x3(10)
r(198);

If we have additional covariates z1 and z2 containing no missing values, we can include them in
the imputation model:
. mi impute monotone (regress x1 zl z2)

(regress x2 x1 z1 z2)
(regress x3 x1 z1 z2), custom ...

To use the predictive mean matching method for x3, we simply change the method from regress
to pmm in the last conditional specification:

. mi impute monotone (regress x1 zl z2)
(regress x2 x1 zl z2)
(pmm x3 x1 z1 z2), custom ...

To include more nearest neighbors in pmm, we specify the knn (3) option within the last conditional
specification:
. mi impute monotone (regress x1 zl z2)

(regress x2 x1 zl1 z2)
(pmm x3 x1 z1 z2, knn(3)), custom ...

Under the custom syntax, you can also include expressions of previously imputed variables in
prediction equations. For example, if you want to model x3 using main and squared effects of x1
(ignoring predictors z1 and z2), you can type

. mi impute monotone (regress x1)
(regress x2 x1)
(pmm x3 x1 (x172)), custom ...

Note that we bound the expression x1°2 in parentheses. Any expression may appear inside the
parentheses.

Similar to the default specification, we can include equation-specific ifs,

. mi impute monotone (regress x1)
(regress x2 x1 if zl==1)
(pmm x3 x1), custom ...

and we can specify a global if,

. mi impute monotone (regress x1 zl z2)
(regress x2 x1 z2 if zl==1)
(pmm x3 x1 z1 z2)
if z3==1, custom ...

Suppose that one of the imputed variables is categorical. We can use the multinomial logistic
method to impute its values:
. mi impute monotone (mlogit x1)
(regress x2 i.x1)

(regress x3 i.x1)
, custom ...

Also see Link between mi impute chained and mi impute monotone in [MI] mi impute chained
for a discussion of custom syntaxes.

mi impute monotone — Impute missing values in monotone data 191

Examples of using default prediction equations

> Example 1: Different imputation methods

Recall the heart attack example from First use. If we wanted to impute age using predictive mean
matching instead of linear regression, we could type
. use http://www.stata-press.com/data/r12/mheart5s0, clear
(Fictional heart attack data; bmi and age missing)
. mi impute monotone (regress) bmi (pmm) age = attack smokes hsgrad female,
> add(10)

Conditional models:
age: pmm age attack smokes hsgrad female
bmi: regress bmi age attack smokes hsgrad female

Multivariate imputation Imputations = 10
Monotone method added = 10
Imputed: m=1 through m=10 updated = 0

bmi: linear regression
age: predictive mean matching

Observations per m

Variable Complete Incomplete Imputed Total
bmi 126 28 28 154
age 142 12 12 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observationms.)

As previously, we listed age and bmi in the reverse order here, and mi impute monotone determined
the correct order of missing monotonicity.

N

> Example 2: Imputing a variable on a subsample

Consider an mi set version of the heart attack data containing the indicator for smoking high-tar
cigarettes (variable hightar):
. use http://www.stata-press.com/data/r12/mheart6s0
(Fictional heart attack data; bmi, age, and hightar missing)
. mi describe

Style: mlong
last mi update 30mar2011 12:46:48, 1 day ago

Obs.: complete 124
incomplete 30 (M = 0 imputations)
total 154

Vars.: imputed: 3; bmi(24) age(30) hightar(8)
passive: O
regular: 4; attack smokes female hsgrad
system: 3; _mi_m _mi_id _mi_miss

(there are no unregistered variables)

192 mi impute monotone — Impute missing values in monotone data

mi describe reports that there are no imputations, three registered imputed variables (hightar is
one of them), and four registered regular variables.

Next we use mi misstable nested to examine missing-data patterns in the data.

. mi misstable nested
1. hightar(8) -> bmi(24) -> age(30)

There is one monotone-missing pattern in the data. According to the output, missing values of
hightar are nested within bmi, whose missing values are nested within age. So hightar, bmi, and
age follow a monotone-missing pattern.

As before, to impute missing values of age and bmi, we use the regression method. The hightar
variable is a binary variable, so we choose the logistic method to fill in its values (see [MI] mi impute
logit). Because hightar records whether a subject smokes high-tar cigarettes, we use only those who
smoke to impute its missing values. (If there were any missing values of hightar for the subjects
who do not smoke, we would have replaced them with zeros.)

. mi impute monotone (reg) age bmi (logit if smokes) hightar
> = attack smokes hsgrad female, add(10)

Conditional models:
hightar: logit hightar attack smokes hsgrad female if smokes
bmi: regress bmi i.hightar attack smokes hsgrad female
age: regress age bmi i.hightar attack smokes hsgrad female

note: smokes omitted because of collinearity

Multivariate imputation Imputations = 10
Monotone method added = 10
Imputed: m=1 through m=10 updated = 0
age: linear regression
bmi: linear regression
hightar: logistic regression
Observations per m
Variable Complete Incomplete Imputed Total
age 124 30 30 154
bmi 130 24 24 154
hightar 56 8 8 64

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observationms.)

mi impute monotone reports which univariate conditional model was used to impute each variable.
Because hightar has the least number of missing observations, it is imputed first using the specified
complete predictors and using only observations for smokers. From the output, all incomplete values
of each of the variables are imputed in all 10 imputations. Notice that because we restricted the
imputation sample of hightar to smokers, the total number of observations reported for hightar
is 64 and not 154.

It is safe to use the if restriction in the above because smokes does not contain any missing values
and hightar does not contain any missing values in observations with smokes==0. Otherwise, the
conditional() option should be used instead; see Conditional imputation of [MI] mi impute for
details.

4

mi impute monotone — Impute missing values in monotone data 193

Examples of using custom prediction equations

> Example 3: Using different sets of predictors within individual conditional models

Let’s take a closer look at the conditional model for hightar used in the above example:

hightar: logit hightar attack smokes hsgrad female if (smokes)

Notice that predictor smokes is redundant in this model because it is collinear with the constant
(included in the model by default) on the restricted sample of smokers. In fact, if we specify the
noisily option (noi for short) within the logit specification to see the estimation results, we will
notice that, as expected, smokes was omitted from the estimation model for hightar; that is, its
coefficient is zero.

. mi impute monotone (reg) age bmi (logit if smokes, noi) hightar
> = attack smokes hsgrad female, replace

Conditional models:
hightar: logit hightar attack smokes hsgrad female if smokes, noisily
bmi: regress bmi i.hightar attack smokes hsgrad female
age: regress age bmi i.hightar attack smokes hsgrad female

Running logit on observed data:

note: smokes omitted because of collinearity
Iteration O: log likelihood = -38.673263
Iteration 1: log likelihood = -38.455029
Iteration 2: log likelihood = -38.454991
Iteration 3: log likelihood = -38.454991

Logistic regression Number of obs = 56

LR chi2(3) = 0.44

Prob > chi2 = 0.9326

Log likelihood = -38.454991 Pseudo R2 = 0.0056

hightar Coef. Std. Err. z P>|z| [95% Conf. Intervall

attack .0773715 .5630513 0.14 0.891 -1.026189 1.180932

smokes 0 (omitted)

hsgrad -.1663937 .5977995 -0.28 0.781 -1.338059 1.005272

female -.3331926 .617736 -0.54 0.590 -1.543933 .8775477

_cons .0138334 .6263152 0.02 0.982 -1.213722 1.241389
Multivariate imputation Imputations = 10
Monotone method added = 0
Imputed: m=1 through m=10 updated = 10

age: linear regression
bmi: linear regression
hightar: logistic regression

Observations per m

Variable Complete Incomplete Imputed Total
age 124 30 30 154
bmi 130 24 24 154
hightar 56 8 8 64

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observationmns.)

194 mi impute monotone — Impute missing values in monotone data

Although mi impute handles collinearity problems for us automatically, we can eliminate redun-
dancy manually by removing smokes from the prediction equation for hightar. To do that, we need
to specify custom prediction equations.

As discussed in Using mi impute monotone, custom prediction equations are available with
mi impute monotone when the custom option is used. We also know that within this custom
specification, we must fully specify prediction equations within each conditional model and must
specify the conditional models in the monotone-missing order of the imputation variables.

Building such conditional models from scratch could be a tedious task except that we can use
mi impute monotone, dryrun to display the conditional models with default prediction equations
without performing the corresponding imputation:

. mi impute monotone (reg) age bmi (logit if smokes) hightar
> = attack smokes hsgrad female, dryrun

Conditional models:
hightar: logit hightar attack smokes hsgrad female if smokes
bmi: regress bmi i.hightar attack smokes hsgrad female
age: regress age bmi i.hightar attack smokes hsgrad female

We can use these default conditional specifications as the basis for writing our own customized
specifications. We will remove smokes from the predictor list for hightar:

. mi impute monotone (logit hightar attack hsgrad female if smokes)

> (regress bmi hightar attack smokes hsgrad female)

> (regress age bmi hightar attack smokes hsgrad female)

> , custom replace
Multivariate imputation Imputations = 10

Monotone method added = 0

Imputed: m=1 through m=10 updated = 10

hightar: logistic regression
bmi: linear regression
age: linear regression

Observations per m

Variable Complete Incomplete Imputed Total
hightar 56 8 8 64
bmi 130 24 24 154
age 124 30 30 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

» Example 4: Including expressions of imputation variables in prediction equations

The distribution of bmi is slightly skewed. To take this into account, we can either use predictive
mean matching to impute bmi or impute bmi on a logarithmic scale. We choose to impute the log
of bmi here.

Following the steps described in Imputing transformations of incomplete variables of [MI] mi
impute, we create a new variable, 1nbmi, containing the log of bmi and register it as imputed. Here
we also reset the number of imputations to zero.

. mi set M=0
(10 imputations dropped; M = 0)

mi impute monotone — Impute missing values in monotone data 195

. mi unregister bmi

. generate lnbmi = 1ln(bmi)
(24 missing values generated)

. mi register imputed lnbmi

We are now ready to impute 1nbmi. However, although we are imputing the log of bmi, we want
to use bmi in the original scale when imputing age. To do that, we include exp(1lnbmi) in the
prediction equation for age. When including expressions in a custom specification, the expressions
must appear in parentheses:

. mi impute monotone (logit hightar attack hsgrad female if smokes)

> (regress lnbmi hightar attack smokes hsgrad female)

> (regress age (exp(lnbmi)) hightar attack smokes hsgrad female)
> , custom add(10)
Multivariate imputation Imputations = 10

Monotone method added = 10

Imputed: m=1 through m=10 updated = 0

hightar: logistic regression
lnbmi: linear regression
age: linear regression

Observations per m

Variable Complete Incomplete Imputed Total
hightar 56 8 8 64
Inbmi 130 24 24 154
age 124 30 30 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

If we also wanted to include a squared term for bmi in the conditional imputation model for age,
we would type

mi impute monotone

> (logit hightar attack hsgrad female if smokes)

> (regress lnbmi hightar attack smokes hsgrad female)

> (regress age (exp(lnbmi)) (exp(lnbmi)~2) hightar attack smokes hsgrad female)

> , custom replace
(output omitted)

196 mi impute monotone — Impute missing values in monotone data

Saved results

mi impute monotone saves the following in r():

Scalars
r(M) total number of imputations
r(M_add) number of added imputations
r(M_update) number of updated imputations
r(k_ivars) number of imputed variables
r(N_g) number of imputed groups (1 if by() is not specified)
Macros
r (method) name of imputation method (monotone)
r(ivars) names of imputation variables
r(rseed) random-number seed
r (uvmethods) names of univariate conditional imputation methods
r(by) names of variables specified within by ()
Matrices
r(N) number of observations in imputation sample in each group (per variable)

r(N_complete) number of complete observations in imputation sample in each group (per variable)
r(N_incomplete) number of incomplete observations in imputation sample in each group (per variable)
r(N_imputed) number of imputed observations in imputation sample in each group (per variable)

Methods and formulas

Let x(;) = (i1, T2, - .., Tip) be the ith observation containing values of the imputation vari-
ables ordered from the most observed to the least observed to form a monotone-missing data
pattern. Let z¢;) = (zi1, zi2, - - -, Ziq) be the corresponding set of predictors of X(4)- Then, if the
missingness-modeling structure is monotone distinct (imputation variables have monotone missingness
and parameters of the conditional models are distinct as defined in Rubin [1987, 174]), the following
decomposition holds:

Ix(X5)|2), 0) = fi(wi1|zay, 01) f2(Ti2| 203y, Tin, 02) - - - fo(TiplZ (), Tin, Tiz,y - o Tip_1,6)p)

where the unknown parameters 61, . . ., 8, are distinct, that is, Pr(8) = 5’:1 Pr(6;). The monotone-
distinct structure ensures that the univariate conditional models f; do not depend on any unobserved
values of variable x; and the posterior distributions of €; do not involve the imputed values of the
previously filled-in variables x1,...,x;_1. See Rubin (1987, 174-178) for a rigorous justification of
the above decomposition.

The above allows substituting the imputation of X using the probability model fx(-) with a
sequence of univariate conditional imputations of x; using the probability models f;(-). Note that
f; can be any proper imputation model (for example, linear regression or logistic regression).

mi impute monotone follows the steps below to fill in missing values in X1,...,Xp:

1. If the custom option is not used, mi impute monotone first builds univariate conditional
models containing the default prediction equations using the supplied information about
imputation methods, imputation variables X, and complete predictors Z. The order in
which imputation variables are listed is irrelevant. The prediction equations are constructed
as follows. Complete predictors indepvars are included first. The imputation variables are
included next with each previously imputed variable added to the beginning of the prediction
equation previously used.

If the custom option is used, mi impute monotone uses the specified conditional models
in the order supplied. The conditional models must be listed in the monotone-missing order
of the corresponding imputation variables.

mi impute monotone — Impute missing values in monotone data 197

2. Fit univariate conditional models for each x; to the observed data to obtain the estimates
of 8;, 7 = 1,...,p. See step 1 in Methods and formulas of each respective univariate
imputation method’s manual entry for details.

3. Sequentially fill in missing values of x1,Xo,...,X, according to the specified imputation
model. See step 2 and step 3 in Methods and formulas of each respective univariate imputation
method’s manual entry for details.

4. Repeat step 3 to obtain M multiple imputations.

References

Raghunathan, T. E., J. M. Lepkowski, J. Van Hoewyk, and P. Solenberger. 2001. A multivariate technique for multiply
imputing missing values using a sequence of regression models. Survey Methodology 27: 85-95.

Royston, P. 2005. Multiple imputation of missing values: Update. Stata Journal 5: 188-201.

——. 2007. Multiple imputation of missing values: Further update of ice, with an emphasis on interval censoring.
Stata Journal 7: 445-464.

——. 2009. Multiple imputation of missing values: Further update of ice, with an emphasis on categorical variables.
Stata Journal 9: 466-477.

Rubin, D. B. 1987. Multiple Imputation for Nonresponse in Surveys. New York: Wiley.
Schafer, J. L. 1997. Analysis of Incomplete Multivariate Data. Boca Raton, FL: Chapman & Hall/CRC.

van Buuren, S., H. C. Boshuizen, and D. L. Knook. 1999. Multiple imputation of missing blood pressure covariates
in survival analysis. Statistics in Medicine 18: 681-694.

White, I. R., R. Daniel, and P. Royston. 2010. Avoiding bias due to perfect prediction in multiple imputation of
incomplete categorical data. Computational Statistics & Data Analysis 54: 2267-2275.

Also see
[MI] mi impute — Impute missing values
[MI] mi impute chained — Impute missing values using chained equations
[MI] mi impute mvn — Impute using multivariate normal regression
[MI] mi estimate — Estimation using multiple imputations
[MI] intro substantive — Introduction to multiple-imputation analysis
[MI] intro — Introduction to mi

[MI] Glossary

http://www.stata-journal.com/sjpdf.html?articlenum=st0067_1
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_3
http://www.stata-journal.com/article.html?article=st0067_4

Title

mi impute mvn — Impute using multivariate normal regression

Syntax
mi impute mvn ivars [= indepvars] [if] [, impute_options options}

impute_options Description
Main
*add (#) specify number of imputations to add; required when no imputations exist
*replace replace imputed values in existing imputations

rseed (#) specify random-number seed

double save imputed values in double precision; the default is to save them

as float

by(varlist[s byopts]) impute separately on each group formed by varlist

Reporting
dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends
Advanced
force proceed with imputation, even when missing imputed values are
encountered
noupdate do not perform mi update; see [MI] noupdate option

*add(#) is required when no imputations exist; add (#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.

options Description
Main
noconstant suppress constant term

MCMC options

burnin (#) specify number of iterations for the burn-in period;
default is burnin(100)
burnbetween (#) specify number of iterations between imputations;
default is burnbetween(100)
prior (prior_spec) specify a prior distribution; default is prior (uniform)
Mconly perform MCMC for the length of the burn-in period without imputing
missing values
initmemce (init_memc) specify initial values for the MCMC procedure; default is
initmemc (em) using the EM estimates for initial values
wlfwgt (matname) specify weights for the worst linear function

.]) save the worst linear function from each iteration in filename .dta

E
[, .. .}) save MCMC parameter estimates from each iteration in
fname . stptrace; see [MI] mi ptrace

savewlf (filename [
saveptrace (fname

198

mi impute mvn — Impute using multivariate normal regression

199

Reporting
emlog
emoutput
mcmcdots
alldots
nolog

Advanced
emonly [(em_options)]

display iteration log from EM

display intermediate output from EM estimation

display dots as MCMC iterations are performed

display dots as intermediate iterations are performed

do not display information about the EM or MCMC procedures

perform EM estimation only

You must mi set your data before using mi impute mvn; see [MI] mi set.

You must mi register ivars as imputed before using mi impute mvn; see [MI] mi set.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

prior_spec Description
uniform use the uniform prior distribution; the default
jeffreys use the Jeffreys noninformative prior distribution

ridge, df (#)

use a ridge prior distribution with degrees of freedom #

init_mcmc

Description

em [, em_options]
initmatlist

use EM to obtain starting values for MCMC; the default
supply matrices containing initial values for MCMC

em_options

Description

iterate (#)
tolerance (#)

init (init_em)
nolog

saveptrace (fname[s e

o

specify the maximum number of iterations; default is iterate(100)

specify tolerance for the changes in parameter estimates;
default is tolerance(1le-5)

specify initial values for the EM algorithm; default is init (ac)
do not show EM iteration log

save EM parameter estimates from each iteration in
fname . stptrace; see [MI] mi ptrace

init_em Description

ac use all available cases to obtain initial values for EM; the default
cc use only complete cases to obtain initial values for EM
initmatlist supply matrices containing initial values for EM

initmatlist is of the form initmat [initmat [..]]

initmat

Description

betas (#| mamame)
sds (# | matname)
vars (# | mamame)
corr (# | matname)
cov (matname)

specify coefficient vector; default is betas(0)
specify standard deviation vector; default is sds (1)
specify variance vector; default is vars (1)

specify correlation matrix; default is corr(0)
specify covariance matrix

In the above, # is understood to mean a vector containing all elements equal to #.

200 mi impute mvnh — Impute using multivariate normal regression

Menu

Statistics > Multiple imputation

Description
mi impute mvn fills in missing values of one or more continuous variables using multivariate normal
regression. It accommodates arbitrary missing-value patterns. You can perform separate imputations

on different subsets of the data by specifying the by () option. mi impute mvn uses an iterative
Markov chain Monte Carlo (MCMC) method to impute missing values. See Remarks for details.

Options
Main

noconstant; see [R] estimation options.

add (), replace, rseed(), double, by(); see [MI] mi impute.

MCMC options

burnin (#) specifies the number of iterations for the initial burn-in period. The defaultis burnin (100).
This option specifies the number of iterations necessary for the MCMC to reach approximate
stationarity or, equivalently, to converge to a stationary distribution. The required length of the
burn-in period will depend on the starting values used and the missing-data patterns observed in
the data. It is important to examine the chain for convergence to determine an adequate length
of the burn-in period prior to obtaining imputations; see Convergence of the MCMC method and
examples 2 and 4. The provided default may be sufficient in many cases, but you are responsible
for determining that sufficient iterations are performed.

burnbetween (#) specifies a number of iterations of the MCMC to perform between imputations,
the purpose being to reduce correlation between sets of imputed values. The default is burnbe-
tween(100). As with burnin(), you are responsible for determining that sufficient iterations are
performed. See Convergence of the MCMC method and examples 2 and 4.

prior (prior_spec) specifies a prior distribution to be used by the MCMC procedure. The default is
prior (uniform). The alternative prior distributions are useful when the default estimation of the
parameters using maximum likelihood becomes unstable (for example, estimates on the boundary
of the parameter space) and introducing some prior information about parameters stabilizes the
estimation.

prior_spec is
uniform | jeffreys |ridge, df (#)
uniform specifies the uniform (flat) prior distribution. Under this prior distribution, the posterior

distribution is proportional to the likelihood function and thus the estimate of the posterior
mode is the same as the maximum likelihood (ML) estimate.

jeffreys specifies the Jeffreys, noninformative prior distribution. This prior distribution can
be used when there is no strong prior knowledge about the model parameters.

mi impute mvn — Impute using multivariate normal regression 201

ridge, df (#) specifies a ridge, informative prior distribution with the degrees of freedom
#. This prior introduces some information about the covariance matrix by smoothing the
off-diagonal elements (correlations) toward zero. The degrees of freedom, df (), which
may be noninteger, regulates the amount of smoothness—the larger this number, the closer
the correlations are to zero. A ridge prior is useful to stabilize inferences about the mean
parameters when the covariance matrix is poorly estimated, for example, when there are
insufficient observations to estimate correlations between some variables reliably because of
missing data, causing the estimated covariance matrix to become non—positive definite (see
Schafer [1997, 155-157] for details).

mcmconly specifies that mi impute mvn run the MCMC for the length of the burn-in period and
then stop. This option is useful in combination with savewlf () or saveptrace() to examine
the convergence of the MCMC prior to imputation. No imputation is performed when mcmconly
is specified, so add() or replace is not required with mi impute mvn, mcmconly, and they are
ignored if specified. The mcmconly option is not allowed with emonly.

initmemc () may be specified as initmcmc (em [, em_options]) or initmemc (initmatlist) .

initmemc () specifies initial values for the regression coefficients and covariance matrix of the
multivariate normal distribution to be used by the MCMC procedure. By default, initial values are
obtained from the EM algorithm, initmcmc (em).

initmcmc(em[s em_options}) specifies that the initial values for the MCMC procedure be obtained
from EM. You can control the EM estimation by specifying em_options. If the uniform prior is
used, the initial estimates correspond to the ML estimates computed using EM. Otherwise, the
initial values are the estimates of the posterior mode computed using EM.

em_options are

iterate(#) specifies the maximum number of EM iterations to perform. The default is
iterate(100).

tolerance(#) specifies the convergence tolerance for the EM algorithm. The default is
tolerance(le-5). Convergence is declared once the maximum of the relative changes
between two successive estimates of all model parameters is less than #.

init () may be specified as init(ac), init(cc), or init (matlist)

init () specifies initial values for the regression coefficients and covariance matrix of the
multivariate normal distribution to be used by the EM algorithm. init(ac) is the default.

init (ac) specifies that initial estimates be obtained using all available cases. The initial
values for regression coefficients are obtained from separate univariate regressions of
each imputation variable on the independent variables. The corresponding estimates of
the residual mean-squared error are used as the initial values for the diagonal entries of
the covariance matrix (variances). The off-diagonal entries (correlations) are set to zero.

init (cc) specifies that initial estimates be obtained using only complete cases. The initial
values for regression coefficients and the covariance matrix are obtained from a multivariate
regression fit to the complete cases only.

init (initmatlist) specifies to use manually supplied initial values for the EM procedure
and syntactically is identical to mcmcinit (initmatlist), described below, except that you
specify init (initmatlist) .

nolog suppresses the EM iteration log when emonly or emoutput is used.

saveptrace (fname[s replace]) specifies to save the parameter trace log from the EM
algorithm to a file called fname . stptrace. If the file already exists, the replace suboption

202

mi impute mvn — Impute using multivariate normal regression

specifies to overwrite the existing file. See [MI] mi ptrace for details about the saved file
and how to read it into Stata.

initmemc (initmatlist) , where initmatlist is

initmat [initmat [.. J]

specifies manually supplied initial values for the MCMC procedure.

initmat is

betas (# | mammame) specifies initial values for the regression coefficients. The default is
betas (0), implying a value of zero for all regression coefficients. If you specify betas (#),
then # will be used as the initial value for all regression coefficients. Alternatively, you
can specify the name of a Stata matrix, matname, containing values for each regression
coefficient. matname must be conformable with the dimensionality of the specified model.
That is, it can be one of the following dimensions: p X q, ¢ X p, 1 X pq, or pq X 1, where
p is the number of imputation variables and g is the number of independent variables.

sds (# | matname) specifies initial values for the standard deviations (square roots of the
diagonal elements of the covariance matrix). The default is sds (1), which sets all standard
deviations and thus variances to one. If you specify sds(#), then the squared # will be
used as the initial value for all variances. Alternatively, you can specify the name of a
Stata matrix, matname, containing individual values. matname must be conformable with the
dimensionality of the specified model. That is, it can be one of the following dimensions:
1 X porpx1, where p is the number of imputation variables. This option cannot be combined
with cov() or vars(). The sds() option can be used in combination with corr() to
provide initial values for the covariance matrix.

vars (# | matname) specifies initial values for variances (diagonal elements of the covariance
matrix). The default is vars (1), which sets all variances to one. If you specify vars (#),
then # will be used as the initial value for all variances. Alternatively, you can specify the name
of a Stata matrix, matname, containing individual values. matname must be conformable
with the dimensionality of the specified model. That is, it can be one of the following
dimensions: 1 X p or p X 1, where p is the number of imputation variables. This option
cannot be combined with cov() or sds(). The vars() option can be used in combination
with corr () to provide initial values for the covariance matrix.

corr (# | matname) specifies initial values for the correlations (off-diagonal elements of the
correlation matrix). The default is corr (0), which sets all correlations and, thus, covariances
to zero. If you specify corr (#), then all correlation coefficients will be set to #. Alternatively,
you can specify the name of a Stata matrix, matname, containing individual values. matname
can be a square p X p matrix with diagonal elements equal to one or it can contain the
corresponding lower (upper) triangular matrix in a vector of dimension p(p + 1)/2, where
p is the number of imputation variables. This option cannot be combined with cov(). The
corr() option can be used in combination with sds() or vars() to provide initial values
for the covariance matrix.

cov (matname) specifies initial values for the covariance matrix. matname must contain the
name of a Stata matrix. matname can be a square p X p matrix or it can contain the
corresponding lower (upper) triangular matrix in a vector of dimension p(p + 1)/2, where
p is the number of imputation variables. This option cannot be combined with corr(),
sds(), or vars().

wlfwgt (matmame) specifies the weights (coefficients) to use when computing the worst linear function
(WLF). The coefficients must be saved in a Stata matrix, matname, of dimension 1 X d, where
d=pq+p(p+1)/2, pis the number of imputation variables, and ¢ is the number of predictors.

mi impute mvn — Impute using multivariate normal regression 203

This option is useful when initial values from the EM estimation are supplied to data augmentation
(DA) as matrices. This option can also be used to obtain the estimates of linear functions other
than the default WLF.

savewlf (ﬁlename[, replace]) specifies to save the estimates of the WLF from each iteration of
MCMC to a Stata dataset called filename.dta. If the file already exists, the replace suboption
specifies to overwrite the existing file. This option is useful for monitoring convergence of the
MCMC. savewlf () is allowed with initmcmec (em), when the initial values are obtained using the
EM estimation, or with wlfwgt ().

saveptrace (fname[, replace]) specifies to save the parameter trace log from the MCMC to a file
called fname.stptrace. If the file already exists, the replace suboption specifies to overwrite
the existing file. See [MI] mi ptrace for details about the saved file and how to read it into Stata.
This option is useful for monitoring convergence of the MCMC.

Reporting

dots, noisily, nolegend; see [MI] mi impute. Also, noisily is a synonym for emoutput.
nolegend suppresses group legends that may appear when the by() option is used. It is a
synonym for by (, nolegend).

emlog specifies that the EM iteration log be shown. The EM iteration log is not displayed unless
emonly or emoutput is specified.

emoutput specifies that the EM output be shown. This option is implied with emonly.
mcmcdots specifies to display all MCMC iterations as dots.

alldots specifies to display all intermediate iterations as dots in addition to the imputation dots.
These iterations include the EM iterations and the MCMC burn-in iterations. This option implies
mcmcdots.

nolog suppresses all output from EM or MCMC that is usually displayed by default.

Advanced

force; see [MI] mi impute.

emonly[(em_options)] specifies that mi impute mvn perform EM estimation and then stop. You can
control the EM process by specifying em_options. This option is useful at the preliminary stage to
obtain insight about the length of the burn-in period as well as to choose a prior specification. No
imputation is performed, so add() or replace is not required with mi impute mvn, emonly,
and they are ignored if specified. The emonly option is not allowed with mcmconly.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

Remarks

Remarks are presented under the following headings:
Incomplete continuous data with arbitrary pattern of missing values
Multivariate imputation using data augmentation
Convergence of the MCMC method
Using mi impute mvn
Examples

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute_options. Also see [MI] workflow for general advice on working with mi.

204 mi impute mvn — Impute using multivariate normal regression

Incomplete continuous data with arbitrary pattern of missing values

As we described in detail in Multivariate imputation in [MI] mi impute, imputation of multiple
variables with an arbitrary pattern of missing values is more challenging than when the missing-data
pattern is monotone.

One approach for dealing with an arbitrary missing-value pattern is to assume an explicit tractable
parametric model for the data and draw imputed values from the resulting distribution of the missing
data given observed data. One of the more popular parametric models is the Gaussian normal model; see
Rubin (1987) for other recommendations. Although a multivariate normal model is straightforward,
difficulty arises in the simulation from the corresponding, more complicated, distribution of the
missing data. One solution is to use one of the Bayesian iterative Markov chain Monte Carlo (MCMC)
procedures to approximate the distribution of missing data.

Multivariate imputation using data augmentation

mi impute mvn uses data augmentation (DA) —an iterative MCMC procedure—to generate imputed
values assuming an underlying multivariate normal model. For details about DA as a general MCMC
procedure, see Gelman et al. (2004), Tanner and Wong (1987), and Li (1988), among others. For
applications of DA to incomplete multivariate normal data, see, for example, Little and Rubin (2002)
and Schafer (1997). Below we briefly describe the idea behind DA; see Methods and formulas for
details.

Consider multivariate data X = (X,, X,,,), decomposed into the observed part X, and the missing
part X,,,, from a normal distribution Pr(X|6) = N(B,3X), where 0 denotes the unknown model
parameters (regression coefficients 3 and unique elements of the covariance matrix ¥). The goal is
to replace missing values in X,,, with draws from the distribution (or the predictive distribution in
Bayesian terminology) of the missing data given observed data, Pr(X,,|X,). The actual predictive
distribution Pr(X,,|X,) is difficult to draw from directly because of an underlying dependence on
the posterior distribution of the unknown parameters 6, Pr(0|X,).

Originally, DA was used to approximate the posterior distribution of the model parameters, Pr(0|X,),
in Bayesian applications with incomplete data. The idea of DA is to augment the observed data, X,
with the latent (unobserved) data, X, such that the conditional posterior distribution Pr(0|X,, X,,)
becomes more tractable and easier to simulate from. Then the procedure becomes as follows. For a
current 81, draw Xgﬂ) from its conditional predictive distribution given the observed data and 6,
Pr(X,,|X,, H(t)). Next draw +1) from its conditional posterior distribution given the augmented
data, Pr(O\XO,ngl)). Continue to iterate until the sequence {(Xg),ﬁ(t)) ct=1,2,...}, an
MCMC sequence, converges to a stationary distribution Pr(0, X,,,|X,). This way a complicated task
of simulating from Pr(6|X,) is replaced by a sequence of simpler simulation tasks of iteratively
sampling from Pr(0|X,,X,,) and Pr(X,,|X,,). How is this procedure related to imputation?

The sequence {X§f) :t =1,2,...} contains draws from an approximate predictive distribution

Pr(X,,|X,), and thus Xg,tl)’s are, in fact, imputations. The convergence of this procedure was
studied by Li (1988).

The functional forms of the conditional distributions Pr(6|X,,X,,) and Pr(X,,|X,,0) are
determined from the assumed distribution of the data, X, and a prior distribution for the model
parameters, 6, Pr(0). mi impute mvn assumes a normal distribution for the data and supports three
prior distributions: uniform, Jeffreys, and ridge.

The prior distributions are categorized into noninformative (or also vague, diffuse, flat, reference)
and informative prior distributions. The noninformative priors provide no extra information about
model parameters beyond that already contained in the data. These priors are recommended when

mi impute mvn — Impute using multivariate normal regression 205

no strong prior knowledge is available about the parameters. Informative prior distributions are used
when there is some a priori knowledge about the distribution of the parameters. For example, prior
information about cancer mortality rates in a Poisson model can be assigned based on the available
worldwide estimate. The uniform and Jeffreys priors are noninformative priors. The ridge prior is an
informative prior.

The uniform prior assumes that all values of the parameters are equally probable. Under this prior
specification, the posterior distribution of the parameters is equivalent to the likelihood function,
and so the Bayesian and frequentist methods coincide. The Jeffreys prior is another widely used
noninformative prior distribution, and with small samples, it may be preferable to the uniform prior. A
ridge prior is often used when the estimated covariance matrix becomes singular (or nearly singular),
as may occur with sparse missing data if there are not enough observations to estimate reliably all
aspects of the covariance matrix. A ridge prior smooths the estimate of the covariance matrix toward
a diagonal structure depending on the chosen degrees of freedom; the larger the degrees of freedom,
the closer is the estimated covariance matrix to the diagonal matrix (see Schafer [1997, 155-157] for
details).

Convergence of the MCMC method

For a brief overview of convergence of MCMC, see Convergence of iterative methods in [MI] mi
impute.

The MCMC procedure DA is iterated until an MCMC sequence {(Xﬁ,?, O(t)) :t=1,2,...} converges
to a stationary distribution. Unlike maximum likelihood, EM, or other optimization-based procedures,
the DA procedure does not have a simple stopping rule that guarantees the convergence of the chain
to a stationary distribution. Thus the question of how long to iterate to achieve convergence arises. In
addition to determining convergence of MCMC, we must also investigate the serial dependence known
to exist among the MCMC draws to obtain independent imputations.

Suppose that after an initial burn-in period, b, the sequence {(XS};H)) :t=1,2,...} (imputations)

can be regarded as an approximate sample from Pr(X,,|X,). In general, this sample will not contain
independent observations because the successive iterates of the MCMC tend to be correlated. To achieve
independence among imputations, we can sample the chain. To do that, we need to determine the

number of iterations, k, such that X,(f;) and ngl+k) are approximately independent. Then imputations
can be obtained as the chain values of X,,, from iterations b, + k,b + 2k, ..., b+ mk, where m

is the required number of imputations. In our definition, b is the number of iterations necessary for
the chain to achieve stationarity and k is the number of iterations between imputations necessary to
achieve independent values of the chain.

Before we proceed, we notice that from the properties of MCMC, the convergence of the chain
{(Xﬁ,ilo(*')) it =1,2,...} to Pr(6,X,,|X,) is equivalent to the convergence of {(8%)): t =
1,2,...} to Pr(6|X,) or, alternatively, of {(X%)) it =1,2,...} to Pr(X,,|X,). Because the
parameter series are usually of lower dimension, we examine convergence using the series of
parameter estimates rather than the series of imputations.

How to determine convergence and, in particular, to choose values for b and k, has received much
attention in the MCMC literature. In practice, convergence is often examined visually from the trace and
autocorrelation plots of the estimated parameters. Trace plots are plots of estimated parameters against
iteration numbers. Long-term trends in trace plots and high serial dependence in autocorrelation plots
are indicative of a slow convergence to stationarity. A value of b can be inferred from a trace plot as
the earliest iteration after which the chain does not exhibit a visible trend and the parameter series
stabilize, which is to say the fluctuations in values become more regular. A value of k£ can be chosen

206 mi impute mvnh — Impute using multivariate normal regression

from autocorrelation plots as the lag k for which autocorrelations of all parameters decrease to zero.
When the initial values are close to the posterior mode, the initial number of iterations, b, and number
of iterations between imputations, k, will be similar. When the initial values are far off in the tails
of the posterior distribution, the initial number of iterations will generally be larger.

In practice, when the number of parameters in the model is large, it may not be feasible to monitor
the convergence of all the individual series. One solution is to find a function of the parameters that
would be the slowest to converge to stationarity. The convergence of the series for this function will
then be indicative of the convergence of other functions and, in particular, individual parameter series.
Schafer (1997, 129-131) suggests the worst linear function (WLF), the function corresponding to the
linear combination of the parameter estimates where the coefficients are chosen such that this function
has the highest asymptotic rate of missing information; see Method and formulas for computational
details. He found that when the observed-data posterior distribution is nearly normal, this function
is among the slowest to approach stationarity. Thus we can determine b and k£ by monitoring the
convergence of the WLF. When the observed-data posterior is not normal and some aspects of the
model are poorly estimated, the WLF may not be the slowest to converge. In such cases, we recommend
exploring convergence of other functions or of individual parameter series.

The number of iterations necessary for DA to converge depends on the rate of convergence of DA.
The rate of convergence of DA mainly depends on the fractions of missing information and initial
values. The higher the fractions of missing information and the farther the initial values are from the
posterior mode, the slower the convergence, and thus the larger the number of iterations required.
Initial values for the DA procedure can be obtained from the EM algorithm for incomplete data (for
example, Dempster, Laird, and Rubin [1977]). In addition, the number of iterations necessary for the
DA procedure to converge can be inferred based on the number of iterations that the EM algorithm
took to converge (Schafer 1997).

The convergence of the chain and the required number of iterations can be also inferred by running
multiple independent MCMC sequences using overdispersed initial values, that is, initial values from
a distribution with greater variability than that of the posterior distribution (Gelman and Rubin 1992;
Schafer 1997, 126-128). Then the number of iterations can be taken to be the largest iteration number
for which the series in all the chains stabilize.

Although the graphical summaries described above are useful in checking convergence, they must
be used with caution. They can be deceptive in cases when the observed-data posterior has an odd
shape or has multiple modes, which may happen with small sample sizes or sparse missing data.
Examination of the data and missing-data patterns, as well as the behavior of the EM algorithm, are
highly recommended when investigating the MCMC convergence. How one checks for convergence
will be shown in examples 2 and 4.

Using mi impute mvn

mi impute mvn imputes missing data using DA, an iterative MCMC method, assuming the multivariate
normal distribution for the data. For the discussion of options, such as add() and replace, common
to all imputation methods, see [MI] mi impute. Here we focus on the options and functionality specific
to mi impute mvn.

The two main options are burnin() (which specifies the number of iterations necessary for
the MCMC to converge, b) and burnbetween() (which specifies the number of iterations between
imputations, k). We discussed how to choose these values in the previous section. By default, these
values are arbitrarily set to be 100 each.

You can choose from the three prior specifications. You can use prior (uniform) (the default) to
specify the uniform prior, prior (jeffreys) to specify the Jeffreys prior, or prior(ridge, df ())
to specify a ridge prior. You must also choose the degrees of freedom with a ridge prior.

mi impute mvn — Impute using multivariate normal regression 207

For initial values, mi impute mvn uses the estimates from the EM algorithm for incomplete data
(initmcmc (em)). When the uniform prior distribution is used, the estimates obtained from EM are
MLEs. Under other prior specifications, the estimates from EM correspond to the posterior mode of
the respective posterior distribution of the model parameters. Using the estimates from EM as initial
values in general accelerates the convergence of MCMC. To determine convergence, it may also be
useful to try different sets of initial values. You can do this by creating Stata matrices containing the
initial values and supplying them in the respective initmcmc () suboptions betas(), cov(), etc.

You can save the estimates of the WLF and parameter series from MCMC iterations by using the
savewlf () and saveptrace() options. These options are useful when examining convergence of
MCMC, as we will demonstrate in examples 2 and 4. You can use mi impute mvn to run the MCMC
without imputing the data if you specify the mcmconly option. This option is useful in combination
with savewlf () or saveptrace() when examining convergence of MCMC. When mcmconly is
specified, the DA procedure is performed for the number of iterations as specified in burnin() and
no imputations are performed.

You can also perform the EM estimation without MCMC iterations if you specify the emonly ()
option. This option is useful for detecting convergence problems prior to running MCMC. The number
of iterations EM takes to converge can be used as an approximation for the burn-in period. Also, slow
convergence of the EM algorithm can reveal problems with estimability of certain model parameters.

Examples

2> Example 1: Monotone-missing data

Recall the heart attack example from Multivariate imputation in [MI] mi impute, where we used
mi impute mvn to impute missing values for age and bmi that follow a monotone-missing pattern:
. use http://www.stata-press.com/data/r12/mheart5s0
(Fictional heart attack data; bmi and age missing)
. mi impute mvn age bmi = attack smokes hsgrad female, add(10)

Performing EM optimization:
note: 12 observations omitted from EM estimation because of all imputation
variables missing
observed log likelihood = -651.75868 at iteration 7

Performing MCMC data augmentation ...

Multivariate imputation Imputations = 10
Multivariate normal regression added = 10
Imputed: m=1 through m=10 updated = 0
Prior: uniform Iterations = 1000
burn-in = 100
between = 100

Observations per m

Variable Complete Incomplete Imputed Total
age 142 12 12 154
bmi 126 28 28 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

In the above, we omitted the nolog option that was present in the example in [MI] mi impute.

208 mi impute mvnh — Impute using multivariate normal regression

In addition to the output reported by all imputation methods, mi impute mvn also provides some
specific information.

As we previously explained, mi impute mvn uses an iterative MCMC technique to impute missing
values. The two phases of mi impute mvn are 1) obtaining initial values (unless supplied directly)
and 2) performing the MCMC procedure from which imputations are obtained. These two phases are
noted in the output header.

In the above example, the initial values are obtained using the EM method (the default). We
see from the output that EM converged in seven iterations. A note displayed thereafter reports that
12 observations contain missing values for both bmi and age and were omitted. The note is just
explanatory and should not cause you concern. Those 12 observations would contribute nothing to the
likelihood function even if they were included, although the algorithm would take longer to converge.

The estimates from EM are used as initial values for DA. The first part of the table header, containing
the information about the method used and the number of imputations, was described in detail in
[MI] mi impute. The second part of the table header is specific to mi impute mvn. From the output,
a total of 1,000 iterations of MCMC are performed. The first 100 iterations (the default) are used for
the burn-in period (burn-in = 100), the first imputation calculated from the last iteration; thereafter,
each subsequent imputation is calculated after performing another 100 iterations. The default uniform
prior is used for both the EM estimation and the MCMC procedure. Under this prior, the parameter
estimates obtained are MLEs.

N

> Example 2: Checking convergence of MCMC

In the above example, the monotone missingness of age and bmi as well as the quick convergence
of EM suggest that the MCMC must converge rapidly. In fact, we know that under a monotone-missing
pattern, no iterations are needed to obtain imputed values (see [MI] mi impute monotone). Let’s
examine the convergence of the MCMC procedure for the above heart attack data, the point being to
see what quick convergence looks like.

As we discussed earlier, convergence is often assessed from the trace plots of the MCMC parameter
estimates. Because of a possibly large number of estimated parameters, this approach may be tedious.
Alternatively, we can plot the WLF for which the convergence is generally the slowest.

We use the savewlf (wlf) option to save estimates of the WLF to a Stata dataset called wlf.dta.
To examine the convergence of MCMC, we do not need imputation, and so we use the mcmconly option
to perform the MCMC procedure without subsequent imputation. We use a total of 1000 = 10 x 100
iterations (burnin(1000) option), corresponding to the length of the MCMC to obtain 10 imputations:

. mi impute mvn age bmi = attack smokes hsgrad female, mcmconly burnin(1000)
> rseed(2232) savewlf (wlf)

Performing EM optimization:
note: 12 observations omitted from EM estimation because of all imputation
variables missing
observed log likelihood = -651.75868 at iteration 7

Performing MCMC data augmentation ...

Note: no imputation performed.

We also specified the rseed (2232) option so that we can reproduce our results.

The created dataset contains three variables: iter, m, and wlf. The iter variable records iterations
(the burn-in iterations are recorded as negative integers). The m variable records imputation numbers
to which the iteration sequence corresponds (m contains O if mcmconly is used). The wlf variable
records the WLF estimates.

mi impute mvn — Impute using multivariate normal regression 209

. use wlf, clear
. describe

Contains data from wlf.dta

obs: 1,000

vars: 3 2 Apr 2011 11:03

size: 16,000

storage display value

variable name type format label variable label
iter long %12.0g
m long %12.0g
wlf double %10.0g

Sorted by:

We use the time-series commands tsline and ac (see [TS] tsline and [TS] corrgram) to plot the
estimates and autocorrelations of wlf with respect to the iteration number. We first use tsset to set
iter as the “time” variable and then use tsline to obtain a trace plot:

. tsset iter

time variable: iter, -999 to O
delta: 1 unit

. tsline wlf, ytitle(Worst linear function) xtitle(Burn-in period)

0 .0001 .0002
1 1

Worst linear function

-.0001
1

"_1000 —800 600 _400 200 0
Burn-in period

0002

The graph shows no visible trend in the estimates of the WLF, just as we expected. Convergence of
MCMC by the 100th iteration should be assured. In fact, taking into account the declared convergence
of the EM algorithm in only seven iterations, we would be comfortable with using a much smaller
burn-in period of, say, 10 iterations.

We next examine the autocorrelation in the WLF to obtain an idea of how many iterations to use
between imputations to ensure their approximate independence:

210 mi impute mvn — Impute using multivariate normal regression

. ac wlf, title(Worst linear function) ytitle(Autocorrelations)
> ciopts(astyle(none)) note("")

Worst linear function

éga MT I B T,Iw‘ Tos ,fTﬂT" ‘e I 1
g | le | M J :

Lag

From the graphical output, the autocorrelations die off quickly. This suggests that we can use a smaller
number, say, 10 or 20, rather than the default 100 iterations for the burn-between period.

N

We considered an example with a monotone-missing pattern. mi impute mvn is designed to
accommodate arbitrary missing-data patterns, so let’s consider an example with them.

»> Example 3: Arbitrary missing-data pattern

Consider data on house resale prices provided by the Albuquerque Board of Realtors and
distributed by the Data and Story Library. You can find a detailed description of the data at
http://lib.stat.cmu.edu/DASL/Stories/homeprice.html.

. use http://www.stata-press.com/data/r12/mhouses1993, clear
(Albuquerque Home Prices Feb15-Apr30, 1993)
. describe

Contains data from http://www.stata-press.com/data/r12/mhouses1993.dta

obs: 117 Albuquerque Home Prices
Feb15-Apr30, 1993
vars: 8 19 Jun 2011 10:50
size: 1,287 (_dta has notes)
storage display value
variable name type format label variable label
price int %8.0g Sale price (hundreds)
sqft int %8.0g Square footage of living space
age byte 7%10.0g Home age (years)
nfeatures byte 7%8.0g Number of certain features
ne byte %8.0g Located in northeast (largest
residential) sector of the city
custom byte %8.0g Custom build
corner byte %8.0g Corner location
tax int %10.0g Tax amount (dollars)

Sorted by:

http://lib.stat.cmu.edu/DASL/Stories/homeprice.html

mi impute mvn — Impute using multivariate normal regression 211

The dataset includes eight variables. The primary variable of interest is price, and other variables
are used as its predictors.

We investigate the missing-data patterns of these data using misstable:

. misstable pattern

Missing-value patterns
(1 means complete)

Pattern
Percent 1 2
567% 1 1
35 1 0
7 0 O
2 o 1
100%

Variables are (1) tax (2) age
. misstable nested

1. tax(10)
2. age(49)

We see from the output only 56% of observations are complete; the remaining 44% contain missing
values of age or tax. The tax variable contains 10 missing values, and the age variable contains
49 missing values. misstable nested reports that missing values of age and tax are not nested
because there are two statements describing the missing-value pattern; see [R] misstable for details.

Let’s use mi impute mvn to impute missing values of age and tax. Before we do that, a quick
examination of the data revealed that the distribution for age and tax are somewhat skewed. As
such, we choose to impute the variables on a log-transformed scale.

Following the steps as described in Imputing transformations of incomplete variables of [MI] mi
impute, we create new variables containing the log values,
. gen lnage = 1ln(age)
(49 missing values generated)

. gen lntax = 1ln(tax)
(10 missing values generated)

and register them as imputed variables,

. mi set mlong

. mi register imputed lnage lntax
(51 m=0 obs. now marked as incomplete)

. mi register regular price sqft nfeatures ne custom corner

We mi set our data as mlong and register the complete variables as regular. For the purpose of this
analysis, we leave passive variables age and tax unregistered. (Note that all missing values of the
created 1nage and lntax variables are eligible for imputation; see [MI] mi impute for details.)

212 mi impute mvn — Impute using multivariate normal regression

We now use mi impute mvn to impute values of lnage and lntax:

. mi impute mvn lnage lntax = price sqft nfeatures ne custom corner, add(20)

Performing EM optimization:
note: 8 observations omitted from EM estimation because of all imputation
variables missing
observed log likelihood = 112.1464 at iteration 48

Performing MCMC data augmentation ...

Multivariate imputation Imputations = 20
Multivariate normal regression added = 20
Imputed: m=1 through m=20 updated = 0
Prior: uniform Iterations = 2000
burn-in = 100
between = 100

Observations per m

Variable Complete Incomplete Imputed Total
lnage 68 49 49 117
Intax 107 10 10 117

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

> Example 4: Checking convergence of MCMC

In the above example, we arbitrarily created 20 imputations. The output is similar to that of the
earlier example. Here the EM algorithm converges by the 48th iteration. This suggests that, again,
the default 100 iterations for the burn-in period should be sufficient for the convergence of MCMC.
Nevertheless, we choose to confirm this visually by repeating the steps from example 2.

We run the MCMC for a total of 2,000 iterations (as would be necessary to obtain 20 imputations)
without imputing data and set the seed for reproducibility. We overwrite the existing wlf.dta file to
contain the new estimates of the WLF by specifying replace within savelwf ():

. mi impute mvn lnage lntax = price sqft nfeatures ne custom corner,
> mcmconly burnin(2000) rseed(23) savewlf (wlf, replace)

Performing EM optimization:
note: 8 observations omitted from EM estimation because of all imputation
variables missing
observed log likelihood = 112.1464 at iteration 48

Performing MCMC data augmentation ...

Note: no imputation performed.

mi impute mvn — Impute using multivariate normal regression 213

We generate the same graphs as in example 2, this time using the new estimates of the WLF:

. use wlf, clear

. tsset iter
time variable: iter, -1999 to O
delta: 1 unit

. tsline wlf, ytitle(Worst linear function) xtitle(Burn-in period)

Worst linear function
0 1.000e-06 2.000e-0¢
1

—2.000e-06 —1.000e-06

S-2000 ~1500 ~1000 500 0
Burn—in period

. ac wlf, title(Worst linear function) ytitle(Autocorrelations)
> ciopts(astyle(none)) note("")

Worst linear function

0.40 0.60
1 1

Autocorrelations
0.20
1

Nmmh.,,.,,_

0.00
L

L[] b el

-0.20

T
0 10 20 30 40
Lag

Compared with the earlier graphs, the time-series graphs do not reveal any apparent trend, but
the autocorrelation dies out more slowly. The default values of 100 for the initial burn-in and
between-imputation iterations should be sufficient.

d

214 mi impute mvn — Impute using multivariate normal regression

> Example 5: Alternative prior distribution

Consider some hypothetical data:
. use http://www.stata-press.com/data/r12/mvnexample0, clear
(Fictional data for -mi impute mvn-)
. mi describe

Style: mlong
last mi update 30mar2011 12:46:49, 2 days ago

Obs.: complete 3
incomplete 17 (M = 0 imputations)
total 20

Vars.: imputed: 3; x1(16) x2(5) x3(17)
passive: O
regular: O
system: 3; _mi_m _mi_id _mi_miss

(there are no unregistered variables)

Continuous normally distributed variables x1, x2, and x3 contain missing values. For illustration
purposes, we consider an extreme case when some variables (x1 and x3 here) contain only a few
complete observations.

We use mi impute mvn to impute missing values and create 30 imputations. Notice that in this
example, we do not have complete predictors, and so the right-hand-side specification is empty:

. mi imp mvn x1-x3, add(30) rseed(332247)

Performing EM optimization:
note: 4 observations omitted from EM estimation because of all imputation
variables missing
observed log likelihood = 6.5368927 at iteration 100
(EM did not converge)

Performing MCMC data augmentation ...

Iteration 92: variance-covariance matrix (Sigma) became not positive definite
posterior distribution is not proper

r(498);

mi impute mvn terminates with an error reporting that the estimated variance—covariance matrix
became non—positive definite. mi impute mvn terminated because the posterior predictive distribution
of missing data is not proper, but notice also that EM did not converge after the default 100 iterations.

There are two issues here. First, because EM did not converge after 100 iterations, we suspect that
the default 100 iterations used for the burn-in period may not be large enough for MCMC to converge.
Second, the observed missing-data pattern presents difficulties with estimating the covariance matrix
reliably, which leads to a non—positive-definite estimate during the MCMC iteration.

The first issue may be resolved by increasing the maximum number of iterations for EM by using
EM’s iterate() suboption. Convergence of EM, however, does not guarantee convergence of the
MCMC by the same number of iterations. For one, the convergence of EM is relative to the specified
tolerance, and more stringent conditions may lead to a nonconvergent result. As such, we recommend
that you always examine the obtained MCMC results.

The second issue is not surprising. Recall that x1 and x3 have very few complete observations. So
the aspects of the covariance structure involving those variables (for example, the covariance between
x1 and x2) are difficult to estimate reliably based on the information from the observed data only.
The default uniform prior may not be viable here.

mi impute mvn — Impute using multivariate normal regression 215

One solution is to introduce prior information to stabilize the estimation of the covariance matrix.
We can do this by specifying a ridge prior using the prior () option. We introduce only a small
amount of information by using a degrees of freedom value of 0.1:

. mi imp mvn x1-x3, add(30) prior(ridge, df(0.1)) rseed(332247)

Performing EM optimization:
note: 4 observations omitted from EM estimation because of all imputation
variables missing
observed log posterior = -1.13422 at iteration 100
(EM did not converge)

Performing MCMC data augmentation ...

Multivariate imputation Imputations = 30
Multivariate normal regression added = 30
Imputed: m=1 through m=30 updated = 0
Prior: ridge, df=.1 Iterations = 3000
burn-in = 100
between = 100

Observations per m

Variable Complete Incomplete Imputed Total
x1 4 16 16 20
x2 15 5 5 20
x3 3 17 17 20

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observationmns.)

This appears to be enough to alleviate the problem of a non—positive-definite estimate of the covariance
matrix. Still, EM did not converge.

We will fix that and examine the resulting MCMC sequence. We will use the same random-number
seed and this time save the WLF. Rather than imputing the data as before, we will simply run the
MCMC for the same number of iterations it takes to obtain 30 imputations using the default settings,
namely, 30 x 100 = 3000.

. mi imp mvn x1-x3, mcmconly prior(ridge, df(0.1)) initmcmc(em, iter(200) nolog)
> burnin(3000) savewlf(wlf, replace) rseed(332242)

Performing EM optimization:
note: 4 observations omitted from EM estimation because of all imputation variables
missing
observed log posterior = -1.1341806 at iteration 152
Performing MCMC data augmentation ...

Note: no imputation performed.

We increased the maximum number of iterations for the EM algorithm to 200; it converged in iteration
152.

216 mi impute mvn — Impute using multivariate normal regression

We use the results from wlf.dta to obtain the trace and autocorrelation plots as we did in the
earlier examples:

Worst linear function

o M

T T T
-3000 -2000 -1000 0
Burn—in period

Worst linear function

0.40 0.60 0.80
1 1 1

Autocorrelations
0.20
1

HNHTTTHH.........

0.00
1

-0.20

0 10 20 30 40
Lag

The serial correlation decreases slowly. There is no obvious trend in the WLF estimates, but we notice
high variability and several spikes, some distinctive. The high variability and spikes are not surprising
considering that certain model parameters could not be estimated reliably from the observed data and
considering that we did not introduce enough prior information to obtain less variable estimates; we
introduced only enough to achieve nonsingularity.

We could decrease the variability of the estimates by obtaining more data or introducing stronger
prior information. For example, we could increase the number of degrees of freedom with a ridge
prior to constrain the covariance matrix toward a diagonal structure:

. mi imp mvn x1-x3, replace prior(ridge, df(10)) burnin(300) rseed(332247)
(output omitted)

If we create and examine the trace plots and autocorrelations of the WLF under the new prior
specification, we find that variability of the estimates and serial dependence decrease greatly at a cost
of bias if the prior assumptions are false.

4

mi impute mvn — Impute using multivariate normal regression 217

> Example 6: Saving all parameter series

The examples above used the WLF to monitor convergence of MCMC because in most applications
it is sufficient. Although the WLF series often behave as the worst-case scenario, exceptions exist in
practice. Sometimes, examining individual parameter series may be necessary.

We can save all parameter series from MCMC by using the saveptrace () option. These parameter
series are saved in a parameter-trace file, a special file with extension .stptrace. Although the
resulting file is not a Stata dataset, it can easily be loaded into Stata using mi ptrace use; see
[MI] mi ptrace for details.

Let’s look at several parameter series from the above example.

. use http://www.stata-press.com/data/r12/mvnexample0
. mi impute mvn x1-x3, mcmconly prior(ridge, df(0.1)) init(em, iter(200) nolog)
> burnin(3000) rseed(332247) saveptrace(parms)

(output omitted)

We save all parameter series to a file called parms by using stptrace(parms).
We first describe the contents of the parms file and then read it into Stata:

. mi ptrace describe parms

file parms.stptrace created on 2 Apr 2011 11:07 contains 3,000 records

(obs.) on
m 1 variable
iter 1 variable
bly, x] 3 variables (3 x 1)
vly, yl 6 variables (3 x 3, symmetric)

where y and x are
vy (1) x1 (2) x2 (3) x3
x: (1) _cons

. mi ptrace use parms, clear

The output from mi ptrace describe reports that the file contains imputation numbers, iteration
numbers, estimates of three regression coefficients (b [x1, _cons], b[x2, _cons], and b[x3, _cons],
which are effectively the means of x1, x2, and x3), and estimates of six covariances (v[x1,x1],
v[x2,x1], v[x2,x2], and so on).

Because x1 and x3 contain the least number of complete observations, we examine the series
containing their variance and covariance estimates. We generate graphs separately for each series and
then combine them in one graph by using graph combine; see [G-2] graph combine.

. tsset iter

time variable: iter, -2999 to O
delta: 1 unit

. tsline v_ylyl, name(grl) nodraw ytitle(Var(xl)) xtitle("") ylabel(#4)

. tsline v_y3yl, name(gr2) nodraw ytitle(Cov(x3,x1)) xtitle("") ylabel(#4)
. tsline v_y3y3, name(gr3) nodraw ytitle(Var(x3)) xtitle("") ylabel(#4)

. graph combine grl gr2 gr3, xcommon cols(1l) bititle(Iteration)

218 mi impute mvn — Impute using multivariate normal regression

o
8 |
=
2
=
5
>
o “ A A A
3000 2000 1000 0
~81 N ™ LS
%81
&
53
vg
o
I5 ; ;
3000 2000 1000 0
o
=
8
=9
551
=
>97
o - A A
3000 2000 1000 0
Iteration

We repeat the same for the autocorrelation graphs:
. ac v_ylyl, ytitle(Var(x1l)) xtitle("") ciopts(astyle(none)) note("")
> name(grl, replace) nodraw ylabel (#4)

. ac v_y3yl, ytitle(Cov(x3,x1)) xtitle("") ciopts(astyle(none)) note("")
> name(gr2, replace) nodraw ylabel (#4)

. ac v_y3y3, ytitle(Var(x3)) xtitle("") ciopts(astyle(none)) note("")
> name(gr3, replace) nodraw ylabel (#4)

. graph combine grl gr2 gr3, xcommon cols(1l) title(Autocorrelations) bltitle(Lag)

Autocorrelations

Var(x1)

0.00 0.50 1.00
L

HHWHTTTmm«m,.................

0 10 20 30 40

I s renrseesen .,

0 10 20 30 40

Var(x3)
0.00 0.50 1.00
)

T s renereean,

0 10 20 30 40

Lag

We can see that the trace plot and autocorrelations corresponding to the variance of x1 resemble
the patterns of the earlier WLF estimates. We also notice that all series have high serial dependence
within the first 20 iterations.

Again, if we switch to using a ridge prior with 10 degrees of freedom and repeat the steps above,
the obtained trace plots will be more precise and more regular. The serial dependence in the series
will be lower.

N

mi impute mvn — Impute using multivariate normal regression 219

Saved results

mi impute mvn saves the following in r():

Scalars
r(M)
r(M_add)
r(M_update)
r(k_ivars)
r (burnin)
r (burnbetween)
r(df_prior)
r(N_em)
r(N_e_em)
r(N_mis_em)
r(N_S_em)
r(niter_em)
r(llobs_em)
r(lpobs_em)
r(converged_em)
r(emonly)
r (mcmconly)
r(N_g)

Macros
r (method)
r(ivars)
r(rseed)
r(prior)
r(init_mcmc)
r(ivarsorder)
r(init_em)
r(by)

Matrices
r(N)
r(N_complete)
r(N_incomplete)
r(N_imputed)
r(Betal)
r(Sigma0)
r(wlf_wgt)
r(Beta_em)
r(Sigma_em)
r(BetaO_em)
r(SigmaO_em)
r(N_pat)

total number of imputations

number of added imputations

number of updated imputations

number of imputed variables

number of burn-in iterations

number of burn-between iterations

prior degrees of freedom (saved only with prior(ridge))

number of observations used by EM (including omitted missing observations)
number of observations used by EM in estimation (excluding omitted missing observations)
number of incomplete observations within the EM estimation sample

number of unique missing-value patterns

number of iterations EM takes to converge

observed log likelihood (saved with prior (uniform))

observed log posterior (saved with priors other than uniform)

convergence flag for EM

1 if performed EM estimation only, O otherwise

1 if performed MCMC only without imputing data, O otherwise

number of imputed groups (1 if by () is not specified)

name of imputation method (mvn)

names of imputation variables

random-number seed

prior distribution

type of initial values (em or user)

names of imputation variables in the order used in the computation
type of initial values used by EM (ac, cc, or user)

names of variables specified within by ()

number of observations in imputation sample in each group (per variable)

number of complete observations in imputation sample in each group (per variable)
number of incomplete observations in imputation sample in each group (per variable)
number of imputed observations in imputation sample in each group (per variable)
initial values for regression coefficients used by DA

initial variance—covariance matrix used by DA

coefficients for the WLF (saved with initmcmc(em) or if wlfwgt() is used)
estimated regression coefficients from EM

estimated variance—covariance matrix from EM

initial values for regression coefficients used by EM

initial variance—covariance matrix used by EM

minimum, average, and maximum numbers of observations per missing-value pattern

r(N_pat) and results with the _em suffix are saved only when the EM algorithm is used (with
emonly or initmcmc (em)).

Methods and formulas

Let x1,X3,...,Xxy be a random sample from a p-variate normal distribution recording values of
p imputation variables. Consider a multivariate normal regression

XiZQIZi+€i, 1217,N

where z; is a ¢ X 1 vector of independent (complete) variables from observation ¢, @ is a ¢ X p
matrix of regression coefficients, and €; is a p X 1 vector of random errors from a p-variate normal
distribution with a zero mean vector and a p X p positive-definite covariance matrix 3. We refer to
© and X as model parameters. Consider the partition x; = (xi(m), xi(o)) corresponding to missing
and observed values of imputation variables in observation ¢ for i = 1,. ..,

220 mi impute mvn — Impute using multivariate normal regression

Methods and formulas are presented under the following headings:

Data augmentation

Prior distribution

Initial values: EM algorithm
Worst linear function

Data augmentation

mi impute mvn uses data augmentation (DA) to fill in missing values in X; independently for each
observation ¢ = 1,..., N. Data augmentation consists of two steps, an I step (imputation step) and
a P step (posterior step), performed at each iteration t = 0,1,...,7T. At iteration ¢ of the I step,
missing values in X; are replaced with draws from the conditional posterior distribution of X;(,,) given
observed data and current values of model parameters independently for each ¢ = 1,..., N. During
the P step, new values of model parameters are drawn from their conditional posterior distribution
given the observed data and the data imputed in the previous I step. Mathematically, this process can
be described as follows:

I step:
Xy ~ P (Xim)lZqu‘(o)v o, 2@)) el v
P step:
=D~ P (S xi0), X))
o+ p (@|zi7xi(o),x§€x>7 2(t+1)) (2)

The above two steps are repeated until the specified number of iterations, 7', is reached. The total
number of iterations, 7', is determined by the length of the initial burn-in period, b, and the number of
iterations between imputations, k. Specifically, T' = b+ M, ¢y X k, where My, contains the number

(t1) X(_tZ) X(tMnew)

of added and updated imputations. mi impute mvn saves imputed values Xi(m)r Xi(m)r 2 Xi(m)

as final imputations, where iteration t; = b+ (i — 1)k.

By default, mi impute mvn uses default values of 100 for b and k. These values may be adequate in
some applications and may be too low in others. In general, b and k£ must be determined based on the
properties of the observed Markov chain (XS,P, oW, E(l)> , (Xg), 8(2), 2(2)) , ..., where ng;)

denotes all values imputed at iteration ¢. b must be large enough so that the above chain converges
to the stationary distribution P(X,,,®,X|Z,X,) by iteration t = b. k must be large enough so
(t1) (t2)

that random draws (imputations) X;i(m) Xi(m) -
of the MCMC method for more details.

are approximately independent. See Convergence

The functional form of the conditional posterior distributions (1) and (2) depends on the distribution
of the data and a prior distribution of the model parameters. mi impute mvn assumes an improper
uniform prior distribution for @ and an inverted Wishart distribution (Mardia, Kent, and Bibby 1979,
85) W, ' (A, \) for X under which the prior joint density function is

ptl 1
f(©,%) x |2|_(AJr2+) exp (—2trA_1E_1>

Under the multivariate normal model and the above prior distribution, the I and P steps become
(Schafer 2008; Schafer 1997, 181-185) the following:

mi impute mvn — Impute using multivariate normal regression 221

I step: XEE;? ~ Ny, (uﬁ,?.o, ngl)m_o) ,t=1,...,N
P step: »ntH) o W_l(/\itﬂ),)

vec <@(t+1)) ~ Ny, {Vec (@(t+1)) Rt g (Z’Z)_l}

where p; is the number of imputation variables containing missing values in observation ¢ and & is
the Kronecker product. Submatrices ugﬁ,).o and B®) are the mean and variance of the conditional

mm:-o
normal distribution of X;(,,,) given X;(o) based on (X;(m), X;(0)|Zi) ~ Np (@(t)’zi, E(t)). See, for
example, Mardia, Kent, and Bibby (1979, 63) for the corresponding formulas of the conditional mean

~ (41
and variance of the multivariate normal distribution. The matrix 8" = (Z'Z)'Z'X(#+1) s the

OLS estimate of the regression coefficients based on the augmented data X(*+1) = (XO,XEZH))

. . . . 1
from iteration ¢. The posterior cross-product matrix A&H)

are defined as follows:

and the posterior degrees of freedom A,

A,(f—H) _ {Afl + (X(t+1) B Z@(t+1)),(x(t+1) _ Z@(t+1))}—1

and

M=A+N—gq

Prior distribution

As we already mentioned, mi impute mvn assumes an improper uniform prior distribution for &
and an inverted Wishart distribution for 3 under which the prior joint density function is

p 1
f(©,%) x |2|_(H2+1) exp (—2trA_12_1>

Parameters of the inverted Wishart prior distribution, the prior cross-product matrix A, and the prior
degrees of freedom A are determined based on the requested prior distribution.

By default, mi impute mvn uses the uniform prior distribution under which A = —(p + 1) and
Al = 0, xp. Under the uniform prior, the log-likelihood and log-posterior functions are equivalent,
and so the ML estimates of the parameters are equal to the posterior mode.

Under the noninformative Jeffreys prior distribution, A = 0 and A~! = 0pxp-

Under a ridge prior distribution, X is equal to the user-specified value, and A~! = AX,, where
the diagonal matrix 3, contains the diagonal elements of the estimate of the covariance matrix using
all available cases. The variances (diagonal estimates) are the estimates of the mean squared error
from regression of each imputation variable on the complete predictors. See Schafer (1997, 155-157)
for details. With A = 0, this prior specification reduces to the Jeffreys prior.

222 mi impute mvn — Impute using multivariate normal regression

Initial values: EM algorithm

Initial values @® and) for DA are obtained from the EM algorithm for the incomplete
multivariate normal data (for example, Dempster, Laird, and Rubin [1977], Little and Rubin [2002],
Schafer [1997]). The EM algorithm iterates between the expectation step (E step) and the maximization
step (M step) to maximize the log-likelihood (or log-posterior) function.

The observed-data log likelihood is

1(0,32]X,) Z > {-05I(|%4]) = 0.5(xi0) — ©42:)' S (xi0) — Ozi) }
s=14€l(s)
where S is the number of unique missing-value patterns, I(s) is the set of observations from the

same missing-value pattern s, and @ and X, are the submatrices of @ and X that correspond to
the imputation variables, which are observed in pattern s.

The observed-data log posterior is

Adp+1

ZP(@7 Zll)(o) = ll(@7 2|)(a) + ln{f(67 2)} = ll(67 2D(o) - 2

In(|X]) — tr(A712h)
The E step and M step of the EM algorithm are defined as follows (see Schafer [2008; 1997,
163-175] for details).

Let Th = ZN 1 % x and T = ZN 1 xlx denote the sufficient statistics for the multlvanate
normal model. Consider the submatrices @;(,) and @;(,,) of @, and the submatrices 33;(mm)> 2i(mo)s
and X;(,,) of X corresponding to the observed and missing columns of x;. Let O(s) and M(s)
correspond to the column indexes of the observed and missing parts of x; for each missing-values
pattern s.

During the E step, the expectations E(T}) and F(T%) are computed with respect to the conditional
distribution Pr(X,,|X,, @", £®) using the following relations:

Tij, for j € O()

E(z;X,,00,20) = { for j € M(s)

zg’
and
TijTil, for j,l S O(S)
B(zijzq|X,, 00, 20) = { afay, for j € M(s),l € O(s)

cij +a;xy, for j,l € M(s)
where a: is the jth element of the vector @Z(m)zz + El(mo)zz(io) < Xi(o) — @;(O)zi), and c;; is

the element of the matrix 3;(,m) — Xi(mo) 25, ! El(0)-

i(00)
During the M step, the model parameters are updated using the computed expectations of the
sufficient statistics:

@(t+1) _ (le)flE(Tl)
1

»E+1)
N+XA+p+1

{E(Tz) — E(Tv)(Z'Z)'E(Ty) + A"}

EM iterates between the E step and the M step until the maximum relative difference between the
two successive values of all parameters is less than the default tolerance of le-5 (or the specified
tolerance()).

mi impute mvn — Impute using multivariate normal regression 223

Worst linear function
The worst linear function (WLF) is defined as follows (Schafer 1997, 129-131):

where 0 and 0 are column vectors of the unique model parameters and their respective EM estimates;

o, = 0® — 9= where 8®) = § and 6t~ are the estimates from the last and one before the
last iterations of the EM algorithm. This function is regarded to be the WLF because it has the highest
asymptotic rate of missing information among all linear functions. This function is derived based on
the convergence properties of the EM algorithm (see Schafer [1997, 55-59] for details).

References

Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society, Series B 39: 1-38.

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin. 2004. Bayesian Data Analysis. 2nd ed. London: Chapman
& Hall/CRC.

Gelman, A., and D. B. Rubin. 1992. Inference from iterative simulation using multiple sequences. Statistical Science
7: 457-472.

Li, K.-H. 1988. Imputation using Markov chains. Journal of Statistical Computation and Simulation 30: 57-79.
Little, R. J. A., and D. B. Rubin. 2002. Statistical Analysis with Missing Data. 2nd ed. Hoboken, NJ: Wiley.
Mardia, K. V., J. T. Kent, and J. M. Bibby. 1979. Multivariate Analysis. London: Academic Press.

Rubin, D. B. 1987. Multiple Imputation for Nonresponse in Surveys. New York: Wiley.

Schafer, J. L. 1997. Analysis of Incomplete Multivariate Data. Boca Raton, FL: Chapman & Hall/CRC.

—— 2008. NORM: Analysis of incomplete multivariate data under a normal model, Version 3. Software package
for R. University Park, PA: The Methodology Center, Pennsylvania State University.

Tanner, M. A., and W. H. Wong. 1987. The calculation of posterior distributions by data augmentation (with discussion).
Journal of the American Statistical Association 82: 528-550.

Also see
[MI] mi impute — Impute missing values
[MI] mi impute chained — Impute missing values using chained equations
[MI] mi impute monotone — Impute missing values in monotone data
[MI] mi estimate — Estimation using multiple imputations
[MI] intro substantive — Introduction to multiple-imputation analysis
[MI] intro — Introduction to mi
[MI] Glossary

Stata Structural Equation Modeling Reference Manual

Title

mi impute nbreg — Impute using negative binomial regression

Syntax
mi impute nbreg ivar [indepvars] [if] [weight] [, impute_options options]

impute_options Description
Main
*add (#) specify number of imputations to add; required when no imputations exist
*replace replace imputed values in existing imputations

rseed (#) specify random-number seed

double save imputed values in double precision; the default is to save them

as float

by(varlist[, byopts]) impute separately on each group formed by varlist

Reporting
dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends
Advanced
force proceed with imputation, even when missing imputed values are
encountered
noupdate do not perform mi update; see [MI] noupdate option

*add (#) is required when no imputations exist; add(#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.

options Description
Main
noconstant suppress constant term
dispersion(mean) parameterization of dispersion; the default
dispersion(constant) constant dispersion for all observations
exposure (varname.) include In(varname.) in model with coefficient constrained to 1
offset (varname,) include varname, in model with coefficient constrained to 1
conditional (if) perform conditional imputation
bootstrap estimate model parameters using sampling with replacement
Maximization
maximize_options control the maximization process; seldom used

You must mi set your data before using mi impute nbreg; see [MI] mi set.

You must mi register ivar as imputed before using mi impute nbreg; see [MI] mi set.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

224

mi impute nbreg — Impute using negative binomial regression 225

Menu

Statistics > Multiple imputation

Description

mi impute nbreg fills in missing values of an overdispersed count variable using a negative
binomial regression imputation method. You can perform separate imputations on different subsets of
the data by specifying the by () option. You can also account for frequency, importance, and sampling
weights.

Options
Main

noconstant; see [R] estimation options.

add (), replace, rseed(), double, by(); see [MI|] mi impute.
dispersion(mean | constant); see [R] nbreg.

exposure (varname.), offset (varname,); see [R] estimation options.

conditional (if) specifies that the imputation variable be imputed conditionally on observations
satisfying exp; see [U] 11.1.3 if exp. That is, missing values in a conditional sample, the sample
identified by the exp expression, are imputed based only on data in that conditional sample.
Missing values outside the conditional sample are replaced with a conditional constant, the value
of the imputation variable in observations outside the conditional sample. As such, the imputation
variable is required to be constant outside the conditional sample. Also, if any conditioning variables
(variables involved in the conditional specification if exp) contain soft missing values (.), their
missing values must be nested within missing values of the imputation variables. See Conditional
imputation under Remarks in [MI] mi impute.

bootstrap specifies that posterior estimates of model parameters be obtained using sampling with
replacement; that is, posterior estimates are estimated from a bootstrap sample. The default is to
sample the estimates from the posterior distribution of model parameters or from the large-sample
normal approximation of the posterior distribution. This option is useful when asymptotic normality
of parameter estimates is suspect.

Reporting

dots, noisily, nolegend; see [MI] mi impute. noisily specifies that the output from the negative

binomial regression fit to the observed data be displayed. nolegend suppresses all legends that

appear before the imputation table. Such legends include a legend about conditional imputation

that appears when the conditional() option is specified and group legends that may appear
when the by () option is specified.

Maximization

maximize—_options; see [R] nbreg. These options are seldom used.

Advanced

force; see [MI] mi impute.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

226 mi impute nbreg — Impute using negative binomial regression

Remarks

Remarks are presented under the following headings:

Univariate imputation using negative binomial regression
Using mi impute nbreg

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute_options. Also see [MI] workflow for general advice on working with mi.

Univariate imputation using negative binomial regression

The negative binomial regression imputation method can be used to fill in missing values of an
overdispersed count variable (Royston 2009). It is a parametric method that assumes an underlying
negative binomial model (see [R] nbreg) for the imputed variable (given other predictors). This method
is based on the asymptotic approximation of the posterior predictive distribution of the missing data.

Using mi impute nbreg

In [MI] mi impute poisson, we considered a version of the heart attack data containing a count
variable, npreg, which records the number of pregnancies and is the only variable containing missing
values. We imputed its missing values using mi impute poisson.

A Poisson model assumes that the mean and the variance are the same. In the presence of
overdispersion, when the variance exceeds the mean, a negative binomial model is more appropriate.
We can fit a negative binomial model for npreg to the observed data to see if there is any indication
of overdispersion in the data.

. use http://www.stata-press.com/data/r12/mheartpois
(Fictional heart attack data; npreg missing)

. nbreg npreg attack smokes age bmi hsgrad if female==1, nolog

Negative binomial regression Number of obs = 35
LR chi2(5) = 1.69

Dispersion = mean Prob > chi2 = 0.8903
Log likelihood = -54.638875 Pseudo R2 = 0.0152
npreg Coef. Std. Err. z P>|z| [95% Conf. Intervall

attack .0551929 .4214484 0.13 0.896 -.7708309 .8812166
smokes .0521987 .4182004 0.12 0.901 -.7674591 .8718565

age -.0105877 .0174661 -0.61 0.544 -.0448206 .0236452

bmi .0194787 .0489883 0.40 0.691 -.0765367 .115494

hsgrad .5338139 .4972872 1.07 0.283 -.4408511 1.508479

_cons -.0736959 1.551417 -0.05 0.962 -3.114417 2.967025
/1nalpha -.7956602 .7987311 -2.361144 . 769824
alpha .4512832 .3604539 .0943122 2.159386
Likelihood-ratio test of alpha=0: chibar2(01) = 3.00 Prob>=chibar2 = 0.042

The estimate of the overdispersion parameter alpha is 0.45 with a 95% confidence interval of [0.094,
2.16]. The confidence interval does not include a value of 0 (no overdispersion), so there is slight
overdispersion in the conditional distribution of nbreg in the observed data.

mi impute nbreg — Impute using negative binomial regression 227

We now impute npreg using mi impute nbreg;:
. mi set mlong
. mi register imputed npreg
(10 m=0 obs. now marked as incomplete)
. mi impute nbreg npreg attack smokes age bmi hsgrad, add(20) conditional(if female==1)

Univariate imputation Imputations = 20
Negative binomial regression added = 20
Imputed: m=1 through m=20 updated = 0

Dispersion: mean

Conditional imputation:
npreg: incomplete out-of-sample obs. replaced with value 0O

Observations per m

Variable Complete Incomplete Imputed Total

npreg 144 10 10 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

We specify the conditional () option to restrict imputation of npreg only to females; see Conditional
imputation in [MI] mi impute for details.

We can analyze these multiply imputed data using logistic regression with mi estimate:

. mi estimate: logit attack smokes age bmi female hsgrad npreg
(output omitted)

Saved results

mi impute nbreg saves the following in r():

Scalars

r(M) total number of imputations

r(M_add) number of added imputations

r(M_update) number of updated imputations

r(k_ivars) number of imputed variables (always 1)

r(N_g) number of imputed groups (1 if by () is not specified)
Macros

r(method) name of imputation method (nbreg)

r(ivars) names of imputation variables

r(rseed) random-number seed

r (by) names of variables specified within by ()
Matrices

r(N) number of observations in imputation sample in each group

r(N_complete) number of complete observations in imputation sample in each group
r(N_incomplete) number of incomplete observations in imputation sample in each group
r(N_imputed) number of imputed observations in imputation sample in each group

Methods and formulas

Consider a univariate variable x = (21, Z3,. .., xn)’ that follows a negative binomial model

I'(m; +)

) mi() _p)E e =0,1,2,. .. 1
F(x—i—l)F(mi)p’(pi)*, ®=0 (1)

Pr(z; = z|z;) =

228 mi impute nbreg — Impute using negative binomial regression

where m; = m = 1/a, p; = 1/(1 + a;) under mean-dispersion model and m; = p; /6, p; =p =
1/(1 4+ &) under constant-dispersion model, u; = exp(z;3 + offset;), and & > 0 and § > 0 are

unknown dispersion parameters; see [R] nbreg for details. z; = (21, zi2, - - - ziq)’ records values of
predictors of x for observation ¢ and 3 is the ¢ X 1 vector of unknown regression coefficients. (When
a constant is included in the model—the default—z;; =1, i =1,...,n.)

X contains missing values that are to be filled in. Consider the partition of x = (x],x/,) into
ng X 1 and n; X 1 vectors containing the complete and the incomplete observations. Consider a
similar partition of Z = (Z,, Z,,) into ng X ¢ and nq X g submatrices.

mi impute nbreg follows the steps below to fill in X,,:

1. Fit a negative binomial regression model (1) to the observed data (x,,Z,) to obtain
-~/

the maximum likelihood estimates, & = (8, In@)’ under a mean-dispersion model or

o~ o~/ o~
0 = (B, Ind)’ under a constant-dispersion model, and their asymptotic sampling variance,
U.

2. Simulate new parameters, 0., from the large-sample normal approximation, N (6, U), to its
posterior distribution, assuming the noninformative prior Pr(8) o const.

3. Obtain one set of imputed values, x} , by simulating from a negative binomial distribution
(1) with parameters set to their simulated values from step 2.
4. Repeat steps 2 and 3 to obtain M sets of imputed values, x} ,x2, ..., xM.

Steps 2 and 3 above correspond to only approximate draws from the posterior predictive distribution
of the missing data, Pr(x,,|X,, Z,), because 0, is drawn from the asymptotic approximation to its
posterior distribution.

If weights are specified, a weighted negative binomial regression model is fit to the observed data
in step 1 (see [R] nbreg for details).

Reference

Royston, P. 2009. Multiple imputation of missing values: Further update of ice, with an emphasis on categorical
variables. Stata Journal 9: 466-477.

Also see

[MI] mi impute — Impute missing values

[MI] mi impute poisson — Impute using Poisson regression
[MI] mi estimate — Estimation using multiple imputations
[MI] intro — Introduction to mi

[MI] intro substantive — Introduction to multiple-imputation analysis

http://www.stata-journal.com/article.html?article=st0067_4
http://www.stata-journal.com/article.html?article=st0067_4

Title

mi impute ologit — Impute using ordered logistic regression

Syntax

mi impute ologit ivar [indepvars} [lf] [weighl] [, impute_options options]

impute_options Description
Main
*add (#) specify number of imputations to add; required when no imputations exist
*replace replace imputed values in existing imputations
rseed (#) specify random-number seed
double save imputed values in double precision; the default is to save them
as float

by(vurlist[, byopts]) impute separately on each group formed by varlist

Reporting
dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends
Advanced
force proceed with imputation, even when missing imputed values are
encountered
noupdate do not perform mi update; see [MI] noupdate option

*add(#) is required when no imputations exist; add(#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.

options Description
Main
offset (varname) include varname in model with coefficient constrained to 1
augment perform augmented regression in the presence of perfect prediction
conditional (if) perform conditional imputation
bootstrap estimate model parameters using sampling with replacement
Maximization
maximize_options control the maximization process; seldom used

You must mi set your data before using mi impute ologit; see [MI] mi set.

You must mi register ivar as imputed before using mi impute ologit; see [MI] mi set.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

229

230 mi impute ologit — Impute using ordered logistic regression

Menu

Statistics > Multiple imputation

Description

mi impute ologit fills in missing values of an ordinal variable using an ordered logistic regression
imputation method. You can perform separate imputations on different subsets of the data by specifying
the by () option. You can also account for frequency, importance, and sampling weights.

Options

Main

add (), replace, rseed(), double, by(); see [MI] mi impute.
offset (varname); see [R] estimation options.

augment specifies that augmented regression be performed if perfect prediction is detected. By default,
an error is issued when perfect prediction is detected. The idea behind the augmented-regression
approach is to add a few observations with small weights to the data during estimation to avoid
perfect prediction. See The issue of perfect prediction during imputation of categorical data under
Remarks in [MI] mi impute for more information. augment is not allowed with importance weights.

conditional (if) specifies that the imputation variable be imputed conditionally on observations
satisfying exp; see [U] 11.1.3 if exp. That is, missing values in a conditional sample, the sample
identified by the exp expression, are imputed based only on data in that conditional sample.
Missing values outside the conditional sample are replaced with a conditional constant, the value
of the imputation variable in observations outside the conditional sample. As such, the imputation
variable is required to be constant outside the conditional sample. Also, if any conditioning variables
(variables involved in the conditional specification if exp) contain soft missing values (.), their
missing values must be nested within missing values of the imputation variables. See Conditional
imputation under Remarks in [MI] mi impute.

bootstrap specifies that posterior estimates of model parameters be obtained using sampling with
replacement; that is, posterior estimates are estimated from a bootstrap sample. The default is to
sample the estimates from the posterior distribution of model parameters or from the large-sample
normal approximation of the posterior distribution. This option is useful when asymptotic normality
of parameter estimates is suspect.

Reporting

dots, noisily, nolegend; see [MI] mi impute. noisily specifies that the output from the ordered
logistic regression fit to the observed data be displayed. nolegend suppresses all legends that
appear before the imputation table. Such legends include a legend about conditional imputation
that appears when the conditional() option is specified and group legends that may appear
when the by () option is specified.

Maximization

maximize_options; see [R] ologit. These options are seldom used.

mi impute ologit — Impute using ordered logistic regression 231

Advanced

force; see [MI] mi impute.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

Remarks

Remarks are presented under the following headings:

Univariate imputation using ordered logistic regression
Using mi impute ologit

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute_options. Also see [MI] workflow for general advice on working with mi.

Univariate imputation using ordered logistic regression

The ordered logistic regression imputation method can be used to fill in missing values of an
ordinal variable (for example, Raghunathan et al. [2001] and van Buuren [2007]). It is a parametric
method that assumes an underlying logistic model for the imputed variable (given other predictors).
Similarly to the logistic imputation method, this method is based on the asymptotic approximation of
the posterior predictive distribution of the missing data.

Using mi impute ologit

Following the example from [MI] mi impute mlogit, we consider the heart attack data (for example,
[MI] intro substantive, [MI] mi impute), where a logistic model of interest now includes information
about alcohol consumption, variable alcohol—1logit attack smokes age bmi female hsgrad
i.alcohol.

. use http://www.stata-press.com/data/r12/mheart4
(Fictional heart attack data; alcohol missing)

. tabulate alcohol, missing

Alcohol consumption:
none, <2 drinks/day, >=2
drinks/day Freq. Percent Cum.
Do not drink 18 11.69 11.69
Less than 3 drinks/day 83 53.90 65.58
Three or more drinks/day 44 28.57 94.16
. 9 5.84 100.00
Total 154 100.00

From the output, the alcohol variable has three unique ordered categories and nine missing
observations. We use the ordered logistic imputation method to impute missing values of alcohol.
We create 10 imputations by specifying the add(10) option:

232 mi impute ologit — Impute using ordered logistic regression

. mi set mlong

. mi register imputed alcohol
(9 m=0 obs. now marked as incomplete)

. mi impute ologit alcohol attack smokes age bmi female hsgrad, add(10)

Univariate imputation Imputations = 10
Ordered logistic regression added = 10
Imputed: m=1 through m=10 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

alcohol 145 9 9 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observationmns.)

We can now analyze these multiply imputed data with logistic regression via mi estimate:

. mi estimate: logit attack smokes age bmi female hsgrad i.alcohol
(output omitted)

Saved results

mi impute ologit saves the following in r():

Scalars

r(M) total number of imputations

r(M_add) number of added imputations

r(M_update) number of updated imputations

r(k_ivars) number of imputed variables (always 1)

r (pp) 1 if perfect prediction detected, O otherwise

r(N_g) number of imputed groups (1 if by() is not specified)
Macros

r (method) name of imputation method (ologit)

r(ivars) names of imputation variables

r(rseed) random-number seed

r (by) names of variables specified within by ()
Matrices

r(N) number of observations in imputation sample in each group

r(N_complete) number of complete observations in imputation sample in each group
r(N_incomplete) number of incomplete observations in imputation sample in each group
r(N_imputed) number of imputed observations in imputation sample in each group

Methods and formulas

Consider a univariate variable x = (21,%2,...,Zn)
follows an ordered logistic model

" that contains K ordered categories and

Pr(z; = k|z;) = Pr(ye—1 < z,8+ u <)
B 1 1 (1)
S ltexp(— +28) 1+exp(—y-1 +28)

mi impute ologit — Impute using ordered logistic regression 233

where z; = (zi1, Zi2y - - - » ziq)’ records values of predictors of x for observation ¢, 3 is the ¢ X 1
vector of unknown regression coefficients, and v = (v1,...,7x—1)" are the unknown cutpoints with
Yo = —o0 and yx = oo. (There is no constant in this model because its effect is absorbed into the
cutpoints; see [R] ologit for details.)

X contains missing values that are to be filled in. Consider the partition of x = (x/,x/,) into
ng X 1 and n; X 1 vectors containing the complete and the incomplete observations. Consider a
similar partition of Z = (Z,, Z,,) into ng X ¢ and n1 X ¢ submatrices.

mi impute ologit follows the steps below to fill in X,;,:
1. Fit an ordered logistic model (1) to the observed data (x,,Z,) to obtain the maximum
likelihood estimates, 8 = (3',7")’, and their asymptotic sampling variance, U.
2. Simulate new parameters, 0,, from the large-sample normal approximation, N (5, fj) to its
posterior distribution assuming the noninformative prior Pr(8) o const.

3. Obtain one set of imputed values, x_ , by simulating from an ordered logistic distribution as
defined by (1): one of K categories is randomly assigned to a missing category, i,,, using
the cumulative probabilities computed from (1) with 8= 3,, v =,, and z; = z,,,.

4. Repeat steps 2 and 3 to obtain M sets of imputed values, x} ,x2, ..., xM.

Steps 2 and 3 above correspond to only approximate draws from the posterior predictive distribution
of the missing data, Pr(x,,|X,, Z,), because 0, is drawn from the asymptotic approximation to its
posterior distribution.

If weights are specified, a weighted ordered logistic regression model is fit to the observed data
in step 1 (see [R] ologit for details).

References

Raghunathan, T. E., J. M. Lepkowski, J. Van Hoewyk, and P. Solenberger. 2001. A multivariate technique for multiply
imputing missing values using a sequence of regression models. Survey Methodology 27: 85-95.

van Buuren, S. 2007. Multiple imputation of discrete and continuous data by fully conditional specification. Statistical
Methods in Medical Research 16: 219-242.

Also see
[MI] mi impute — Impute missing values
[MI] mi impute mlogit — Impute using multinomial logistic regression
[MI] mi estimate — Estimation using multiple imputations
[MI] intro — Introduction to mi

[MI] intro substantive — Introduction to multiple-imputation analysis

Title

mi impute pmm — Impute using predictive mean matching

Syntax

mi impute pmm ivar [indepvars] [lf] [weight] [, impute_options oplions}

impute_options Description
Main
*add (#) specify number of imputations to add; required when no imputations exist
*replace replace imputed values in existing imputations
rseed (#) specify random-number seed
double save imputed values in double precision; the default is to save them
as float

by(vurlist[, byopts]) impute separately on each group formed by varlist

Reporting
dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends
Advanced
force proceed with imputation, even when missing imputed values are
encountered
noupdate do not perform mi update; see [MI] noupdate option

*add(#) is required when no imputations exist; add(#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.

options Description
Main
noconstant suppress constant term
knn (#) specify # of closest observations (nearest neighbors) to draw from;
default is knn (1)
conditional (if) perform conditional imputation
bootstrap estimate model parameters using sampling with replacement

You must mi set your data before using mi impute pmm; see [MI] mi set.

You must mi register ivar as imputed before using mi impute pmm; see [MI] mi set.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

234

mi impute pmm — Impute using predictive mean matching 235

Menu

Statistics > Multiple imputation

Description
mi impute pmm fills in missing values of a continuous variable by using the predictive mean
matching imputation method. You can perform separate imputations on different subsets of the data by

specifying the by () option. You can also account for analytic, frequency, importance, and sampling
weights.

Options
Main

noconstant; see [R] estimation options.
add (), replace, rseed(), double, by(); see [MI] mi impute.

knn (#) specifies the number of closest observations (nearest neighbors) from which to draw imputed
values. The default is to replace a missing value with the “closest” observation, knn(1). The
closeness is determined based on the absolute difference between the linear prediction for the
missing value and that for the complete values. The closest observation is the observation with the
smallest difference. This option regulates the correlation among multiple imputations that affects
the bias and the variability of the resulting multiple-imputation point estimates; see Remarks for
details.

conditional (if) specifies that the imputation variable be imputed conditionally on observations
satisfying exp; see [U] 11.1.3 if exp. That is, missing values in a conditional sample, the sample
identified by the exp expression, are imputed based only on data in that conditional sample.
Missing values outside the conditional sample are replaced with a conditional constant, the value
of the imputation variable in observations outside the conditional sample. As such, the imputation
variable is required to be constant outside the conditional sample. Also, if any conditioning variables
(variables involved in the conditional specification if exp) contain soft missing values (.), their
missing values must be nested within missing values of the imputation variables. See Conditional
imputation under Remarks in [MI] mi impute.

bootstrap specifies that posterior estimates of model parameters be obtained using sampling with
replacement; that is, posterior estimates are estimated from a bootstrap sample. The default is to
sample the estimates from the posterior distribution of model parameters or from the large-sample
normal approximation of the posterior distribution. This option is useful when asymptotic normality
of parameter estimates is suspect.

Reporting

dots, noisily, nolegend; see [MI] mi impute. noisily specifies that the output from the linear
regression fit to the observed data be displayed. nolegend suppresses all legends that appear before
the imputation table. Such legends include a legend about conditional imputation that appears when
the conditional () option is specified and group legends that may appear when the by () option
is specified.

Advanced

force; see [MI] mi impute.

236 mi impute pmm — Impute using predictive mean matching

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

Remarks

Remarks are presented under the following headings:

Univariate imputation using predictive mean matching
Using mi impute pmm

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute_options. Also see [MI] workflow for general advice on working with mi.

Univariate imputation using predictive mean matching

Either predictive mean matching (pmm) or normal linear regression (regress) imputation methods
can be used to fill in missing values of a continuous variable (Rubin 1987; Schenker and Taylor 1996).
Predictive mean matching may be preferable to linear regression when the normality of the underlying
model is suspect.

Predictive mean matching (PMM) is a partially parametric method that matches the missing value
to the observed value with the closest predicted mean (or linear prediction). It was introduced by
Little (1988) based on Rubin’s (1986) ideas applied to statistical file matching. PMM combines the
standard linear regression and the nearest-neighbor imputation approaches. It uses the normal linear
regression to obtain linear predictions. It then uses the linear prediction as a distance measure to
form the set of nearest neighbors (possible donors) consisting of the complete values. Finally, it
randomly draws an imputed value from this set. By drawing from the observed data, PMM preserves
the distribution of the observed values in the missing part of the data, which makes it more robust
than the fully parametric linear regression approach.

With PMM, you need to decide how many nearest neighbors to include in the set of possible donors.
mi impute pmm defaults to one nearest neighbor, knn(1). You may need to include more depending
on your data. The number of nearest neighbors affects the correlation among imputations—the smaller
the number, the higher the correlation. High correlation in turn increases the variability of the MI point
estimates. Including too many possible donors may result in increased bias of the MI point estimates.
Thus the number of nearest neighbors regulates the tradeoff between the bias and the variance of the
point estimators in repeated sampling. The literature does not provide a definitive recommendation
on how to choose this number in practice; see Schenker and Taylor (1996) for some insight into this
issue.

Using mi impute pmm

Recall the heart attack data from Univariate imputation in [MI] mi impute. We wish to fit a logistic
regression of attack on some predictors, one of which, bmi, has missing values. To avoid losing
information contained in complete observations of the other predictors, we impute bmi.

We showed one way of imputing bmi in [MI] mi impute regress. Suppose, however, that we
want to restrict the imputed values of bmi to be within the range observed for bmi. We can use the
PMM imputation method to restrict the values. This method may also be preferable to the regression
imputation of bmi because the distribution of bmi is slightly skewed.

mi impute pmm — Impute using predictive mean matching

237

. use http://www.stata-press.com/data/r12/mheart0
(Fictional heart attack data; bmi missing)

. mi set mlong

. mi register imputed bmi
(22 m=0 obs. now marked as incomplete)

. mi impute pmm bmi attack smokes age hsgrad female, add(20)

Univariate imputation Imputations = 20
Predictive mean matching added = 20
Imputed: m=1 through m=20 updated = 0
Nearest neighbors = 1

Observations per m
Variable Complete Incomplete Imputed Total
bmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m

of the number of filled-in observations.)

By default, mi impute pmm uses one nearest neighbor to draw from. That is, it replaces missing
values with an observed value whose linear prediction is the closest to that of the missing value.
Using only one nearest neighbor may result in high variability of the MI estimates. You can increase
the number of nearest neighbors from which the imputed value is drawn by specifying the knn ()

option. For example, we use 5 below:

. mi impute pmm bmi attack smokes age hsgrad female, replace knn(5)

Univariate imputation Imputations = 20
Predictive mean matching added = 0
Imputed: m=1 through m=20 updated = 20
Nearest neighbors = 5

Observations per m
Variable Complete Incomplete Imputed Total
bmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m

of the number of filled-in observations.)

You can now refit the logistic model and examine the effect of using more neighbors:

. mi estimate: logit attack smokes age bmi hsgrad female
(output omitted)

See [MI] mi impute, [MI] mi impute regress, and [MI| mi estimate for more details.

238 mi impute pmm — Impute using predictive mean matching

Saved results

mi impute pmm saves the following in r():

Scalars

r (M total number of imputations

r(M_add) number of added imputations

r(M_update) number of updated imputations

r(knn) number of k nearest neighbors

r(k_ivars) number of imputed variables (always 1)

r(N_g) number of imputed groups (1 if by () is not specified)
Macros

r(method) name of imputation method (pmm)

r(ivars) names of imputation variables

r(rseed) random-number seed

r (by) names of variables specified within by ()
Matrices

r(N) number of observations in imputation sample in each group

r(N_complete) number of complete observations in imputation sample in each group
r(N_incomplete) number of incomplete observations in imputation sample in each group
r(N_imputed) number of imputed observations in imputation sample in each group

Methods and formulas

mi impute pmm follows the steps as described in Methods and formulas of [MI] mi impute regress
with the exception of step 3.

Consider a univariate variable x = (21, Z2,...,%,) that follows a normal linear regression model

x;|z; ~ N(z,8,0°) (1)

where z; = (21, zi2, - -, ziq)’ records values of predictors of x for observation 4, 3 is the ¢ X 1
vector of unknown regression coefficients, and o2 is the unknown scalar variance. (Note that when
a constant is included in the model—the default—z;; =1, i =1,...,n.)

x contains missing values that are to be filled in. Consider the partition of x = (x],x/,) into

ng X 1 and ny X 1 vectors containing the complete and the incomplete observations. Consider a
similar partition of Z = (Z,, Z,,) into ng X ¢ and n1 X ¢ submatrices.

mi impute pmm follows the steps below to fill in x,,, (for simplicity, we omit the conditioning on
the observed data in what follows):

1. Fit a regression model (1) to the observed data (x,,Z,) to obtain estimates 3 and 52 of
the model parameters.

2. Simulate new parameters 3, and o2 from their joint posterior distribution under the con-
ventional noninformative improper prior Pr(3,0?) oc 1/02. This is done in two steps:

o7 ~ 5%(no —q)/Xn, g

B.lo? ~N{B, 22Z,2,)"}

3. Generate the imputed values, x}n, as follows. Let Z; be the linear prediction of x based

on predictors Z for observation ¢. Then for any missing observation ¢ of x, x; = x; ..,
where juin is randomly drawn from the set of indices {i1,4s3,...,4;} corresponding to

mi impute pmm — Impute using predictive mean matching 239

the first £ minimums determined based on the absolute differences between the linear
prediction for incomplete observation ¢ and linear predictions for all complete observations,
|Z; — Z;|, j € obs. For example, if k = 1 (the default), jmin is determined based on
|/{L'\Z — /‘T\jmin = minjeobsﬁi — §J|

4. Repeat steps 2 and 3 to obtain M sets of imputed values, x}, , x2 xM

S XKy ey X
If weights are specified, a weighted linear regression model is fit to the observed data in step 1
(see [R] regress for details).

References

Little, R. J. A. 1988. Missing-data adjustments in large surveys. Journal of Business and Economic Statistics 6:
287-296.

Rubin, D. B. 1986. Statistical matching using file concatenation with adjusted weights and multiple imputations.
Journal of Business and Economic Statistics 4: 87-94.

——. 1987. Multiple Imputation for Nonresponse in Surveys. New York: Wiley.

Schenker, N., and J. M. G. Taylor. 1996. Partially parametric techniques for multiple imputation. Computational
Statistics & Data Analysis 22: 425-446.

Also see
[MI] mi impute — Impute missing values
[MI] mi impute regress — Impute using linear regression
[MI] mi impute truncreg — Impute using truncated regression
[MI] mi impute intreg — Impute using interval regression
[MI] mi estimate — Estimation using multiple imputations
[MI] intro — Introduction to mi

[MI] intro substantive — Introduction to multiple-imputation analysis

Title

mi impute poisson — Impute using Poisson regression

Syntax

mi impute poisson ivar [indepvars} [iﬂ [weighl} [, impute_options options]

impute_options Description
Main
*add (#) specify number of imputations to add; required when no imputations exist
*replace replace imputed values in existing imputations
rseed (#) specify random-number seed
double save imputed values in double precision; the default is to save them
as float

by(vurlist[, byopts]) impute separately on each group formed by varlist

Reporting
dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends
Advanced
force proceed with imputation, even when missing imputed values are
encountered
noupdate do not perform mi update; see [MI] noupdate option

*add(#) is required when no imputations exist; add(#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.

options Description
Main
noconstant suppress constant term
exposure (varname.) include In(varname.) in model with coefficient constrained to 1
offset (varname,) include varname, in model with coefficient constrained to 1
conditional (if) perform conditional imputation
bootstrap estimate model parameters using sampling with replacement
Maximization
maximize_options control the maximization process; seldom used

You must mi set your data before using mi impute poisson; see [MI] mi set.
You must mi register ivar as imputed before using mi impute poisson; see [MI] mi set.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

240

mi impute poisson — Impute using Poisson regression 241

Menu

Statistics > Multiple imputation

Description

mi impute poisson fills in missing values of a count variable using a Poisson regression imputation
method. You can perform separate imputations on different subsets of the data by specifying the by ()
option. You can also account for frequency, importance, and sampling weights.

Options
Main

noconstant; see [R] estimation options.
add (), replace, rseed(), double, by(); see [MI|] mi impute.
exposure (varname.), offset (varname,); see [R] estimation options.

conditional (if) specifies that the imputation variable be imputed conditionally on observations
satisfying exp; see [U] 11.1.3 if exp. That is, missing values in a conditional sample, the sample
identified by the exp expression, are imputed based only on data in that conditional sample.
Missing values outside the conditional sample are replaced with a conditional constant, the value
of the imputation variable in observations outside the conditional sample. As such, the imputation
variable is required to be constant outside the conditional sample. Also, if any conditioning variables
(variables involved in the conditional specification if exp) contain soft missing values (.), their
missing values must be nested within missing values of the imputation variables. See Conditional
imputation under Remarks in [MI] mi impute.

bootstrap specifies that posterior estimates of model parameters be obtained using sampling with
replacement; that is, posterior estimates are estimated from a bootstrap sample. The default is to
sample the estimates from the posterior distribution of model parameters or from the large-sample
normal approximation of the posterior distribution. This option is useful when asymptotic normality
of parameter estimates is suspect.

Reporting

dots, noisily, nolegend; see [MI] mi impute. noisily specifies that the output from the Poisson
regression fit to the observed data be displayed. nolegend suppresses all legends that appear before
the imputation table. Such legends include a legend about conditional imputation that appears when
the conditional () option is specified and group legends that may appear when the by () option
is specified.

Maximization

maximize_options; see [R] poisson. These options are seldom used.

Advanced

force; see [MI] mi impute.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

242 mi impute poisson — Impute using Poisson regression

Remarks

Remarks are presented under the following headings:

Univariate imputation using Poisson regression
Using mi impute poisson

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute_options. Also see [MI] workflow for general advice on working with mi.

Univariate imputation using Poisson regression

The Poisson regression imputation method can be used to fill in missing values of a count
variable (for example, Raghunathan et al. [2001] and van Buuren [2007]). It is a parametric method
that assumes an underlying Poisson model for the imputed variable (given other predictors). For
imputation of overdispersed count variables, see [MI] mi impute nbreg. The Poisson method is based
on the asymptotic approximation of the posterior predictive distribution of the missing data.

Using mi impute poisson

To illustrate the use of mi impute poisson, we continue with our heart attack data analysis
example in [MI] intro substantive and consider an additional predictor, npreg, which records the
number of pregnancies:

. use http://www.stata-press.com/data/ri12/mheartpois
(Fictional heart attack data; npreg missing)

. misstable summarize

Obs<.
Unique
Variable Obs=. Obs>. Obs<. values Min Max
npreg 10 144 6 0 5

. tab female if npreg==.

Gender Freq. Percent Cum.

Male 7 70.00 70.00

Female 3 30.00 100.00
Total 10 100.00

According to misstable summarize, npreg is the only variable containing missing values, and it
has 10 out of 154 observations missing. The tabulation of missing values of npreg by gender reveals
that most missing values (7) correspond to males.

In this example, we could replace missing npreg for males with 0 and proceed with complete-data
analysis, disregarding the remaining three missing observations. Instead, as an illustration, we use mi
impute poisson to impute missing values of npreg. Our dataset is not declared yet, so we use mi
set to declare it. We also use mi register to register npreg as the imputed variable before using
mi impute poisson:

mi impute poisson — Impute using Poisson regression 243

. mi set mlong

. mi register imputed npreg
(10 m=0 obs. now marked as incomplete)

. mi impute poisson npreg attack smokes age bmi hsgrad, add(20) conditional(if female==1)

Univariate imputation Imputations = 20

Poisson regression added = 20

Imputed: m=1 through m=20 updated = 0
Conditional imputation:

npreg: incomplete out-of-sample obs. replaced with value 0O
Observations per m
Variable Complete Incomplete Imputed Total
npreg 144 10 10 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

The npreg variable is relevant to females only, so we used the conditional() option to restrict
imputation to observations with female==1; see Conditional imputation in [MI] mi impute.

We can analyze these multiply imputed data using logistic regression with mi estimate:

. mi estimate: logit attack smokes age bmi female hsgrad npreg
(output omitted)

Saved results

mi impute poisson saves the following in r():

Scalars

r(M) total number of imputations

r(M_add) number of added imputations

r(M_update) number of updated imputations

r(k_ivars) number of imputed variables (always 1)

r(N_g) number of imputed groups (1 if by() is not specified)
Macros

r (method) name of imputation method (poisson)

r(ivars) names of imputation variables

r(rseed) random-number seed

r (by) names of variables specified within by ()
Matrices

r(N) number of observations in imputation sample in each group

r(N_complete) number of complete observations in imputation sample in each group
r(N_incomplete) number of incomplete observations in imputation sample in each group
r(N_imputed) number of imputed observations in imputation sample in each group

Methods and formulas

Consider a univariate variable x = (21, X2, ...,Z,)" that follows a Poisson model

7)\1‘ T
e MM

Pr(xi :I’|Zz) =]
X

,x=0,1,2,... (1)

244 mi impute poisson — Impute using Poisson regression

where \; = exp(z;B+offset;) (see [R] poisson), z; = (z;1, Zi2, . - . , Ziq)’ records values of predictors
of x for observation ¢ and 3 is the ¢ X 1 vector of unknown regression coefficients. (When a constant
is included in the model—the default—=z;; =1, 1 =1,...,n.)

X contains missing values that are to be filled in. Consider the partition of x = (x],x/.) into
ng X 1 and n; X 1 vectors containing the complete and the incomplete observations. Consider a
similar partition of Z = (Z,, Z,,) into ng X ¢ and ny X ¢ submatrices.

mi impute poisson follows the steps below to fill in x,,:

1. Fit a Poisson regression model (1) to the observed data (x,,Z,) to obtain the maximum

~

likelihood estimates, ,2\3, and their asymptotic sampling variance, U.

o~ o~

2. Simulate new parameters, 3,, from the large-sample normal approximation, N (3, U), to its
posterior distribution assuming the noninformative prior Pr(3) o const.

3. Obtain one set of imputed values, x. , by simulating from a Poisson distribution (1) with
Ai = N, = exp(z; B, + offset;).

4. Repeat steps 2 and 3 to obtain M sets of imputed values x} x2 ... ,X% .

Steps 2 and 3 above correspond to only approximate draws from the posterior predictive distribution
of the missing data, Pr(x,|X,, Z,), because 3, is drawn from the asymptotic approximation to its
posterior distribution.

If weights are specified, a weighted Poisson regression model is fit to the observed data in step 1
(see [R] poisson for details).

References

Raghunathan, T. E., J. M. Lepkowski, J. Van Hoewyk, and P. Solenberger. 2001. A multivariate technique for multiply
imputing missing values using a sequence of regression models. Survey Methodology 27: 85-95.

van Buuren, S. 2007. Multiple imputation of discrete and continuous data by fully conditional specification. Statistical
Methods in Medical Research 16: 219-242.

Also see

[MI] mi impute — Impute missing values

[MI] mi impute nbreg — Impute using negative binomial regression
[MI] mi estimate — Estimation using multiple imputations

[MI] intro — Introduction to mi

[MI] intro substantive — Introduction to multiple-imputation analysis

Title

mi impute regress — Impute using linear regression

Syntax

mi impute regress ivar [indepvars} [iﬂ [weighl} [, impute_options options]

impute_options Description
Main
*add (#) specify number of imputations to add; required when no imputations exist
*replace replace imputed values in existing imputations
rseed (#) specify random-number seed
double save imputed values in double precision; the default is to save them
as float

by(vurlist[, byopts]) impute separately on each group formed by varlist

Reporting
dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends
Advanced
force proceed with imputation, even when missing imputed values are
encountered
noupdate do not perform mi update; see [MI] noupdate option

*add(#) is required when no imputations exist; add(#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.

options Description
Main
noconstant suppress constant term
conditional (if) perform conditional imputation
bootstrap estimate model parameters using sampling with replacement

You must mi set your data before using mi impute regress; see [MI] mi set.
You must mi register ivar as imputed before using mi impute regress; see [MI] mi set.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

Menu

Statistics > Multiple imputation

245

246 mi impute regress — Impute using linear regression

Description

mi impute regress fills in missing values of a continuous variable using the Gaussian normal
regression imputation method. You can perform separate imputations on different subsets of the data
by specifying the by () option. You can also account for analytic, frequency, importance, and sampling
weights.

Options

Main

-

noconstant; see [R] estimation options.
add (), replace, rseed(), double, by(); see [MI] mi impute.

conditional (if) specifies that the imputation variable be imputed conditionally on observations
satisfying exp; see [U] 11.1.3 if exp. That is, missing values in a conditional sample, the sample
identified by the exp expression, are imputed based only on data in that conditional sample.
Missing values outside the conditional sample are replaced with a conditional constant, the value
of the imputation variable in observations outside the conditional sample. As such, the imputation
variable is required to be constant outside the conditional sample. Also, if any conditioning variables
(variables involved in the conditional specification if exp) contain soft missing values (.), their
missing values must be nested within missing values of the imputation variables. See Conditional
imputation under Remarks in [MI] mi impute.

bootstrap specifies that posterior estimates of model parameters be obtained using sampling with
replacement; that is, posterior estimates are estimated from a bootstrap sample. The default is to
sample the estimates from the posterior distribution of model parameters or from the large-sample
normal approximation of the posterior distribution. This option is useful when asymptotic normality
of parameter estimates is suspect.

Reporting
dots, noisily, nolegend; see [MI] mi impute. noisily specifies that the output from a linear
regression fit to the observed data be displayed. nolegend suppresses all legends that appear before
the imputation table. Such legends include a legend about conditional imputation that appears when
the conditional () option is specified and group legends that may appear when the by () option
is specified.

Advanced

force; see [MI] mi impute.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

Remarks

Remarks are presented under the following headings:
Univariate imputation using linear regression

Using mi impute regress

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute_options. Also see [MI] workflow for general advice on working with mi.

mi impute regress — Impute using linear regression 247

Univariate imputation using linear regression

When a continuous variable contains missing values, a linear regression imputation method (or
predictive mean matching; see [MI] mi impute pmm) can be used to fill in missing values (Rubin 1987;
Schenker and Taylor 1996). The linear regression method is a fully parametric imputation method
that relies on the normality of the model. Thus the imputation variable may need to be transformed
from the original scale to meet the normality assumption prior to using mi impute regress.

The linear regression method is perhaps the most popular method for imputing quantitative variables.
It is superior to other imputation methods when the underlying normal model holds. However, it can
be more sensitive to violations of this assumption than other nonparametric and partially parametric
imputation methods, such as predictive mean matching. For example, Schenker and Taylor (1996)
studied the sensitivity of the regression method to the misspecification of the regression function and
error distribution. They found that this method still performs well in the presence of heteroskedasticity
and when the error distribution is heavier-tailed than the normal. However, it resulted in increased
bias and variances under a misspecified regression function.

Using mi impute regress

Recall the heart attack data from Univariate imputation of [MI] mi impute. We wish to fit a logistic
regression of attack on some predictors, one of which (bmi) has missing values. To avoid losing
information contained in complete observations of the other predictors, we impute bmi.

The distribution of BMI is slightly skewed to the right, so we choose to fill in missing values of
BMI on a log-transformed scale here. To do that, we need to create a new variable, 1nbmi, containing
the log of bmi and impute it:

. use http://www.stata-press.com/data/r12/mheart0O
(Fictional heart attack data; bmi missing)

. generate lnbmi = 1ln(bmi)
(22 missing values generated)

. mi set mlong

. mi register imputed lnbmi
(22 m=0 obs. now marked as incomplete)

Following the steps in Imputing transformations of incomplete variables of [MI] mi impute, we create
the imputed variable 1nbmi containing the log of bmi and register it as imputed. We omitted the step
of eliminating possible ineligible missing values in 1nbmi because bmi ranges from 17 to 38 and we
do not anticipate any extra (algebraic) missing from the operation 1n(bmi).

We now use mi impute to impute missing values of 1nbmi. We create 20 imputations and specify
a random-number seed for reproducibility:

. mi impute regress lnbmi attack smokes age hsgrad female, add(20) rseed(2232)

Univariate imputation Imputations = 20

Linear regression added = 20

Imputed: m=1 through m=20 updated = 0
Observations per m

Variable Complete Incomplete Imputed Total

Inbmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observationms.)

From the output, all 22 incomplete values of 1nbmi are imputed.

248 mi impute regress — Impute using linear regression

We want to use BMI in its original scale in the analysis. To do that, we need to replace bmi with
exponentiated 1nbmi. Because bmi now is a function of the imputed variable, it becomes a passive
variable:

. mi register passive bmi
. quietly mi passive: replace bmi = exp(lnbmi)
Finally, we fit the logistic regression:

. mi estimate, dots: logit attack smokes age bmi hsgrad female

Imputations (20):

......... 10.........20 done
Multiple-imputation estimates Imputations = 20
Logistic regression Number of obs = 154
Average RVI = 0.0385
Largest FMI = 0.1610
DF adjustment: Large sample DF: min = 753.42
avg = 144093.21
max = 425800.51
Model F test: Equal FMI F(5,47946.1) = 3.75
Within VCE type: 0IM Prob > F = 0.0022
attack Coef. Std. Err. t P>|t] [95% Conf. Intervall
smokes 1.23917 .3629712 3.41 0.001 .52775 1.950589
age .0355306 .0154994 2.29 0.022 .0051521 .0659091
bmi .1192117 .0495795 2.40 0.016 .0218814 .216542
hsgrad .1863652 .4075066 0.46 0.647 -.6123403 .9850706
female -.0996965 .4189836 -0.24 0.812 -.9208917 .7214986
_cons -5.868808 1.723036 -3.41 0.001 -9.248163 -2.489453

We obtain results comparable with those from [MI] intro substantive.

Saved results

mi impute regress saves the following in r():

Scalars

r(M) total number of imputations

r(M_add) number of added imputations

r(M_update) number of updated imputations

r(k_ivars) number of imputed variables (always 1)

r(N_g) number of imputed groups (1 if by() is not specified)
Macros

r (method) name of imputation method (regress)

r(ivars) names of imputation variables

r(rseed) random-number seed

r(by) names of variables specified within by ()
Matrices

r(N) number of observations in imputation sample in each group

r(N_complete) number of complete observations in imputation sample in each group
r(N_incomplete) number of incomplete observations in imputation sample in each group
r(N_imputed) number of imputed observations in imputation sample in each group

mi impute regress — Impute using linear regression 249

Methods and formulas

Consider a univariate variable x = (x1,Z2,...,Z,) that follows a normal linear regression model

xi|z; ~ N(zi3,0°) (1)

where z; = (2i1, Zi2y - - - » ziq)’ records values of predictors of x for observation ¢, 3 is the ¢ x 1
vector of unknown regression coefficients, and o2 is the unknown scalar variance. (Note that when
a constant is included in the model—the default—z;; =1, i =1,...,n.)

X contains missing values that are to be filled in. Consider the partition of x = (x],x/,) into
ng X 1 and n; X 1 vectors containing the complete and the incomplete observations. Consider a
similar partition of Z = (Z,, Z,,) into ng X ¢ and nq X g submatrices.

mi impute regress follows the steps below to fill in x,,, (for simplicity, we omit the conditioning
on the observed data in what follows):

1. Fit a regression model (1) to the observed data (x,,Z,) to obtain estimates B and &2 of
the model parameters.

2. Simulate new parameters 3, and o2 from their joint posterior distribution under the con-
ventional noninformative improper prior Pr(3,0?) oc 1/02. This is done in two steps:

2

*

Oy ~ 32(”{) - Q)/Xiofq

B.lo? ~N{B oX(z,z,)"}

3. Obtain one set of imputed values, x} , by simulating from N (Z,,3,, 021, xn,)-

M

4. Repeat steps 2 and 3 to obtain M sets of imputed values, x},,x2, ... xM.

)
Steps 2 and 3 above correspond to simulating from the posterior predictive distribution of the
missing data Pr(x,,|X,, Z,) (for example, see Gelman et al. [2004, 355-358]).

If weights are specified, a weighted linear regression model is fit to the observed data in step 1
(see [R] regress for details). Also, in the case of aweights, 021, xn, is replaced with c2W 11><n L
in step 3, where W = diag(w;) and w; is the analytic weight for observation 4.

References

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin. 2004. Bayesian Data Analysis. 2nd ed. London: Chapman
& Hall/CRC.

Rubin, D. B. 1987. Multiple Imputation for Nonresponse in Surveys. New York: Wiley.

Schenker, N., and J. M. G. Taylor. 1996. Partially parametric techniques for multiple imputation. Computational
Statistics & Data Analysis 22: 425-446.

250 mi impute regress — Impute using linear regression

Also see
[MI] mi impute — Impute missing values
[MI] mi impute pmm — Impute using predictive mean matching
[MI] mi impute truncreg — Impute using truncated regression
[MI] mi impute intreg — Impute using interval regression
[MI] mi estimate — Estimation using multiple imputations
[MI] intro — Introduction to mi

[MI] intro substantive — Introduction to multiple-imputation analysis

Title

mi impute truncreg — Impute using truncated regression

Syntax

mi impute truncreg ivar [indepvars] [if] [weighl] [, impute_options Options]

impute_options Description
Main
*add (#) specify number of imputations to add; required when no imputations exist
*replace replace imputed values in existing imputations
rseed (#) specify random-number seed
double save imputed values in double precision; the default is to save them
as float

by(vurlist[, byopts]) impute separately on each group formed by varlist

Reporting
dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends
Advanced
force proceed with imputation, even when missing imputed values are
encountered
noupdate do not perform mi update; see [MI] noupdate option

*add(#) is required when no imputations exist; add(#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.

options Description
Main

noconstant suppress constant term

11 (varname | #) lower limit for left-truncation

ul (varname | #) upper limit for right-truncation

offset (varname,) include varname, in model with coefficient constrained to 1

conditional (if) perform conditional imputation

bootstrap estimate model parameters using sampling with replacement
Maximization

maximize_options control the maximization process; seldom used

You must mi set your data before using mi impute truncreg; see [MI] mi set.

You must mi register ivar as imputed before using mi impute truncreg; see [MI] mi set.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

251

252 mi impute truncreg — Impute using truncated regression

Menu

Statistics > Multiple imputation

Description
mi impute truncreg fills in missing values of a continuous variable with a restricted range using
a truncated regression imputation method. You can perform separate imputations on different subsets

of the data by specifying the by () option. You can also account for analytic, frequency, importance,
and sampling weights.

Options
Main

noconstant; see [R] estimation options.
add (), replace, rseed(), double, by(); see [MI|] mi impute.

11 (varname | #) and ul (varname | #) indicate the lower and upper limits for truncation, respectively.
You may specify one or both. Observations with ivar <11 () are left-truncated, observations with
ivar >ul() are right-truncated, and the remaining observations are not truncated.

offset (varname,); see [R] estimation options.

conditional (if) specifies that the imputation variable be imputed conditionally on observations
satisfying exp; see [U] 11.1.3 if exp. That is, missing values in a conditional sample, the sample
identified by the exp expression, are imputed based only on data in that conditional sample.
Missing values outside the conditional sample are replaced with a conditional constant, the value
of the imputation variable in observations outside the conditional sample. As such, the imputation
variable is required to be constant outside the conditional sample. Also, if any conditioning variables
(variables involved in the conditional specification if exp) contain soft missing values (.), their
missing values must be nested within missing values of the imputation variables. See Conditional
imputation under Remarks in [MI] mi impute.

bootstrap specifies that posterior estimates of model parameters be obtained using sampling with
replacement; that is, posterior estimates are estimated from a bootstrap sample. The default is to
sample the estimates from the posterior distribution of model parameters or from the large-sample
normal approximation of the posterior distribution. This option is useful when asymptotic normality
of parameter estimates is suspect.

Reporting

dots, noisily, nolegend; see [MI] mi impute. noisily specifies that the output from the truncated
regression fit to the observed data be displayed. nolegend suppresses all legends that appear before
the imputation table. Such legends include a legend about conditional imputation that appears when
the conditional () option is specified and group legends that may appear when the by () option
is specified.

Maximization

maximize_options; see [R] truncreg. These options are seldom used.

mi impute truncreg — Impute using truncated regression 253

Advanced

force; see [MI] mi impute.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

Remarks

Remarks are presented under the following headings:

Univariate imputation using truncated regression
Using mi impute truncreg

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute_options. Also see [MI] workflow for general advice on working with mi.

Univariate imputation using truncated regression

The truncated regression imputation method can be used to fill in missing values of a continuous
variable with a restricted range (for example, Raghunathan et al. [2001] and Schafer [1997, 203]). It
is a parametric method that assumes an underlying truncated normal model for the imputed variable
(given other predictors). This method is based on the asymptotic approximation of the posterior
predictive distribution of the missing data.

Similar to estimation, it is important to distinguish between truncation and censoring when imputing
continuous variables with a limited range. Truncation arises when the distribution of a variable of
interest is restricted to a certain range—a truncated distribution. The probability that the variable takes
on values outside that range is zero. Truncated data may arise naturally (for example, SAT section
scores may not exceed 800) or may be the result of a particular study design (for example, only
subjects with income below a certain threshold are of interest in the study). See [R] truncreg for
more details.

Use mi impute intreg (see [MI] mi impute intreg) to impute continuous partially observed
(censored) variables.

Using mi impute truncreg

In [MI] mi impute pmm, we used predictive mean matching to impute missing values of bmi
(used as a predictor in the logistic analysis of heart attacks as described in [MI] intro substantive),
restricting imputed values to be within the observed range of bmi.

mi impute pmm imputes missing values of bmi, replacing them only with values already observed
in the data. Suppose that, instead, we want to allow imputed bmi values to take on any value within
a certain range. We can achieve this by using mi impute truncreg.

. use http://www.stata-press.com/data/r12/mheart0
(Fictional heart attack data; bmi missing)
. summarize bmi

Variable | Obs Mean Std. Dev. Min Max

bmi | 132 25.24136 4.027137 17.22643 38.24214

The observed range of bmi in our data is between roughly 17 and 39.

254 mi impute truncreg — Impute using truncated regression

We impute bmi from a normal distribution truncated at (17, 39):

. mi set mlong

. mi register imputed bmi
(22 m=0 obs. now marked as incomplete)

. mi impute truncreg bmi attack smokes age hsgrad female, add(20) 11(17) ul(39)

Univariate imputation Imputations = 20
Truncated regression added = 20
Imputed: m=1 through m=20 updated = 0
Limit: lower = 17 Number truncated = 0
upper = 39 left = 0

right = 0

Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

mi impute truncreg reports in the output header the truncation limits used (17 and 39 in our
example). If the 11() and ul() options are not specified, the truncation limits are displayed as -inf
and +inf, respectively, and the imputation model becomes equivalent to that using (unrestricted)
normal linear regression.

mi impute truncreg also reports numbers of truncated observations. In our example, all values
of bmi lie between 17 and 39, so there are no truncated observations. Truncated observations are not
used during estimation; see [R] truncreg.

Rather than restricting bmi to the observed range during imputation, it may be reasonable to
assume a wider range that is still consistent with the observed dataset. It may also be reasonable to
use different ranges for males and females. For example, considering the observed ages, suppose that
we assume a normal distribution for bmi truncated at (14, 55) for females and at (17, 50) for males.

To accommodate varying ranges, we first create variables containing gender-specific truncation
limits:
. qui mi xeq: gen lbmi = cond(female==1, 14, 17)

. qui mi xeq: gen ubmi = cond(female==1, 55, 50)

The declared style of our mi data is mlong, so it is not necessary to use the mi xeq prefix for
generating new variables. It is good practice, however, to use mi-specific commands so that your data
manipulation is appropriate no matter what the mi style is; see [MI] mi xeq and [MI] styles for details.

mi impute truncreg — Impute using truncated regression 255

We now replace the existing imputations with new ones, which account for varying ranges of bmi
among males and females:

. mi impute truncreg bmi attack smokes age hsgrad female, replace 11(1lbmi) ul(ubmi)

Univariate imputation Imputations = 20
Truncated regression added = 0
Imputed: m=1 through m=20 updated = 20
Limit: lower = 1bmi Number truncated = 0
upper = ubmi left = 0

right = 0

Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observationmns.)

We can analyze these multiply imputed data using logistic regression with mi estimate:

. mi estimate: logit attack smokes age bmi female hsgrad
(output omitted)

Saved results

mi impute truncreg saves the following in r():

Scalars

r (M) total number of imputations

r(M_add) number of added imputations

r(M_update) number of updated imputations

r(k_ivars) number of imputed variables (always 1)

r(N_trunc) number of truncated observations

r(N_ltrunc) number of left-truncated observations

r(N_rtrunc) number of right-truncated observations

r(1l) lower truncation limit (if 11 (#) is specified)

r(ul) upper truncation limit (if ul(#) is specified)

r(N_g) number of imputed groups (1 if by() is not specified)
Macros

r (method) name of imputation method (truncreg)

r(ivars) names of imputation variables

r(1llopt) contents of 11(), if specified

r(ulopt) contents of ul(), if specified

r(rseed) random-number seed

r (by) names of variables specified within by ()
Matrices

r(N) number of observations in imputation sample in each group

r(N_complete) number of complete observations in imputation sample in each group
r(N_incomplete) number of incomplete observations in imputation sample in each group
r(N_imputed) number of imputed observations in imputation sample in each group

Methods and formulas

Consider a univariate variable x = (21,2, ...,Z;,)" that follows a truncated normal model with
the density

256 mi impute truncreg — Impute using truncated regression

20 ()
@ (b) — @ (1)

where ¢(-) and ®(-) are the standard normal density and cumulative distribution functions, respectively,
wi = 2.8, z; = (21,22, ..., 2iq) records values of predictors of x for observation i, 8 is the
q % 1 vector of unknown regression coefficients, o2 is the unknown scalar variance, and a and b are
the respective known lower and upper truncation limits; also see [R] truncreg. (When a constant is
included in the model—the default—z;; =1, 1 =1,...,n.)

f(a,b)(x‘zi) = , a << b (1)

X contains missing values that are to be filled in. Consider the partition of x = (x],x/,) into
ng X 1 and n; X 1 vectors containing the complete and the incomplete observations. Consider a
similar partition of Z = (Z,, Z,,) into ng X ¢ and nq X g submatrices.

mi impute truncreg follows the steps below to fill in X,;,:

1. Fit a truncated regression (1) to the observed data (x,, Z,) to obtain the maximum likelihood

~ ~/

estimates, @ = (3, Ing)’, and their asymptotic sampling variance, U.

2. Simulate new parameters, 0., from the large-sample normal approximation, N (6, U), to its
posterior distribution assuming the noninformative prior Pr(6) o const.

3. Obtain one set of imputed values, x , by simulating from a truncated normal model (1)
with parameters set to their simulated values from step 2: 3 = 3, and o = o,.

4. Repeat steps 2 and 3 to obtain M sets of imputed values, x} ,x2, ... xM.
Steps 2 and 3 above correspond to only approximate draws from the posterior predictive distribution
of the missing data, Pr(x,,|X,, Z,), because 0, is drawn from the asymptotic approximation to its

posterior distribution.

If weights are specified, a weighted regression model is fit to the observed data in step 1 (see

[R] truncreg for details). Also, in the case of aweights, o, is replaced with o, w, 1/2

where w; is the analytic weight for observation .

in step 3,

References

Raghunathan, T. E., J. M. Lepkowski, J. Van Hoewyk, and P. Solenberger. 2001. A multivariate technique for multiply
imputing missing values using a sequence of regression models. Survey Methodology 27: 85-95.

Schafer, J. L. 1997. Analysis of Incomplete Multivariate Data. Boca Raton, FL: Chapman & Hall/CRC.

Also see

[MI] mi impute — Impute missing values

[MI] mi impute pmm — Impute using predictive mean matching
[MI] mi impute regress — Impute using linear regression

[MI] mi impute intreg — Impute using interval regression

[MI] mi estimate — Estimation using multiple imputations

[MI] intro — Introduction to mi

[MI] intro substantive — Introduction to multiple-imputation analysis

Title

mi merge — Merge mi data

Syntax

mi merge 1:1 varlist using filename [, options]
mi merge m:1 varlist using filename [, options]
mi merge 1:m varlist using filename [, options]
mi merge m:m varlist using filename [, options]
options Description
Main

generate (newvar)

create newvar recording how observations matched

nolabel do not copy value-label definitions from using

nonotes do not copy notes from using

force allow string/numeric variable type mismatch without error
Results

assert (results) require observations to match as specified

keep (results) results to keep

noreport do not display result summary table

noupdate see [MI] noupdate option

Notes:

1. Jargon:

match variables =

varlist, variables on which match performed
master = data in memory

using = data on disk (filename)

2. Master must be mi set; using may be mi set.

3. mi merge is syntactically and logically equivalent to merge (see [D] merge).

4. mi merge syntactically differs from merge in that the nogenerate, sorted, keepusing(),
update, and replace options are not allowed. Also, no _merge variable is created unless

the generate() option is specified.

5. filename must be enclosed in double quotes if filename contains blanks or other special

characters.

Menu

Statistics > Multiple imputation

257

258 mi merge — Merge mi data

Description

mi merge is merge for mi data; see [D] merge for a description of merging datasets.

It is recommended that the match variables (varlist in the syntax diagram) not include imputed
or passive variables, or any varying or super-varying variables. If they do, the values of the match
variables in m = 0 will be used to control the merge even in m =1, m =2, ..., m = M. Thus
m=0,m=1,..., m= M will all be merged identically, and there will continue to be a one-to-one
correspondence between the observations in m = 0 with the observations in each of m > 0.

Options
Main

generate (newvar) creates new variable newvar containing the match status of each observation in
the resulting data. The codes are 1, 2, and 3 from the table below.

nolabel prevents copying the value-label definitions from the using data to the master. Even if you
do not specify this option, label definitions from the using never replace those of the master.

nonotes prevents any notes in the using from being incorporated into the master; see [D] notes.

force allows string/numeric variable type mismatches, resulting in missing values from the using
dataset. If omitted, mi merge issues an error message; if specified, mi merge issues a warning
message.

assert (results) specifies how observations should match. If results are not as you expect, an error
message will be issued and the master data left unchanged.

Code Word Description
1 master observation appeared in master only
2 using observation appeared in using only
3 match observation appeared in both

(Numeric codes and words are equivalent; you may use either.)

assert (match) specifies that all observations in both the master and the using are expected to
match, and if that is not so, an error message is to be issued. assert (match master) means
that all observations match or originally appeared only in the master. See [D] merge for more
information.

keep (results) specifies which observations are to be kept from the merged dataset. keep (match)
would specify that only matches are to be kept.

noreport suppresses the report that mi merge ordinarily presents.

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option.

Remarks
Use mi merge when you would use merge if the data were not mi.
Remarks are presented under the following headings:
Merging with non-mi data

Merging with mi data
Merging with mi data containing overlapping variables

mi merge — Merge mi data 259

Merging with non-mi data

Assume that file ipats.dta contains data on the patients in the ICU of a local hospital. The data
are mi set, M =5, and missing values have been imputed. File nurses.dta contains information
on nurses and is not mi data. You wish to add the relevant nurse information to each patient. Type

. use ipats, clear
. mi merge m:1 nurseid using nurses, keep(master)

The resulting data are still mi set with M = 5. The new variables are unregistered.

Merging with mi data

Now assume the same situation as above except this time nurses.dta is mi data. Some of the
nurse variables have missing values, and those values have been imputed. M is 6. To combine the
datasets, you type the same as you would have typed before:

. use ipats, clear
. mi merge m:1 nurseid using nurses, keep(master)

Remember, M =5 in ipats.dta and M = 6 in nurses.dta. The resulting data have M = 6,
the larger value. There are missing values in the patient variables in m = 6, so we need to either
impute them or drop the extra imputation by typing mi set M = 5.

Merging with mi data containing overlapping variables

Now assume the situation as directly above but this time nurses.dta contains variables other
than nurseid that also appear in ipats.dta. Such variables—variables in common that are not used
as matching variables—are called overlapping variables. Assume seniornurse is such a variable.
Let’s imagine that seniornurse has no missing values and is unregistered in ipats.dta, but does
have missing values and is registered as imputed in nurses.dta.

You will want seniornurse registered as imputed if merging nurses.dta adds new observations
that have seniornurse equal to missing. On the other hand, if none of the added observations has
seniornurse equal to missing, then you will want the variable left unregistered. And that is exactly
what mi merge does. That is,

e Variables unique to the master will be registered according to how they were registered in
the master.

e Variables unique to the using will be registered according to how they were registered in
the using.

e Variables that overlap will be registered according to how they were in the master if there
are no unmatched using observations in the final result.

o [f there are such unmatched using observations in the final result, then the unique variables that
do not contain missing in the unmatched-and-kept observations will be registered according
to how they were registered in the master. So will all variables registered as imputed in the
master.

e Variables that do contain missing in the unmatched-and-kept observations will be registered
as imputed if they were registered as imputed in the using data or as passive if they were
registered as passive in the using data.

260 mi merge — Merge mi data

Thus variables might be registered differently if we typed

. mi merge m:1 nurseid using nurses, keep(master)

rather than

. mi merge m:1 nurseid using nurses, gen(howmatch)
. keep if howmatch==3

If you want to keep the matched observations, it is better to specify merge’s keep() option.

Saved results

mi merge saves the following in r():

Scalars
r(N_master) number of observations in m=0 in master
r(N_using) number of observations in m=0 in using
r(N_result) number of observations in m=0 in result

r(M_master) number of imputations (M) in master
r(M_using) number of imputations (M) in using
r(M_result) number of imputations (M) in result

Macros
r(newvars) new variables added

Thus values in the resulting data are

N =# of observations in m = 0
=r(N_result)

k = # of variables
= k_master + ¢ :word count ‘r(newvars)’’

M = # of imputations
=max (r (M_master), r(M_using))
=r(M_result)

Also see
[MI] intro — Introduction to mi
[D] merge — Merge datasets

[MI] mi append — Append mi data

Title

mi misstable — Tabulate pattern of missing values

Syntax

mi misstable summarize [varlist} [lf] [, Options]
mi misstable patterns [varlist] [lf] [, oplions]
mi misstable tree [varlisr] [lf] [, options}

mi misstable nested [varlist] [Zf} [, options]

options Description
Main
exmiss treat .a, .b, ..., .z as missing
m(#) run misstable on m = #; default is m = 0
other_options see [R] misstable (generate() is not allowed; exok is assumed)
nopreserve programmer’s option; see [P] nopreserve option
Menu

Statistics > Multiple imputation

Description

mimisstable runsmisstable onm = 0 or on m = # if the m(#) option is specified. misstable
makes tables to help in understanding the pattern of missing values in your data; see [R] misstable.

Options
Main

exmiss specifies that the extended missing values, .a, .b, ..., .z, are to be treated as missing.
misstable treats them as missing by default and has the exok option to treat them as nonmissing.
mi misstable turns that around and has the exmiss option.

In the mi system, extended missing values that are recorded in imputed variables indicate values
not to be imputed and thus are, in a sense, not missing, or more accurately, missing for a good
and valid reason.

The exmiss option is intended for use with the patterns, tree, and nested subcommands.
You may specify exmiss with the summarize subcommand, but the option is ignored because
summarize reports both extended and system missing in separate columns.

261

262 mi misstable — Tabulate pattern of missing values

m(#) specifies the imputation dataset on which misstable is to be run. The default is m = 0, the
original data.

other_options are allowed; see [R] misstable.

Remarks

See [R] misstable.

Saved results

See [R] misstable.

Also see
[MI] intro — Introduction to mi
[R] misstable — Tabulate missing values

[MI] mi varying — Identify variables that vary across imputations

Title

mi passive — Generate/replace and register passive variables

Syntax

mi passive: {genera‘te \ egen | replace } .
mi passive: by varlist: {generate|egen|replace} ...
The full syntax is

mi passive|, options|: [by varlist | (varlist) |:] {generate|egen|replace} ...

options Description
noupdate see [MI] noupdate option
nopreserve do not first preserve

Also see [D] generate and [D] egen.

Menu

Statistics > Multiple imputation

Description

mi passive creates and registers passive variables or replaces the contents of existing passive
variables.

More precisely, mi passive executes the specified generate, egen, or replace command on
eachof m=0,m =1, ..., m = M; see [D] generate and [D] egen. If the command is generate
or egen, then mi passive registers the new variable as passive. If the command is replace, then
mi passive verifies that the variable is already registered as passive.

Options
noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option.

nopreserve is a programmer’s option. It specifies that mi passive is not to preserve the data
if it ordinarily would. This is used by programmers who have already preserved the data before
calling mi passive.

263

264 mi passive — Generate/replace and register passive variables

Remarks

Remarks are presented under the following headings:
mi passive basics
mi passive works with the by prefix
mi passive works fastest with the wide style
mi passive and super-varying variables
Renaming passive variables
Dropping passive variables
Update passive variables when imputed values change
Alternatives to mi passive

mi passive basics

A passive variable is a variable that is a function of imputed variables or of other passive variables.
For instance, if variable age were imputed and you created 1nage from it, the 1nage variable would
be passive. The right way to create 1nage is to type

. mi passive: generate lnage = 1ln(age)
Simply typing
generate lnage = ln(age)

is not sufficient because that would create 1nage in the m = 0 data, and age, being imputed, varies
across m. There are situations where omitting the mi passive prefix would be almost sufficient,
namely, when the data are mlong or flong style, but even then you would need to follow up by typing
mi register passive lnage.

To create passive variables or to change the values of existing passive variables, use mi passive.
Passive variables cannot be super-varying; see mi passive and super-varying variables.

mi passive works with the by prefix
You can use mi passive with the by prefix. For instance, you can type
. mi passive: by person: generate totaltodate = sum(amount)

You do not need to sort the data before issuing either of these commands, nor are you required
to specify by’s sort option. mi passive handles sorting issues for you.

Use by’s parenthetical syntax to specify the order within by, if that is necessary. For instance,
. mi passive: by person (time): generate lastamount = amount[_n-1]
Do not omit the parenthetical time and instead attempt to sort the data yourself:

sort person time
. mi passive: by person: generate lastamount = amount[_n-1]

Sorting the data yourself will work if your data happen to be wide style; it will not work in general.

mi passive — Generate/replace and register passive variables 265

mi passive works fastest with the wide style

mi passive works with any style, but it works fastest when the data are wide style. If you are
going to issue multiple mi passive commands, you can usually speed execution by first converting
your data to the wide style; see [MI] mi convert.

mi passive and super-varying variables

You should be careful not to mistakenly use mi passive to create super-varying variables. Super-
varying variables cannot be passive variables because the values of a super-varying variable differ not
only in the incomplete observations but also in the complete observations across imputations.

As noted in [MI] mi set, super-varying variables should never be registered. If a super-varying
variable is registered as passive, it will be converted to a varying variable. All complete observations
of the super-varying variable in each imputation will be replaced with their values from m = 0.

mi passive registers the created variable as passive. Even if the command you use with mi
passive creates a super-varying variable, mi passive will convert it to varying, as described above.

You can use mi passive with any function that produces values that solely depend on values
within the observation. In general, you cannot use mi passive with functions that produce values
that depend on groups of observations.

For example, most egen functions result in super-varying variables. In such cases, you should
use mi xeq: egen to create them and leave them unregistered; see [MI] mi xeq. You might thus
conclude that you should never use mi passive with egen. That is not true, but it is nearly true.
You may use mi passive with egen’s rowmean() function, for instance, because it produces values
that depend only on one observation at a time.

Renaming passive variables
Use mi rename (see [MI] mi rename) to rename all variables, not just passive variables:
. mi rename oldname newname

rename (see [D] rename) is insufficient for renaming passive variables regardless of the style of
your data.

Dropping passive variables

Use drop (see [D] drop) to drop variables (or observations), but run mi update (see [MI] mi
update) afterward.

. drop var_or_vars

. mi update

This advice applies for all variables, not just passive ones.

266 mi passive — Generate/replace and register passive variables

Update passive variables when imputed values change

Passive variables are not automatically updated when the values of the underlying imputed variables
change.

If imputed values change or if you add more imputations, you must update or re-create the passive
variables. If you have several passive variables, we suggest you make a do-file to create them. You
can run the do-file again whenever necessary. A do-file to create lnage and totaltodate might
read

begin cr_passive.do ———
use mydata, clear

capture drop lnage

capture drop totaltodate

mi update

mi passive: generate lnage = ln(age)

mi passive: by person (time): generate totaltodate = sum(amount)

end cr_passive.do ——

Alternatives to mi passive
mi passive can run any generate, replace, or egen command. If that is not sufficient to create
the variable you need, you will have to create the variable for yourself. Here is how you do that:

1. If your data are wide or mlong, use mi convert (see [MI] mi convert) to convert them to
one of the fully long styles, flong or flongsep, and then continue with the appropriate step
below.

2. If your data are flong, mi system variable _mi_m records m. Create your new variable
by using standard Stata commands, but do that by _mi_m. After creating the variable, mi
register it as passive; see [MI] mi set.

3. If your data are flongsep, create the new variable in each of the m =0, m =1, ...,
m = M datasets, and then register the result. Start by working with a copy of your data

. mi copy newname

The data in memory at this point correspond to m = 0. Create the new variable and then
save the data:

(create new_variable)
save newname, replace
Now use the m = 1 data and repeat the process:

use _1_newname
(create new_variable)

save _1_newname, replace

Repeat form =2, m =3, ..., m= M.
At this point, the new variable is created but not yet registered. Reload the original m = 0
data, register the new variable as passive, and run mi update (see [MI] mi update):

use newname

register passive new_variable

. mi update

mi passive — Generate/replace and register passive variables 267

Finally, copy the result back to your original flongsep data,
. mi copy name, replace
or if you started with mlong, flong, or wide data, then convert the data back to your preferred
style:
. mi convert original_style
Either way, erase the newname flongsep dataset collection:

. mi erase newname

The third procedure can be tedious and error-prone if M is large. We suggest that you make a
do-file to create the variable and then run it on each of the m =0, m =1, ..., m = M datasets:

. mi copy newname
. do mydofile
save newname, replace

forvalues m=1(1)20 { // we assume M=20
use _‘m’_newname
do mydofile
save _‘m’_newname, replace

V V V V.

. use newname
. register passive new_variable

. mi update

Also see
[MI] intro — Introduction to mi
[MI] mi reset — Reset imputed or passive variables

[MI] mi xeq — Execute command(s) on individual imputations

Title

mi predict — Obtain multiple-imputation predictions

Syntax
Obtain multiple-imputation linear predictions

mi predict [rype] newvar [zf] using miestfile [, predict_options oplions]

Obtain multiple-imputation nonlinear predictions

mi predictnl [type} newvar = pnl_exp [sz] using miestfile [, pnl_options options]

miestfile .ster contains estimation results previously saved by mi estimate, saving(miestfile);
see [MI] mi estimate.

pnl_exp is any valid Stata expression and may also contain calls to two special functions unique to
predictnl: predict() and xb(); see [R] predictnl for details.

predict_options

Description

Predict options
xb
stdp
nooffset
equation(egno)

calculate linear prediction; the default

calculate standard error of the prediction

ignore any offset() or exposure() variable
specify equations after multiple-equation commands

pnl_options

Description

Predict options
se (newvar)
variance (newvar)
wald (newvar)
p (newvar)

ci(newvars)

level (#)
bvariance (newvar)
wvariance (newvar)
df (newvar)
nosmall
rvi(newvar)

fmi (newvar)

re (newvar)

create newvar containing standard errors
create newvar containing variances
create newvar containing the Wald test statistic

create newvar containing the significance level (p-value) of the
Wald test

create newvars containing lower and upper confidence intervals
set confidence level; default is 1level (95)

create newvar containing between-imputation variances

create newvar containing within-imputation variances

create newvar containing MI degrees of freedom

do not apply small-sample correction to degrees of freedom
create newvar containing relative variance increases

create newvar containing fractions of missing information
create newvar containing relative efficiencies

268

mi predict — Obtain multiple-imputation predictions 269
Advanced
iterate(#) maximum iterations for finding optimal step size to compute
completed-data numerical derivatives of pnl_exp; default is 100
force calculate completed-data standard errors, etc., even when possibly
inappropriate
options Description
MI options
nimputations (#) specify number of imputations to use in computation; default is
to use all saved imputations
imputations (numlist) specify which imputations to use in computation
estimations (numlist) specify which estimation results to use in computation
esample (varname) restrict the prediction to the estimation subsample
identified by a binary variable varname
storecompleted store completed-data predictions in the imputed data; available only
in the flong and flongsep styles
Reporting
replay replay command-specific results from each individual estimation in
miestfile . ster
cmdlegend display the command legend
noupdate do not perform mi update; see [MI] noupdate option
noerrnotes suppress error notes associated with failed estimation results in
miestfile . ster
showimputations show imputations saved in miestfile . ster
noupdate, noerrnotes, and showimputations do not appear in the dialog box.
Menu
Statistics > Multiple imputation
Description
mi predict using miestfile is for use after mi estimate, saving(miestfile): ... to obtain
multiple-imputation (MI) linear predictions or their standard errors.
mi predictnl using miestfile is for use after mi estimate, saving(miestfile) : ... to obtain MI
(possibly) nonlinear predictions, their standard errors, and other statistics, including statistics specific

to MIL.

MI predictions, their standard errors, and other statistics are obtained by applying Rubin’s combina-
tion rules observationwise to the completed-data predictions, predictions computed for each imputation
(White, Royston, and Wood 2011). The results are stored in the original data (m = 0). See [R] predict
and [R] predictnl for details about the computation of the completed-data predictions.

mi predict and mi predictnl may change the sort order of the data.

270 mi predict — Obtain multiple-imputation predictions

Options

Predict options

xb, stdp, nooffset, equation(egno); see [R] predict.

se (newvar) , variance (newvar) , wald (newvar), p(newvar), ci(newvars), level (#); see [R] pre-
dictnl. These options store the specified MI statistics in variable newvar in the original data (m = 0).
level() is relevant in combination with ci() only. If storecompleted is specified, then newvar
contains the respective completed-data estimates in the imputed data (m > 0). Otherwise, newvar
is missing in the imputed data.

bvariance (newvar) adds newvar of storage type type, where for each i in the prediction sample,
newvar[i] contains the estimated between-imputation variance of pnl_exp[i]. storecompleted
has no effect on bvariance().

wvariance (newvar) adds newvar of storage type type, where for each i in the prediction sample,
newvar[i] contains the estimated within-imputation variance of pnl_exp[i]. storecompleted
has no effect on wvariance().

df (newvar) adds newvar of storage type type, where for each i in the prediction sample, newvar [i]
contains the estimated MI degrees of freedom of pnl_exp[i]. If storecompleted is specified,
then newvar in the imputed data will contain the complete-data degrees of freedom as saved by mi
estimate. In the absence of the complete-data degrees of freedom or if nosmall is used, then
newvar is missing in the imputed data, even if storecompleted is specified.

nosmall specifies that no small-sample correction be made to the degrees of freedom. By default,
the small-sample correction of Barnard and Rubin (1999) is used. This option has an effect on the
results stored by p(), ci(), df), fmi(), and re().

rvi(newvar) adds newvar of storage type type, where for each i in the prediction sample, newvar[il]
contains the estimated relative variance increase of pnl_exp[i]. storecompleted has no effect
on rvi(Q).

fmi (newvar) adds newvar of storage type type, where for each i in the prediction sample, newvar [i]
contains the estimated fraction of missing information of pnl_exp[i]. storecompleted has no
effect on fmi ().

re (newvar) adds newvar of storage type type, where for each i in the prediction sample, newvar[i]
contains the estimated relative efficiency of pnl_exp[i]. storecompleted has no effect on re().

MI options

nimputations (#) specifies that the first # imputations be used; # must be 2 < # < M. The default
is to use all imputations, M. Only one of nimputations (), imputations(), or estimations()
may be specified.

imputations (numlist) specifies which imputations to use. The default is to use all of them. numlist
must contain at least two numbers corresponding to the imputations saved in miestfile . ster. You
can use the showimputations option to display imputations currently saved in miestfile . ster.
Only one of nimputations(), imputations(), or estimations() may be specified.

estimations (numlist) does the same thing as imputations (numlist), but this time the imputations
are numbered differently. Say that miestfile . ster was created by mi estimate and mi estimate
was told to limit itself to imputations 1, 3, 5, and 9. With imputations(), the imputations are
still numbered 1, 3, 5, and 9. With estimations (), they are numbered 1, 2, 3, and 4. Usually,
one does not specify a subset of imputations when using mi estimate, and so usually, the
imputations() and estimations() options are identical. The specified numlist must contain

mi predict — Obtain multiple-imputation predictions 271

at least two numbers. Only one of nimputations(), imputations(), or estimations() may
be specified.

esample (varname) restricts the prediction to the estimation sample identified by a binary variable
varname. By default, predictions are obtained for all observations in the original data. Variable
varname cannot be registered as imputed or passive and cannot vary across imputations.

storecompleted stores completed-data predictions in the newly created variables in each imputation.
By default, the imputed data contain missing values in the newly created variables. The store-
completed option may be specified only if the data are flong or flongsep; see [MI] mi convert
to convert to one of those styles.

Reporting

replay replays estimation results from miestfile . ster, previously saved by mi estimate, sav-
ing (miestfile) .

cmdlegend requests that the command line corresponding to the estimation command used to produce
the estimation results saved in miestfile . ster be displayed.

Advanced

iterate(#), force; see [R] predictnl.

The following options are available with mi predict and mi predictnl but are not shown in the
dialog box:

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option. This option is rarely used.

noerrnotes suppresses notes about failed estimation results. These notes appear when miestfile . ster
contains estimation results, previously saved by mi estimate, saving(miestfile), from imputations
for which the estimation command used with mi estimate failed to estimate parameters.

showimputations displays imputation numbers corresponding to the estimation results saved in
miestfile . ster.

Remarks

Remarks are presented under the following headings:

Introduction

Using mi predict and mi predictnl

Example 1: Obtain MI linear predictions and other statistics
Example 2: Obtain MI linear predictions for the estimation sample
Example 3: Obtain MI estimates of probabilities

Example 4: Obtain other MI predictions

Example 5: Obtain MI predictions after multiple-equation commands

Introduction

Various predictions are often of interest after estimation. Within the MI framework, one must first
decide what prediction means. There is no single dataset with respect to which prediction is made.
Rather, there are multiple datasets in which values of imputed predictors vary from one dataset to
another.

272 mi predict — Obtain multiple-imputation predictions

One definition is simply to consider an observation-specific prediction to be a parameter of interest
and apply Rubin’s combination rules to it as to any other estimand (White, Royston, and Wood 2011).
The next thing to decide is what types of predictions are appropriate for pooling. For any parameter,
the applicability of combination rules is subject to a number of conditions that the parameter must
satisfy. One of them is asymptotic normality of the completed-data estimates of the parameter; see,
for example, Theory underlying multiple imputation under Remarks of [MI] intro substantive for a
full set of conditions.

It is safe to apply combination rules to the linear predictor, as computed by mi predict. It
is also safe to apply combination rules to functions, possibly nonlinear, of the linear predictor,
provided the sampling distribution of that function is asymptotically normal. This can be done by
using mi predictnl. mi predictnl also provides, with the predict() specification, a way of
obtaining MI estimates for various types of predictions specific to each estimation command used with
mi estimate. Care should be taken when using this functionality. Some predictions may require
preliminary transformation to a scale that improves normality, which is more appropriate for pooling.
The obtained MI estimates of predictions may then be back-transformed to obtain final predictions in
the original metric. For example, one can obtain MI estimates of probabilities of a positive outcome
after logistic estimation by pooling the completed-data estimates of the actual probabilities. A better
approach is to pool the completed-data estimates of the linear predictor and then apply an inverse-logit
transformation to obtain the probability of a positive outcome. Other available predictions, such as
standard errors, may not even be applicable for pooling.

The MI predictions should be treated as a final result; they should not be used as intermediate
results in computations. For example, MI estimates of the linear predictor cannot be used to compute
residuals as is done in non-MI analysis. Instead, completed-data residuals should be calculated for
each imputed dataset, and these can be obtained by using the mi xeq: command. For example,

. mi Xeq: regress ...; predict resid, r

Because completed-data predictions are super varying, they should only be computed in the flong or
flongsep styles.

Using mi predict and mi predictnl

mi predict and mi predictnl require that completed-data estimation results saved by mi
estimate, saving() are supplied with the using specification and that the mi data used to obtain
these results are in memory. Apart from this, the use of these commands is similar to that of their
non-mi counterparts, predict and predictnl (see [R] predict and [R] predictnl).

By default, mi predict computes MI linear predictions. If the stdp option is specified, mi
predict computes standard errors of the MI linear predictions. As with predict, the equation()
option can be used with mi predict after multiple-equation commands to obtain linear predictions
or their standard errors from a specific equation.

Similarly to predictnl, a number of statistics associated with predictions can be obtained with mi
predictnl, such as confidence intervals and p-values. Additionally, a number of MI statistics, such
as relative variance increases and fractions of missing information, are available with mi predictnl.
As we mentioned in Introduction, the predict() function of mi predictnl offers a variety of
predictions. However, you should carefully consider whether the requested prediction is applicable
for pooling or, perhaps, needs a preliminary transformation to improve normality.

Unlike predict, mi predict always defaults to the linear prediction. It supports only the
linear prediction or its standard error and does not support any other command-specific predictions.
Command-specific predictions appropriate for pooling may be obtained with the predict () function
of mi predictnl. Also unlike predict after some multiple-equation commands, mi predict does
not allow specification of multiple new variables to store predictions from all equations. For each

mi predict — Obtain multiple-imputation predictions 273

equation egno, you should use mi predict, equation(egno) to obtain predictions from equation
eqno.

To obtain estimation-sample predictions, the if e (sample) restriction is usually used with predict
and predictnl. This restriction is not allowed with mi predict and mi predictnl. mi estimate
does not set an estimation sample. There is no single estimation sample within the MI framework;
there are M of them, and they may vary across imputed datasets. To obtain estimation-sample
predictions with mi predict and mi predictnl, you must first store the estimation sample in
a variable and then specify this variable in the esample() option. For example, you may use mi
estimate’s esample (newvar) option to store the estimation sample in newvar. To use mi estimate,
esample (), you must be in flong or flongsep style; use [MI] mi convert to convert to one of these
styles.

mi predict and mi predictnl store MI predictions and statistics associated with them in the
original data (m = 0). If your data are flong or flongsep, you may additionally store the corresponding
completed-data estimates in the imputed data (m > 0) by specifying the storecompleted option.
This option only affects results for which completed-data counterparts are available, such as predictions,
standard errors, and confidence intervals. It has no effect on statistics specific to MI, such as relative
variance increases and fractions of missing information.

When you restrict predictions to a subsample, mi predict and mi predictnl verify that the
prediction samples are the same across imputed datasets. If varying prediction samples are detected,
the commands terminate with an error. If such a situation occurs, you may consider modifying your
restriction to define a sample common to all imputations. If there are a few imputations violating the
consistency of the prediction sample, you may obtain MI predictions over a selected set of imputations
using, for example, the imputations() option.

Example 1: Obtain Ml linear predictions and other statistics
Recall the analysis of house resale prices from Example 2: Completed-data linear regression
analysis in [MI] mi estimate:

. use http://www.stata-press.com/data/r12/mhouses1993s30
(Albuquerque Home Prices Feb15-Apr30, 1993)

. mi estimate, saving(miest): regress price tax sqft age nfeatures ne custom cormer

Multiple-imputation estimates Imputations = 30
Linear regression Number of obs = 117
Average RVI = 0.0648

Largest FMI = 0.2533

Complete DF = 109

DF adjustment: Small sample DF: min = 69.12
avg = 94.02

max = 105.51

Model F test: Equal FMI F(C 7, 106.5) = 67.18
Within VCE type: OLS Prob > F = 0.0000
price Coef. Std. Err. t P>|t] [95% Conf. Intervall

tax .6768015 .1241568 5.45 0.000 .4301777 .9234253

sqft .2118129 .069177 3.06 0.003 .0745091 .3491168

age .2471445 1.653669 0.15 0.882 -3.051732 3.546021
nfeatures 9.288033 13.30469 0.70 0.487 -17.12017 35.69623

ne 2.518996 36.99365 0.07 0.946 -70.90416 75.94215

custom 134.2193 43.29755 3.10 0.002 48.35674 220.0818
corner -68.58686 39.9488 -1.72 0.089 -147.7934 10.61972

_cons 123.9118 71.05816 1.74 0.085 -17.19932 265.0229

274 mi predict — Obtain multiple-imputation predictions

We saved complete-data estimation results to miest.ster using mi estimate’s saving() option.
We store MI linear predictions in variable xb_mi:
. mi predict xb_mi using miest
(option xb assumed; linear prediction)
. mi xeq O: summarize price xb_mi

m=0 data:
-> summarize price xb_mi

Variable | Obs Mean Std. Dev. Min Max
price 117 1062.735 380.437 540 2150
xb_mi 117 1062.735 344.2862 523.0295 2042.396

MI predictions are stored in the original data (m = 0). The predictions of price seem reasonable.
We compute standard errors of MI linear predictions by using the stdp option:

. mi predict stdp_mi using miest, stdp

To obtain other statistics, such as confidence intervals and Wald test statistics, we can use mi
predictnl. For example, we compute linear predictions, 95% confidence intervals, and fractions of
missing information of the linear predictions as follows:

. mi predictnl xbl_mi = predict(xb) using miest, ci(cil_mi ciu_mi) fmi(fmi)

Unlike confidence intervals produced by predictnl, confidence intervals from mi predictnl are
based on observation-specific degrees of freedom. Recall from [MI] mi estimate that the degrees of
freedom used for MI inference is inversely related to relative variance increases due to missing data,
which are parameter-specific. The prediction for each observation is viewed as a separate parameter,
so it has its own degrees of freedom. If desired, you may obtain observation-specific MI degrees of
freedom by specifying the df () option with mi predictnl.

Example 2: Obtain Ml linear predictions for the estimation sample

To obtain MI linear predictions for the estimation sample, we must first store the estimation sample
in a variable. To store the estimation sample with mi estimate, the mi data must be flong or flongsep.

Continuing our house resale prices example, the data are mlong:
. use http://www.stata-press.com/data/r12/mhouses1993s30
(Albuquerque Home Prices Feb15-Apr30, 1993)

. mi query
data mi set mlong, M = 30
last mi update 03may2011 15:21:36, 1 day ago

We switch to the flong style by using the mi convert command (see [MI] mi convert) and store
the estimation sample in variable touse by using mi estimate, esample():

mi predict — Obtain multiple-imputation predictions 275

. mi convert flong

. mi estimate, esample(touse): regress price tax sqft age nfeatures ne custom corner

Multiple-imputation estimates Imputations = 30
Linear regression Number of obs = 117
Average RVI = 0.0648

Largest FMI = 0.2533

Complete DF = 109

DF adjustment: Small sample DF: min = 69.12
avg = 94.02

max = 105.51

Model F test: Equal FMI F(C 7, 106.5) = 67.18
Within VCE type: OLS Prob > F = 0.0000
price Coef. Std. Err. t P>|t] [95% Conf. Intervall

tax .6768015 .1241568 5.45 0.000 .4301777 .9234253

sqft .2118129 .069177 3.06 0.003 .0745091 .3491168

age .2471445 1.653669 0.15 0.882 -3.051732 3.546021
nfeatures 9.288033 13.30469 0.70 0.487 -17.12017 35.69623

ne 2.518996 36.99365 0.07 0.946 -70.90416 75.94215

custom 134.2193 43.29755 3.10 0.002 48.35674 220.0818
corner -68.58686 39.9488 -1.72 0.089 -147.7934 10.61972

_cons 123.9118 71.05816 1.74 0.085 -17.19932 265.0229

Because we use the same regression model, we do not need to resave estimation results and we
can use the previously saved miest.ster from Example 1: Obtain MI linear predictions and other
statistics with mi predict.

To restrict the linear prediction to the estimation sample identified by the touse variable, we use
esample(touse) with mi predict:

. mi predict xb_mi using miest, esample(touse)
(option xb assumed; linear prediction)

. mi xeq O: summarize xb_mi

m=0 data:
-> summarize xb_mi
Variable | Obs Mean Std. Dev. Min Max
xb_mi | 117 1062.735 344.2862 523.0295 2042.396

The estimation sample includes all observations, so we obtain the same predictions as we did in
example 1.

We could simply use an if restriction instead of the esample () option to obtain the same results:

. mi predict xb_mi if touse using miest
(output omitted)

But if you use the esample () option, mi predict and mi predictnl perform additional checks to
verify that the supplied variable is a proper estimation-sample variable.

By default, the MI linear prediction is only stored in the original data (m = 0) and the imputed data
contain missing values in the corresponding variable. In the flong and flongsep styles, we can also
store completed-data predictions in the imputed data (m > 0) by specifying the storecompleted
option:

276

mi predict — Obtain multiple-imputation predictions

. mi predict xb_mi_all using miest, esample(touse) storecompleted

(option xb assumed; linear prediction)

. mi xeq 0 1 2: summarize xb_mi_all

m=0 data:
-> summarize xb_mi_all
Variable Obs Mean Std. Dev. Min Max
xb_mi_all 117 1062.735 344.2862 523.0295 2042.396
m=1 data:
-> summarize xb_mi_all
Variable Obs Mean Std. Dev. Min Max
xb_mi_all 117 1062.735 346.1095 529.5227 2042.942
m=2 data:
-> summarize xb_mi_all
Variable Obs Mean Std. Dev. Min Max
xb_mi_all 117 1062.735 344.8446 515.5598 2040.374

Variable xb_mi_all contains MI linear predictions in m = 0; completed-data linear predictions from
imputation 1 in m = 1; completed-data linear predictions from imputation 2 in m = 2; and so on.

Example 3: Obtain Ml estimates of probabilities

Recall the analysis of heart attacks from Example I: Completed-data logistic analysis in [MI] mi
estimate:
. use http://www.stata-press.com/data/r12/mheart1s20
(Fictional heart attack data; bmi missing)
. mi estimate, saving(miest, replace): logit attack smokes age bmi hsgrad female

Multiple-imputation estimates Imputations = 20

Logistic regression Number of obs = 154
Average RVI = 0.0312

Largest FMI = 0.1355

DF adjustment: Large sample DF: min = 1060.38
avg = 223362.56

max = 493335.88

Model F test: Equal FMI F(5,71379.3) = 3.59
Within VCE type: 0IM Prob > F = 0.0030
attack Coef. Std. Err. t P>t [95% Conf. Intervall
smokes 1.198595 .3578195 3.35 0.001 .4972789 1.899911

age .0360159 .0154399 2.33 0.020 .0057541 .0662776

bmi .1039416 .0476136 2.18 0.029 .010514 .1973692

hsgrad .1578992 .4049257 0.39 0.697 -.6357464 .9515449
female -.1067433 .4164735 -0.26 0.798 -.9230191 .7095326

_cons -5.478143 1.685075 -3.25 0.001 -8.782394 -2.173892

We could have used a different estimation file to store the completed-data estimation results from
logit. Instead, we replaced the existing estimation file miest.ster with new results by specifying
saving()’s replace option.

Following the discussion in Introduction, we first obtain MI estimates of the probabilities of
a positive outcome by using the transformation-based approach. We obtain MI estimates of linear
predictions and apply the inverse-logit transformation to obtain the probabilities:

mi predict — Obtain multiple-imputation predictions 277

. mi predict xb_mi using miest
(option xb assumed; linear prediction)

. qui mi xeq: generate phat = invlogit(xb_mi)

Unlike predict after logit, mi predict after mi estimate: logit defaults to the linear prediction
and not to the probability of a positive outcome. mi predict always assumes the linear prediction.

Alternatively, we can apply Rubin’s combination rules directly to probabilities. Unlike predict,
mi predict does not allow the pr option. You can obtain only linear predictions or standard errors
using mi predict. We can use the predict () function of mi predictnl to obtain MI estimates of
the probabilities by directly pooling completed-data probabilities:

. mi predictnl phat_mi = predict(pr) using miest

. mi xeq O: summarize phat phat_mi

m=0 data:
-> summarize phat phat_mi
Variable | Obs Mean Std. Dev. Min Max
phat 154 .4478198 . 1820425 .1410432 .8923041
phat_mi 154 .4480519 .1812098 .141361 .8912111

Although the first approach is preferable, we can see that we obtain similar estimates of the probabilities
of a positive outcome with both approaches.

Example 4: Obtain other Ml predictions

Consider the cancer data from Example 3: Completed-data survival analysis in [MI] mi estimate:
. use http://www.stata-press.com/data/r12/mdrugtrs25
(Patient Survival in Drug Trial)
. mi stset studytime, failure(died)

failure event: died != 0 & died < .
obs. time interval: (0, studytime]
exit on or before: failure

48 total obs.
0 exclusions

48 obs. remaining, representing
31 failures in single record/single failure data
744 total analysis time at risk, at risk from t = 0
earliest observed entry t 0
last observed exit t 39

In this example, we fit a parametric Weibull regression to the survival data and as before replace
the estimation results in miest.ster with new ones from mi estimate: streg:

278 mi predict — Obtain multiple-imputation predictions

. mi estimate, saving(miest, replace): streg drug age, dist(weibull)

Multiple-imputation estimates Imputations = 25
Weibull regression: Log relative-hazard form Number of obs = 48
Average RVI = 0.0927

Largest FMI = 0.1847

DF adjustment: Large sample DF: min = 721.15
avg = 6014.48

max = 11383.09

Model F test: Equal FMI F(2, 2910.0) = 14.94
Within VCE type: 0IM Prob > F = 0.0000
_t Coef. Std. Err. t P>|t| [95% Conf. Intervall

drug -2.093333 .4091925 -5.12 0.000 -2.895422 -1.291243

age .126931 .0403526 3.15 0.002 .0477084 .2061536

_cons -11.14588 2.584909 -4.31 0.000 -16.22013 -6.071634

/1n_p .5524239 .1434973 3.85 0.000 .2711445 .8337033

P 1.737459 .2493207 1.311465 2.301827

1/p .575553 .0825903 .4344374 . 7625063

Suppose that we want to estimate median survival time. After streg, median survival time can be
obtained by using predict, median time. mi predict does not support these options, but we can
use the predict (median time) function with mi predictnl to obtain MI estimates of the median
survival time.

To improve normality, we perform pooling in a log scale and then exponentiate results back to
the original scale:
. mi predictnl p50_lntime_mi = ln(predict(median time)) using miest

. qui mi xeq: generate p50_time_mi = exp(p50_lntime_mi)

Above, we demonstrated the use of expressions with the predict() function by computing
median log-survival time by using ln(predict(median time)). Alternatively, we can compute
median log-survival time directly with predict (median lntime):

. mi predictnl p50_lntimel_mi = predict(median lntime) using miest

. qui mi xeq: generate p50_timel_mi = exp(p50_lntimel_mi)

We verify that we obtain identical results:

. mi xeq 0: summarize p50_time_mi p5O_timel_mi

m=0 data:
-> summarize p50_time_mi p50_timel_mi

Variable | Obs Mean Std. Dev. Min Max
p50_time_mi 48 21.74607 14.60662 3.707896 53.10997
p50_timel_mi 48 21.74607 14.60662 3.707896 53.10997

Example 5: Obtain Ml predictions after multiple-equation commands

For illustrative purposes, let’s use mlogit instead of logit to analyze the heart-attack data from
Example 3: Obtain MI estimates of probabilities:

mi predict — Obtain multiple-imputation predictions 279

. use http://www.stata-press.com/data/r12/mheart1s20
(Fictional heart attack data; bmi missing)

. mi estimate, saving(miest, replace): mlogit attack smokes age bmi hsgrad female

Multiple-imputation estimates Imputations = 20
Multinomial logistic regression Number of obs = 154
Average RVI = 0.0312
Largest FMI = 0.1355
DF adjustment: Large sample DF: min = 1060.38
avg = 223362.56
max = 493335.88
Model F test: Equal FMI F(5,71379.3) = 3.59
Within VCE type: 0IM Prob > F = 0.0030
attack Coef. Std. Err. t P>t [95% Conf. Intervall

0 (base outcome)

1

smokes 1.198595 .3578195 3.35 0.001 .4972789 1.899911
age .0360159 .0154399 2.33 0.020 .0057541 .0662776
bmi .1039416 .0476136 2.18 0.029 .010514 .1973692
hsgrad .1578992 .4049257 0.39 0.697 -.6357464 .9515449
female -.1067433 .4164735 -0.26 0.798 -.9230191 .7095326
_cons -5.478143 1.685075 -3.25 0.001 -8.782394 -2.173892

We obtain the same results as with mi estimate: logit.

To obtain predictions after multiple-equation commands such as mlogit, we need to use the
equation() option of mi predict or mi predictnl to obtain a prediction from a specific equation.
By default, the first equation is assumed:

. mi predict xb_O_mi using miest
(option xb assumed; linear prediction)
. mi xeq O: summarize xb_O_mi

m=0 data:

-> summarize xb_O_mi

Variable | Obs Mean Std. Dev. Min Max

xb_O_mi | 154 0 0 0 0

In our example, the first equation corresponds to the base category, so the linear prediction is zero
for this equation.

To obtain the linear prediction from the second equation, we specify the equation(egno) option.
eqno can refer to the equation number, #2, or to the equation name, 1. For example,

. mi predict xb_1_mi using miest, equation(#2)
(option xb assumed; linear prediction)

Suppose we want to compute observation-specific odds of a heart attack. Knowing that the odds
of a disease is the exponentiated linear predictor, we can compute the odds simply as

. qui mi xeq: generate odds_mi = exp(xb_1_mi)

Instead, to illustrate a more advanced syntax of mi predictnl, we compute the odds using their
definition as the ratio of a probability of a heart attack (attack==1) to the probability of no heart
attack (attack==0). Log odds are asymptotically normally distributed, so we apply combination rules
to log odds and then exponentiate the result to obtain odds:

280 mi predict — Obtain multiple-imputation predictions

. mi predictnl lnodds_mi = 1ln(predict(pr equation(1))/predict(pr equation(0))) using
> miest

. qui mi xeq: generate odds_mi = exp(lnodds_mi)

In the above, we used the names of the equations, 0 and 1, within equation() to obtain probabilities
of no heart attack and a heart attack, respectively.

We can see, for example, that for older subjects or subjects who smoke, the odds of having a heart
attack are noticeably higher:

. qui mi xeq: generate byte atrisk = smokes==1 | age>50
. mi xeq 0: by atrisk, sort: summ odds_mi

m=0 data:
-> by atrisk, sort: summ odds_mi

-> atrisk = 0
Variable Obs Mean Std. Dev. Min Max

odds_mi 30 .3472545 .1451144 .1642029 .818259

-> atrisk =1

Variable Obs Mean Std. Dev. Min Max

odds_mi 124 1.327598 1.228176 .2198672 8.285403

Methods and formulas

Multiple-imputation predictions are obtained by considering an observation-specific prediction as
an estimand and by applying Rubin’s combination rules to it (White, Royston, and Wood 2011).

Let 7;(-) be a prediction of interest for subject ¢ and 7j; ,,,(-) be a completed-data estimate of the
prediction for subject ¢, ¢ = 1, ..., N, from imputation m, m = 1,..., M. In what follows, we omit
the functional argument of 7);(-) for brevity.

The MI estimate of prediction 7); is
M
Tt = 1 > i i=1,...,N
m=1

Let Var(; ,,,) be the completed-data variance of the completed-data prediction 7); ,,, for subject %
from imputation m. The standard error of the MI prediction 7; ,, is the square root of the total MI

variance Tm e

_ 1
T, :UZ-+<1+M>BZ», i=1,...,N

where U; = Z%Zl Var(7;.m)/M is the within-imputation variance and

B; = Z%:1(ﬁi,m — ;. ar)?/(M — 1) is the between-imputation variance.

Other statistics such as test statistics, confidence intervals, and relative variance increases are
obtained by applying to 7; the same formulas as described in Univariate case under Methods and
formulas of [MI] mi estimate for parameter (). Also see Rubin (1987, 76-77).

mi predict — Obtain multiple-imputation predictions 281

As for any other parameter, the validity of applying Rubin’s combination rules to 7; is subject to
7; satisfying a set of conditions as described, for example, in Theory underlying multiple imputation
under Remarks of [MI] intro substantive. In particular, the combination rules should be applied to
7; in the metric for which the sampling distribution is closer to the normal distribution.

References

Barnard, J., and D. B. Rubin. 1999. Small-sample degrees of freedom with multiple imputation. Biometrika 86:
948-955.

Rubin, D. B. 1987. Multiple Imputation for Nonresponse in Surveys. New York: Wiley.

White, I. R., P. Royston, and A. M. Wood. 2011. Multiple imputation using chained equations: Issues and guidance
for practice. Statistics in Medicine 30: 377-399.

Also see

[MI] mi estimate postestimation — Postestimation tools for mi estimate
[MI] mi estimate — Estimation using multiple imputations

[MI] intro substantive — Introduction to multiple-imputation analysis
[MI] intro — Introduction to mi

[MI] Glossary

Title

mi ptrace — Load parameter-trace file into Stata

Syntax

mi ptrace describe [using] filename

mi ptrace use filename [, use_options]

use_options Description

clear okay to replace existing data in memory
double load variables as doubles (default is floats)
select (selections) what to load (default is all)

where selections is a space-separated list of individual selections. Individual selections are of the form

In

b [yname, xname]
v [yname, yname]

where ynames and xnames are displayed by mi ptrace describe. You may also specify

b[#_y, #x]
vI#_y, #_y]

where #_y and #_x are the variable numbers associated with yname and xname, and those too are
shown by mi ptrace describe.

For b, you may also specify * to mean all possible index elements. For instance,

b*,x*] all elements of b
b [yname , *] row corresponding to yname
b [*,xname] column corresponding to xname

Similarly, b[#_y,*] and b[*,#_x] are allowed. The same is allowed for v, and also, the second

element can be specified as <, <=, =, >=, or >. For instance,
v [yname ,=] variance of yname
v[*,=] all variances (diagonal elements)
vx*,<] lower triangle
v[*,<=] lower triangle and diagonal
v[*,>=] upper triangle and diagonal
v[*,>] upper triangle
mi ptrace describe and in mi ptrace use, filename must be specified in quotes if it contains

special characters or blanks. filename is assumed to be filename . stptrace if the suffix is not specified.

282

mi ptrace — Load parameter-trace file into Stata 283

Description

Parameter-trace files, files with suffix .stptrace, are created by the saveptrace() option of
mi impute mvn; see [MI] mi impute mvn. These are not Stata datasets, but they can be loaded as if
they were by using mi ptrace use. Their contents can be described without loading them by using
mi ptrace describe.

Options

clear specifies that it is okay to clear the dataset in memory, even if it has not been saved to disk
since it was last changed.

double specifies that elements of b and v are to be loaded as doubles; they are loaded as floats by
default.

select (selections) allows you to load subsets of b and v. If the option is not specified, all of b and
v are loaded. That result is equivalent to specifying select (b[*,*] v[*,<=]). The <= specifies
that just the diagonal and lower triangle of symmetric matrix v be loaded.

Specifying select (b[*,*]) would load just b.
Specifying select (v[*,<=]) would load just v.
Specifying select (b[*,*] v[*,=]) would load b and the diagonal elements of v.

Remarks

Say that we impute the values of y; and yo assuming that they are multivariate normal distributed,
with their means determined by a linear combination of x, x2, and x3, and their variance constant.
Writing this more concisely, y = (y1,y2)’ is distributed MVN(XB, V), where B: 2x 3 and V: 2x 2.
If we use MCMC or EM procedures to produce values of B and V to be used to generate values for y,
we must ensure that we use sufficient iterations so that the iterative procedure stabilizes. mi impute
mvn (see [MI] mi impute mvn) provides the worst linear combination (WLC) of the elements of B and
V. If we want to perform other checks, we can specify mi impute mvn’s saveptrace (filename)
option. mi impute then produces a file containing m (imputation number), iter (overall iteration
number), and the corresponding B and V. The last iter for each m is the B and V that mi impute
mvn used to impute the missing values.

When we used mi impute mvn, we specified burn-in and burn-between numbers, say, burnin (300)
and burnbetween (100). If we also specified saveptrace (), the file produced is organized as follows:

record # m iter B v
1 1 -299
2 1 -298
299 1 -1
300 1 0 <- used to impute m=1
301 2 1
302 2 2
399. 1 99 e
400. 1 100 N ... <- used to impute m=2
401. 2 101 .

284 mi ptrace — Load parameter-trace file into Stata

The file is not a Stata dataset, but mi ptrace use can load the file and convert it into Stata format,
and then it will look just like the above except for the following:

e The record number will become the Stata observation number.

e B will become variables b_y1x1, b_y1x2, and b_y1x3; and b_y2x1, b_y2x2, and b_y2x3.
(Remember, we had 2 y variables and 3 x variables.)

V will become variables v_ylyl, v_y2y1, and v_y2y2. (This is the diagonal and lower
triangle of V; variable v_y1y2 is not created because it would be equal to v_y2y1.)

Variable labels will be filled in with the underlying names of the variables. For instance, the
variable label for b_y1x1 might be “experience, age”, and that would remind us that b_y1x1
contains the coefficient on age used to predict experience. v_y2y1 might be ‘“education,
experience”, and that would remind us that v_y2y1 contains the covariance between education
and experience.

Saved results

mi ptrace describe saves the following in r():

Scalars
r(tc) %tc date-and-time file created
r(nx) number of x variables (columns of B)
r(ny) number of y variables (rows of B)

Macros
r(x) space-separated [op.]varname of x
r(y) space-separated [op.]varname of y
r(id) name of file creator

Also see

[MI] intro — Introduction to mi

[MI] mi impute mvn — Impute using multivariate normal regression

Title

mi rename — Rename variable

Syntax

mi rename oldname newname [, noupdate]

Menu
Statistics > Multiple imputation

Description

mi rename renames variables.

Option

noupdate in some cases suppresses the automatic mi

[MI] noupdate option.

Remarks

Remarks are presented under the following headings:

Specifying the noupdate option
What to do if you accidentally
What to do if you accidentally
What to do if you accidentally
What to do if you accidentally
What to do if you accidentally

Specifying the noupdate option

use
use

rename
rename
rename
rename
rename

on
on
on
on

update this command might perform; see

wide data
mlong data
flong data
flongsep data

If you are renaming more than one variable, you can speed execution with no loss of safety by
specifying the noupdate option after the first mi rename:

. mi rename ageyears age

. mi rename timeinstudy studytime, noupdate

. mi rename personid id, noupdate

The above is generally good advice. When giving one mi command after another, you may specify
noupdate after the first command to speed execution.

285

286 mi rename — Rename variable

What to do if you accidentally use rename

Assume that you just typed

. rename ageyears age

rather than typing

. mi rename ageyears age

as you should have. No damage has been done yet, but if you give another mi command and it
runs mi update (see [MI] mi update), real damage will be done. We will discuss that and what to
do about it in the sections that follow, but first, if you have given no additional mi commands, use
rename (not mi rename) to rename the variable back to how it was:

. rename age ageyears

Then use mi rename as you should have in the first place:

. mi rename ageyears age

The sections below handle the case where mi update has run. You will know that mi update has
run because since the rename, you gave some mi command—perhaps even mi update itself—and
you saw a message like one of these:

(variable ageyears dropped in m > 0)
(imputed variable ageyears unregistered because not in m = 0)
(passive variable ageyears unregistered because not in m = 0)

(regular variable ageyears unregistered because not in m = 0)

What to do if you accidentally use rename on wide data

If ageyears was unregistered, no damage was done, and no additional action needs to be taken.

If ageyears was registered as regular, no damage was done. However, your renamed variable is
no longer registered. Reregister the variable under its new name by typing mi register regular
age; see [MI] mi set.

If ageyears was registered as imputed or passive, you just lost all values for m > 0. Passive
variables are usually not too difficult to re-create; see [MI] mi passive. If the variable was imputed,
well, hope that you will have saved your data recently when you make this error and, before that,
learn good computing habits.

What to do if you accidentally use rename on mlong data

If ageyears was unregistered, no damage was done, and no additional action needs to be taken.

If ageyears was registered as regular, no damage was done. However, your renamed variable is
no longer registered. Reregister the variable under its new name by typing mi register regular
age; see [MI] mi set.

If ageyears was registered as imputed or passive, you just lost all values for m > 0. We offer the
same advice as we offered when the data were wide: Passive variables are usually not too difficult
to re-create—see [MI] mi passive—and otherwise hope that you will have saved your data recently
when you make this error. It is always a good idea to save your data periodically.

mi rename — Rename variable 287

What to do if you accidentally use rename on flong data
The news is better in this case; no matter how your variables were registered, you have not lost
data.
If ageyears was unregistered, no further action is required.

If ageyears was registered as regular, you need to reregister the variable under its new name by
typing mi register regular age; see [MI] mi set.

If ageyears was registered as passive or imputed, you need to reregister the variable under its
new name by typing mi register passive age or mi register imputed age.

What to do if you accidentally use rename on flongsep data

The news is not as good in this case.

If ageyears was unregistered, no damage was done. When mi update ran, it noticed that old
variable ageyears no longer appeared in m > 0 and that new variable age now appeared in m = 0,
so mi update dropped the first and added the second to m > 0, thus undoing any damage. There is
nothing more that needs to be done.

If ageyears was registered as regular, no damage was done, but you need to reregister the variable
by typing mi register regular age; see [MI] mi set.

If ageyears was registered as passive or imputed, you have lost the values in m > 0. Now would
probably be a good time for us to mention how you should work with a copy of your flongsep data;
see [MI] mi copy.

Also see

[MI] intro — Introduction to mi

Title

mi replace0 — Replace original data

Syntax

mi replaceO using filename, id(varlist)

Typical use is

. mi extract O
. (perform data-management commands)

. mi replace0O using origfile, id(idvar)

Menu

Statistics > Multiple imputation

Description

mi replaceO replaces m = 0 of an mi dataset with the non-mi data of another and then carries
out whatever changes are necessary in m > 0 of the former to make the resulting mi data consistent.
mi replaceO starts with one of the datasets in memory and the other on disk (it does not matter
which is which) and leaves in memory the mi data with m = 0 replaced.

Option

id(varlist) is required; it specifies the variable or variables to use to match the observations in m = 0
of the mi data to the observations of the non-mi dataset. The ID variables must uniquely identify
the observations in each dataset, and equal values across datasets must indicate corresponding
observations, but one or both datasets can have observations found (or not found) in the other.

Remarks

It is often easier to perform data management on m = 0 and then let mi replaceO duplicate
the results for m = 1, m = 2, ..., m = M rather than perform the data management on all m’s
simultaneously. It is easier because m = 0 by itself is a non-mi dataset, so you can use any of the
general Stata commands (that is, non-mi commands) with it.

You use mi extract to extract m = 0; see [MI] mi extract. The extracted dataset is just a regular
Stata dataset; it is not mi set, nor does it have any secret complexities.

You use mi replaceO to recombine the datasets after you have modified the m = 0 data. mi
replaceO can deal with the following changes to m = 0:

e changes to the values of existing variables,

e removal of variables,

288

mi replace0 — Replace original data 289

e addition of new variables,
e dropped observations, and
e added observations.
For instance, you could use mi extract and mi replaceO to do the following:
. use my_midata, clear
. mi extract O
. replace age = 26 if age==
. replace age = 32 if pid==2088
. merge 1:1 pid using newvars, keep(match) nogen
. by location: egen avgrate = mean(rate)
. drop proxyrate
. mi replace0 using my_midata, id(pid)
In the above,
1. we extract m = 0;
2. we update existing variable age (we fix a typo and the age of pid 2088);

3. we merge m = 0 with newvars.dta to obtain some new variables and, in the process,
keep only the observations that were found in both m = 0 and newvars.dta;

4. we create new variable avgrate equal to the mean rate by location; and
5. we drop previously existing variable proxyrate.

We then take that result and use it to replace m = 0 in our original mi dataset. We leave it to mi
replaceO to carry out the changes to m =1, m =2, ..., m = M to account for what we did to
m = 0.

By the way, it turns out that age in my_midata.dta is registered as imputed. We changed one
nonmissing value to another nonmissing value and changed one missing value to a nonmissing value.
mi replaceO will deal with the implications of that. It would even deal with us having changed a
nonmissing value to a missing value.

There is no easier way to do data management than by using mi extract and mi replaceO.

Also see

[MI] intro — Introduction to mi

[MI] mi extract — Extract original or imputed data from mi data

Title

mi reset — Reset imputed or passive variables

Syntax
mi reset varlist [= exp] [zf] [, options]
options Description
Main
m (numlist) m to reset; default all
noupdate see [MI] noupdate option
Menu

Statistics > Multiple imputation

Description

mi reset resets the imputed or passive variables specified. Values are reset to the values in m = 0,
which are typically missing, but if you specify = exp, they are reset to the value specified.

Options
Main

m (numlist) specifies the values of m that are to be reset; the default is to update all values of m. If
M were equal to 3, the default would be equivalent to specifying m(1/3) or m(1 2 3). If you
wished to update the specified variable(s) in just m = 2, you could specify m(2).

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option.

Remarks

Remarks are presented under the following headings:

Using mi reset
Technical notes and relation to mi update

Using mi reset

Resetting an imputed or passive variable means setting its values in m > O equal to the values
recorded in m = 0. For instance, if variable inc were imputed, typing

. mi reset inc
(15 values reset)

290

mi reset — Reset imputed or passive variables 291

would reset its incomplete values back to missing in all m. In the sample output shown, we happen
to have M =5 and reset back to missing the three previously imputed values in each imputation.

It is rare that you would want to reset an imputed variable, but one can imagine cases. Your
coworker Joe sent you the data and just buzzed you on the telephone. “There is one value wrong in
the data I sent you,” he says. “There is an imputed value for inc that is 15,000, which is obviously
absurd. Just reset it back to missing until I find out what happened.” So you type

. mi reset inc if inc==15000
(1 value reset)

Later Joe calls back. “It is a long and very stupid story,” he begins, and you can hear him settling
into his chair to tell it. As you finish your second cup of coffee, he is wrapping up. “So the value
of inc for pid 1433 should be 0.725.” You type

. mi reset inc = .725 if pid=1433
(1 value reset)

It is common to need to reset passive variables if imputed values change. For instance, you have
variables age and lnage in your data. You imputed lnage; age is passive. You recently updated
the imputed values for 1nage. One way to update the values for age would be to type

. mi passive: replace age = exp(lnage)
m=0:

m=1:

(10 real changes made)

m=2:

(10 real changes made)

m=3:

(8 real changes made)

Alternatively, you could type

. mi reset age = exp(lnage)
(28 values reset)

Technical notes and relation to mi update

mi reset, used with an imputed variable, changes only the values for which the variable contains
hard missing (.) in m = 0. The other values are, by definition, already equal to their m = 0 values.

mi reset, used with a passive variable, changes only the values in incomplete observations,
observations in which any imputed variable contains hard missing. The other values of the passive
variable are, by definition, already equal to their m = 0 values.

mi update can be used to ensure that values that are supposed to be equal to their m = 0 values
in fact are equal to them; see [MI] mi update.

Also see

[MI] intro — Introduction to mi

[MI] mi update — Ensure that mi data are consistent

Title

mi reshape — Reshape mi data

Syntax
Overview

(The words long and wide in what follows have nothing to do with mi styles mlong, flong, flongsep,
and wide; they have to do with reshape’s concepts.)

long wide
i j stub i stubt stub2
1 1 41 reshape 1 4.1 4.5
1 2 45 — 2 33 3.0
2 1 33
2 2 30

To go from long to wide:
J existing variable
mi reshape wide stub, i(i) j(j)
To go from wide to long:

mi reshape long stub, i(i) j(j)

J new variable

Basic syntax

Convert mi data from long form to wide form

mi reshape wide stubnames, 1i(varlist) j(varname) [options]

Convert mi data from wide form to long form

mi reshape long stubnames, 1i(varlist) j(varname) [options]

options Description
i (varlist) 1 variable(s)
j (varname [values]) long—wide: j, existing variable

wide—long: j, new variable
optionally specify values to subset j

string 7 is string variable (default is numeric)
where values is #[—#] [} if 7 is numeric (the default)
"string" ["string"] if j is string

292

mi reshape — Reshape mi data 293

and where stubnames are variable names (long—wide), or stubs of variable names (wide—long), and
either way, may contain @, denoting where j appears or is to appear in the name.

In the example above, when we wrote “mi reshape wide stub”, we could have written “mi reshape
wide stub@” because j by default is used as a suffix. Had we written stu@b, then the wide variables
would have been named stulb and stu2b.

Menu

Statistics > Multiple imputation

Description

mi reshape is Stata’s reshape for mi data; see [D] reshape.

Options

See [D] reshape for descriptions of the other options.

Remarks
The reshape command you specify is carried out on the m = 0 data, and then the result is
duplicated in m =1, m=2, ..., m =
Also see

[MI] intro — Introduction to mi
[D] reshape — Convert data from wide to long form and vice versa

[MI] mi replace0) — Replace original data

Title

mi select — Programmer’s alternative to mi extract

Syntax

mi select init [, fast}
mi select #

where 0 < # < M, and where typical usage is
quietly mi query
local M = r(M)
preserve

mi select init
local priorcmd "‘r(priorcmd)’"

forvalues m=1(1) ‘M’ {
mi select ‘m’

‘priorcmd’
}

restore

Description

mi select is a programmer’s command. It is a faster, more dangerous version of mi extract;
see [MI] mi extract.

Before using mi select, the mi data must be preserved; see [P] preserve.

mi select init initializes mi select. mi select returns macro r(priorcmd), which you are
to issue as a command between each mi select # call. r(priorcmd) is not required to be issued
before the first call to mi select #, although you may issue it if that is convenient.

mi select # replaces the data in memory with a copy of the data for m = #. The data are not
mi set. Changes to the selected data will not be posted back to the underlying mi data. mi select
calls can be made in any order, and the same m may be selected repeatedly.

Option

fast, specified with mi select init, specifies that the data delivered by mi select # commands
not be changed except for sort order. Then mi select can operate more quickly. fast is allowed
with all styles but currently affects the performance with the wide style only.

If fast is not specified, the data delivered by mi select # may be modified freely before the
next mi select # call. However, the data may not be dropped. mi select uses characteristics
(see [P] char) stored in _dta[] to know its state.

294

mi select — Programmer’s alternative to mi extract 295

Remarks

The data delivered by mi select # differ from those delivered by mi extract in that there may
be extra variables in the dataset.

One of the extra variables, _mi_id, is a unique observation identifier that you can use. If you
want to post changes made in the selected data back to the mi data, you can write a file containing
mi_id and the updated variables and then use _mi_id to match that to the mi data after your final
restore.

In the case of wide data, the mi data have no _mi_id variable. _mi_id in the selected data is
reflected in the current order of the mi data.

Saved results

mi select init returns the following in r():

Macros
r(priorcmd) command to be issued prior to calling mi select #; this command will be either restore,
preserve or nothing

Also see
[MI] intro — Introduction to mi
[MI] mi extract — Extract original or imputed data from mi data

[MI] technical — Details for programmers

Title

mi set — Declare multiple-imputation data

Syntax
mi set style
where style is wide
mlong
flong
flongsep name

mi register { imputed |passive|regular } varlist

mi unregister varlist

mi set M {=|+=|-=} #

mi set m -= (numlist)

mi unset [, asis}

Menu

Statistics > Multiple imputation

Description
mi set is used to set a regular Stata dataset to be an mi dataset. mi set is also used to modify
the attributes of an already set dataset. An mi set dataset has the following attributes:
e The data are recorded in a style: wide, mlong, flong, or flongsep; see [MI] styles.
e Variables are registered as imputed, passive, or regular, or they are left unregistered.

e In addition to m = 0, the data with missing values, the data include M > 0 imputations of
the imputed variables.

mi set style begins the setting process by setting the desired style. mi set style sets all variables
as unregistered and sets M = 0.

mi register registers variables as imputed, passive, or regular. Variables can be registered
one at a time or in groups and can be registered and reregistered.

mi unregister unregisters registered variables, which is useful if you make a mistake. Exercise
caution. Unregistering an imputed or passive variable can cause loss of the filled-in missing values
in m > 0 if your data are recorded in the wide or mlong styles. In such cases, just mi register
the variable correctly without mi unregistering it first.

296

mi set — Declare multiple-imputation data 297

mi set M modifies M, the total number of imputations. M may be increased or decreased. M
may be set before or after imputed variables are registered.

mi set m drops selected imputations from the data.

mi unset is a rarely used command to unset the data. Better alternatives include mi extract and
mi export (see [MI] mi extract and [MI] mi export, respectively).

Remarks

Data must be mi set before they can be used with the other mi commands. There are two ways
data can become mi set: direct use of mi set style or use of mi import (see [MI] mi import).

The mi register, mi set M, and mi set m commands are for use with already set data and are
useful even with imported data.
Remarks are presented under the following headings:
mi set style
mi register and mi unregister

mi set M and mi set m
mi unset

mi set style

m

mi set style begins the setting process. mi set style has the following forms:

mi set wide
mi set mlong
mi set flong
mi set flongsep name

It does not matter which style you choose because you can always use mi convert (see [MI] mi
convert) to change the style later. We typically choose wide to begin.

If your data are large, you may have to use flongsep. mi set flongsep requires you to specify
a name for the flongsep dataset collection. See Advice for using flongsep in [MI] styles.

If you intend to have super-varying variables, you need to choose either flong or flongsep, or
you will need to mi convert to flong or flongsep style later.

The current style of the data is shown by the mi query and mi describe commands; see [MI] mi
describe.

register and mi unregister

mi register has three forms:

mi register imputed varlist
mi register passive varlist
mi register regular varlist

See [MI] Glossary for a definition of imputed, passive, and regular variables.

You are required to register imputed variables. If you intend to use mi impute (see [MI] mi
impute) to impute missing values, you must still register the variables first.

298 mi set — Declare multiple-imputation data

Concerning passive variables, we recommend that you register them, and if your data are style
wide, you are required to register them. If you create passive variables by using mi passive (see
[MI] mi passive), that command automatically registers them for you.

Whether you register regular variables is up to you. Registering them is safer in all styles except
wide, where it does not matter. We say registering is safer because regular variables should not vary
across m, and in the long styles, you can unintentionally create variables that vary. If variables are
registered, mi will detect and fix mistakes for you.

Super-varying variables—see [MI] Glossary—rarely occur, but if you have them, be aware that
they can be stored only in flong and flongsep data and that they never should be registered.

The registration status of variables is listed by mi describe (see [MI] mi describe).

Use mi unregister if you accidentally register a variable incorrectly, with one exception: if you
mistakenly register a variable as imputed but intended to register it as passive, or vice versa, use
mi register directly to reregister the variable. The mere act of unregistering a passive or imputed
variable can cause values in m > 0 to be replaced with those from m = 0 if the data are wide or
mlong.

That exception aside, you first mi unregister variables before reregistering them.

mi set M and mi set m
mi set M is seldom used, and mi set m is sometimes used.
mi set M sets M, the total number of imputations. The syntax is
mi set M = #

mi set M += #
mi set M -= #

mi set M = # sets M = #. Imputations are added or deleted as necessary. If imputations are
added, the new imputations obtain their values of imputed and passive variables from m = 0, which
means that the missing values are not yet replaced in the new imputations. It is not necessary to
increase M if you intend to use mi impute to impute values; see [MI] mi impute.

mi set M += # increments M by #.

mi set M -= # decrements M by #.

mi set m -= (numlist) deletes the specified imputations. For instance, if you had M = 5
imputations and wanted to delete imputation 2, leaving you with M = 4, you would type mi set m
-= (2).
mi unset

If you wish to unset your data, your best choices are mi extract and mi export; see [MI] mi
extract and [MI] mi export. The mi extract O command replaces the data in memory with the data
from m = 0, unset. The mi export command replaces the data in memory with unset data in a form
that can be sent to a non—Stata user.

mi unset is included for completeness, and if it has any use at all, it would be by programmers.

mi set — Declare multiple-imputation data 299

Also see

[MI] intro — Introduction to mi

[MI] mi convert — Change style of mi data

[MI] mi describe — Describe mi data

[MI] mi extract — Extract original or imputed data from mi data
[MI] mi export — Export mi data

[MI] mi import — Import data into mi

[MI] mi XXXset — Declare mi data to be svy, st, ts, xt, etc.

[MI] styles — Dataset styles

Title

mi stsplit — Stsplit and stjoin mi data

Syntax
To split at designated times

mi stsplit newvar [if |, {at(uumlist) |every(#) } [options]

options Description
Main
* at (numlist) split at specified analysis times
*every (#) split when analysis time is a multiple of #
after (spec) use time since spec instead of analysis time for at () or every()
trim exclude observations outside of range
noupdate see [MI] noupdate option
nopreserve programmer’s option

* at() or every() is required.

nopreserve is not included in the dialog box.

To split at failure times

mi stsplit [if], at(failures) [options]

options Description
Main
*at(failures) split at times of observed failures
strata(varlist) perform splitting by failures within stratum, strata defined by varlist
riskset (newvar) create risk-set ID variable
noupdate see [MI] noupdate option
nopreserve programmer’s option

* at() is required.

nopreserve is not included in the dialog box.

300

mi stsplit — Stsplit and stjoin mi data 301

To join episodes

mi stjoin [, options}

options Description
Main
censored (numlist) values of failure that indicate no event
noupdate see [MI] noupdate option
Menu

Statistics > Multiple imputation

Description

mi stsplit and mi stjoin are stsplit and stjoin for mi data; see [ST] stsplit. Except for
the addition of the noupdate option, the syntax is identical. Except for generalization across m, the
results are identical.

Your mi data must be stset to use these commands. If your data are not already stset, use mi
stset rather than the standard stset; see [MI] mi XXXset.

Options
noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option.

See [ST] stsplit for documentation on the remaining options.

Remarks

One should never use any heavyweight data-management commands with mi data. Heavyweight
commands are commands that make sweeping changes to the data rather than simply deleting some
observations, adding or dropping some variables, or changing some values of existing variables.
stsplit and stjoin are examples of heavyweight commands (see [ST] stsplit).

Also see
[MI] intro — Introduction to mi
[ST] stsplit — Split and join time-span records
[MI] mi XXXset — Declare mi data to be svy, st, ts, xt, etc.

Title

mi test — Test hypotheses after mi estimate

Syntax
Test that coefficients are zero

mi test coeflist

Test that coefficients within a single equation are zero

mi test [eqno] [:coeﬂist}

Test that subsets of coefficients are zero (full syntax)

mi test (spec) [(spec) } [, test_options}

Test that subsets of transformed coefficients are zero

mi testtransform name [(name) } [, transform_options]
test_options Description
Test
ufmitest perform unrestricted FMI model test
nosmall do not apply small-sample correction to degrees of freedom
constant include the constant in coefficients to be tested
transform_options Description
Test
ufmitest perform unrestricted FMI model test
nosmall do not apply small-sample correction to degrees of freedom
nolegend suppress transformation legend

coeflist may contain factor variables and time-series operators; see [U] 11.4.3 Factor variables and
[U] 11.4.4 Time-series varlists.

coeflist is

coef [coef ..]

Legnolcoef [[egnolcoef. . .]

Legnol b [coef] [[egnol _blcoef]. ..]
eqno is

##

eqname

302

mi test — Test hypotheses after mi estimate 303

spec is
coeflist
Legnol [: coeﬂist]

coef identifies a coefficient in the model; see [R] test for details. eqgname is an equation name.

name is an expression name as specified with mi estimate or mi estimate using (see [MI] mi
estimate or [MI] mi estimate using).

Menu

Statistics > Multiple imputation

Description

mi test performs joint tests of coefficients.

mi testtransform performs joint tests of transformed coefficients as specified with mi estimate
or mi estimate using (see [MI] mi estimate or [MI] mi estimate using).

Options
[Test |

ufmitest specifies that the unrestricted fraction missing information (FMI) model test be used. The
default test performed assumes equal fractions of information missing due to nonresponse for all
coefficients. This is equivalent to the assumption that the between-imputation and within-imputation
variances are proportional. The unrestricted test may be preferable when this assumption is suspect
provided that the number of imputations is large relative to the number of estimated coefficients.

nosmall specifies that no small-sample adjustment be made to the degrees of freedom. By default,
individual tests of coefficients (and transformed coefficients) use the small-sample adjustment
of Barnard and Rubin (1999), and the overall model test uses the small-sample adjustment of
Reiter (2007).

constant specifies that _cons be included in the list of coefficients to be tested when using the
[egno] form of spec with mi test. The default is to not include _cons.

nolegend, specified with mi testtransform, suppresses the transformation legend.

Remarks
Remarks are presented under the following headings:

Introduction

Overview

Example 1: Testing subsets of coefficients equal to zero
Example 2: Testing linear hypotheses

Example 3: Testing nonlinear hypotheses

304 mi test — Test hypotheses after mi estimate

Introduction

The major issue arising when performing tests after MI estimation is the validity of the variance—
covariance estimator (VCE) of the MI estimates. MI variance consists of two sources of variation:
within-imputation variation and between-imputation variation. With a small number of imputations,
the estimate of the between-imputation variance—covariance matrix is imprecise. In fact, when the
number of imputations is less than or equal to the number of estimated parameters, the between-
imputation matrix does not even have a full rank. As such, the estimated VCE may not be a valid
variance—covariance matrix and thus not suitable for joint inference.

One solution to this problem was proposed by Rubin (1987) and Li et al. (1991). The idea is
to assume that the between-imputation variance is proportional to the within-imputation variance.
This assumption implies equal FMIs for all jointly tested parameters. Li et al. (1991) found that the
procedure performs well in terms of power and maintaining the significance level even with moderately
variable FMIs. mi test and mi testtransform, by default, perform tests using this procedure.

When the number of imputations is large enough relative to the number of tested parameters so
that the corresponding VCE is trustworthy, you can request the unrestricted FMI test by specifying the
ufmitest option. The unrestricted FMI test is the conventional test described by Rubin (1987, 77).

For testing nonlinear hypotheses, direct application of the conventional delta method to the estimated
coefficients may not be feasible when the number of imputations is small enough that the VCE of
the MI estimates cannot be used for inference. To test these hypotheses, one can first obtain MI
estimates of the transformed coefficients by applying Rubin’s combination rules to the transformed
completed-data estimates and then apply the above MI-specific hypotheses tests to the combined
transformed estimates. The first step can be done by specifying expressions with mi estimate (or
mi estimate using). The second step is performed with mi testtransform. mi testtransform
uses the same method to test transformed coefficients as mi test uses to test coefficients.

Overview

Use mi test to perform joint tests that coefficients are equal to zero:

. mi estimate: y x1 x2 x3 x4
. mi test x2 x3 x4

Use mi testtransform, however, to perform tests of more general linear hypotheses, such
as _b[x1]=_b[x2], or _b[x1]=_b[x2] and _b[x1]=_b[x3]. Testing general linear hypotheses
requires estimation of between and within variances corresponding to the specific hypotheses and
requires recombining the imputation-specific estimation results. One way you could do that would
be to refit the model and include the additional parameters during the estimation step. To test
_blx1]=_b[x2], you could type

. mi estimate (diff: _b[x1]-_b[x2]): regress y x1 x3 x3 x4
. mi testtransform diff

A better approach, however, is to save each of the imputation-specific results at the time the original
model is fit and then later recombine results using mi estimate using. To save the imputation-specific
results, specify mi estimate’s saving() option when the model is originally fit:

. mi estimate, saving(myresults): regress y x1 x2 x3 x4

To test _b[x1]=_b[x2], you type

. mi estimate (diff: _b[x1]1-_b[x2]) using myresults
. mi testtransform diff

mi test — Test hypotheses after mi estimate 305

The advantage of this approach is that you can test additional hypotheses without refitting the
model. For instance, if we now wanted to test _b[x1]=_b[x2] and _b[x1]=_b[x3], we could type

. mi estimate (diffl: _bl[x1]-_b[x2]) (diff2: _b[x1]=_b[x3]) using myresults
. mi testtransform diffl diff2

To test nonlinear hypotheses, such as _b[x1]/_b[x2]=_b[x3]/_b[x4], we could then type

. mi estimate (diff: _b[x1]1/_b[x2]-_b[x3]/_b[x4]) using myresults
. mi testtransform diff

Example 1: Testing subsets of coefficients equal to zero

We are going to test that tax, sqft, age, nfeatures, ne, custom, and corner are in the
regression analysis of house resale prices we performed in Example 1: Completed-data logistic
analysis of [MI] mi estimate. Following the advice above, when we fit the model, we are going to
save the imputation-specific results even though we will not need them in this example; we will need
them in the following examples.

. use http://www.stata-press.com/data/r12/mhouses1993s30
(Albuquerque Home Prices Feb15-Apr30, 1993)

. mi estimate, saving(miest): regress price tax sqft age nfeatures ne custom corner

Multiple-imputation estimates Imputations = 30
Linear regression Number of obs = 117
Average RVI = 0.0648

Largest FMI = 0.2533

Complete DF = 109

DF adjustment: Small sample DF: min = 69.12
avg = 94.02

max = 105.51

Model F test: Equal FMI F(C 7, 106.5) = 67.18
Within VCE type: OLS Prob > F = 0.0000
price Coef. Std. Err. t P>t [95% Conf. Intervall

tax .6768015 .1241568 5.45 0.000 .4301777 .9234253

sqft .2118129 .069177 3.06 0.003 .0745091 .3491168

age .2471445 1.653669 0.15 0.882 -3.051732 3.546021
nfeatures 9.288033 13.30469 0.70 0.487 -17.12017 35.69623

ne 2.518996 36.99365 0.07 0.946 -70.90416 75.94215

custom 134.2193 43.29755 3.10 0.002 48.35674 220.0818
corner -68.58686 39.9488 -1.72 0.089 -147.7934 10.61972

_cons 123.9118 71.05816 1.74 0.085 -17.19932 265.0229

In the above mi estimate command, we use the saving() option to create a Stata estimation file
called miest.ster, which contains imputation-specific estimation results.

306 mi test — Test hypotheses after mi estimate

mi estimate reports the joint test of all coefficients equal to zero in the header. We can reproduce
this test with mi test by typing
. mi test tax sqft age nfeatures ne custom corner
note: assuming equal fractions of missing information
(1) tax =0

(2) sqft =0
(3) age=0
(4) nfeatures = 0
(5) ne=0
(6) custom =0
(7) cormer =0
F(7, 106.5) = 67.18
Prob > F = 0.0000

We obtain results identical to those from mi estimate.
We can test that a subset of coefficients, say, sqft and tax, are equal to zero by typing
. mi test sqft tax

note: assuming equal fractions of missing information
(1) sqft =0
(2) tax =0
F(2, 105.7) 114.75
Prob > F = 0.0000

Example 2: Testing linear hypotheses

Now we want to test the equality of the coefficients for sqft and tax. Following our earlier
suggestion, we use mi estimate using to estimate the difference between coefficients (and avoid
refitting the models) and then use mi testtransform to test that the difference is zero:

. mi estimate (diff: _b[tax]-_b[sqft]) using miest, nocoef

Multiple-imputation estimates Imputations = 30
Linear regression Number of obs = 117
Average RVI = 0.1200
Largest FMI = 0.1100
Complete DF = 109
DF adjustment: Small sample DF: min = 92.10
avg = 92.10
Within VCE type: oLs max = 92.10
command: regress price tax sqft age nfeatures ne custom corner
diff: _b[tax]-_b[sqft]
price Coef. Std. Err. t P>|t] [95% Conf. Intervall
diff .4649885 .1863919 2.49 0.014 .0948037 .8351733

. mi testtransform diff
note: assuming equal fractions of missing information

diff: _b[tax]-_b[sqft]
(1) diff =0

F(1, 92.1) = 6.22
Prob > F = 0.0144

We suppress the display of the coefficient table by specifying the nocoef option with mi estimate
using. We obtain the same results from the F’ test as those of the ¢ test reported in the transformation
table.

mi test — Test hypotheses after mi estimate 307

Similarly, we can test whether three coefficients are jointly equal:

. mi estimate (diffl: _b[tax]-_blsqft]) (diff2: _bl[custom]-_b[tax]) using miest, nocoef

Multiple-imputation estimates Imputations = 30
Linear regression Number of obs = 117
Average RVI = 0.0748
Largest FMI = 0.1100
Complete DF = 109
DF adjustment: Small sample DF: min = 92.10
avg = 97.95
Within VCE type: OLS max = 103.80
command: regress price tax sqft age nfeatures ne custom corner
diff1: _b[tax]-_b[sqft]
diff2: _blcustom]-_b[tax]
price Coef. Std. Err. t P>t [95% Conf. Interval]
diff1 .4649885 .1863919 2.49 0.014 .0948037 .8351733
diff2 133.5425 43.30262 3.08 0.003 47.66984 219.4151

. mi testtr diff1l diff2
note: assuming equal fractions of missing information

diffl: _b[tax]-_blsqft]
diff2: _bl[custom]-_b[tax]

(1) diff1 =0
(2) diff2 =0
F(2, 105.6) = 7.34
Prob > F = 0.0010

We estimate two differences, _b[tax]-_b[sqft] and _b[custom]-_b[tax], using mi estimate
using and test whether they are jointly equal to zero by using mi testtransform.

We can perform tests of other hypotheses similarly by reformulating the hypotheses of interest
such that we are testing equality to zero.

Example 3: Testing nonlinear hypotheses

In the examples above, we tested linear hypotheses. Testing nonlinear hypotheses is no different.
We simply replace the specification of linear expressions in mi estimate using with the nonlinear
expressions corresponding to the tests of interest.

For example, let’s test that the ratio of the coefficients for tax and sqft is one, an equivalent
but less efficient way of testing whether the two coefficients are the same. Similarly to the earlier
example, we specify the corresponding nonlinear expression with mi estimate using and then use
mi testtransform to test that the ratio is one:

308 mi test — Test hypotheses after mi estimate

. mi estimate (rdiff: _b[tax]/_bl[sqft] - 1) using miest, nocoef

Multiple-imputation estimates Imputations = 30

Linear regression Number of obs = 117

Average RVI = 0.0951

Largest FMI = 0.0892

Complete DF = 109

DF adjustment: Small sample DF: min = 95.33

avg = 95.33

Within VCE type: OLS max = 95.33
command: regress price tax sqft age nfeatures ne custom corner

rdiff: _bl[tax]/_blsqft] - 1
price Coef. Std. Err. t P>t [95% Conf. Intervall
rdiff 2.2359 1.624546 1.38 0.172 -.9890876 5.460888

. mi testtr rdiff
note: assuming equal fractions of missing information

rdiff: _b[tax]/_blsqft] - 1
(1) rdiff =0

F(1, 95.3) = 1.89
Prob > F = 0.1719

We do not need to use mi testtransform (or mi test) to test one transformation (or coefficient)
because the corresponding test is provided in the output from mi estimate using.

Saved results

mi test and mi testtransform save the following in r():

Scalars
r(df) test constraints degrees of freedom
r(df_r) residual degrees of freedom
r(p) two-sided p-value
r(F) F statistic
r(drop) 1 if constraints were dropped, O otherwise

r(dropped_i) index of ith constraint dropped

Methods and formulas

mi test and mi testtransform use the methodology described in Multivariate case under
Methods and formulas of [MI] mi estimate, where we replace q with Rq — r and qy = O for the
test Hp: Rq =r.

References
Barnard, J., and D. B. Rubin. 1999. Small-sample degrees of freedom with multiple imputation. Biometrika 86:
948-955.

Li, K.-H., X.-L. Meng, T. E. Raghunathan, and D. B. Rubin. 1991. Significance levels from repeated p-values with
multiply-imputed data. Statistica Sinica 1: 65-92.

Reiter, J. P. 2007. Small-sample degrees of freedom for multi-component significance tests with multiple imputation
for missing data. Biometrika 94: 502-508.

Rubin, D. B. 1987. Multiple Imputation for Nonresponse in Surveys. New York: Wiley.

mi test — Test hypotheses after mi estimate 309

Also see
[MI] mi estimate postestimation — Postestimation tools for mi estimate
[MI] mi estimate — Estimation using multiple imputations
[MI] mi estimate using — Estimation using previously saved estimation results
[MI] intro substantive — Introduction to multiple-imputation analysis
[MI] intro — Introduction to mi

[MI] Glossary

Title

mi update — Ensure that mi data are consistent

Syntax

mi update

Menu

Statistics > Multiple imputation

Description
mi update verifies that mi data are consistent. If the data are not consistent, mi update reports
the inconsistencies and makes the necessary changes to make the data consistent.

mi update can change the sort order of the data.

Remarks

Remarks are presented under the following headings:

Purpose of mi update
What mi update does
mi update is run automatically

Purpose of mi update

mi update allows you to
e change the values of existing variables, whether imputed, passive, regular, or unregistered;
e add or remove missing values from imputed variables (or from any variables);
e drop variables;
e create new variables;
e drop observations; and
e duplicate observations (but not add observations in other ways).
You can make any or all of the above changes and then type

. mi update

and mi update will handle making whatever additional changes are required to keep the data consistent.
For instance,

. drop if sex==

(75 observations deleted)

. mi update
(375 m>0 obs. dropped due to dropped obs. in m=0)

In this example, we happen to have five imputations and are working with flongsep data. We
dropped 75 observations in m = 0, and that still left 5 x 75 = 375 observations to be dropped in
m > 0.

310

mi update — Ensure that mi data are consistent 311

The messages mi update produces vary according to the style of the data because the changes
required to make the data consistent are determined by the style. Had we been working with flong
data, we might have seen

. drop if sex==
(450 observations deleted)

. mi update
(system variable _mi_id updated due to change in number of obs.)

With flong data in memory, when we dropped if sex==1, we dropped all 75 4+ 5 X 75 = 450
observations, so no more observations needed to be dropped; but here mi update needed to update
one of its system variables because of the change we made.

Had we been working with mlong data, we might have seen
. drop if sex==
(90 observations deleted)

. mi update
(system variable _mi_id updated due to change in number of obs.)

The story here is very much like the story in the flong case. In mlong data, dropping if sex==
drops the 75 observations in m = 0 and also drops the incomplete observations among the 75 in
m =1, m =2, ..., m = 5. In this example, there are three such observations, so a total of
75 +5 x 3 = 90 were dropped, and because of the change, mi update needed to update its system
variable.

Had we been using wide data, we might have seen
. drop if sex==
(75 observations deleted)

. mi update

mi update’s silence indicates that mi update did nothing, because after dropping observations
in wide data, nothing more needs to be done. We could have skipped typing mi update here, but
do not think that way because changing values, dropping variables, creating new variables, dropping
observations, or creating new observations can have unanticipated consequences.

For instance, in our data is variable farmincome, and it seems obvious that farmincome should
be 0 if the person does not have a farm, so we type

. replace farmincome = 0 if !farm
(15 real changes made)

After changing values, you should type mi update even if you do not suspect that it is necessary.
Here is what happens when we do that with these data:

. mi update
(12 m=0 obs. now marked as complete)

Typing mi update was indeed necessary! We forgot that the farmincome variable was imputed,
and it turns out that the variable contained missing in 12 nonfarm observations; mi needed to deal
with that.

Running mi update is so important that mi itself is constantly running it just in case you forget.
For instance, let’s “forget” to type mi update and then convert our data to wide:
. replace farmincome = 0 if !farm
(15 real changes made)

. mi convert wide, clear
(12 m=0 obs. now marked as complete)

312

mi update — Ensure that mi data are consistent

The parenthetical message was produced because mi convert ran mi update for us. For more
information on this, see [MI] noupdate option.

What mi update does

mi update

mi update checks whether you have changed NN, the number of observations in m = 0,
and resets IV if necessary.

mi update checks whether you have changed M, the number of imputations, and adjusts
the data if necessary.

mi update checks whether you have added, dropped, registered, or unregistered any variables
and takes the appropriate action.

mi update checks whether you have added or deleted any observations. If you have, it then
checks whether you carried out the operation consistently form =0, m =1, ..., m = M.
If you have not carried it out consistently, mi update carries it out consistently for you.

In the mlong, flong, and flongsep styles, mi update checks system variable _mi_id, which
links observations across m, and reconstructs the variable if necessary.

mi update checks that the system variable _mi_miss, which marks the incomplete ob-
servations, is correct and, if not, updates it and makes any other changes required by the
change.

mi update verifies that the values recorded in imputed variables in m > 0 are equal to the
values in m = 0 when they are nonmissing and updates any that differ.

mi update verifies that the values recorded in passive variables in m > 0 are equal to the
values recorded in m = 0’s complete observations and updates any that differ.

mi update verifies that the values recorded in regular variables in m > 0 equal the values
in m = 0 and updates any that differ.

mi update adds any new variables in m =0 to m > 0.

mi update drops any variables from m > 0 that do not appear in m = 0.

is run automatically

As we mentioned before, running mi update is so important that many mi commands simply run
it as a matter of course. This is discussed in [MI] noupdate option. In a nutshell, the mi commands
that run mi update automatically have a noupdate option, so you can identify them, and you can
specify the option to skip running the update and so speed execution, but only with the adrenaline
rush caused by a small amount of danger.

Whether you specify noupdate or not, we advise you to run mi update periodically and to
always run mi update after dropping or adding variables or observations, or changing values.

Also see

[MI] intro — Introduction to mi

[MI] noupdate option — The noupdate option

Title

mi varying — Identify variables that vary across imputations

Syntax

mi varying [varlist} [, noupdate]

mi varying, unregistered [noupdate]

Menu
Statistics > Multiple imputation

Description

mi varying lists the names of variables that are unexpectedly varying and super varying; see
[MI] Glossary for a definition of varying and super-varying variables.

Options
unregistered specifies that the listing be made only for unregistered variables. Specifying this
option saves time, especially when the data are flongsep.

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option.

Remarks

A variable is said to be varying if it varies over m in the complete observations. A variable is
said to be super varying if it varies over m in the incomplete observations.

Remarks are presented under the following headings:

Detecting problems
Fixing problems

Detecting problems

mi varying looks for five potential problems:
1. Imputed nonvarying. Variables that are registered as imputed and are nonvarying either

a. do not have their missing values in m > 0 filled in yet, in which case you should
use mi impute (see [MI] mi impute) to impute them, or

b. have no missing values in m = 0, in which case you should mi unregister the
variables and perhaps use mi register to register the variables as regular (see
[MI] mi set).

313

314 mi varying — ldentify variables that vary across imputations

2. Passive nonvarying. Variables that are registered as passive and are nonvarying either

a. have missing values in the incomplete observations in m > 0, in which case after
you have filled in the missing values of your imputed variables, you should use mi
passive (see [MI] mi passive) to update the values of these variables, or

b. have no missing values in m = 0, in which case you should mi unregister the
variables and perhaps use mi register to register the variables as regular (see
[MI] mi set).

3. Unregistered varying.
a. It is most likely that such variables should be registered as imputed or as passive.

b. If the variables are varying but should not be, use mi register to register them
as regular. That will fix the problem; values from m = 0 will be copied to m > 0.

c. It is possible that this is just like potential problem 5, below, and it just randomly
turned out that the only observations in which variation occurred were the incomplete
observations. In that case, leave the variable unregistered.

4. Unregistered super/varying. These are variables that are super varying but would have been
categorized as varying if they were registered as imputed. This is to say that while they
have varying values in the complete observations as complete is defined this instant—which
is based on the variables currently registered as imputed—these variables merely vary in
observations for which they themselves contain missing in m = 0, and thus they could be
registered as imputed without loss of information. Such variables should be registered as
imputed.

5. Unregistered super varying. These variables really do super vary and could not be registered
as imputed without loss of information. These variables either contain true errors or they are
passive variables that are functions of groups of observations. Fix the errors by registering
the variables as regular and leave unregistered those intended to be super varying. If you
intentionally have super-varying variables in your data, remember never to convert to the
wide or mlong styles. Super-varying variables can appear only in the flong and flongsep
styles.

mi varying output looks like this:

Possible problem Variable names

imputed nonvarying: (none)

passive nonvarying: (none)
unregistered varying: (none)
*unregistered super/varying: (none)
unregistered super varying: (none)

* super/varying means super varying but would be varying if registered as
imputed; variables vary only where equal to soft missing in m=0.

If there are possible problems, variable names are listed in the table.

Super-varying variables can arise only in flong and flongsep data, so the last two categories are
omitted when mi varying is run on wide or mlong data. If there are no imputed variables, or no
passive variables, or no unregistered variables, the corresponding categories are omitted from the
table.

mi varying — ldentify variables that vary across imputations 315

Fixing problems

If mi varying detects problems, register all imputed variables before registering passive variables.
Rerun mi varying as you register new imputed variables. Registering new variables as imputed can
change which observations are classified as complete and incomplete, and that classification in turn
can change the categories to which the other variables are assigned. After registering a variable as
imputed, another variable previously listed as super varying might now be merely varying.

Saved results

mi varying saves the following in r():

Macros
r(ivars) nonvarying imputed variables
r(pvars) nonvarying passive variables
r(uvars_v) varying unregistered variables
r(uvars_s_v) (super) varying unregistered variables
r(uvars_s_s) super-varying unregistered variables
Also see

[MI] intro — Introduction to mi

[MI] mi misstable — Tabulate pattern of missing values

Title

mi xeq — Execute command(s) on individual imputations

Syntax

mi xeq [nmnlist] . command [5 command [;..]]
Description

mi xeq: XXX executes XXX onm =0, m=1,..., m= M.

mi xeq numlist: XXX executes XXX on m = numlist.

XXX can be any single command or it can be multiple commands separated by a semicolon. If
specifying multiple commands, the delimiter must not be set to semicolon; see [P] #delimit.

Remarks

Remarks are presented under the following headings:

Using mi xeq with reporting commands
Using mi xeq with data-modification commands
Using mi xeq with data-modification commands on flongsep data

Using mi xeq with reporting commands

By reporting commands, we mean any general Stata command that reports results but leaves the
data unchanged. summarize (see [R] summarize) is an example. mi xeq is especially useful with
such commands. If you wanted to see the summary statistics for variables outcome and age among
the females in your mi data, you could type

. mi xeq: summarize outcome age if sex=="female"

m=0 data:
-> summarize outcome age if sex=="female"
(output omitted)

m=1 data:
-> summarize outcome age if sex=="female"
(output omitted)

m=2 data:
-> summarize outcome age if sex=="female"
(output omitted)

M = 2 in the data above.

If you wanted to see a particular regression run on the m = 2 data, you could type

. mi Xeq 2: regress outcome age bp

m=2 data:
-> regress outcome age bp
(output omitted)

In both cases, once the command executes, the entire mi dataset is brought back into memory.

316

mi xeq — Execute command(s) on individual imputations 317

Using mi xeq with data-modification commands

You can use data-modification commands with mi xeq but doing that is not especially useful
unless you are using flongsep data.

If variable 1nage were registered as passive and you wanted to update its values, you could type

. mi xeq: replace lnage = 1ln(age)
(output omitted)

That would work regardless of style, although it is just as easy to update the variable using mi
passive (see [MI] mi passive):

. mi passive: replace lnage = 1ln(age)
(output omitted)

If what you are doing depends on the sort order of the data, include the sort command among
the commands to be executed; do not assume that the individual datasets will be sorted the way the
data in memory are sorted. For instance, if you have passive variable totalx, do not type

. sort id time

. mi xeq: by id: replace totalx = sum(x)

That will not work. Instead, type

. mi xeq: sort id time; by id: replace totalx = sum(x)
m=0 data:

-> sort id time

-> by id: replace total x = sum(x)
(8 changes made)

m=1 data:

-> sort id time

-> by id: replace total x = sum(x)
(8 changes made)

m=2 data:

-> sort id time

-> by id: replace total x = sum(x)
(8 changes made)

Again we note that it would be just as easy to update this variable with mi passive:

. mi passive: by id (time): replace totalx = sum(x)

m=0:

(8 changes made)

m=1:

(8 changes made)

m=2:

(8 changes made)

With the wide, mlong, and flong styles, there is always another way to proceed, and often the
other way is easier.

Using mi xeq with data-modification commands on flongsep data

With flongsep data, mi xeq is especially useful. Consider the case where you want to add new
variable 1lnage = 1ln(age) to your data, and age is just a regular or unregistered variable. With
flong, mlong, or wide data, you would just type

. generate lnage = ln(age)

and be done with it.

318 mi xeq — Execute command(s) on individual imputations

With flongsep data, you have multiple datasets to update. Of course, you could mi convert (see
[MI] mi convert) your data to one of the other styles, but we will assume that if you had sufficient
memory to do that, you would have done that long ago and so would not be using flongsep data.

The easy way to create 1nage with flongsep data is by typing

. mi xeq: gen lnage = ln(age)
(output omitted)

You could use the mi xeq approach with any of the styles, but with flong, mlong, or wide data,
it is not necessary. With flongsep, it is.

Saved results

mi xeq saves in r () whatever the last command run on the last imputation or specified imputation
returns. For instance,

. mi xeq: tabulate g ; summarize x
returns the saved results for summarize x run on m = M.
. mi xeq 1 2: tabulate g ; summarize x
returns the saved results for summarize x run on m = 2.
. mi xeq 0: summarize x

returns the saved results for summarize x run on m = 0.

Also see

[MI] intro — Introduction to mi

[MI] mi passive — Generate/replace and register passive variables

Title

mi XXXset — Declare mi data to be svy, st, ts, xt, etc.

Syntax
mi fvset ... see [R] fvset
mi svyset ... see [SVY] svyset
mi stset ... see [ST] stset

mi streset ...

mi st ...

mi tsset ... see [TS] tsset

mi xtset ... see [XT] xtset
Description

Using some features of Stata requires setting your data. The commands listed above allow you to
do that with mi data. The mi variants have the same syntax and work the same way as the original
commands.

Remarks

If you have set your data with any of the above commands before you mi set them, there is no
problem; the settings were automatically imported. Once you mi set your data, however, you will
discover that Stata’s other set commands no longer work. For instance, here is the result of typing
stset on an mi set dataset:

. stset ...

no; data are mi set
Use mi stset to set or query these data; mi stset has the same
syntax as stset.

r(119);

The solution is to use mi stset:

. mi stset ...
(usual output appears)

After mi setting your data, put mi in front of Stata’s other set commands.

Also, you might sometimes see an error like the one above when you give a command that depends
on the data being set by one of Stata’s other set commands. In general, it is odd that you would be
running such a command directly on mi data because what you will get will depend on the mi style
of data. Perhaps, however, you are using mi wide data, where the structure of the data more or less
corresponds to the structure of non-mi data, or perhaps you have smartly specified the appropriate
if statement to account for the mi style of data you are using. In any case, the result might be

319

320 mi XXXset — Declare mi data to be svy, st, ts, xt, etc.

. some_other_command

no; data are mi set
Use mi XXXset to set or query these data; mi XXXset has the same

syntax as XXXset.
r(119);

Substitute one of the set commands listed above for XXXset, and then understand what just
happened. You correctly used mi XXXset to set your data, you thought your data were set, yet when
you tried to use a command that depended on the data being XXXset, you received this error.

If this happens to you, the solution is to use mi extract (see [MI] mi extract) to obtain the data
on which you want to run the command—which is probably m = 0, so you would type mi extract
0—and then run the command.

Also see

[MI] intro — Introduction to mi

Title

noupdate option — The noupdate option

Syntax
mi ... [, wdate]
Description

Many mi commands allow the noupdate option. This entry describes the purpose of that option.

Option

noupdate specifies that the mi command in question need not perform an mi update because you
are certain that there are no inconsistencies that need fixing; see [MI] mi update. noupdate is
taken as a suggestion; mi update will still be performed if the command sees evidence that it
needs to be. Not specifying the option does not mean that an mi update will be performed.

Remarks

Some mi commands perform modifications to the data, and those modifications will go very
poorly—even to the point of corrupting your data—if certain assumptions about your data are not
true. Usually, those assumptions are true, but to be safe, the commands check the assumptions. They
do this by calling mi update; see [MI] mi update. mi update checks the assumptions and, if they
are not true, corrects the data so that the assumptions are true. mi update always reports the data
corrections it makes.

All of this reflects an abundance of caution, with the result that some commands spend more time
running mi update than they spend performing their intended task.

Commands that use mi update to verify assumptions have a noupdate option. When you specify
that option, the command skips checking the assumptions, which is to say it skips calling mi update.
More correctly, the command skips calling mi update if the command sees no obvious evidence that
mi update needs to be called.

You can make commands run faster by specifying noupdate. Should you? Unless you are noticing
poor performance, we would say no. It is, however, absolutely safe to specify noupdate if the only
commands executed since the last mi update are mi commands. The following would be perfectly
safe:

. mi update

. mi passive, noupdate: gen agesq = age*age
. mi rename age age_at_admission, noupdate
. mi

The following would be safe, too:

. mi update

. mi passive, noupdate: gen agesq = age*age
summarize agesq

. mi rename age age_at_admission, noupdate

. mi

321

322 noupdate option — The noupdate option

It would be safe because summarize is a reporting command that does not change the data; see
[R] summarize.

The problem mi has is that it is not in control of your session and data. Between mi commands,
mi does not know what you have done to the data. The following would not be recommended and
has the potential to go very poorly:

. mi update

. mi passive, noupdate: gen agesq = age*age

. drop if female

. drop agesq

. mi ..., noupdate // do not do this

By the rules for using mi, you should perform an mi update yourself after a drop command, or
any other command that changes the data, but it usually does not matter whether you follow that rule
because mi will check eventually, when it matters. That is, mi will check if you do not specify the
noupdate option.

The noupdate option is recommended for use by programmers in programs that code a sequence
of mi commands.

Also see

[MI] intro — Introduction to mi

[MI] mi update — Ensure that mi data are consistent

Title

styles — Dataset styles

Syntax
There are four dataset styles available for storing mi data:
wide
mlong
flong
flongsep
Description

The purpose of this entry is to familiarize you with the four styles in which mi data can be stored.

Remarks

Remarks are presented under the following headings:

The four styles

Style wide

Style flong

Style mlong

Style flongsep

How we constructed this example
Using mi system variables
Advice for using flongsep

The four styles

We have highly artificial data, which we will first describe verbally and then show to you in each
of the styles. The original data have two observations on two variables:

a b
1 2
4

Variable b has a missing value. We have two imputed values for b, namely, 4.5 and 5.5. There
will also be a third variable, c, in our dataset, where ¢ = a + b.

323

324 styles — Dataset styles

Thus, in the jargon of mi, we have M = 2 imputations, and the datasets m = 0, m = 1, and

m = 2 are

=0: a b c
1 2 3

4
m=1: a b c
1 2 3
4 4.5 8.5
m=2: a b [
1 2 3
4 5.5 9.5

Continuing with jargon, a is a regular variable, b is an imputed variable, and c is a passive variable.

Style wide

The above data have been stored in miproto.dta in the wide style.

. use http://www.stata-press.com/data/r12/miproto
(mi prototype)

. list
a b c _1.b _2_b _1.c _2_c _mi_miss
1. 1 2 3 2 2 3 3 0
2. 4 . . 4.5 5.5 8.5 9.5 1

There is no significance to the order in which the variables appear.
On the left, under variables a, b, and ¢, you can see the original data.

The imputed values for b appear under the variables named _1_b and _2_b; m = 1 appears under
_1_b, and m = 2 appears under _2_b. Note that in the first observation, the observed value of b is
simply repeated in _1_b and _2_b. In the second observation, however, _1_b and _2_b show the
replacement values for the missing value of b.

The passive values for c appear under the variables named _1_c and _2_c in the same way that
the imputed values appeared under the variables named _1_b and _2_b.

Finally, one extra variable appears: _mi_miss. This is an example of an mi system variable. You
are never to change mi system variables; they take care of themselves. The wide style has only one
system variable. _mi_miss contains 0 for complete observations and 1 for incomplete observations.

styles — Dataset styles 325

Style flong

Let’s convert this dataset to style flong:

. mi convert flong, clear

. list, separator(2)

a b c _mi_miss _mi_m _mi_id
1 1 2 3 0 0 1
2 4 1 0 2
3 1 2 3 1 1
4 4 4.5 8.5 1 2
5 1 2 3 2 1
6 5.5 9.5 2 2

We listed these data with a separator line after every two rows so that they would be easier to
understand. Ignore the mi system variables and focus on variables a, b, and c. Observations 1 and 2
contain m = 0; observations 3 and 4 contain m = 1; observations 5 and 6 contain m = 2.

We will now explain the system variables, but you do not need to remember this.

1. We again see _mi_miss, just as we did in the wide style. It marks the incomplete observations
in m = 0. It contains missing in m > 0.

2. _mi_m records m. The first two observations are m = 0; the next two, m = 1; and the last
two, m = 2.

3. _mi_id records an arbitrarily coded observation-identification variable. It is 1 and 2 in
m = 0, and then repeats in m = 1 and m = 2. Observations _mi_id = 1 correspond to
each other for all m. The same applies to _mi_id = 2.

Warning: Do not use _mi_id as your own ID variable. You might look one time, see that a
particular observation has _mi_id = 8, and look a little later, and see that the observation
has changed from _mi_id = 8 to _mi_id = 5. _mi_id belongs to mi. If you want your
own ID variable, make your own. All that is true of _mi_id is that, at any instant, it uniquely
identifies, and ties together, the observations.

There is no significance to the order of the variables or, for that matter, to the order of the
observations.

Style mlong

Let’s convert this dataset to the mlong style:

. mi convert mlong, clear

. list
a b c _mi_miss _mi_m _mi_id
1 1 2 3 0 0 1
2 4 . 1 0 2
3 4 4.5 8.5 1 2
4 4 5.5 9.5 2 2

326 styles — Dataset styles

This listing will be easier to read if we add some carefully chosen blank lines:

a b c _mi_miss _mi_m _mi_id
1. 1 2 3 0 0 1
2. 4 . . 1 0 2
3. 4 4.5 8.5 . 1 2
4. 4 5.5 9.5 . 2 2

The mlong style is just like flong except that the complete observations—observations for which
_mi_miss = 0 in m = O—are omitted in m > 0.

Observations 1 and 2 are the original, m = 0 data.
Observation 3 is the m = 1 replacement observation for observation 2.

Observation 4 is the m = 2 replacement observation for observation 2.

Style flongsep

Let’s look at these data in the flongsep style:

. mi convert flongsep example, clear
(files example.dta _1_example.dta _2_example.dta created)

. list
a b c _mi_miss _mi_id
1. 1 2 3 0 1
2. 4 . . 1 2

The flongsep style stores m = 0, m = 1, and m = 2 in separate files. When we converted to the
flongsep style, we had to specify a name for these files, and we chose example. This resulted in
m = 0 being stored in example.dta, m = 1 being stored in _1_example.dta, and m = 2 being
stored in _2_example.dta.

In the listing above, we see the original, m = 0 data.
After conversion, m = 0 (example.dta) was left in memory. When working with flongsep data,
you always work with m = 0 in memory. Nothing can stop us, however, from taking a brief peek:

. save example, replace
file example.dta saved

. use _1_example, clear
(mi prototype)

. list
a b c _mi_id
1 1 2 3 1
2 4 4.5 8.5 2

There are the data for m = 1. As previously, system variable _mi_id ties together observations. In
the m = 1 data, however, _mi_miss is not repeated.

styles — Dataset styles 327

Let’s now look at _2_example.dta:

. use _2_example, clear
(mi prototype)

. list

-
-
N}
w
=

And there are the data for m = 2.

We have an aside, but an important one. Review the commands we just gave, stripped of their
output:

. mi convert flongsep example, clear

. list

. save example, replace

. use _1_example, clear

. list

. use _2_example, clear

. list

What we want you to notice is the line save example, replace. After converting to flongsep, for
some reason we felt obligated to save the dataset. We will explain below. Now look farther down the
history. After using _1_example.dta, we did not feel obligated to resave that dataset before using
_2_example.dta. We will explain that below, too.

The flongsep style data are a matched set of datasets. You work with the m = 0 dataset in memory.
It is your responsibility to save that dataset. Sometimes mi will have already saved the dataset for
you. That was true here after mi convert, but it is impossible for you to know that in general, and
it is your responsibility to save the dataset just as you would save any other dataset.

The m > 0 datasets, _#_name .dta, are mi’s responsibility. We do not have to concern ourselves
with saving them. Obviously, it was not necessary to save them here because we had just used the
data and made no changes. The point is that, in general, the m > 0 datasets are not our responsibility.
The m = 0 dataset, however, is our responsibility.

We are done with the demonstration:

. drop _all

. mi erase example
(files example.dta _1_example.dta _2_example.dta erased)

How we constructed this example

You might be curious as to how we constructed miproto.dta. Here is what we did:

. drop _all
. input a b

12
4 .
end

W N =

. mi set wide

. mi set M =2
(2 imputations added; M = 2)

328 styles — Dataset styles

. mi register regular a
. mi register imputed b

. replace _1_b = 4.5 in 2
(1 real change made)

. replace _2_b = 5.5 in 2
(1 real change made)

. mi passive: gen c = a + b

m=0:

(1 missing value generated)

m=1:

m=2:

. order abc _1b _2b _1_c _2_c _mi_miss

Using mi system variables

You can use mi’s system variables to make some tasks easier. For instance, if you wanted to know
the overall number of complete and incomplete observations, you could type

. tabulate _mi_miss

because in all styles, the _mi_miss variable is created in m = 0O containing 0 if complete and 1 if

incomplete.
If you wanted to know the summary statistics for weight in m = 1, the general solution is

. mi xeq 1: summarize weight
If you were using wide data, however, you could instead type

. summarize _1_weight

If you were using flong data, you could type

. summarize weight if _mi_m==

If you were using mlong data, you could type

. summarize weight if (_mi_m==0 & !_mi_miss) | _mi_m==

Well, that last is not so convenient.

What is convenient to do directly depends on the style you are using. Remember, however, you
can always switch between styles by using mi convert (see [MI] mi convert). If you were using
mlong data and wanted to compare summary statistics of the weight variable in the original data

and in all imputations, you could type

. mi convert wide

. summarize *weight

Advice for using flongsep

Use the flongsep style when your data are too big to fit into any of the other styles. If you already
have flongsep data, you can try to convert it to another style. If you get the error “no room to add
more observations” or “no room to add more variables”, then you need to increase the amount of
memory Stata is allowed to use (see [D] memory) or resign yourself to using the flongsep style.

styles — Dataset styles 329

There is nothing wrong with the flongsep style except that you need to learn some new habits.
Usually, in Stata, you work with a copy of the data in memory, and the changes you make are not
reflected in the underlying disk file until and unless you explicitly save the data. If you want to
change the name of the data, you merely save them in a file of a different name. None of that is
true when working with flongsep data. Flongsep data are a collection of datasets; you work with the
one corresponding to m = 0 in memory, and mi handles keeping the others in sync. As you make
changes, the datasets on disk change.

Think of the collection of datasets as having one name. That name is established when the flongsep
data are created. There are three ways that can happen. You might start with a non-mi dataset in
memory and mi set it; you might import a dataset into Stata and the result be flongsep; or you
might convert another mi dataset to flongsep. Here are all the corresponding commands:

. mi set flongsep name (1)

. mi import flongsep name 2)
. mi import nhanesl name

. mi convert flongsep name 3)

In each command, you specify a name and that name becomes the name of the flongsep dataset
collection. In particular, name .dta becomes m = 0, _1_name .dta becomes m = 1, _2_name .dta
becomes m = 2, and so on. You use flongsep data by typing use name, just as you would any other
dataset. As we said, you work with m = 0 in memory and mi handles the rest.

Flongsep data are stored in the current (working) directory. Learn about pwd to find out where
you are and about cd to change that; see [D] cd.

As you work with flongsep data, it is your responsibility to save name.dta almost as it would
be with any Stata dataset. The difference is that mi might and probably has saved name.dta along
the way without mentioning the fact, and mi has doubtlessly updated the _#_name.dta datasets,
too. Nevertheless, it is still your responsibility to save name.dta when you are done because you
do not know whether mi has saved name .dta recently enough. It is not your responsibility to worry
about _#_name .dta.

It is a wonderful feature of Stata that you can usually work with a dataset in memory without
modifying the original copy on disk except when you intend to update it. It is a unpleasant feature
of flongsep that the same is not true. We therefore recommend working with a copy of the data, and
mi provides an mi copy command (see [MI] mi copy) for just that purpose:

. mi copy newname

With flongsep data in memory, when you type mi copy newname, the current flongsep files are
saved in their existing name (this is one case where you are not responsible for saving name.dta),
and then the files are copied to newname, meaning that m = 0 is copied to newname.dta, m = 1
is copied to _1_newname.dta, and so on. You are now working with the same data, but with the
new name newname.

As you work, you may reach a point where you would like to save the data collection under name
and continue working with newname. Do the following:

. mi copy name, replace

. use newname

When you are done for the day, if you want your data saved, do not forget to save them by using
mi copy. It is also a good idea to erase the flongsep newname dataset collection:

. mi copy name, replace

. mi erase newname

330 styles — Dataset styles

By the way, name.dta, _1_name.dta, ... are just ordinary Stata datasets. By using general
(non-mi) Stata commands, you can look at them and even make changes to them. Be careful about
doing the latter; see [MI] technical.

See [MI] mi copy to learn more about mi copy.

Also see
[MI] intro — Introduction to mi
[MI] mi copy — Copy mi flongsep data
[MI] mi erase — Erase mi datasets

[MI] technical — Details for programmers

Title

technical — Details for programmers

Description

Technical information for programmers who wish to extend mi is provided below.

Remarks

Remarks are presented under the following headings:

Notation
Definition of styles
Style all
Style wide
Style mlong
Style flong
Style flongsep
Style flongsep_sub
Adding new commands to mi
Outline for new commands
Utility routines
u_mi_assert_set
u_mi_certify_data
u_mi_no_sys—_vars and u_mi_no_wide_vars
u—_mi_zap_chars
u_mi_xeq_on_tmp_flongsep
u_mi_get_flongsep_tmpname
mata: u_mi_flongsep_erase()

u_mi_sortback

u_mi_save and u_mi_use

mata: u_mi_wide_swapvars()

u_mi_fixchars

mata: u—_mi—_cpchars—_get() and mata: u_mi_cpchars_put()
mata: u_mi—_get_mata_instanced—_var()

mata: u—_mi_ptrace_*()
How to write other set commands to work with mi

Notation

M = # of imputations

m = imputation number
0. original data with missing values
1. first imputation dataset

M. last imputation dataset

N = number of observations in m = 0

331

332 technical — Details for programmers

Definition of styles

Style describes how the mi data are stored. There are four styles: wide, mlong, flong, and flongsep.

Style all

Characteristics:
_dta[_mi_marker] “_mi_ds_1”

Description: _dta[_mi_marker] is set with all styles, including flongsep_sub. The definitions

below apply only if "¢_dta[_mi_marker]’" ="_mi_ds_1".
Style wide

Characteristics:
_dta[_mi_style] “wide”
—dtal_mi_M] M
_dtal[_mi_ivars] imputed variables; variable list
_dtal[_mi_pvars] passive variables; variable list
_dta[_mi_rvars] regular variables; variable list

_dta[_mi_update] time last updated; %tc_value/1000

Variables:
_mi_miss whether incomplete; 0 or 1
_#_varname varname for m = #, defined for each
¢_dta[_mi_ivars]’ and ‘_dta[_mi_pvars]’
Description: m =0, m =1, ..., m = M are stored in one dataset with _/N = N observations. Each

imputed and passive variable has M additional variables associated with it. If variable bp contains
the values in m = 0, then values for m = 1 are contained in variable _1_bp, values for m = 2 in
—2_bp, and so on. wide stands for wide.

Style mlong
Characteristics:

_dtal[_mi_style] “mlong”
_dtal[_mi_M] M
—dta[_mi_N] N
_dta[_mi_n] # of observations in marginal
_dtal[_mi_ivars] imputed variables; variable list
_dtal[_mi_pvars] passive variables; variable list
_dta[_mi_rvars] regular variables; variable list

_dta[_mi_updatel time last updated; %tc_value/1000

Variables:
_mi_m m;0,1,..., M
_mi_id m;1,..., N
_mi_miss whether incomplete; 0 or 1 if _mi_m = 0, else .
Description: m = 0, m = 1, ..., m = M are stored in one dataset with _N = N + M xn

observations, where 7 is the number of incomplete observations in m = 0. mlong stands for marginal
long.

technical — Details for programmers 333

Style flong
Characteristics:
_dta[-mi_style] “flong”
_dta[_mi_M] M
_dta[_mi_N] N
_dtal[_mi_ivars] imputed variables; variable list
_dta[_mi_pvars] passive variables; variable list
_dta[_mi_rvars] regular variables; variable list
_dta[-mi_updatel time last updated; %tc_value/1000
Variables:
_mi_m m; 0,1, ..., M
_mi_id m;1,..., N
_mi_miss whether incomplete; 0 or 1 if _mi_m = 0, else .
Description: m = 0, m = 1, ..., m = M are stored in one dataset with _N = N + M x N

observations, where NN is the number of observations in m = 0. £long stands for full long.

Style flongsep

Characteristics:

_dtal[_mi_style] “flongsep”

_dta[_mi_name] name

_dtal[_mi_M] M

_dta[_mi_N] N

_dtal[_mi_ivars] imputed variables; variable list

_dta[_mi_pvars] passive variables; variable list

_dta[_mi_rvars] regular variables; variable list

_dta[_mi_update] time last updated; %tc_value/1000
Variables:

_mi_id ;1,..., N

_mi_miss whether incomplete; 0 or 1
Description: m =0, m =1, ..., m = M are each separate .dta datasets. If m = 0 data are stored

in pat.dta, then m = 1 data are stored in —_1_pat.dta, m =2 in _2_pat.dta, and so on.

The definitions above apply only to m = 0, the dataset named ‘_dta[_mi_name]’.dta. See
Style flongsep—sub directly below for m > 0. flongsep stands for full long and separate.

Style flongsep_sub

Characteristics:
_dtal[_mi_style] “flongsep_sub”
—_dta[_mi_name] name
_dta[_mi_m] m;0,1,..., M
Variables:
_mi_id m;1,..., N
Description: The description above applies to the _‘_dtal-mi_m]’_¢_dtal[_mi_name]’.dta
datasets. There are M such datasets recording m = 1, ..., M used by the flongsep style

directly above.

334 technical — Details for programmers

Adding new commands to mi

New commands are written in ado. Name the new command mi_cmd_newcmd and store it in
mi_cmd_newcmd .ado. When the user types mi newcmd . . ., mi_cmd_newcmd .ado will be executed.

See Writing programs for use with mi of [P] program properties for details on how to write
estimation commands for use with the mi estimate prefix.

Outline for new commands

program mi_cmd_newcmd, rclass 1)
version 12
u_mi_assert_set (2)
syntax ... [, ... noUPdate ...] (3)
u_mi_certify_data, acceptable (4)
if ("‘update"'=="") {
u_mi_certify_data, proper (5)
}
end
Notes:

1. The command may be rclass; that is not required. It may be eclass instead if you wish.
2. u_mi_assert_set verifies that the data are mi data; see u_mi_assert_set below.

3. If you intend for your command to use mi update to update the data before performing
its intended task, include a noupdate option; see [MI] noupdate option. Some commands
instead or in addition run mi update to perform cleanup after performing their task. Such
use does not require a noupdate option.

4. u_mi_certify_data is the internal routine that performs mi update. An update is divided
into two parts, called acceptable and proper. All commands should verify that the data are
acceptable; see u_mi_certify_data below.

5. u_mi_certify_data, proper performs the second step of mi update; it verifies that
acceptable data are proper. Whether you verify properness is up to you, but if you do, you
are supposed to include a noupdate option to skip running the check.

Utility routines

The only information you absolutely need to know is that already revealed. Using the utility
routines described below, however, will simplify your programming task and make your code appear
more professional to the end user.

As you read what follows, remember that you may review the source code for the routines by
using viewsource; see [P] viewsource. If you wanted to see the source for u_mi_assert_set, you
would type viewsource u_mi_assert_set.ado. If you do this, you will sometimes see that the
routines allow options not documented below. Ignore those options; they may not appear in future
releases.

Using viewsource, you may also review examples of the utility commands being used by
viewing the source of the mi commands we have written. Each mi command appears in the file
mi_cmd_command.ado. Also remember that other mi commands make useful utility routines. For
instance, if your new command makes passive variables, use mi register to register them. Always
call existing mi commands through mi; code mi passive and not mi_cmd_passive.

technical — Details for programmers 335

u_mi_assert_set

u_mi_assert_set [desired_style}

This utility verifies that data are mi and optionally of the desired style; it issues the appropriate
error message and stops execution if not. The optional argument desired_style can be wide, mlong,
flong, or flongsep, but is seldom specified. When not specified, any style is allowed.

u_mi_certify_data

u_mi_certify_data [, acceptable proper noupdate sortok]

This command performs mi update. mi update is equivalent to u_mi_certify_data, ac-
ceptable proper sortok.

Specify one or both of acceptable and proper. If the noupdate option is specified, then proper
is specified. The sortok option specifies that u_mi_certify_data need not spend extra time to
preserve and restore the original sort order of the data.

An update is divided into two parts. In the first part, called acceptable, m = 0 and the _dta[_mi_x*]
characteristics are certified. Your program will use the information recorded in those characteristics,
and before that information can be trusted, the data must be certified as acceptable. Do not trust any
—dta[_mi_x*] characteristics until you have run u_mi_certify_data, acceptable.

u_mi_certify_data, proper verifies that data known to be acceptable are proper. In practice,
this means that in addition to trusting m = 0, you can trust m > 0.

Running u_mi_certify_data, acceptable might actually result in the data being certified as
proper, although you cannot depend on that. When you run u_mi_certify_data, acceptable and
certain problems are observed in m = 0, they are fixed in all m, which can lead to other problems
being detected, and by the time the whole process is through, the data are proper.

u_mi_no_sys_vars and u_mi_no_wide_vars
u_mi_no_sys_vars "variable_list" [“wor "]

u_mi_no_wide_vars "variable_list" ["word"]
These routines are for use in parsing user input.

u_mi_no_sys_vars verifies that the specified list of variable names does not include any mi
system variables such as _mi_m, _mi_id, _mi_miss, etc.

u_mi_no_wide_vars verifies that the specified list of variable names does not include any style
wide m > 0 variables of the form _#_varname. u_mi_no_wide_vars may be called with any style
of data but does nothing if the style is not wide.

Both functions issue appropriate error messages if problems are found. If word is specified, the
error message will be “word may not include . ..”. Otherwise, the error message is “may not specify

9
u_mi_zap_chars

u_mi_zap_chars

u_mi_zap_chars deletes all _dta[_mi_x] characteristics from the data in memory.

336 technical — Details for programmers

u_mi_xeq_on_tmp_flongsep

u_mi_xeq_on_tmp_flongsep [, nopreserve]: command

u_mi_xeq_on_tmp_flongsep executes command on the data in memory, said data converted to
style flongsep, and then converts the flongsep result back to the original style. If the data already are
flongsep, a temporary copy is made and, at the end, posted back to the original. Either way, command
is run on a temporary copy of the data. If anything goes wrong, the user’s original data are restored;
that is, they are restored unless nopreserve is specified. If command completes without error, the
flongsep data in memory are converted back to the original style and the original data are discarded.

It is not uncommon to write commands that can deal only with flongsep data, and yet these seem to
users as if they work with all styles. That is because the routines use u_mi_xeq_on_tmp_flongsep.
They start by allowing any style, but the guts of the routine are written assuming flongsep. mi
stjoin is implemented in this way. There are two parts to mi stjoin: mi_cmd_stjoin.ado and
mi_sub_stjoin_flongsep.ado. mi_cmd_stjoin.ado ends with

u_mi_xeq_on_tmp_flongsep: mi_sub_stjoin_flongsep ‘if’, ‘options’

mi_sub_stjoin_flongsep does all the work, while u_mi_xeq_on_tmp_flongsep handles the
issue of converting to flongsep and back again. The mi_sub_stjoin_flongsep subroutine must
appear in its own ado-file because u_mi_xeq_on_tmp_flongsep is itself implemented as an ado-file.
u_mi_xeq_on_tmp_flongsep would be unable to find the subroutine otherwise.

u_mi_get_flongsep_tmpname

u_mi_get_flongsep_tmpname macname : basename

u_mi_get_flongsep_tmpname creates a temporary flongsep name based on basename and stores
it in the local macro macname. u_mi_xeq_on_tmp_flongsep, for your information, obtains the
temporary name it uses from this routine.

u_mi_get_flongsep_tmpname is seldom used directly because u—mi_xeq_on_tmp_flongsep
works well for shifting temporarily into flongsep mode, and u_mi_xeq_on_tmp_flongsep does
a lot more than just getting a name under which the data should be temporarily stored. There are
instances, however, when one needs to be more involved in the conversion. For examples, see the
source mi_cmd_append.ado and mi_cmd_merge.ado. The issue these two routines face is that they
need to shift two input datasets to flongsep, then they create a third from them, and that is the only
one that needs to be shifted back to the original style. So these two commands handle the conversions
themselves using u_mi_get_flongsep_tmpname and mi convert (see [MI] mi convert).

For instance, they start with something like

u_mi_get_flongsep_tmpname master _mimaster

That creates a temporary name suitable for use with mi convert and stores it in ‘master’. The
suggested name is __mimaster, but if that name is in use, then u_mi_get_flongsep_tmpname
will form from it —__mimasterl, or —_mimaster2, etc. We recommend that you specify a basename
that begins with __mi, which is to say, two underscores followed by mi.

Next you must appreciate that it is your responsibility to eliminate the temporary files. You do
that by coding something like

technical — Details for programmers 337

local origstyle "‘_dtal[_mi_style]’"

if ("‘origstyle’"=="flongsep") {
local origstyle "‘origstyle’ ‘_dtal[_mi_name]’"
}
u_mi_get_flongsep_tmpname master : __mimaster
capture {

quietly mi convert flongsep ‘master’

quietly mi convert ‘origstyle’, clear replace

{
nobreak {
local rc = _rc
mata: u_mi_flongsep_erase(" ‘master’", 0, 0)
if (‘rc?) {
exit ‘rc’
}
}

The other thing to note above is our use of mi convert ‘master’ to convert our data to flongsep
under the name ‘master’. What, you might wonder, happens if our data already is flongsep? A nice
feature of mi convert is that when run on data that are already flongsep, it performs an mi copy;
see [MI] mi copy.

mata: u_mi_flongsep_erase()

mata: u-mi_flongsep_erase("name", from [, output])

where
name string; flongsep name
from #; where to begin erasing
output 0|1; whether to produce output

mata: u_mi_flongsep_erase() is the internal version of mi erase (see [MI] mi erase); use
whichever is more convenient.

Input from is usually specified as 0 and then mata: u_mi_flongsep_erase() erases name.dta,
_1_name.dta, _2_name.dta, and so on. from may be specified as a number greater than zero, how-
ever, and then erased are _<from>_name.dta, _<from+1>_name.dta, _<from+2>_name.dta,

If output is 0, no output is produced; otherwise, the erased files are also listed. If output is not
specified, files are listed.

See viewsource u_mi.mata for the source code for this routine.

u_mi_sortback

u_mi_sortback varlist

u_mi_sortback removes dropped variables from varlist and sorts the data on the remaining
variables. The routine is for dealing with sort-preserve problems when program name, sortpreserve
is not adequate, such as when the data might be subjected to substantial editing between the preserving
of the sort order and the restoring of it. To use u_mi_sortback, first record the order of the data:

338 technical — Details for programmers

local sortedby : sortedby
tempvar recnum

gen long ‘recnum’ = _n
quietly compress ‘recnum’

Later, when you want to restore the sort order, you code

u_mi_sortback ‘sortedby’ ‘recnum’

u_mi_save and u_mi_use

u_mi_save macname : filename [, save_options]

u_mi_use ‘" ‘macname’"’ filename [, clear nolabel]

save_options are as described in [D] save. clear and nolabel are as described in [D] use. In
both commands, filename must be specified in quotes if it contains any special characters or blanks.

It is sometimes necessary to save data in a temporary file and reload them later. In such cases,
when the data are reloaded, you would like to have the original c(filename), c(filedate),
and c(changed) restored. u_mi_save saves that information in macname. u_mi_use restores the
information from the information saved in macname. Note the use of compound quotes around
‘macname’ in u_mi_use; they are not optional.

mata: u_mi_wide_swapvars()

mata: u_mi_wide_swapvars(m, tmpvarname)

where

m #1<#< M

tmpvarname string; name from tempvar

This utility is for use with wide data only. For each variable name contained in _dta[_mi_ivars]
and _dta[_mi_pvars], mata: u_mi_wide_swapvars() swaps the contents of varname with
_m_varname. Argument tmpvarname must be the name of a temporary variable obtained from
command tempvar, and the variable must not exist. mata: u_mi_wide_swapvars() will use this
variable while swapping. See [P] macro for more information on tempvar.

This function is its own inverse, assuming —dta[_mi_ivars] and _dta[_mi_pvars] have not
changed.

See viewsource u_mi.mata for the source code for this routine.

u_mi_fixchars

u_mi_fixchars [, acceptable proper]

u_mi_fixchars makes the data and variable characteristics the same in m =1, m = 2, ...,
m = M as they are in m = 0. The options specify what is already known to be true about the
data, that the data are known to be acceptable or known to be proper. If neither is specified, you are
stating that you do not know whether the data are even acceptable. That is okay. u_mi_fixchars
handles performing whatever certification is required. Specifying the options makes u_mi_fixchars
run faster.

technical — Details for programmers 339

This stabilizing of the characteristics is not about mi’s characteristics; that is handled by
u_mi_certify_data. Other commands of Stata set and use characteristics, while u_mi_fixchars
ensures that those characteristics are the same across all m.

mata: u_mi_cpchars_get() and mata: u_mi_cpchars_put()

mata: u_mi_cpchars_get (matavar)
mata: u_mi_cpchars_put(matavar, {0|1|2})

where matavar is a Mata transmorphic variable. Obtain matavar from
u_mi_get_mata_instanced_var() when using these functions from Stata.

These routines replace the characteristics in one dataset with those of another. They are used to
implement u_mi_fixchars.

mata: u_mi_cpchars_get (matavar) stores in matavar the characteristics of the data in memory.
The data in memory remain unchanged.

mata: u_mi_cpchars_put (matavar, #) replaces the characteristics of the data in memory with
those previously recorded in matavar. The second argument specifies the treatment of _dta[_mi_x*]

characteristics:
0 delete them in the destination data
1 copy them from the source just like any other characteristic
2 retain them as-is from the destination data.

mata: u_mi_get_mata_instanced_var()

mata: u-_mi_get_mata_instanced_var ("macname", "basename" [, i_value])

where
macname name of local macro
basename suggested name for instanced variable
i—value initial value for instanced variable

mata: u_mi_get_mata_instanced_var () creates a new Mata global variable, initializes it with
i_value or as a 0 x 0 real, and places its name in local macro macname. Typical usage is

local var
capture noisily {
mata: u_mi_get_mata_instanced_var("var", "myvar")
. use ‘var’ howeveryou wish ...
}
nobreak {
local rc = _rc
capture mata: mata drop ‘var’
if (‘re?) {
exit ‘rc’
}

340 technical — Details for programmers

mata: u_mi_ptrace_*()

h = u_mi_ptrace_open("filename", {"x"|"w"} [, {0]|1}])
u_mi_ptrace_write_stripes(h, id, ynames, xnames)
u_mi_ptrace_write_iter(h, m, iter, B, V)
u_mi_ptrace_close(h)

u_mi_ptrace_safeclose(h)

The above are Mata functions, where

h, if it is declared, should be declared transmorphic
id is a string scalar

ynames and xnames are string scalars

m and iter are real scalars

B and V are real matrices; V must be symmetric

These routines write parameter-trace files; see [MI] mi ptrace. The procedure is 1) open the file;
2) write the stripes; 3) repeatedly write iteration information; and 4) close the file.

1. Open the file: filename may be specified with or without a file suffix. Specify the second
argument as "w". The third argument should be 1 if the file may be replaced when it exists,
and O otherwise.

2. Write the stripes: Specify id as the name of your routine or as ""; mi ptrace describe
will show this string as the creator of the file if the string is not "". ynames and xnames
are both string scalars containing space-separated names or, possibly, op.names.

3. Repeatedly write iteration information: Written are m, the imputation number; iter, the
iteration number; B, the matrix of coefficients; and V', the variance matrix. B must be
ny X nx and V must be ny x ny and symmetric, where nz = length (tokens (xnames))
and ny = length(tokens (ynames)).

4. Close the file: In Mata, use u_mi_ptrace_close(h). It is highly recommended
that, before step 1, & be obtained from inside Stata (not Mata) using mata:
u_mi_get_mata_instanced_var("h", "myvar").If you follow this advice, include
a mata: u_mi_ptrace_safeclose(‘h’) in the ado-file cleanup code. This will ensure
that open files are closed if the user presses Break or something else causes your routine
to exit before the file is closed. A correctly written program will have two closes, one
in Mata and another in the ado-file, although you could omit the one in Mata. See mata:
u_mi_get_mata_instanced_var() directly above.

Also included in u_mi_ptrace_*() are routines to read parameter-trace files. You should not
need these routines because users will use Stata command mi ptrace use to load the file you have
written. If you are interested, however, then type viewsource u_mi_ptrace.mata.

technical — Details for programmers 341

How to write other set commands to work with mi

This section concerns the writing of other set commands such as [ST] stset or [XT] xtset—set
commands having nothing to do with mi—so that they properly work with mi.

The definition of a set command is any command that creates characteristics in the data, and
possibly creates variables in the data, that other commands in the suite will subsequently access.
Making such set commands work with mi is mostly mi’s responsibility, but there is a little you need
to do to assist mi. Before dealing with that, however, write and debug your set command ignoring
mi. Once that is done, go back and add a few lines to your code. We will pretend your set command
is named mynewset and your original code looks something like this:

program mynewset
syntax ... [, ...]
end

Our goal is to make it so that mynewset will not run on mi data while simultaneously making
it so that mi can call it (the user types mi mynewset). When the user types mi mynewset, mi will
1) give mynewset a clean, m = 0 dataset on which it can run and 2) duplicate whatever mynewset
doestom=0onm=1,m=2,...,m=DM.

To achieve this, modify your code to look like this:

program mynewset

syntax ... [, ... MI] (1)
if (ntminv::nu) { (2)
u_mi_not_mi_set "mynewset"
local checkvars "*" (3)
¥
else {
local checkvars "u_mi_check_setvars settime" (3)
}
‘checkvars’ ‘varlist’ (4)
end
That is,

1. Add the mi option to any options you already have.

2. If the mi option is not specified, execute u_mi_not_mi_set, passing to it the name of your
set command. If the data are not mi, then u_mi_not_mi_set will do nothing. If the data
are mi, then u_mi_not_mi_set will issue an error telling the user to run mi mynewset.

3. Set new local macro checkvars to * if the mi option is not specified, and otherwise to
u_mi_check_setvars. We should mention that the mi option will be specified when mi
mynewset calls mynewset.

4. Run ‘checkvars’ on any input variables mynewset uses that must not vary across m. mi
does not care about other variables or even about new variables mynewset might create; it
cares only about existing variables that should not vary across m.

13

Let’s understand what “‘checkvars’ varlist” does. If the mi option was not specified, the
line expands to “* varlist”, which is a comment, and does nothing. If the mi option was
specified, the line expands to “u_mi_check_setvars settime varlist”. We are calling mi
routine u—mi_check_setvars, telling it that we are calling at set time, and passing along
varlist. u_mi_check_setvars will verify that varlist does not contain mi system variables

342 technical — Details for programmers

or variables that vary across m. Within mynewset, you may call ‘checkvars’ repeatedly
if that is convenient.

You have completed the changes to mynewset. You finally need to write one short program that
reads
program mi_cmd_mynewset
version 12

mi_cmd_genericset ‘"mynewset ‘0°"’ "_mynewset_x _mynewset_y"
end

In the above, we assume that mynewset might add one or two variables to the data named _mynewset_x
and _mynewset_y. List in the second argument all variables mynewset might create. If mynewset
never creates new variables, then the program should read

program mi_cmd_mynewset

version 12

mi_cmd_genericset ‘"mynewset ‘0°"’
end

You are done.

Also see

[MI] intro — Introduction to mi

Title

workflow — Suggested workflow

Description

Provided below are suggested workflows for working with original data and for working with data

that already have imputations.

Remarks

Remarks are presented under the following headings:

Suggested workflow for original data
Suggested workflow for data that already have imputations
Example

Suggested workflow for original data

By original data, we mean data with missing values for which you do not already have imputations.

Your task is to identify the missing values, impute values for them, and perform estimation.

mi does not have a fixed order in which you must perform tasks except that you must mi set the

data first.

1. mi set your data; see [MI] mi set.

Set the data to be wide, mlong, flong, or flongsep. Choose flongsep only if your data are
bumping up against the constraints of memory. Choose flong or flongsep if you will need
super-varying variables.

Memory is not usually a problem, and super-varying variables are seldom necessary, so we
generally start with the data as wide:

. use originaldata

. mi set wide

If you need to use flongsep, you also need to specify a name for the flongsep dataset
collection. Choose a name different from the current name of the dataset:

. use originaldata

. mi set flongsep newname

If the original dataset is chd.dta, you might choose chdm for newname. newname does
not include the .dta suffix. If you choose chdm, the data will then be stored in chdm.dta,
—1_chdm.dta, and so on. It is important that you choose a name different from originaldata
because you do not want your mi data to overwrite the original. Stata users are used to
working with a copy of the data in memory, meaning that the changes made to the data are
not reflected in the .dta dataset until the user saves them. With flongsep data, however,
changes are made to the mi .dta dataset collection as you work. See Advice for using
flongsep in [MI] styles.

343

344

workflow — Suggested workflow

2. Use mi describe often; see [MI] mi describe.

mi describe will not tell you anything useful yet, but as you set more about the data, mi
describe will be more informative.

. mi describe

. Use mi misstable to identify missing values; see [MI] mi misstable.

mi misstable is the standard misstable (see [R] misstable) but tailored for mi data.
Several Stata commands have mi variants—become familiar with them. If there is no mi
variant, then it is generally safe to use the standard command directly, although it may not
be appropriate. For instance, typing misstable rather than mi misstable would produce
appropriate results right now, but it would not produce appropriate results later. If mi datasets
m=0,m=1,..., m= M exist and you run misstable, you might end up running
the command on a strange combination of the m’s. We recommend the wide style because
general Stata commands will do what you expect. The same is true for the flongsep style.
It is your responsibility to get this right.

So what is the difference between mi misstable and misstable? mi misstable amounts
to mi xeq 0: misstable, exok, which is to say it runs on m = 0 and specifies the exok
option so that extended missing values are treated as hard missings.

In general, you need to become familiar with all the mi commands, use the mi variant
of regular Stata commands whenever one exists, and think twice before using a command
without an mi prefix. Doing the right thing will become automatic once you gain familiarity
with the styles; see [MI] styles.

To learn about the missing values in your data, type

. mi misstable summarize

. Use mi register imputed to register the variables you wish to impute; see [MI] mi set.

The only variables that mi will impute are those registered as imputed. You can register
variables one at a time or all at once. If you register a variable mistakenly, use mi unregister
to unregister it.

. mi register imputed varname [varname ...]

. Use mi impute to impute (fill in) the missing values; see [MI] mi impute.

There is a lot to be said here. For instance, in a dataset where variables age and bmi contain
missing, you might type

. mi register imputed age bmi

. mi impute mvn age bmi = attack smokes hsgrad, add(10)
mi impute’s add (#) option specifies the number of imputations to be added. We currently

have O imputations, so after imputation, we will have 10. We usually start with a small
number of imputations and add more later.

. Use mi describe to verify that all missing values are filled in; see [MI] mi describe.

. mi describe

You might also want to use mi xeq (see [MI] mi xeq) to look at summary statistics in each
of the imputation datasets:

. mi xeq: summarize

workflow — Suggested workflow 345

7. Generate passive variables; see [MI] mi passive.

Passive variables are variables that are functions of imputed variables, such as 1nage when
some values of age are imputed. The values of passive variables differ across m just as the
values of imputed variables do. The official way to generate imputed values is by using mi
passive:

. mi passive: generate lnage = 1ln(age)

Rather than use the official way, however, we often switch our data to mlong and just
generate the passive variables directly:

. mi convert mlong
. generate lnage = ln(age)

. mi register passive lnage

If you work as we do, remember to register any passive variables you create. When you are
done, you may mi convert your data back to wide, but there is no reason to do that.

8. Use mi estimate (see [MI] mi estimate) to fit models:
. mi estimate: logistic attack smokes age bmi hsgrad

You fit your model just as you would ordinarily except that you add mi estimate: in front
of the command.

To see an example of the advice applied to a simple dataset, see Example below.

In theory, you should get your data cleaning and data management out of the way before mi
setting your data. In practice that will not happen, so you will want to become familiar with the
other mi commands. Among the data-management commands available are mi append (see [MI] mi
append), mi merge (see [MI] mi merge), mi expand (see [MI] mi expand), and mi reshape (see
[MI] mi reshape). If you are working with survival-time data, also see [MI] mi stsplit. To stset
your data, or svyset, or xtset, see [MI] mi set and [MI] mi XXXset.

Suggested workflow for data that already have imputations

Data sometimes come with imputations included. The data might be made by another researcher
for you or the data might come from an official source. Either way, we will assume that the data are
not in Stata format, because if they were, you would just use the data and would type mi describe.

mi can import officially produced datasets created by the National Health and Nutrition Examination
Survey (NHANES) with the mi import nhanes1 command, and mi can import more informally created
datasets that are wide-, flong-, or flongsep-like with mi import wide, mi import flong, or mi
import flongsep; see [MI] mi import.

The required workflow is hardly different from Suggested workflow for original data, presented
above. The differences are that you will use mi import rather than mi set and you will skip using
mi impute to generate the imputations. In this sense, your job is easier.

On the other hand, you need to verify that you have imported your data correctly, and we have a
lot to say about that. Basically, after importing, you need to be careful about which mi commands
you use until you have verified that you have the variables registered correctly. That is discussed in
[MI] mi import.

346 workflow — Suggested workflow

Example

We are going to repeat A simple example from [MI] intro, but this time we are going to follow

the advice given above in Suggested workflow for original data.

We have fictional data on 154 patients and want to examine the relationship between binary
outcome attack, recording heart attacks, and variables smokes, age, bmi, hsgrad, and female. We
will use logistic regression. Below we load our original data and show you a little about it using the
standard commands describe and summarize. We emphasize that mheart5.dta is just a standard

Stata dataset; it has not been mi set.

. use http://www.stata-press.com/data/r12/mheartbs
(Fictional heart attack data; bmi and age missing)

. describe

Contains data from http://www.stata-press.com/data/r12/mheart5.dta

obs: 154 Fictional heart attack data;
bmi and age missing
vars: 6 19 Jun 2011 10:50
size: 1,848
storage display value
variable name type format label variable label
attack byte %9.0g Outcome (heart attack)
smokes byte %9.0g Current smoker
age float %9.0g Age, in years
bmi float %9.0g Body Mass Index, kg/m"2
female byte %9.0g Gender
hsgrad byte %9.0g High school graduate
Sorted by:
. summarize
Variable Obs Mean Std. Dev. Min Max
attack 154 .4480519 .4989166 0 1
smokes 154 .4155844 .4944304 0 1
age 142 56.43324 11.59131 20.73613 83.78423
bmi 126 25.23523 4.029325 17.22643 38.24214
female 154 .2467532 .4325285 0 1
hsgrad 154 . 7532468 .4325285 0 1

The first guideline is

1. mi set your data; see [MI] mi set.

We will set the data to be flong even though in A simple example we set the data to be mlong. mi
provides four styles—flong, mlong, wide, and flongsep—and at this point it does not matter which
we choose. mi commands work the same way regardless of style. Four styles are provided because,
should we decide to step outside of mi and attack the data with standard Stata commands, we will
find different styles more convenient depending on what we want to do. It is easy to switch styles.

Below we type mi set flong and then, to show you what that command did to the data, we

show you the output from a standard describe:

workflow — Suggested workflow 347

. mi set flong

. describe

Contains data from http://www.stata-press.com/data/ri2/mheart5.dta

obs: 154 Fictional heart attack data;
bmi and age missing

vars: 9 19 Jun 2011 10:50

size: 2,618

storage display value

variable name type format label variable label
attack byte %9.0g Outcome (heart attack)
smokes byte %9.0g Current smoker
age float %9.0g Age, in years
bmi float %9.0g Body Mass Index, kg/m"2
female byte %9.0g Gender
hsgrad byte %9.0g High school graduate
_mi_miss byte %8.0g
_mi_m int %8.0g
_mi_id int %12.0g
Sorted by:

Typing mi set flong added three variables to our data: _mi_miss, _mi_m, and _mi_id. Those
variables belong to mi. If you are curious about them, see [MI] styles. Advanced users can even use
them. No matter how advanced you are, however, you must never change their contents.

Except for the three added variables, the data are unchanged, and we would see that if we typed
summarize. The three added variables are due to the style we chose. When you mi set your data,
different styles will change the data differently, but the changes will be just around the edges.

The second guideline is

2. Use mi describe often; see [MI] mi describe.

The guideline is to use mi describe, not describe as we just did. Here is the result:

. mi describe

Style:

Obs.:

Vars.:

flong

last mi update 02apr2011 11:07:59, O seconds ago
complete 154

incomplete 0 (M= 0 imputations)

total 154

imputed: O

passive: O

regular: O

system: 3; _mi_m _mi_id _mi_miss

(there are 6 unregistered variables)

As the guideline warned us, “mi describe will not tell you anything useful yet.”

348 workflow — Suggested workflow

The third guideline is
3. Use mi misstable to identify missing values; see [MI] mi misstable.
Below we type mi misstable summarize and mi misstable nested:

. mi misstable summarize

Obs<.
Unique
Variable Obs=. Obs>. Obs<. values Min Max
age 12 142 142 20.73613 83.78423
bmi 28 126 126 17.22643 38.24214

. mi misstable nested
1. age(12) -> bmi(28)

mi misstable summarize reports the variables containing missing values. Those variables in
our data are age and bmi. Notice that mi misstable summarize draws a distinction between, as it
puts it, “Obs=." and “Obs>.”, which is to say between standard missing (.) and extended missing
(.a, .b, ..., .2z). That is because mi has a concept of soft and hard missing, and it associates soft
missing with system missing and hard missing with extended missing. Hard missing values—extended
missings—are taken to mean missing values that are not to be imputed. Our data have no missing
values like that.

After typing mi misstable summarize, we typed mi misstable nested because we were
curious whether the missing values were nested or, to use the jargon, monotone. We discovered that
they were. That is, age has 12 missing values in the data, and in every observation in which age
is missing, so is bmi, although bmi has another 16 missing values scattered around the data. That
means we can use a monotone imputation method, and that is good news because monotone methods
are more flexible and faster. We will discuss the implications of that shortly. There is a mechanical
detail we must handle first.

The fourth guideline is
4. Use mi register imputed to register the variables you wish to impute; see [MI] mi set.

We know that age and bmi have missing values, and before we can impute replacements for those
missing values, we must register the variables as to-be-imputed, which we do by typing

. mi register imputed age bmi
(28 m=0 obs. now marked as incomplete)

Guideline 2 suggested that we type mi describe often. Perhaps now would be a good time:

. mi describe

Style: flong
last mi update 02apr2011 11:07:59, O seconds ago

Obs.: complete 126
incomplete 28 (M = 0 imputations)
total 154

Vars.: imputed: 2; age(12) bmi(28)
passive: O
regular: O
system: 3; _mi_m _mi_id _mi_miss

(there are 4 unregistered variables; attack smokes female hsgrad)

workflow — Suggested workflow 349

The output has indeed changed. mi knows just as it did before that we have 154 observations, and
it now knows that 126 of them are complete and 28 of them are incomplete. It also knows that age
and bmi are to be imputed. The numbers in parentheses are the number of missing values.

The fifth guideline is
5. Use mi impute to impute (fill in) the missing values; see [MI] mi impute.
In A simple example from [MI] intro, we imputed values for age and bmi by typing

. mi impute mvn age bmi = attack smokes hsgrad female, add(10)
This time, we will impute values by typing

. mi impute monotone (regress) age bmi = attack smokes hsgrad female,
add (20)

We changed add (10) to add (20) for no other reason than to show that we could, although we admit
to a preference for more imputations whenever possible. add () specifies the number of imputations
to be added to the data. For every missing value, we will impute 20 nonmissing replacements.

We switched from mi impute mvn to mi impute monotone because our data are monotone. Here
mi impute monotone will be faster than mi impute mvn but will offer no statistical advantage. In
other cases, there might be statistical advantages. All of which is to say that when you get to the
imputation step, you have important decisions to make and you need to become knowledgeable about
the subject. You can start by reading [MI] mi impute.

. set seed 20039

. mi impute monotone (regress) age bmi = attack smokes hsgrad female, add(20)

Conditional models:
age: regress age attack smokes hsgrad female
bmi: regress bmi age attack smokes hsgrad female

Multivariate imputation Imputations = 20
Monotone method added = 20
Imputed: m=1 through m=20 updated = 0

age: linear regression
bmi: linear regression

Observations per m

Variable Complete Incomplete Imputed Total
age 142 12 12 154
bmi 126 28 28 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observationmns.)

Note that we typed set seed 20039 before issuing the mi impute command. Doing that made
our results reproducible. We could have specified mi impute’s rseed(20039) option instead. Or
we could have skipped setting the random-number seed altogether, and then we would not be able
to reproduce our results.

The sixth guideline is

6. Use mi describe to verify that all missing values are filled in; see [MI] mi describe.

350 workflow — Suggested workflow

. mi describe, detail

Style: flong
last mi update 02apr2011 11:07:59, O seconds ago

Obs.: complete 126
incomplete 28 (M = 20 imputations)
total 154

Vars.: imputed: 2; age(12; 20%0) bmi(28; 20%0)
passive: O
regular: O
system: 3; _mi_m _mi_id _mi_miss

(there are 4 unregistered variables; attack smokes female hsgrad)

This time, we specified mi describe’s detail option, although you have to look closely at the
output to see the effect. When you do not specify detail, mi describe reports results for the
original, unimputed data only, what we call m = 0 throughout this documentation. When you specify
detail, mi describe also includes information about the imputation data, what we call m > 0 and
ism=1, m =2, ..., m = 20 here. Previously, mi describe reported “age(12)”, meaning that
age in m = 0 has 12 missing values. This time, it reports “age(12; 20*0)”, meaning that age still
has 12 missing values in m = 0, and it has 0 missing values in the 20 imputations. bmi also has 0
missing values in the imputations. Success!

Let’s take a detour to see how our data really look. Let’s type Stata’s standard describe command.
The last time we looked, our data had three extra variables.

. describe

Contains data from http://www.stata-press.com/data/r12/mheart5.dta

obs: 3,234 Fictional heart attack data;
bmi and age missing

vars: 9 21 Jun 2011 13:36

size: 54,978

storage display value

variable name type format label variable label
attack byte %9.0g Outcome (heart attack)
smokes byte %9.0g Current smoker
age float %9.0g Age, in years
bmi float %9.0g Body Mass Index, kg/m"2
female byte %9.0g Gender
hsgrad byte %9.0g High school graduate
_mi_id int %12.0g
_mi_miss byte 7%8.0g
_mi_m int %8.0g
Sorted by: _mi_m _mi_id

Nothing has changed as far as variables are concerned, but notice the number of observations.
Previously, we had 154 observations. Now we have 3,234! That works out to 21*154. Stored is our
original data plus 20 imputations. The flong style makes extra copies of the data.

We chose style flong only because it is so easy to explain. In A simple example from [MI] intro
using this same data, we choose style mlong. It is not too late:

. mi convert mlong

All that is required to change styles is typing mi convert. The style of the data changes, but not
the contents. Let’s see what describe has to report:

workflow — Suggested workflow 351

. describe

Contains data from http://www.stata-press.com/data/r12/mheart5.dta

obs: 714 Fictional heart attack data;
bmi and age missing

vars: 9 21 Jun 2011 13:36

size: 12,138

storage display value

variable name type format label variable label
attack byte %9.0g Outcome (heart attack)
smokes byte %9.0g Current smoker
age float %9.0g Age, in years
bmi float %9.0g Body Mass Index, kg/m~2
female byte %9.0g Gender
hsgrad byte %9.0g High school graduate
_mi_id int %12.0g
_mi_miss byte %8.0g
_mi_m int %8.0g

Sorted by: _mi_m mi_id

The data look much like they did when they were flong, except that the number of observations
has fallen from 3,234 to 714! Style mlong is an efficient style in that rather than storing the full
data for every imputation, it stores only the changes. Back when the data were flong, mi describe
reported that we had 28 incomplete observations. We get 714 from the 154 original observations plus
20 x 28 replacement observations for the incomplete observations.

We recommend style mlong. Style wide is also recommended. Below we type mi convert to
convert our mlong data to wide, and then we run the standard describe command:
. mi convert wide
. describe

Contains data from http://www.stata-press.com/data/ri2/mheart5.dta

obs: 154 Fictional heart attack data;
bmi and age missing

vars: 47 21 Jun 2011 13:43

size: 26,642

storage display value

variable name type format label variable label
attack byte %9.0g Outcome (heart attack)
smokes byte %9.0g Current smoker
age float %9.0g Age, in years
bmi float %9.0g Body Mass Index, kg/m~2
female byte %9.0g Gender
hsgrad byte %9.0g High school graduate
_mi_miss byte %8.0g
_1_age float %9.0g Age, in years
_1_bmi float %9.0g Body Mass Index, kg/m"2
_2_age float %9.0g Age, in years
_2_bmi float %9.0g Body Mass Index, kg/m"2
(output omitted)
_20_age float %9.0g Age, in years
_20_bmi float %9.0g Body Mass Index, kg/m"2
Sorted by:

In the wide style, our data are back to having 154 observations, but now we have 47 variables!

352 workflow — Suggested workflow

Variable _1_age contains age for m = 1, _1_bmi contains bmi for m = 1, _2_age contains age
for m = 2, and so on.

Guideline 7 is
7. Generate passive variables.

Passive variables are variables derived from imputed variables. For instance, if we needed 1lnage =
In(age), variable 1nage would be passive. Passive variables are easy to create; see [MI] mi passive.
We are not going to need any passive variables in this example.

Guideline 8 is
8. Use mi estimate to fit models; see [MI] mi estimate.
Our data are wide right now, but that does not matter. We fit our model:

. mi estimate: logistic attack smokes age bmi hsgrad female

Multiple-imputation estimates Imputations = 20
Logistic regression Number of obs = 154
Average RVI = 0.0547

Largest FMI = 0.1377

DF adjustment: Large sample DF: min = 1027.48
avg = 55394.62

max = 168501.59

Model F test: Equal FMI F(5,25165.6) = 3.35
Within VCE type: 0IM Prob > F = 0.0050
attack Coef. Std. Err. t P>t [95% Conf. Intervall
smokes 1.186791 .359663 3.30 0.001 .4818394 1.891743

age .0297742 .0164346 1.81 0.070 -.0024699 .0620184

bmi .1033297 .0468362 2.21 0.028 .0114494 .1952101

hsgrad .1529883 .4033788 0.38 0.704 -.6376254 .943602
female -.079329 .4145832 -0.19 0.848 -.8919049 . 7332468

_cons -5.100976 1.685697 -3.03 0.003 -8.408779 -1.793173

Those familiar with the logistic command will be surprised that mi estimate: logistic
reported coefficients rather than odds ratios. That is because the estimation command is not logistic
using mi estimate, it is mi estimate using logistic. If we wanted to see odds ratios at estimation
time, we could have typed

. mi estimate, or: logistic ...

By the same token, if we wanted to replay results, we would not type logistic, we would type
mi estimate:

. mi estimate
(output omitted)

If we wanted to replay results with odds ratios, we would type

. mi estimate, or

And that concludes the guidelines.

Also see
[MI] intro — Introduction to mi

[MI] Glossary

Title

Glossary

Description

Please read. The terms defined below are used throughout the documentation, sometimes without
explanation.

Glossary

arbitrary missing pattern. Any missing-value pattern. Some imputation methods are suitable only
when the pattern of missing values is special, such as a monotone-missing pattern. An imputation
method suitable for use with an arbitrary missing pattern may be used regardless of the pattern.

augmented regression. Regression performed on the augmented data, the data with a few extra
observations with small weights. The data are augmented in a way that prevents perfect prediction,
which may arise during estimation of categorical data. See The issue of perfect prediction during
imputation of categorical data under Remarks of [MI] mi impute.

burn-between period. The number of iterations between two draws of an MCMC sequence such that
these draws may be regarded as independent.

burn-in period. The number of iterations it takes for an MCMC sequence to reach stationarity.
casewise deletion. See listwise deletion.
chained equations. See FCS.

complete and incomplete observations. An observation in the m = 0 data is said to be complete
if no imputed variable in the observation contains soft missing (.). Observations that are not
complete are said to be incomplete.

complete-cases analysis. See listwise deletion.
complete data. Data that do not contain any missing values.

complete-data analysis. The analysis or estimation performed on the complete data, the data for
which all values are observed. This term does not refer to analysis or estimation performed on the
subset of complete observations. Do not confuse this with completed-data analysis.

complete DF, complete degrees of freedom. The degrees of freedom that would have been used for
inference if the data were complete.

completed data. See imputed data.

completed-data analysis. The analysis or estimation performed on the made-to-be completed (imputed)
data. This term does not refer to analysis or estimation performed on the subset of complete
observations.

conditional imputation. Imputation performed using a conditional sample, a restricted part of the
sample. Missing values outside the conditional sample are replaced with a conditional constant,
the constant value of the imputed variable in the nonmissing observations outside the conditional
sample. See Conditional imputation under Remarks of [MI] mi impute.

DA, data augmentation. An MCMC method used for the imputation of missing data.

EM, expectation-maximization algorithm. In the context of MI, an iterative procedure for obtaining
maximum likelihood or posterior-mode estimates in the presence of missing data.

353

354 Glossary

FCS, fully conditional specification. Consider imputation variables X1, X,..., X,. Fully condi-
tional specification of the prediction equation for X; includes all variables except X;; that is,
variables X_j = (X17X2, [N ,Xj_17Xj+1, e ,Xp)

flong data. See style.
flongsep data. See style.

FMI, fraction of missing information. The ratio of information lost due to the missing data to the
total information that would be present if there were no missing data.

An equal FMI test is a test under the assumption that FMIs are equal across parameters.
An unrestricted FMI test is a test without the equal FMI assumption.

hard missing and soft missing. A hard missing value is a value of .a, .b, ..., .z in m =0 in an
imputed variable. Hard missing values are not replaced in m > 0.

A soft missing value is a value of . in m = 0 in an imputed variable. If an imputed variable
contains soft missing, then that value is eligible to be imputed, and perhaps is imputed, in m > 0.

Although you can use the terms hard missing and soft missing for passive, regular, and unregistered
variables, it has no special significance in terms of how the missing values are treated.

ignorable missing-data mechanism. The missing-data mechanism is said to be ignorable if missing
data are missing at random and the parameters of the data model and the parameters of the
missing-data mechanism are distinct; that is, the joint distribution of the model and the missing-
data parameters can be factorized into two independent marginal distributions of model parameters
and of missing-data parameters.

imputed, passive, and regular variables. An imputed variable is a variable that has missing values
and for which you have or will have imputations.

A passive variable is a varying variable that is a function of imputed variables or of other passive
variables. A passive variable will have missing values in m = 0 and varying values for observations
in m > 0.

A regular variable is a variable that is neither imputed nor passive and that has the same values,
whether missing or not, in all m.

Imputed, passive, and regular variables can be registered using the mi register command;
see [MI] mi set. You are required to register imputed variables, and we recommend that you
register passive variables. Regular variables can also be registered. See registered and unregistered
variables.

imputed data. Data in which all missing values are imputed.
incomplete observations. See complete and incomplete observations.

ineligible missing value. An ineligible missing value is a missing value in a to-be-imputed variable
that is due to inability to calculate a result rather than an underlying value being unobserved. For
instance, assume that variable income had some missing values and so you wish to impute it.
Because income is skewed, you decide to impute the log of income, and you begin by typing

generate lnincome = log(income)

If income contained any zero values, the corresponding missing values in lnincome would be
ineligible missing values. To ensure that values are subsequently imputed correctly, it is of vital
importance that any ineligible missing values be recorded as hard missing. You would do that by
typing

replace lnincome = .a if lnincome==. & income!=.

Glossary 355

As an aside, if after imputing 1nincome using mi impute (see [MI] mi impute), you wanted to
fill in income, income surprisingly would be a passive variable because 1nincome is the imputed
variable and income would be derived from it. You would type

. mi register passive income

. mi passive: replace income = cond(lnincome==.a, 0, exp(lnincome))
In general, you should avoid using transformations that produce ineligible missing values to avoid
the loss of information contained in other variables in the corresponding observations. For example,
in the above, for zero values of income we could have assigned the log of income, lnincome,

to be the smallest value that can be stored as double, because the logarithm of zero is negative
infinity:

generate lnincome = cond(income==0, mindouble(), log(income))

This way, all observations for which income==0 will be used in the imputation model for Inincome.
jackknifed standard error. See Monte Carlo error.

listwise deletion, casewise deletion. Omitting from analysis observations containing missing values.

M, m. M is the number of imputations. m refers to a particular imputation, m = 1,2,..., M. In
mi, m = 0 is used to refer to the original data, the data containing the missing values. Thus mi
data in effect contain M + 1 datasets, corresponding to m =0, m =1, ..., and m = M.

MAR, missing at random. Missing data are said to be missing at random (MAR) if the probability
that data are missing does not depend on unobserved data but may depend on observed data. Under
MAR, the missing-data values do not contain any additional information given observed data about
the missing-data mechanism. Thus the process that causes missing data can be ignored.

MCAR, missing completely at random. Missing data are said to be missing completely at random
(MCAR) if the probability that data are missing does not depend on observed or unobserved data.
Under MCAR, the missing data values are a simple random sample of all data values, so any
analysis that discards the missing values remains consistent, albeit perhaps inefficient.

MCE, Monte Carlo error. Within the multiple-imputation context, a Monte Carlo error is defined as the
standard deviation of the multiple-imputation results across repeated runs of the same imputation
procedure using the same data. The Monte Carlo error is useful for evaluating the statistical
reproducibility of multiple-imputation results. See Example 6: Monte Carlo error estimates under
Remarks of [MI] mi estimate.

MCMC, Markov chain Monte Carlo. A class of methods for simulating random draws from
otherwise intractable multivariate distributions. The Markov chain has the desired distribution as
its equilibrium distribution.

mi data. Any data that have been mi set (see [MI] mi set), whether directly by mi set or indirectly
by mi import (see [MI] mi import). The mi data might have no imputations (have M = 0) and
no imputed variables, at least yet, or they might have M > 0 and no imputed variables, or vice
versa. An mi dataset might have M > 0 and imputed variables, but the missing values have not
yet been replaced with imputed values. Or mi data might have M > 0 and imputed variables and
the missing values of the imputed variables filled in with imputed values.

mlong data. See style.

monotone-missing pattern, monotone missingness. A special pattern of missing values in which if
the variables are ordered from least to most missing, then all observations of a variable contain
missing in the observations in which the prior variable contains missing.

356 Glossary

MNAR, missing not at random. Missing data are missing not at random (MNAR) if the probability
that data are missing depends on unobserved data. Under MNAR, a missing-data mechanism (the
process that causes missing data) must be modeled to obtain valid results.

original data. Original data are the data as originally collected, with missing values in place. In mi
data, the original data are stored in m = 0. The original data can be extracted from mi data by
using mi extract; see [MI] mi extract.

passive variable. See imputed, passive, and regular variables.

registered and unregistered variables. Variables in mi data can be registered as imputed, passive,
or regular by using the mi register command; see [MI] mi set.

You are required to register imputed variables.

You should register passive variables; if your data are style wide, you are required to register them.
The mi passive command (see [MI] mi passive) makes creating passive variables easy, and it
automatically registers them for you.

Whether you register regular variables is up to you. Registering them is safer in all styles except
wide, where it does not matter. By definition, regular variables should be the same across m. In
the long styles, you can unintentionally create variables that vary. If the variable is registered, mi
will detect and fix your mistakes.

Super-varying variables, which rarely occur and can be stored only in flong and flongsep data,
should never be registered.

The registration status of variables is listed by the mi describe command; see [MI] mi describe.
regular variable. See imputed, passive, and regular variables.

relative efficiency. Ratio of variance of a parameter given estimation with finite M to the variance
if M were infinite.

RVI, relative variance increase. The increase in variance of a parameter estimate due to nonresponse.

style. Style refers to the format in which the mi data are stored. There are four styles: flongsep,
flong, mlong, and wide. You can ignore styles, except for making an original selection, because
all mi commands work regardless of style. You will be able to work more efficiently, however,
if you understand the details of the style you are using; see [MI] styles. Some tasks are easier in
one style than another. You can switch between styles by using the mi convert command; see
[MI] mi convert.

The flongsep style is best avoided unless your data are too big to fit into one of the other styles.
In flongsep style, a separate .dta set is created for m = 0, for m =1, ..., and for m = M.
Flongsep is best avoided because mi commands work more slowly with it.

In all the other styles, the M + 1 datasets are stored in one .dta file. The other styles are both
more convenient and more efficient.

The most easily described of these .dta styles is flong; however, flong is also best avoided because
mlong style is every bit as convenient as flong, and mlong is memorywise more efficient. In flong,
each observation in the original data is repeated M times in the .dta dataset, once for m = 1,
again for m = 2, and so on. Variable _mi_m records m and takes on values 0, 1, 2, ..., M.
Within each value of m, variable _mi_id takes on values 1, 2, ..., N and thus connects imputed
with original observations.

The mlong style is recommended. It is efficient and easy to use. Mlong is much like flong except
that complete observations are not repeated.

Glossary 357

Equally recommended is the wide style. In wide, each imputed and passive variable has an
additional M variables associated with it, one for the variable’s value in m = 1, another for its
value in m = 2, and so on. If an imputed or passive variable is named vn, then the values of vn
in m = 1 are stored in variable _1_vn; the values for m = 2, in _2_vn; and so on.

What makes mlong and wide so convenient? In mlong, there is a one-to-one correspondence of
your idea of a variable and Stata’s idea of a variable—variable vn refers to van for all values
of m. In wide, there is a one-to-one correspondence of your idea of an observation and Stata’s
idea—physical observation 5 is observation 5 in all datasets.

Choose the style that matches the problem at hand. If you want to create new variables or modify
existing ones, choose mlong. If you want to drop observations or create new ones, choose wide.
You can switch styles with the mi convert command; see [MI] mi convert.

For instance, if you want to create new variable ageXexp equal to age*exp and your data are
mlong, you can just type generate ageXexp = age*exp, and that will work even if age and exp
are imputed, passive, or a mix. Theoretically, the right way to do that is to type mi passive:
generate agexExp = age*exp, but concerning variables, if your data are mlong, you can work
the usual Stata way.

If you want to drop observation 20 or drop if sex==2, if your data are wide, you can just type
drop in 20 or drop if sex==2. Here the “right” way to do the problem is to type the drop
command and then remember to type mi update so that mi can perform whatever machinations
are required to carry out the change throughout m > 0; however, in the wide form, there are no
machinations required.

super-varying variables. See varying and super-varying variables.
unregistered variables. See registered and unregistered variables.

varying and super-varying variables. A variable is said to be varying if its values in the incomplete
observations differ across m. Imputed and passive variables are varying. Regular variables are
nonvarying. Unregistered variables can be either.

Imputed variables are supposed to vary because their incomplete values are filled in with different
imputed values, although an imputed variable can be temporarily nonvarying if you have not
imputed its values yet. Similarly, passive variables should vary because they are or will be filled
in based on values of varying imputed variables.

A variable is said to be super varying if its values in the complete observations differ across m.
The existence of super-varying variables is usually an indication of error. It makes no sense for
a variable to have different values in, say, m = 0 and m = 2 in the complete observations—in
observations that contain no missing values. That is, it makes no sense unless the values of the
variable is a function of the values of other variables across multiple observations. If variable sumx
is the sum of x across observations, and if x is imputed, then sumx will differ across m in all
observations after the first observation in which x is imputed.

The mi varying command will identify varying and super-varying variables, as well as nonvarying
imputed and passive variables. [MI] mi varying explains how to fix problems when they are due
to error.

Some problems that theoretically could arise cannot arise because mi will not let them. For instance,
an imputed variable could be super varying and that would obviously be a serious error. Or a
regular variable could be varying and that, too, would be a serious error. When you register a
variable, mi fixes any such problems and, from that point on, watches for problems and fixes them
as they arise.

358 Glossary

Use mi register to register variables; see [MI] mi set. You can perform the checks and fixes at
any time by running mi update; see [MI] mi update. Among other things, mi update replaces
values of regular variables in m > 0 with their values from m = 0; it replaces values of imputed
variables in m > 0 with their nonmissing values from m = 0; and it replaces values of passive
variables in incomplete observations of m > 0 with their m = 0 values. mi update follows a
hands-off policy with respect to unregistered variables.

If you need super-varying variables, use flong or flongsep style and do not register the variable.
You must use one of the flong styles because in the wide and mlong styles, there is simply no
place to store super-varying values.

wide data. See style.

WLEF, worst linear function. A linear combination of all parameters being estimated by an iterative
procedure that is thought to converge slowly.

Also see

[MI] intro — Introduction to mi

Subject and author index 359

Subject and author index

This is the subject and author index for the Multiple-
Imputation Reference Manual. Readers interested in
topics other than multiple imputation should see the
combined subject index (and the combined author index)
in the Quick Reference and Index.

Semicolons set off the most important entries from the
rest. Sometimes no entry will be set off with semicolons,
meaning that all entries are equally important.

A

Abayomi, K., [MI] intro substantive, [MI] mi impute

add, mi subcommand, [MI] mi add

Albert, A., [MI] mi impute

Alfaro, R., [MI] intro

Allison, P. D., [MI] intro substantive, [MI] mi impute

analysis step, [MI] intro substantive, [MI] mi estimate,
also see estimation

Anderson, J. A., [MI] mi impute

Anderson, T. W., [MI] intro substantive

append, mi subcommand, [MI] mi append

appending data, [MI] mi append

arbitrary pattern of missing values, [MI] Glossary,
[MI] mi impute chained, [MI] mi impute mvn,
also see pattern of missingness

Arnold, B. C., [MI] intro substantive, [MI] mi impute
chained

augmented regression, see imputation, perfect prediction

available-case analysis, [MI] intro substantive

average RVI, [MI] Glossary, [MI] mi estimate

Barnard, J., [MI] intro substantive, [MI] mi estimate,
[MI] mi estimate using, [MI] mi predict,
[MI] mi test

Bayesian concepts, [MI] intro substantive

between-imputation variability, [MI] mi estimate,
[MI] mi predict

Bibby, J. M., [MI] mi impute mvn

binary variable imputation, see imputation, binary

Binder, D. A., [MI] intro substantive

Boshuizen, H. C., [MI] intro substantive, [MI] mi
impute, [MI] mi impute chained, [MI] mi
impute monotone

Brand, J. P. L., [MI] intro substantive, [MI] mi impute
chained

Burkhauser, R. V., [MI] intro substantive

burn-between period, [MI] Glossary, [MI] mi impute,
[MI] mi impute chained, [MI] mi impute mvn

burn-in period, [MI] Glossary, [MI] mi impute,
[MI] mi impute chained, [MI] mi impute mvn

Cc

cancer data, [MI] mi estimate, [MI] mi predict

Carlin, J. B., [MI] intro, [MI] intro substantive,
[MI] mi estimate, [MI] mi impute, [MI] mi
impute mvn, [MI] mi impute regress

Carpenter, J. R., [MI] intro, [MI] intro substantive,
[MI] mi impute

casewise deletion, see listwise deletion

Castillo, E., [MI] intro substantive, [MI] mi impute
chained

categorical variable imputation, see imputation,
categorical

censoring, see imputation, interval-censored data

certifying mi data are consistent, [MI] mi update

chained equations, see imputation, chained equations

Cleves, M. A., [MI] mi estimate

Coffey, C., [MI] intro substantive

combination step, [MI] intro substantive, [MI] mi
estimate, [MI] mi estimate using, [MI] mi
predict

combining data, [MI] mi add, [MI] mi append,
[MI] mi merge

complete data, [MI] Glossary

complete degrees of freedom for coefficients,

[MI] Glossary, [MI] mi estimate

complete observations, [MI] Glossary

complete-cases analysis, [MI] Glossary

complete-data analysis, [MI] Glossary

completed data, [MI] Glossary

completed-data analysis, [MI] Glossary, [MI] intro
substantive, [MI] mi estimate

conditional imputation, [MI] Glossary, [MI] mi impute,
also see imputation, conditional

continuous variable imputation, see imputation,
continuous

convergence of MCMC, see MCMC, convergence

convert, mi subcommand, [MI] mi convert

converting between styles, [MI] mi convert

copy, mi subcommand, [MI] mi copy, [MI] styles

count data, see imputation, count data

custom prediction equations, [MI] mi impute chained,
[MI] mi impute monotone

D

DA, see data augmentation
Daniel, R., [MI] intro substantive, [MI] mi impute,
[MI] mi impute chained, [MI] mi impute
monotone
data augmentation, [MI] Glossary, [MI] mi impute,
[MI] mi impute mvn
data management, [MI] mi add, [MI] mi append,
[MI] mi expand, [MI] mi extract, [MI] mi
merge, [MI] mi rename, [MI] mi replace0,
[MI] mi reset, [MI] mi reshape
data,
exporting, see exporting data
flong, see flong
flongsep, see flongsep
importing, see importing data

360 Subject and author index

data, continued
mlong, see mlong
wide, see wide
degrees of freedom, [MI] mi estimate, [MI] mi predict
for coefficients, complete, see complete degrees of
freedom for coefficients, also see estimation,
degrees of freedom for coefficients
Dempster, A. P, [MI] intro substantive, [MI] mi
impute mvn
describe, mi subcommand, [MI] mi describe
describing mi data, [MI] mi describe

E

Ecob, R., [MI] mi estimate
Eddings, W. D., [MI] mi impute
egen command, [MI] mi passive, [MI] mi xeq
EM, [MI] Glossary, [MI] mi impute mvn
parameter trace files, [MI] mi ptrace
ensuring mi data are consistent, [MI] mi update
equal FMI test, [MI] Glossary, [MI] mi estimate,
[MI] mi test
erase, mi subcommand, [MI] mi erase, [MI] styles
estimate, mi subcommand, [MI] mi estimate, [MI] mi
estimate using
estimation
allowed estimation commands, [MI] estimation
degrees of freedom for coefficients, [MI] mi
estimate
posting VCE, [MI] mi estimate
predictions after, [MI] mi predict
tests after, [MI] mi estimate, [MI] mi test
expand for mi data, [MI] mi expand
expand, mi subcommand, [MI] mi expand
expectation-maximization algorithm, see EM
export, mi subcommand, [MI] mi export, [MI] mi
export ice, [MI] mi export nhanesl
exporting data, [MI] mi export, [MI] mi export ice,
[MI] mi export nhanes1
extract, mi subcommand, [MI] mi extract, [MI] mi
replace0
extracting m=+ data from mi data, [MI] mi extract,
[MI] mi select
extracting original data from mi data, [MI] mi extract
Ezzati-Rice, T. M., [MI] intro substantive

F

FCS, see fully conditional specification

Feng, S., [MI] intro substantive

flong
data style, [MI] Glossary, [MI] styles
technical description, [MI] technical

flongsep
data style, [MI] Glossary, [MI] mi xeq, [MI] styles
estimating memory requirements, [MI] mi convert
style, [MI] mi copy, [MI] mi erase
technical description, [MI] technical

FMI, see fraction missing information

fraction missing information, [MI] Glossary, [MI] mi
estimate, [MI] mi predict, [MI] mi test

frequentist concepts, [MI] intro substantive

fully conditional specification, [MI] Glossary, [MI] mi
impute, [MI] mi impute chained

fvset command for mi data, [MI] mi XXXset

fvset, mi subcommand, [MI] mi XXXset

G

Galati, J. C., [MI] intro, [MI] intro substantive,
[MI] mi estimate

Gelfand, A. E., [MI] mi impute chained

Gelman, A., [MI] intro substantive, [MI] mi impute,
[MI] mi impute mvn, [MI] mi impute regress

Geman, D., [MI] mi impute chained

Geman, S., [MI] mi impute chained

generate command, [MI] mi passive, [MI] mi xeq

Gould, W. W., [MI] mi estimate

Graham, J. W., [MI] intro substantive, [MI] mi impute

Greenwood, P., [MI] intro substantive

Groothuis-Oudshoorn, C. G. M., [MI] intro
substantive, [MI] mi impute chained

Gutierrez, R. G., [MI] mi estimate

H

hard missing value, [MI] Glossary, [MI] mi impute

Hartley, H. O., [MI] intro substantive, [MI] mi impute

heart attack data, [MI] intro substantive, [MI] mi
estimate, [MI] mi impute chained, [MI] mi
impute intreg, [MI] mi impute logit, [MI] mi
impute mlogit, [MI] mi impute monotone,
[MI] mi impute mvn, [MI] mi impute nbreg,
[MI] mi impute ologit, [MI] mi impute pmm,
[MI] mi impute poisson, [MI] mi impute
regress, [MI] mi impute truncreg, [MI] mi
predict

Heitjan, D. F., [MI] intro substantive, [MI] mi impute

Hocking, R. R., [MI] intro substantive

home resale-price data, [MI] mi estimate, [MI] mi
estimate using, [MI] mi predict, [MI] mi test

Horton, N. J., [MI] intro substantive

ICE, see imputation, chained equations

ice command, [MI] mi export ice, [MI] mi import ice

ignorable missing-data mechanism, [MI] Glossary,
[MI] intro substantive

import, mi subcommand, [MI] mi import, [MI] mi
import flong, [MI] mi import flongsep, [MI] mi
import ice, [MI] mi import nhanes1, [MI] mi
import wide

importing data, [MI] mi import, [MI] mi import flong,
[MI] mi import flongsep, [MI] mi import ice,
[MI] mi import nhanes1, [MI] mi import wide

imputation diagnostics, see imputation, diagnostics

Subject and author index 361

imputation method, [MI] mi impute
iterative, [MI] mi impute, [MI] mi impute chained,
[MI] mi impute mvn
monotone, [MI] mi impute monotone
multivariate, [MI] mi impute chained, [MI] mi
impute monotone, [MI] mi impute mvn
proper, [MI] intro substantive
univariate, [MI] mi impute intreg, [MI] mi impute
logit, [MI] mi impute mlogit, [MI] mi impute
nbreg, [MI] mi impute ologit, [MI] mi impute
pmm, [MI] mi impute poisson, [MI] mi impute
regress, [MI] mi impute truncreg
imputation using chained equations, see imputation,
chained equations
imputation,
binary, [MI] mi impute logit
by groups, [MI] mi impute
categorical, [MI] mi impute mlogit, [MI] mi impute
ologit
chained equations, [MI] mi impute, [MI] mi impute
chained, [MI] mi impute intreg, [MI] mi impute
logit, [MI] mi impute mlogit, [MI] mi impute
nbreg, [MI] mi impute ologit, [MI] mi impute
pmm, [MI] mi impute poisson, [MI] mi impute
regress, [MI] mi impute truncreg
conditional, [MI] mi impute, [MI] mi impute
chained, [MI] mi impute intreg, [MI] mi impute
logit, [MI] mi impute mlogit, [MI] mi impute
monotone, [MI] mi impute nbreg, [MI] mi
impute ologit, [MI] mi impute pmm, [MI] mi
impute poisson, [MI] mi impute regress,
[MI] mi impute truncreg
continuous, [MI] mi impute pmm, [MI] mi impute
regress
with a limited range, [MI] mi impute intreg,
[MI] mi impute truncreg
count data, [MI] mi impute nbreg, [MI] mi impute
poisson
diagnostics, [MI] mi impute
interval-censored data, [MI] mi impute intreg
interval regression, [MI] mi impute intreg
linear regression, [MI] mi impute regress
logistic regression, [MI] mi impute logit
modeling, [MI] mi impute
monotone, [MI] mi impute, [MI] mi impute
chained, [MI] mi impute monotone
multinomial logistic regression, [MI] mi impute
mlogit
multiple, [MI] intro substantive
multivariate, [MI] mi impute chained, [MI] mi
impute monotone, [MI] mi impute mvn
monotone, [MI] mi impute, [MI] mi impute
intreg, [MI] mi impute logit, [MI] mi impute
mlogit, [MI] mi impute nbreg, [MI] mi
impute ologit, [MI] mi impute pmm,
[MI] mi impute poisson, [MI] mi impute
regress, [MI] mi impute truncreg
normal, [MI] mi impute, [MI] mi impute mvn
negative binomial regression, [MI] mi impute nbreg

imputation, continued
on subsamples, [MI] mi impute
ordered logistic regression, [MI] mi impute ologit
overdispersed count data, [MI] mi impute nbreg
passive, [MI] mi impute, [MI] mi impute chained
passive variables, [MI] mi impute regress
perfect prediction, [MI] mi impute
Poisson regression, [MI] mi impute poisson
predictive mean matching, [MI] mi impute, [MI] mi
impute pmm
regression, [MI] mi impute, [MI] mi impute regress
semiparametric, [MI] mi impute pmm
step, [MI] intro substantive, [MI] mi estimate
transformations, [MI] mi impute
truncated data, [MI] mi impute truncreg
truncated regression, [MI] mi impute truncreg
univariate, [MI] mi impute intreg, [MI] mi impute
logit, [MI] mi impute mlogit, [MI] mi impute
nbreg, [MI] mi impute ologit, [MI] mi impute
pmm, [MI] mi impute poisson, [MI] mi impute
regress, [MI] mi impute truncreg
imputations, recommended number of, [MI] intro
substantive, [MI] mi estimate
impute, mi subcommand, [MI] mi impute, [MI] mi
impute chained, [MI] mi impute intreg, [MI] mi
impute logit, [MI] mi impute mlogit, [MI] mi
impute monotone, [MI] mi impute mvn,
[MI] mi impute nbreg, [MI] mi impute ologit,
[MI] mi impute pmm, [MI] mi impute poisson,
[MI] mi impute regress, [MI] mi impute
truncreg
imputed data, [MI] Glossary
imputed variables, see variables, imputed
incomplete observations, [MI] Glossary
ineligible missing values, [MI] Glossary, [MI] mi
impute
interval censoring, see imputation, interval-censored
data

J

jackknifed standard error, see Monte Carlo error
Jeffreys noninformative prior, [MI] mi impute mvn
Jenkins, S. P., [MI] intro substantive

Johnson, W., [MI] intro substantive

Junior School Project data, [MI] mi estimate

K

Kent, J. T., [MI] mi impute mvn

Kenward, M. G., [MI] intro substantive, [MI] mi
impute

Khare, M., [MI] intro substantive

Kleinman, K. P., [MI] intro substantive

Knook, D. L., [MI] intro substantive, [MI] mi impute,
[MI] mi impute chained, [MI] mi impute
monotone

362 Subject and author index

L

Laird, N. M., [MI] intro substantive, [MI] mi impute
mvn

Larrimore, J., [MI] intro substantive

Lee, K. J., [MI] intro substantive, [MI] mi impute

left-censoring, see imputation, interval-censored data

left-truncation, see imputation, truncated data

Lepkowski, J. M., [MI] intro substantive, [MI] mi
impute, [MI] mi impute chained, [MI] mi
impute logit, [MI] mi impute mlogit, [MI] mi
impute monotone, [MI] mi impute ologit,
[MI] mi impute poisson, [MI] mi impute
truncreg

Levy, M., [MI] intro substantive, [MI] mi impute

Lewis, D., [MI] mi estimate

Li, K.-H., [MI] intro substantive, [MI] mi estimate,
[MI] mi impute mvn, [MI] mi test

Li, N., [MI] intro substantive

linear prediction, see multiple imputation, prediction

linear regression imputation, see imputation, regression

linear tests, see estimation, tests after

Lipsitz, S. R., [MI] intro substantive

listwise deletion, [MI] Glossary, [MI] intro
substantive, [MI] mi estimate

Little, R. J. A., [MI] intro substantive, [MI] mi impute
mvn, [MI] mi impute pmm

logistic regression imputation, see imputation, logistic
regression

longitudinal data, [MI] mi estimate

M, [MI] Glossary, [MI] mi impute
size recommendations, [MI] intro substantive,
[MI] mi estimate
m, [MI] Glossary
MAR, see missing at random
Marchenko, Y. V., [MI] intro substantive, [MI] mi
estimate, [MI] mi impute
Mardia, K. V., [MI] mi impute mvn
Markov chain Monte Carlo, see MCMC
MCAR, see missing completely at random
MCE, see Monte Carlo error
MCMC, [MI] Glossary, [MI] mi impute, [MI] mi
impute mvn
convergence, [MI] mi impute, [MI] mi impute
chained, [MI] mi impute mvn
parameter trace files, [MI] mi ptrace
memory requirements, estimating for flongsep, [MI] mi
convert
Meng, X.-L., [MI] intro substantive, [MI] mi estimate,
[MI] mi impute, [MI] mi test
merge, mi subcommand, [MI] mi merge
merging data, [MI] mi merge
Meulders, M., [MI] intro substantive, [MI] mi impute
mi
add command, [MI] mi add
append command, [MI] mi append

mi, continued

convert command, [MI] mi convert

copy command, [MI] mi copy, [MI] styles

describe command, [MI] mi describe

erase command, [MI] mi erase, [MI] styles

estimate command, [MI] mi estimate, [MI] mi
estimate postestimation, [MI] mi estimate
using, [MI] mi test

estimate postestimation, [MI] mi estimate
postestimation, [MI] mi predict, [MI] mi test

expand command, [MI] mi expand

export command, [MI] mi export, [MI] mi export
ice, [MI] mi export nhanesl

extract command, [MI]| mi extract, [MI] mi
replace0

fvset command, [MI] mi XXXset

import command, [MI] mi import, [MI] mi import
flong, [MI] mi import flongsep, [MI] mi import
ice, [MI] mi import nhanesl, [MI] mi import
wide

impute command, [MI] mi impute, [MI] mi impute
chained, [MI] mi impute intreg, [MI] mi impute
logit, [MI] mi impute mlogit, [MI] mi impute
monotone, [MI] mi impute mvn, [MI] mi
impute nbreg, [MI] mi impute ologit, [MI] mi
impute pmm, [MI] mi impute poisson, [MI] mi
impute regress, [MI] mi impute truncreg

merge command, [MI] mi merge

misstable command, [MI] mi misstable

passive command, [MI] mi passive

predict command, [MI] mi estimate
postestimation, [MI] mi predict

predictnl command, [MI] mi estimate
postestimation, [MI] mi predict

ptrace command, [MI] mi ptrace

query command, [MI] mi describe

register command, [MI] mi set

rename command, [MI] mi rename

replace0 command, [MI] mi replace0

reset command, [MI] mi reset

reshape command, [MI] mi reshape

select command, [MI] mi select, also see mi
extract command

set command, [MI] mi set

st command, [MI] mi XXXset

stjoin command, [MI] mi stsplit

streset command, [MI] mi XXXset

stset command, [MI] mi XXXset

stsplit command, [MI] mi stsplit

svyset command, [MI] mi XXXset

test command, [MI] mi estimate postestimation,
[MI] mi test

testtransform command, [MI] mi estimate
postestimation, [MI] mi test

tsset command, [MI] mi XXXset

unregister command, [MI] mi set

unset command, [MI] mi set

Subject and author index 363

mi, continued
update command, [MI] mi update, [MI] noupdate
option
varying command, [MI] mi varying
xeq command, [MI] mi xeq
xtset command, [MI] mi XXXset
mi command, [MI] intro, [MI] styles, [MI] workflow
mi data, [MI] Glossary
missing at random, [MI] Glossary, [MI] intro
substantive, [MI] mi impute
missing completely at random, [MI] Glossary,
[MI] intro substantive
missing data, [MI] intro substantive
arbitrary pattern, [MI] Glossary, [MI] intro
substantive, [MI] mi impute, [MI] mi impute
chained, [MI] mi impute mvn
monotone pattern, [MI] Glossary, [MI] intro
substantive, [MI] mi impute, [MI] mi impute
chained, [MI] mi impute monotone, [MI] mi
impute mvn
missing not at random, [MI] Glessary, [MI] intro
substantive
missing values,
hard and soft, [MI] Glossary
ineligible, [MI] Glossary
pattern of, [MI] mi misstable
missingness, pattern, see pattern of missingness
misstable for mi data, [MI] mi misstable
misstable, mi subcommand, [MI] mi misstable
mlong
data style, [MI] Glossary, [MI] styles
technical description, [MI] technical
MNAR, see missing not at random
monotone imputation, see imputation, monotone
monotone-missing pattern, [MI] Glossary, [MI] mi
impute monotone
monotonicity, see pattern of missingness
Monte Carlo error, [MI] Glossary, [MI] mi estimate,
[MI] mi estimate using
Mortimore, P., [MI] mi estimate
multilevel data, [MI] mi estimate
multinomial logistic regression, imputation, see
imputation, multinomial logistic regression
multiple imputation, [MI] intro, [MI] intro substantive,
[MI] styles, [MI] workflow
analysis step, [MI] intro substantive, [MI] mi
estimate, [MI] mi estimate postestimation,
[MI] mi estimate using, [MI] mi test
estimation, [MI] estimation
imputation step, [MI] intro substantive, [MI] mi
impute
inference, [MI] intro substantive
pooling step, [MI] intro substantive, [MI] mi
estimate, [MI] mi estimate using
prediction, [MI] mi predict
theory, [MI] intro substantive
multivariate imputation, see imputation, multivariate

multivariate logistic variable imputation, see imputation,
multivariate

multivariate normal imputation, see imputation,
multivariate normal

multivariate regression imputation, see imputation,
multivariate

MVN imputation, see imputation, multivariate normal

N

nearest neighbors, [MI] mi impute pmm

NHANES data, [MI] mi export nhanesl, [MI] mi
import nhanesl

nonlinear prediction, see multiple imputation, prediction

nonlinear tests, see estimation, tests after

noupdate option, [MI] noupdate option

o)

observations, complete and incomplete, [MI] Glossary

Olsen, M. K., [MI] intro substantive

ordered logistic regression imputation, see imputation,
ordered logistic regression

original data, [MI] Glossary

overdispersion, see imputation, overdispersed count data

P

panel data, [MI] mi estimate

parameter trace files, [MI] mi impute mvn, [MI] mi
ptrace

passive imputation, see imputation, passive

passive, mi subcommand, [MI] mi passive

passive variables, see variables, passive

pattern of missingness, [MI] Glossary, [MI] intro
substantive, [MI] mi impute, [MI] mi misstable

perfect prediction, see imputation, perfect prediction

PMM imputation, see imputation, predictive mean
matching

pooling step, [MI] intro substantive, [MI] mi estimate,
[MI] mi estimate using, [MI] mi predict

postestimation, [MI] mi estimate postestimation

predict, mi subcommand, [MI] mi predict

prediction, see multiple imputation, prediction

predictions after estimation, see estimation, predictions
after

predictive mean matching imputation, see imputation,
predictive mean matching

predictnl, mi subcommand, [MI] mi predict

programmer’s commands and utilities, [MI] mi select,
[MI] styles, [MI] technical

proper imputation method, [MI] intro substantive

.ptrace files, [MI] mi impute mvn, [MI] mi ptrace

ptrace, mi subcommand, [MI] mi ptrace

Q

query, mi subcommand, [MI] mi describe

364 Subject and author index

R

Raghunathan, T. E., [MI] intro substantive, [MI] mi
estimate, [MI] mi impute, [MI] mi impute
chained, [MI] mi impute logit, [MI] mi impute
mlogit, [MI] mi impute monotone, [MI] mi
impute ologit, [MI] mi impute poisson, [MI] mi
impute truncreg, [MI] mi test

random-number seed, [MI] mi impute

register, mi subcommand, [MI] mi set

registered variables, see variables, registered

regular variables, see variables, regular

Reiter, J. P., [MI] intro, [MI] intro substantive,

[MI] mi estimate, [MI] mi estimate using,
[MI] mi test

relative efficiency, [MI] Glossary, [MI] mi estimate,
[MI] mi predict

relative variance increase, [MI] Glossary, [MI] mi
estimate, [MI] mi predict

rename for mi data, [MI] mi rename

rename, mi subcommand, [MI] mi rename

renaming variables, [MI] mi rename

replace command, [MI] mi passive, [MI] mi xeq

replace0, mi subcommand, [MI] mi replace0

reset, mi subcommand, [MI] mi reset

reshape for mi data, [MI] mi reshape

reshape, mi subcommand, [MI] mi reshape

ridge prior, [MI] mi impute mvn

right-censoring, see imputation, interval-censored data

right-truncation, see imputation, truncated data

Royston, P., [MI] intro, [MI] intro substantive,

[MI] mi estimate, [MI] mi estimate using,

[MI] mi export, [MI] mi export ice, [MI] mi
import, [MI] mi import ice, [MI] mi impute,
[MI] mi impute chained, [MI] mi impute intreg,
[MI] mi impute monotone, [MI] mi impute
nbreg, [MI] mi predict

Rubin, D. B., [MI] intro substantive, [MI] mi estimate,
[MI] mi estimate using, [MI] mi impute,

[MI] mi impute chained, [MI] mi impute logit,
[MI] mi impute monotone, [MI] mi impute
mvn, [MI] mi impute pmm, [MI] mi impute
regress, [MI] mi predict, [MI] mi test

Rubin’s combination rules, [MI] mi estimate, [MI] mi
estimate using, [MI] mi predict

RVI, see relative variance increase

S

Sammons, P., [MI] mi estimate

Sarabia, J. M., [MI] intro substantive, [MI] mi impute
chained

Schafer, J. L., [MI] intro substantive, [MI] mi
estimate, [MI] mi impute, [MI] mi impute
monotone, [MI] mi impute mvn, [MI] mi
impute truncreg

Schenker, N., [MI] intro substantive, [MI] mi impute,
[MI] mi impute pmm, [MI] mi impute regress

select, mi subcommand, [MI] mi select

semiparametric imputation method, see imputation,
predictive mean matching
sequential imputation, [MI] mi impute, [MI] mi impute
chained, [MI] mi impute monotone
sequential regression multivariate imputation, see
imputation, chained equations
set, mi subcommand, [MI] mi set
setting M, [MI] mi add, [MI] mi set
setting mi data, [MI] mi set
single-imputation methods, [MI] intro substantive
Smith, A. M. F,, [MI] mi impute chained
soft missing value, [MI] Glossary, [MI] mi impute
Solenberger, P., [MI] intro substantive, [MI] mi
impute, [MI] mi impute chained, [MI] mi
impute logit, [MI] mi impute mlogit, [MI] mi
impute monotone, [MI] mi impute ologit,
[MI] mi impute poisson, [MI] mi impute
truncreg
SRMI, see imputation, chained equations
st commands for mi data, [MI] mi stsplit, [MI] mi
XXXset
st, mi subcommand, [MI] mi XXXset
.ster files, [MI] mi estimate, [MI] mi estimate using,
[MI] mi predict
Stern, H. S., [MI] intro substantive, [MI] mi impute
mvn, [MI] mi impute regress
Sterne, J. A. C., [MI] intro
stjoin for mi data, [MI] mi stsplit
stjoin, mi subcommand, [MI] mi stsplit
Stoll, L., [MI] mi estimate
streset command for mi data, [MI] mi XXXset
streset, mi subcommand, [MI] mi XXXset
stset command for mi data, [MI] mi XXXset
stset, mi subcommand, [MI] mi XXXset
stsplit for mi data, [MI] mi stsplit
stsplit, mi subcommand, [MI] mi stsplit
style, [IMI] Glossary, [MI] mi convert, [MI] styles
style,
flong, see flong
flongsep, see flongsep
mlong, see mlong
wide, see wide
Sun, W., [MI] intro substantive
super-varying variables, [MI] Glossary, [MI] mi
varying
survey data, [MI] intro substantive, [MI] mi estimate
survival data, [MI] mi estimate, [MI] mi predict
svyset command for mi data, [MI] mi XXXset
svyset, mi subcommand, [MI] mi XXXset
switching styles, [MI] mi convert

T

Tanner, M. A., [MI] intro substantive, [MI] mi impute
mvn

Taylor, J. M. G., [MI] intro substantive, [MI] mi
impute, [MI] mi impute pmm, [MI] mi impute
regress

Subject and author index 365

test, mi subcommand, [MI] mi test

tests after estimation, see estimation, tests after

testtransform, mi subcommand, [MI] mi test

transformed coefficients, [MI] mi estimate, [MI] mi
estimate using, [MI] mi test

truncation, see imputation, truncated data

tsset command for mi data, [MI] mi XXXset

tsset, mi subcommand, [MI] mi XXXset

U

uniform prior, [MI] mi impute mvn
univariate imputation, see imputation, univariate
unregister, mi subcommand, [MI] mi set
unregistered variables, see variables, unregistered
unrestricted FMI test, [MI] Glossary, [MI] mi estimate,
[MI] mi test
update, mi subcommand, [MI] mi update,
[MI] noupdate option
utility routines, [MI] technical

\'}

van Buuren, S., [MI] intro substantive, [MI] mi
impute, [MI] mi impute chained, [MI] mi
impute logit, [MI] mi impute mlogit, [MI] mi
impute monotone, [MI] mi impute ologit,

[MI] mi impute poisson

Van Hoewyk, J., [MI] intro substantive, [MI] mi
impute, [MI] mi impute chained, [MI] mi
impute logit, [MI] mi impute mlogit, [MI] mi
impute monotone, [MI] mi impute ologit,

[MI] mi impute poisson, [MI] mi impute
truncreg

Van Mechelen, 1., [MI] intro substantive, [MI] mi
impute

variables,

imputed, [MI] Glossary, [MI] mi rename, [MI] mi
reset, [MI] mi set

passive, [MI] Glossary, [MI] mi impute, [MI] mi
passive, [MI] mi rename, [MI] mi reset, [MI] mi
set, [MI] mi xeq

registered, [MI] Glossary, [MI] mi rename, [MI] mi
set

regular, [MI] Glossary, [MI] mi rename, [MI] mi
set

unregistered, [MI] Glossary, [MI] mi rename,
[MI] mi set

varying and super varying, [MI] Glossary, [MI] mi
passive, [MI] mi predict, [MI] mi set, [MI] mi
varying

varying

estimation sample, [MI] mi estimate
variables, see variables, varying and super varying
varying, mi subcommand, [MI] mi varying

Verbeke, G., [MI] intro substantive, [MI] mi impute

verifying mi data are consistent, [MI] mi update

w

White, 1. R., [MI] intro, [MI] intro substantive,
[MI] mi estimate, [MI] mi estimate using,
[MI] mi impute, [MI] mi impute chained,
[MI] mi impute monotone, [MI] mi predict
wide
data style, [MI] Glossary, [MI] styles
technical description, [MI] technical
within-imputation variability, [MI] mi estimate, [MI] mi
predict
WLEF, see worst linear function
Wong, W. H., [MI] intro substantive, [MI] mi impute
mvn
Wood, A. M., [MI] intro substantive, [MI] mi
estimate, [MI] mi estimate using, [MI] mi
impute, [MI] mi impute chained, [MI] mi
predict
workflow, [MI] workflow
worst linear function, [MI] Glossary, [MI] mi impute
mvn

X

xeq, mi subcommand, [MI] mi xeq

xtset command for mi data, [MI] mi XXXset
xtset, mi subcommand, [MI] mi XXXset
xxxset, programming, [MI] technical

	Contents
	[IG] Installation Guide
	Simple installation
	Before you install
	Stata for Windows installation
	Stata for Mac installation
	Stata for Unix installation

	Installing Stata for Windows
	Upgrade or update?
	Upgrading to Stata/MP, Stata/SE, or Stata/IC
	Before you install
	Installation
	Initialize the license
	Update Stata if necessary
	Register your copy
	Creating network shortcuts
	Other ways to start Stata
	Exiting Stata
	Verifying installation

	Installing Stata for Mac
	Upgrade or update?
	Upgrading to Stata/MP, Stata/SE, or Stata/IC
	Warning against multiple Stata applications
	Before you install
	Installation
	Initialize the license
	Update Stata if necessary
	Register your copy
	Other ways to start Stata
	Exiting Stata

	Installing Stata for Unix
	Installation overview
	Find your installation DVD and paper license
	Obtain superuser access
	Create a directory for Stata
	Upgrading
	Install Stata
	Initialize the license
	Set the message of the day (optional)
	Verify that Stata is working
	Modify shell start-up script
	Update Stata if necessary
	Starting Stata
	Exiting Stata
	Troubleshooting Unix installation
	Troubleshooting Unix start-up
	Stata(console) starts but Stata(GUI) does not

	Platforms and flavors
	Available platforms
	Available flavors

	Documentation

	[GS] Getting Started
	[GSM] Mac
	Table of contents
	1 Introducing Stata---sample session
	Introducing Stata
	Sample session
	Simple data management
	Descriptive statistics
	A simple hypothesis test
	Descriptive statistics---correlation matrices
	Graphing data
	Model fitting: Linear regression
	Commands versus menus
	Keeping track of your work
	Conclusion

	2 The Stata user interface
	The windows
	The toolbar
	The Command window
	The Results window
	The Review window
	The Variables window
	The Properties window
	Menus and dialogs
	The working directory
	Notes

	3 Using the Viewer
	The Viewer's purpose
	Viewer buttons
	Viewer's function
	Viewing local text files, including SMCL files
	Viewing remote files over the Internet
	Navigating within the Viewer
	Printing
	Tabs in the Viewer
	Right-clicking on the Viewer window
	Searching for help in the Viewer
	Commands in the Viewer
	Using the Viewer from the Command window
	Notes

	4 Getting help
	Online help
	Searching help
	Help and search commands
	The Stata reference manuals and User's Guide
	The Stata Journal and the Stata Technical Bulletin
	Notes

	5 Opening and saving Stata datasets
	How to load your dataset from disk and save it to disk

	6 Using the Data Editor
	The Data Editor
	Buttons on the Data Editor
	Data entry
	Notes on data entry
	Renaming and formatting variables
	Copying and pasting data
	Notes on copying and pasting
	Changing data
	Working with snapshots
	Dates and the Data Editor
	Data Editor advice
	Filtering and hiding
	Browse mode

	7 Using the Variables Manager
	The Variables Manager
	The Variable pane
	Right-clicking on the Variable pane
	The Variable Properties pane
	Managing notes
	Notes

	8 Importing data
	Copying and pasting
	Commands for importing data
	The insheet command
	Importing files from other software

	9 Labeling data
	Making data readable
	The dataset structure: The describe command
	Labeling datasets and variables
	Labeling values of variables

	10 Listing data and basic command syntax
	Command syntax
	list with a variable list
	list with if
	list with if, common mistakes
	list with in
	Controlling the list output
	More
	Break

	11 Creating new variables
	generate and replace
	generate
	replace
	generate with string variables

	12 Deleting variables and observations
	clear, drop, and keep
	clear and drop _all
	drop
	keep
	Notes

	13 Using the Do-file Editor---automating Stata
	The Do-file Editor
	The Do-file Editor toolbar
	Using the Do-file Editor
	The File menu
	Editing tools
	The View > Do-file Editor menu
	Saving interactive commands from Stata as a do-file

	14 Graphing data
	Working with graphs
	A simple graph example
	Graph window
	Saving and printing graphs
	Right-clicking on the Graph window
	The Graph button

	15 Editing graphs
	Working with the Graph Editor
	Notes

	16 Saving and printing results by using logs
	Using logs in Stata
	Logging output
	Working with logs
	Printing logs
	Rerunning commands as do-files

	17 Setting font and window preferences
	Changing and saving fonts and sizes and positions of your windows
	Graph window
	All other windows
	Changing color schemes
	Managing multiple sets of preferences
	Closing and opening windows

	18 Learning more about Stata
	Where to go from here
	Suggested reading from the User's Guide and reference manuals
	Internet resources

	19 Updating and extending Stata---Internet functionality
	Internet functionality in Stata
	Using files from the Internet
	Official Stata updates
	Automatic update checking
	Finding user-written programs by keyword
	Downloading user-written programs

	A Troubleshooting Stata
	A.1 If Stata does not start
	A.2 Troubleshooting tips

	B Managing memory
	B.1 Memory size considerations
	Notes

	C Advanced Stata usage
	C.1 Executing commands every time Stata is started
	C.2 Other ways to launch Stata
	C.3 Stata batch mode
	Notes

	D More on Stata for Mac
	D.1 Using Stata datasets and graphs created on other platforms
	D.2 Exporting a Stata graph to another document
	D.3 Stata and the Notification Manager
	D.4 Setting the default end-of-line delimiter
	D.5 Stata(console) for Mac OS X

	Subject index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	[GSU] Unix
	Table of contents
	1 Introducing Stata---sample session
	Introducing Stata
	Sample session
	Simple data management
	Descriptive statistics
	A simple hypothesis test
	Descriptive statistics---correlation matrices
	Graphing data
	Model fitting: Linear regression
	Commands versus menus
	Keeping track of your work
	Conclusion

	2 The Stata user interface
	The windows
	The toolbar
	The Command window
	The Results window
	The Review window
	The Variables window
	The Properties window
	Menus and dialogs
	The working directory
	Notes

	3 Using the Viewer
	The Viewer in Stata(GUI)
	The Viewer's purpose
	Viewer buttons
	Viewer's function
	Viewing local text files, including SMCL files
	Viewing remote files over the Internet
	Navigating within the Viewer
	Printing
	Tabs in the Viewer
	Right-clicking on the Viewer window
	Searching for help in the Viewer
	Commands in the Viewer
	Using the Viewer from the Command window
	Notes

	4 Getting help
	Online help
	Searching help
	Help and search commands
	The Stata reference manuals and User's Guide
	The Stata Journal and the Stata Technical Bulletin
	Notes

	5 Opening and saving Stata datasets
	How to load your dataset from disk and save it to disk

	6 Using the Data Editor
	The Data Editor in Stata(GUI)
	Buttons on the Data Editor
	Data entry
	Notes on data entry
	Renaming and formatting variables
	Copying and pasting data
	Notes on copying and pasting
	Changing data
	Working with snapshots
	Dates and the Data Editor
	Data Editor advice
	Filtering and hiding
	Browse mode

	7 Using the Variables Manager
	The Variables Manager in Stata(GUI)
	The Variable pane
	Right-clicking on the Variable pane
	The Variable Properties pane
	Managing notes
	Notes

	8 Importing data
	Copying and pasting in Stata(GUI)
	Commands for importing data
	The insheet command
	Importing files from other software

	9 Labeling data
	Making data readable
	The dataset structure: The describe command
	Labeling datasets and variables
	Labeling values of variables

	10 Listing data and basic command syntax
	Command syntax
	list with a variable list
	list with if
	list with if, common mistakes
	list with in
	Controlling the list output
	More
	Break

	11 Creating new variables
	generate and replace
	generate
	replace
	generate with string variables

	12 Deleting variables and observations
	clear, drop, and keep
	clear and drop _all
	drop
	keep
	Notes

	13 Using the Do-file Editor---automating Stata
	The Do-file Editor in Stata(GUI)
	The Do-file Editor toolbar
	Using the Do-file Editor
	The File menu
	Editing tools
	The Tools menu
	Saving interactive commands from Stata as a do-file
	Notes

	14 Graphing data
	Working with graphs
	A simple graph example
	Graph window
	Saving and printing graphs
	Right-clicking on the Graph window
	The Graph button

	15 Editing graphs
	Working with the Graph Editor
	Notes

	16 Saving and printing results by using logs
	Using logs in Stata
	Logging output
	Working with logs
	Printing logs
	Rerunning commands as do-files

	17 Setting font and window preferences
	Changing and saving fonts and sizes and positions of your windows
	Graph window
	All other windows
	Changing color schemes
	Managing multiple sets of preferences
	Closing and opening windows

	18 Learning more about Stata
	Where to go from here
	Suggested reading from the User's Guide and reference manuals
	Internet resources

	19 Updating and extending Stata---Internet functionality
	Internet functionality in Stata
	Using files from the Internet
	Official Stata updates
	Finding user-written programs by keyword
	Downloading user-written programs

	A Troubleshooting Stata
	A.1 If Stata(GUI) and Stata(console) do not start
	A.2 If Stata(console) starts but Stata(GUI) does not
	A.3 Troubleshooting tips
	Notes

	B Managing memory
	B.1 Memory size considerations
	Notes

	C Advanced Stata usage
	C.1 Executing commands every time Stata is started
	C.2 Advanced starting of Stata for Unix
	C.3 Stata batch mode
	C.4 Using X Windows remotely
	C.5 Summary of environment variables
	Notes

	D Stata manual pages for Unix
	conren
	Syntax
	Description
	Finding a color scheme
	Can your terminal underline?
	If you had success
	If you did not have success
	Also see

	stata
	Syntax
	Description
	Remarks

	Subject index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	[GSW] Windows
	Table of contents
	1 Introducing Stata---sample session
	Introducing Stata
	Sample session
	Simple data management
	Descriptive statistics
	A simple hypothesis test
	Descriptive statistics---correlation matrices
	Graphing data
	Model fitting: Linear regression
	Commands versus menus
	Keeping track of your work
	Conclusion

	2 The Stata user interface
	The windows
	The toolbar
	The Command window
	The Results window
	The Review window
	The Variables window
	The Properties window
	Menus and dialogs
	The working directory
	Fine control of Stata's windows
	Window types
	Docking windows
	Auto Hide and pinning
	Nondocking windows

	3 Using the Viewer
	The Viewer's purpose
	Viewer buttons
	Viewer's function
	Viewing local text files, including SMCL files
	Viewing remote files over the Internet
	Navigating within the Viewer
	Printing
	Tabs in the Viewer
	Right-clicking on the Viewer window
	Searching for help in the Viewer
	Commands in the Viewer
	Using the Viewer from the Command window
	Notes

	4 Getting help
	Online help
	Searching help
	Help and search commands
	The Stata reference manuals and User's Guide
	The Stata Journal and the Stata Technical Bulletin
	Notes

	5 Opening and saving Stata datasets
	How to load your dataset from disk and save it to disk

	6 Using the Data Editor
	The Data Editor
	Buttons on the Data Editor
	Data entry
	Notes on data entry
	Renaming and formatting variables
	Copying and pasting data
	Notes on copying and pasting
	Changing data
	Working with snapshots
	Dates and the Data Editor
	Data Editor advice
	Filtering and hiding
	Browse mode

	7 Using the Variables Manager
	The Variables Manager
	The Variable pane
	Right-clicking on the Variable pane
	The Variable Properties pane
	Managing notes

	8 Importing data
	Copying and pasting
	Commands for importing data
	The insheet command
	Importing files from other software

	9 Labeling data
	Making data readable
	The dataset structure: The describe command
	Labeling datasets and variables
	Labeling values of variables

	10 Listing data and basic command syntax
	Command syntax
	list with a variable list
	list with if
	list with if, common mistakes
	list with in
	Controlling the list output
	More
	Break

	11 Creating new variables
	generate and replace
	generate
	replace
	generate with string variables

	12 Deleting variables and observations
	clear, drop, and keep
	clear and drop _all
	drop
	keep
	Notes

	13 Using the Do-file Editor---automating Stata
	The Do-file Editor
	The Do-file Editor toolbar
	Using the Do-file Editor
	The File menu
	Editing tools
	The Tools menu
	Saving interactive commands from Stata as a do-file
	Notes

	14 Graphing data
	Working with graphs
	A simple graph example
	Graph window
	Saving and printing graphs
	Right-clicking on the Graph window
	The Graph button

	15 Editing graphs
	Working with the Graph Editor
	Notes

	16 Saving and printing results by using logs
	Using logs in Stata
	Logging output
	Working with logs
	Printing logs
	Rerunning commands as do-files

	17 Setting font and window preferences
	Changing and saving fonts and sizes and positions of your windows
	Graph window
	All other windows
	Changing color schemes
	Managing multiple sets of preferences
	Closing and opening windows

	18 Learning more about Stata
	Where to go from here
	Suggested reading from the User's Guide and reference manuals
	Internet resources

	19 Updating and extending Stata---Internet functionality
	Internet functionality in Stata
	Using files from the Internet
	Official Stata updates
	Automatic update checking
	Finding user-written programs by keyword
	Downloading user-written programs

	A Troubleshooting Stata
	A.1 If Stata does not start
	A.2 Troubleshooting tips

	B Managing memory
	B.1 Memory size considerations
	Notes

	C Advanced Stata usage
	C.1 The Windows Properties Sheet
	C.2 Making shortcuts
	C.3 Executing commands every time Stata is started
	C.4 Other ways to launch Stata
	C.5 Stata batch mode
	C.6 Running simultaneous Stata sessions
	Notes

	D More on Stata for Windows
	D.1 Using Stata datasets and graphs created on other platforms
	D.2 Exporting a Stata graph to another document
	D.3 Installing Stata for Windows on a network drive
	D.4 Changing a Stata for Windows license

	Subject index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	[U] User's Guide
	Table of contents
	Stata basics
	1 Read this---it will help
	1.1 Getting Started with Stata
	1.2 The User's Guide and the Reference manuals
	1.3 What's new
	1.4 References

	2 A brief description of Stata
	3 Resources for learning and using Stata
	3.1 Overview
	3.2 Stata on the Internet (www.stata.com and other resources)
	3.3 Stata Press
	3.4 The Stata listserver
	3.5 The Stata Journal
	3.6 Updating and adding features from the web
	3.7 Conferences and training
	3.8 Books and other support materials
	3.9 Technical support

	4 Stata's help and search facilities
	4.1 Introduction
	4.2 Getting started
	4.3 help: Stata's help system
	4.4 Accessing PDF manuals from help entries
	4.5 Searching
	4.6 More on search
	4.7 More on help
	4.8 help contents: Table of contents for Stata's help system
	4.9 search: All the details
	4.10 net search: Searching net resources
	4.11 hsearch: An alternative to search

	5 Flavors of Stata
	5.1 Platforms
	5.2 Stata/MP, Stata/SE, Stata/IC, and Small Stata
	5.3 Size limits of Stata/MP, SE, IC, and Small Stata
	5.4 Speed comparison of Stata/MP, SE, IC, and Small Stata
	5.5 Feature comparison of Stata/MP, SE, and IC

	6 Managing memory
	6.1 Memory-size considerations
	6.2 Compressing data
	6.3 Setting maxvar
	6.4 Setting matsize
	6.5 The memory command

	7 --more-- conditions
	7.1 Description
	7.2 set more off
	7.3 The more programming command

	8 Error messages and return codes
	8.1 Making mistakes
	8.2 The return message for obtaining command timings

	9 The Break key
	9.1 Making Stata stop what it is doing
	9.2 Side effects of clicking on Break
	9.3 Programming considerations

	10 Keyboard use
	10.1 Description
	10.2 F-keys
	10.3 Editing keys in Stata
	10.4 Editing keys in Stata for Unix(console)
	10.5 Editing previous lines in Stata
	10.6 Tab expansion of variable names

	Elements of Stata
	11 Language syntax
	11.1 Overview
	11.2 Abbreviation rules
	11.3 Naming conventions
	11.4 varlists
	11.5 by varlist: construct
	11.6 Filenaming conventions
	11.7 References

	12 Data
	12.1 Data and datasets
	12.2 Numbers
	12.3 Dates and times
	12.4 Strings
	12.5 Formats: Controlling how data are displayed
	12.6 Dataset, variable, and value labels
	12.7 Notes attached to data
	12.8 Characteristics
	12.9 Data Editor and Variables Manager
	12.10 References

	13 Functions and expressions
	13.1 Overview
	13.2 Operators
	13.3 Functions
	13.4 System variables (_variables)
	13.5 Accessing coefficients and standard errors
	13.6 Accessing results from Stata commands
	13.7 Explicit subscripting
	13.8 Indicator values for levels of factor variables
	13.9 Time-series operators
	13.10 Label values
	13.11 Precision and problems therein
	13.12 References

	14 Matrix expressions
	14.1 Overview
	14.2 Row and column names
	14.3 Vectors and scalars
	14.4 Inputting matrices by hand
	14.5 Accessing matrices created by Stata commands
	14.6 Creating matrices by accumulating data
	14.7 Matrix operators
	14.8 Matrix functions
	14.9 Subscripting
	14.10 Using matrices in scalar expressions

	15 Saving and printing output---log files
	15.1 Overview
	15.2 Placing comments in logs
	15.3 Logging only what you type
	15.4 The log-button alternative
	15.5 Printing logs
	15.6 Creating multiple log files simultaneously

	16 Do-files
	16.1 Description
	16.2 Calling other do-files
	16.3 Creating and running do-files
	16.4 Programming with do-files
	16.5 References

	17 Ado-files
	17.1 Description
	17.2 What is an ado-file?
	17.3 How can I tell if a command is built in or an ado-file?
	17.4 How can I look at an ado-file?
	17.5 Where does Stata look for ado-files?
	17.6 How do I install an addition?
	17.7 How do I add my own ado-files?
	17.8 How do I install official updates?
	17.9 How do I install updates to user-written additions?
	17.10 Reference

	18 Programming Stata
	18.1 Description
	18.2 Relationship between a program and a do-file
	18.3 Macros
	18.4 Program arguments
	18.5 Scalars and matrices
	18.6 Temporarily destroying the data in memory
	18.7 Temporary objects
	18.8 Accessing results calculated by other programs
	18.9 Accessing results calculated by estimation commands
	18.10 Saving results
	18.11 Ado-files
	18.12 A compendium of useful commands for programmers
	18.13 References

	19 Immediate commands
	19.1 Overview
	19.2 The display command

	20 Estimation and postestimation commands
	20.1 All estimation commands work the same way
	20.2 Standard syntax
	20.3 Replaying prior results
	20.4 Cataloging estimation results
	20.5 Saving estimation results
	20.6 Specifying the estimation subsample
	20.7 Specifying the width of confidence intervals
	20.8 Formatting the coefficient table
	20.9 Obtaining the variance--covariance matrix
	20.10 Obtaining predicted values
	20.11 Accessing estimated coefficients
	20.12 Performing hypothesis tests on the coefficients
	20.13 Obtaining linear combinations of coefficients
	20.14 Obtaining nonlinear combinations of coefficients
	20.15 Obtaining marginal means, adjusted predictions, and predictive margins
	20.16 Obtaining conditional and average marginal effects
	20.17 Obtaining pairwise comparisons
	20.18 Obtaining contrasts, tests of interactions, and main effects
	20.19 Graphing margins, marginal effects, and contrasts
	20.20 Obtaining robust variance estimates
	20.21 Obtaining scores
	20.22 Weighted estimation
	20.23 A list of postestimation commands
	20.24 References

	Advice
	21 Inputting and importing data
	21.1 Overview
	21.2 Determining which input method to use
	21.3 If you run out of memory
	21.4 Transfer programs
	21.5 ODBC sources
	21.6 Reference

	22 Combining datasets
	22.1 References

	23 Working with strings
	23.1 Description
	23.2 Categorical string variables
	23.3 Mistaken string variables
	23.4 Complex strings
	23.5 Reference

	24 Working with dates and times
	24.1 Overview
	24.2 Inputting dates and times
	24.3 Displaying dates and times
	24.4 Typing dates and times (datetime literals)
	24.5 Extracting components of dates and times
	24.6 Converting between date and time values
	24.7 Business dates and calendars
	24.8 References

	25 Working with categorical data and factor variables
	25.1 Continuous, categorical, and indicator variables
	25.2 Estimation with factor variables

	26 Overview of Stata estimation commands
	26.1 Introduction
	26.2 Linear regression with simple error structures
	26.3 Structural equation modeling (SEM)
	26.4 ANOVA, ANCOVA, MANOVA, and MANCOVA
	26.5 Generalized linear models
	26.6 Binary-outcome qualitative dependent-variable models
	26.7 ROC analysis
	26.8 Conditional logistic regression
	26.9 Multiple-outcome qualitative dependent-variable models
	26.10 Count dependent-variable models
	26.11 Exact estimators
	26.12 Linear regression with heteroskedastic errors
	26.13 Stochastic frontier models
	26.14 Regression with systems of equations
	26.15 Models with endogenous sample selection
	26.16 Models with time-series data
	26.17 Panel-data models
	26.18 Survival-time (failure-time) models
	26.19 Generalized method of moments (GMM)
	26.20 Estimation with correlated errors
	26.21 Survey data
	26.22 Multiple imputation
	26.23 Multivariate and cluster analysis
	26.24 Pharmacokinetic data
	26.25 Specification search tools
	26.26 Obtaining new estimation commands
	26.27 Reference

	27 Commands everyone should know
	27.1 42 commands
	27.2 The by construct

	28 Using the Internet to keep up to date
	28.1 Overview
	28.2 Sharing datasets (and other files)
	28.3 Official updates
	28.4 Downloading and managing additions by users
	28.5 Making your own download site

	Subject and author index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

	[D] Data Management
	Table of contents
	intro
	Description
	Remarks
	What's new

	Also see

	data management
	Description
	Reference
	Also see

	append
	Syntax
	Menu
	Description
	Options
	Remarks
	Also see

	assert
	Syntax
	Description
	Options
	Remarks
	Also see

	bcal
	Syntax
	Menu
	Description
	Option
	Remarks
	Saved results
	Methods and formulas
	Also see

	by
	Syntax
	Description
	Options
	Remarks
	References
	Also see

	cd
	Syntax
	Description
	Remarks
	Stata for Windows
	Stata for Mac
	Stata for Unix

	Also see

	cf
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Acknowledgment
	Reference
	Also see

	changeeol
	Syntax
	Description
	Options
	Remarks
	Also see

	checksum
	Syntax
	Description
	Options
	Remarks
	Saved results
	Also see

	clear
	Syntax
	Description
	Remarks
	Methods and formulas
	Also see

	clonevar
	Syntax
	Menu
	Description
	Remarks
	Methods and formulas
	Acknowledgments
	Also see

	codebook
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Reference
	Also see

	collapse
	Syntax
	Menu
	Description
	Options
	Remarks
	Introductory examples
	Variablewise or casewise deletion
	Weights
	A final example

	Methods and formulas
	Acknowledgment
	Also see

	compare
	Syntax
	Menu
	Description
	Remarks
	Methods and formulas
	Also see

	compress
	Syntax
	Menu
	Description
	Remarks
	Also see

	contract
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Acknowledgments
	Reference
	Also see

	copy
	Syntax
	Description
	Options
	Remarks
	Also see

	corr2data
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Reference
	Also see

	count
	Syntax
	Menu
	Description
	Remarks
	Saved results
	Also see

	cross
	Syntax
	Menu
	Description
	Remarks
	Methods and formulas
	References
	Also see

	data types
	Description
	Remarks
	Also see

	datasignature
	Syntax
	Menu
	Description
	Options
	Remarks
	Using datasignature interactively
	Using datasignature in do-files
	Interpreting data signatures
	The logic of data signatures

	Saved results
	Methods and formulas
	Reference
	Also see

	datetime
	Syntax
	Types of dates and their human readable forms (HRFs)
	Stata internal form (SIF)
	HRF-to-SIF conversion functions
	Displaying SIFs in HRF
	Building SIFs from components
	SIF-to-SIF conversion
	Extracting time-of-day components from SIFs
	Extracting date components from SIFs
	Conveniently typing SIF values
	Obtaining and working with durations
	Using dates and times from other software

	Description
	Remarks
	Reference
	Also see

	datetime business calendars
	Syntax
	Description
	Remarks
	Step 1: Read the data, date as string
	Step 2: Convert date variable to %td date
	Step 3: Convert %td date to %tb date
	Key feature: Each business calendar has its own encoding
	Key feature: Omitted dates really are omitted
	Key feature: Extracting components from %tb dates
	Key feature: Merging on dates

	Also see

	datetime business calendars creation
	Syntax
	Description
	Remarks
	Introduction
	Concepts
	The preliminary commands
	The omit commands: from/to and if
	The omit commands: and
	The omit commands: omit date
	The omit commands: omit dayofweek
	The omit commands: omit dowinmonth
	Where to place stbcal-files
	How to debug stbcal-files
	Ideas for calendars that may not occur to you

	Also see

	datetime display formats
	Syntax
	Description
	Remarks
	Specifying display formats
	Times are truncated, not rounded, when displayed

	Also see

	datetime translation
	Syntax
	Description
	Remarks
	Introduction
	Specifying the mask
	How the HRF-to-SIF functions interpret the mask
	Working with two-digit years
	Working with incomplete dates and times
	Translating run-together dates, such as 20060125
	Valid times
	The clock() and Clock() functions
	Why there are two SIF datetime encodings
	Advice on using datetime/c and datetime/C
	Determining when leap seconds occurred
	The date() function
	The other translation functions

	Also see

	describe
	Syntax
	Menu
	Description
	Options to describe data in memory
	Options to describe data in file
	Remarks
	describe
	describe, replace

	Saved results
	References
	Also see

	destring
	Syntax
	Menu
	Description
	Options for destring
	Options for tostring
	Remarks
	destring
	tostring
	Saved characteristics

	Methods and formulas
	Acknowledgment
	References
	Also see

	dir
	Syntax
	Description
	Option
	Remarks
	Also see

	drawnorm
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Also see

	drop
	Syntax
	Menu
	Description
	Remarks
	Reference
	Also see

	ds
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Reference
	Also see

	duplicates
	Syntax
	Menu
	Description
	Options for duplicates examples and duplicates list
	Option for duplicates tag
	Option for duplicates drop
	Remarks
	Methods and formulas
	Acknowledgments
	References
	Also see

	edit
	Syntax
	Menu
	Description
	Option
	Remarks
	Modes
	The current observation and current variable
	Assigning value labels to variables
	Changing values of existing cells
	Adding new variables
	Adding new observations
	Copying and pasting
	Logging changes
	Advice

	References
	Also see

	egen
	Syntax
	Menu
	Description
	Remarks
	Summary statistics
	Generating patterns
	Marking differences among variables
	Ranks
	Standardized variables
	Row functions
	Categorical and integer variables
	String variables
	U.S. marginal income tax rate

	Methods and formulas
	Acknowledgments
	References
	Also see

	encode
	Syntax
	Menu
	Description
	Options for encode
	Options for decode
	Remarks
	encode
	decode

	Also see

	erase
	Syntax
	Description
	Remarks
	Also see

	expand
	Syntax
	Menu
	Description
	Option
	Remarks
	Also see

	expandcl
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Also see

	export
	Description
	Remarks
	Summary of the different methods
	export excel
	outsheet
	odbc
	outfile
	export sasxport
	xmlsave

	Also see

	filefilter
	Syntax
	Description
	Options
	Remarks
	Saved results
	Reference
	Also see

	fillin
	Syntax
	Menu
	Description
	Remarks
	Methods and formulas
	References
	Also see

	format
	Syntax
	Menu
	Description
	Option
	Remarks
	Setting formats
	Setting European formats
	Details of formats
	Other effects of formats
	Displaying current formats

	References
	Also see

	functions
	Description
	Mathematical functions
	abs()
	acos()
	acosh()
	asin()
	asinh()
	atan()
	atan2()
	atanh()
	ceil()
	cloglog()
	comb()
	cos()
	cosh()
	digamma()
	exp()
	floor()
	int()
	invcloglog()
	invlogit()
	ln()
	lnfactorial()
	lngamma()
	log()
	log10()
	logit()
	max()
	min()
	mod()
	reldif()
	round()
	sign()
	sin()
	sinhh()
	sqrt()
	sum()
	tan()
	tanh()
	trigamma()
	trunc()

	Probability distributions and density functions
	Beta and noncentral beta distributions
	ibeta()
	betaden()
	ibetatail()
	invibeta()
	invibetatail()
	nibeta()
	invnibeta()
	Binomial distribution
	binomial()
	binomialp()
	binomialtail()
	invbinomial()
	invbinomialtail()
	Chi-squared and noncentral chi-squared distributions
	chi2()
	chi2tail()
	invchi2()
	invchi2tail()
	nchi2()
	invnchi2()
	npnchi2()
	Dunnett's multiple range distribution
	dunnettprob()
	invdunnettprob()
	F and noncentral F distributions
	F()
	Fden()
	Ftail()
	invF()
	invFtail()
	nFtail()
	invnFtail()
	Gamma distribution
	gammap()
	gammaden()
	gammaptail()
	invgammap()
	invgammaptail()
	dgammapda()
	dgammapdada()
	dgammapdadx()
	dgammapdx()
	dgammapdxdx()
	Hypergeometric distribution
	hypergeometric()
	hypergeometricp()
	Negative binomial distribution
	nbinomial()
	nbinomialp()
	nbinomialtail()
	invnbinomial()
	invnbinomiailtail()
	Normal (Gaussian), log of the normal, and binormal distributions
	binormal()
	normal()
	normalden()
	invnormal()
	lnnormal()
	Poisson distribution
	poisson()
	poissonp()
	poissontail()
	invpoisson()
	invpoissontail()

	Random-number functions
	runiform()
	rbeta()
	rbinomial()
	rchi2()
	rgamma()
	rhypergeometric()
	rnbinomial()
	rnormal()
	rpoisson()
	rt()
	Student's t distribution
	tden()
	ttail()
	invttail()
	Tukey's Studentized range distribution
	tukeyprob()
	invtukeyprob()

	String functions
	abbrev()
	char()
	indexnot()
	itrim()
	length()
	lower()
	ltrim()
	plural()
	proper()
	real()
	regexm()
	regexr()
	regexs()
	reverse()
	rtrim()
	soundex()
	soundex_nara()
	string()
	strlen()
	strlower()
	strltrim()
	strmatch()
	strofreal()
	strpos()
	strproper()
	strreverse()
	strrtrim()
	strtoname()
	strtrim()
	strupper()
	subinstr()
	subinword()
	substr()
	trim()
	upper()
	word()
	wordcount()

	Programming functions
	autocode()
	byteorder()
	c()
	_caller()
	chop()
	clip()
	cond()
	e()
	e(sample)
	epsdouble()
	epsfloat()
	float()
	fmtwidth()
	has_eprop()
	inlist()
	inrange()
	irecode()
	matrix()
	maxbyte()
	maxdouble()
	maxfloat()
	maxint()
	maxlong()
	mi()
	minbyte()
	mindouble()
	minfloat()
	minint()
	minlong()
	missing()
	r()
	recode()
	replay()
	return()
	s()
	scalar()
	smallestdouble()

	Date and time functions
	bofd()
	Cdhms()
	clock()
	Cmdyhms()
	Cofc()
	cofC()
	Cofd()
	cofd()
	date()
	day()
	dhms()
	dofb()
	dofC()
	dofc()
	dofh()
	dofm()
	dofq()
	dofw()
	dofy()
	dow()
	doy()
	halfyear()
	halfyearly()
	hh()
	hhC()
	hms()
	hofd()
	hours()
	mdy()
	mdyhms()
	minutes()
	mm()
	mmC()
	mofd()
	month()
	monthly()
	msofhours()
	msofminutes()
	msofseconds()
	qofd()
	quarter()
	quarterly()
	seconds()
	ss()
	ssC()
	tC()
	tc()
	td()
	th()
	tm()
	tq()
	tw()
	week()
	weekly()
	wofd()
	year()
	yearly()
	yh()
	ym()
	yofd()
	yq()
	yw()

	Selecting time spans
	tin()

	Matrix functions returning a matrix
	cholesky()
	corr()
	diag()
	get()
	hadamard()
	I()
	inv()
	invsym()
	J()
	matuniform()
	nullmat()
	sweep()
	vec()
	vecdiag()

	Matrix functions returning a scalar
	colsof()
	det()
	diag0cnt()
	el()
	issymmetric()
	matmissing()
	mreldif()
	rownumb()
	rowsof()
	trace()

	Acknowledgments
	References
	Also see

	generate
	Syntax
	Menu
	Description
	Options
	Remarks
	generate and replace
	set type

	Methods and formulas
	References
	Also see

	gsort
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Also see

	hexdump
	Syntax
	Description
	Options
	Remarks
	Saved results
	Also see

	icd9
	Syntax
	Menu
	Description
	Options for icd9 check
	Options for icd9 clean
	Options for icd9 generate
	Option for icd9 search

	Remarks
	Descriptions

	Saved results
	Methods and formulas
	Reference

	import
	Description
	Remarks
	Summary of the different methods
	import excel
	insheet
	odbc
	infile (free format){---}infile without a dictionary
	infix (fixed format)
	infile (fixed format){---}infile with a dictionary
	import sasxport
	haver (Windows only)
	xmluse

	Examples

	Also see

	import excel
	Syntax
	Menu
	Description
	Options for import excel
	Options for export excel
	Remarks
	Saved results
	Methods and formulas
	Also see

	import sasxport
	Syntax
	Menu
	Description
	Options for import sasxport
	Option for import sasxport, describe
	Options for export sasxport
	Remarks
	Saving XPORT files for transferring to SAS
	Determining the contents of XPORT files received from SAS
	Using XPORT files received from SAS

	Saved results
	Technical appendix
	A1. Overview of SAS XPORT Transport format
	A2. Implications for writing XPORT datasets from Stata
	A3. Implications for reading XPORT datasets into Stata

	Also see

	infile (fixed format)
	Syntax
	Menu
	Description
	Options
	Dictionary directives

	Remarks
	Introduction
	Reading free-format files
	Reading fixed-format files
	Numeric formats
	String formats
	Specifying column and line numbers
	Examples of reading fixed-format files
	Reading fixed-block files
	Reading EBCDIC files

	References
	Also see

	infile (free format)
	Syntax
	Menu
	Description
	Options
	Remarks
	Reading free-format data
	Reading comma-separated data
	Specifying variable types
	Reading string variables
	Skipping variables
	Skipping observations
	Reading time-series data

	Also see

	infix (fixed format)
	Syntax
	Menu
	Description
	Options
	Specifications

	Remarks
	Two ways to use infix
	Reading string variables
	Reading data with multiple lines per observation
	Reading subsets of observations

	Also see

	input
	Syntax
	Description
	Options
	Remarks
	Reference
	Also see

	insheet
	Syntax
	Menu
	Description
	Options
	Remarks
	Also see

	inspect
	Syntax
	Menu
	Description
	Remarks
	Saved results
	Also see

	ipolate
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Also see

	isid
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Also see

	joinby
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Acknowledgment
	Reference
	Also see

	label
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	References
	Also see

	label language
	Syntax
	Menu
	Description
	Option
	Remarks
	Creating labels in the first language
	Creating labels in the second and subsequent languages
	Creating labels from a clean slate
	Creating labels from a previously existing language
	Switching languages
	Changing the name of a language
	Deleting a language
	Appendix: Selected ISO 639-1 two-letter codes

	Saved results
	Methods and formulas
	References
	Also see

	labelbook
	Syntax
	Menu
	Description
	Options for labelbook
	Options for numlabel
	Options for uselabel
	Remarks
	labelbook
	Diagnosing problems
	numlabel
	uselabel

	Saved results
	Methods and formulas
	Acknowledgments
	References
	Also see

	list
	Syntax
	Menu
	Description
	Options
	Remarks
	References
	Also see

	lookfor
	Syntax
	Description
	Remarks
	Saved results
	Methods and formulas
	Also see

	memory
	Syntax
	Description
	Options
	Remarks
	Examples
	Serious bug in Linux OS
	Notes for system administrators

	Saved results
	Reference
	Also see

	merge
	Syntax
	Menu
	Description
	Options
	Remarks
	Overview
	Basic description
	1:1 merges
	m:1 merges
	1:m merges
	m:m merges
	Sequential merges
	Treatment of overlapping variables
	Sort order
	Troubleshooting m:m merges
	Examples

	Methods and formulas
	References
	Also see

	missing values
	Description
	Remarks
	Reference
	Also see

	mkdir
	Syntax
	Description
	Option
	Remarks
	Also see

	mvencode
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Acknowledgment
	Also see

	notes
	Syntax
	Menu
	Description
	Remarks
	How notes are numbered
	Attaching and listing notes
	Selectively listing notes
	Searching and replacing notes
	Deleting notes
	Warnings

	Methods and formulas
	References
	Also see

	obs
	Syntax
	Description
	Remarks
	Also see

	odbc
	Syntax
	Menu
	Description
	Options
	Remarks
	Setting up the data sources
	Listing ODBC data source names
	Listing available table names from a specified data source's system catalog
	Describing a specified table
	Loading data from ODBC sources

	Also see

	order
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	References
	Also see

	outfile
	Syntax
	Menu
	Description
	Options
	Remarks
	Also see

	outsheet
	Syntax
	Menu
	Description
	Options
	Remarks
	Also see

	pctile
	Syntax
	Menu
	Description
	Options
	Remarks
	pctile
	xtile
	_pctile

	Saved results
	Methods and formulas
	Acknowledgment
	Also see

	putmata
	Syntax
	Description
	Options for putmata
	Options for getmata
	Remarks
	Use of putmata
	Use of putmata and getmata
	Using putmata and getmata on subsets of observations
	Using views
	Constructing do-files

	Saved results
	Methods and formulas
	Reference
	Also see

	range
	Syntax
	Menu
	Description
	Remarks
	Methods and formulas
	Also see

	recast
	Syntax
	Description
	Option
	Remarks
	Methods and formulas
	Also see

	recode
	Syntax
	Menu
	Description
	Options
	Remarks
	Simple examples
	Setting up value labels with recode
	Referring to the minimum and maximum in rules
	Recoding missing values
	Recoding subsets of the data
	Otherwise rules
	Test for overlapping rules

	Methods and formulas
	Acknowledgment
	Also see

	rename
	Syntax
	Menu
	Description
	Remarks
	References
	Also see

	rename group
	Syntax
	Menu
	Description
	Options for renaming variables
	Options for changing the case of groups of variable names
	Remarks
	Advice
	Explanation
	* matches 0 or more characters; use ?* to match 1 or more
	* is greedy
	# is greedier

	Saved results
	Methods and formulas
	Also see

	reshape
	Syntax
	Menu
	Description
	Options
	Remarks
	Description of basic syntax
	Wide and long data forms
	Avoiding and correcting mistakes
	reshape long and reshape wide without arguments
	Missing variables
	Advanced issues with basic syntax: i()
	Advanced issues with basic syntax: j()
	Advanced issues with basic syntax: xij
	Advanced issues with basic syntax: String identifiers for j()
	Advanced issues with basic syntax: Second-level nesting
	Description of advanced syntax

	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	rmdir
	Syntax
	Description
	Remarks
	Also see

	sample
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	References
	Also see

	save
	Syntax
	Menu
	Description
	Options for save
	Options for saveold
	Remarks
	Methods and formulas
	Also see

	separate
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Acknowledgment
	Reference
	Also see

	shell
	Syntax
	Description
	Remarks
	Stata for Windows
	Stata for Mac
	Stata for Unix(GUI)
	Stata for Unix(console)

	Also see

	snapshot
	Syntax
	Menu
	Description
	Option
	Remarks
	Saved results
	Also see

	sort
	Syntax
	Menu
	Description
	Option
	Remarks
	References
	Also see

	split
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Acknowledgments
	Also see

	stack
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Reference
	Also see

	statsby
	Syntax
	Menu
	Description
	Options
	Remarks
	Collecting coefficients and standard errors
	Collecting saved results
	All subsets

	Methods and formulas
	Acknowledgment
	References
	Also see

	sysuse
	Syntax
	Menu
	Description
	Options
	Remarks
	Typical use
	A note concerning shipped datasets
	Using user-installed datasets
	How sysuse works

	Saved results
	Methods and formulas
	Also see

	type
	Syntax
	Description
	Options
	Remarks
	Also see

	use
	Syntax
	Menu
	Description
	Options
	Remarks
	Also see

	varmanage
	Syntax
	Menu
	Description
	Remarks
	Also see

	webuse
	Syntax
	Menu
	Description
	Option
	Remarks
	Typical use
	A note concerning example datasets
	Redirecting the source

	Methods and formulas
	Also see

	xmlsave
	Syntax
	Menu
	Description
	Options for xmlsave
	Options for xmluse
	Remarks
	Also see

	xpose
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	References
	Also see

	zipfile
	Syntax
	Description
	Option for zipfile
	Option for unzipfile
	Remarks

	Subject and author index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	[G] Graphics
	Table of contents
	Introduction
	intro
	Description
	Remarks
	What's new

	Also see

	graph intro
	Remarks
	Suggested reading order
	A quick tour
	Using the menus

	References
	Also see

	graph editor
	Remarks
	Quick start
	Introduction
	Starting and stopping the Graph Editor
	The tools
	The Object Browser
	Right-click menus, or Contextual menus
	The Standard Toolbar
	The main Graph Editor menu
	Grid editing
	Graph Recorder
	Tips, tricks, and quick edits

	Also see

	Commands
	graph
	Syntax
	Description
	Remarks
	Also see

	graph bar
	Syntax
	Menu
	Description
	group_options
	yvar_options
	lookofbar_options
	legending_options
	axis_options
	title_and_other_options
	Suboptions for use with over() and yvaroptions()
	Remarks
	Introduction
	Examples of syntax
	Treatment of bars
	Treatment of data
	Multiple bars (overlapping the bars)
	Controlling the text of the legend
	Multiple over()s (repeating the bars)
	Nested over()s
	Charts with many categories
	How bars are ordered
	Reordering the bars
	Putting the bars in a prespecified order
	Putting the bars in height order
	Putting the bars in a derived order
	Reordering the bars, example
	Use with by()
	History

	References
	Also see

	graph box
	Syntax
	Menu
	Description
	group_options
	yvar_options
	boxlook_options
	legending_options
	axis_options
	title_and_other_options
	Suboptions for use with over() and yvaroptions()
	Remarks
	Introduction
	Examples of syntax
	Treatment of multiple yvars versus treatment of over() groups
	How boxes are ordered
	Reordering the boxes
	Putting the boxes in a prespecified order
	Putting the boxes in median order
	Use with by()
	History

	Methods and formulas
	References
	Also see

	graph combine
	Syntax
	Description
	Options
	Remarks
	Typical use
	Typical use with memory graphs
	Combining twoway graphs
	Advanced use
	Controlling the aspect ratio of subgraphs

	Also see

	graph copy
	Syntax
	Menu
	Description
	Option
	Remarks
	Also see

	graph describe
	Syntax
	Menu
	Description
	Remarks
	Saved results
	Also see

	graph dir
	Syntax
	Description
	Options
	Remarks
	Saved results
	Also see

	graph display
	Syntax
	Menu
	Description
	Options
	Remarks
	Changing the size and aspect ratio
	Changing the margins and aspect ratio
	Changing the scheme

	Also see

	graph dot
	Syntax
	Menu
	Description
	group_options
	yvar_options
	linelook_options
	legending_options
	axis_options
	title_and_other_options
	Suboptions for use with over() and yvaroptions()
	Remarks
	Relationship between dot plots and horizontal bar charts
	Examples
	Appendix: Examples of syntax

	References
	Also see

	graph drop
	Syntax
	Menu
	Description
	Remarks
	Typical use
	Relationship between graph drop _all and discard
	Erasing graphs on disk

	Also see

	graph export
	Syntax
	Description
	Options
	Remarks
	Exporting the graph displayed in a Graph window
	Exporting a graph stored on disk
	Exporting a graph stored in memory

	Also see

	graph manipulation
	Syntax
	Description
	Remarks
	Overview of graphs in memory and graphs on disk
	Summary of graph manipulation commands

	Also see

	graph matrix
	Syntax
	Menu
	Description
	Options
	Remarks
	Typical use
	Marker symbols and the number of observations
	Controlling the axes labeling
	Adding grid lines
	Adding titles
	Use with by()
	History

	References
	Also see

	graph other
	Syntax
	Description
	Remarks
	Also see

	graph pie
	Syntax
	Menu
	Description
	Options
	Remarks
	Typical use
	Data are summed
	Data may be long rather than wide
	How slices are ordered
	Ordering slices by size
	Reordering the slices
	Use with by()
	History

	References
	Also see

	graph play
	Syntax
	Description
	Remarks
	Also see

	graph print
	Syntax
	Description
	Options
	Remarks
	Printing the graph displayed in a Graph window
	Printing a graph stored on disk
	Printing a graph stored in memory
	Appendix: Setting up Stata for Unix to print graphs

	Also see

	graph query
	Syntax
	Menu
	Description
	Remarks
	Also see

	graph rename
	Syntax
	Menu
	Description
	Option
	Remarks
	Also see

	graph save
	Syntax
	Description
	Options
	Remarks
	Also see

	graph set
	Syntax
	Description
	Remarks
	Overview
	Setting defaults

	Also see

	graph twoway
	Syntax
	Menu
	Description
	Remarks
	Definition
	Syntax
	Multiple if and in restrictions
	twoway and plot options

	graph twoway area
	Syntax
	Menu
	Description
	Options
	Remarks
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway bar
	Syntax
	Menu
	Description
	Options
	Remarks
	Typical use
	Advanced use: Overlaying
	Advanced use: Population pyramid
	Cautions

	Also see

	graph twoway connected
	Syntax
	Menu
	Description
	Options
	Remarks
	Also see

	graph twoway contour
	Syntax
	Menu
	Description
	Options
	Remarks
	Controlling the number of contours and their values
	Controlling the colors of the contour areas
	Choose the interpolation method

	Reference
	Also see

	graph twoway contourline
	Syntax
	Menu
	Description
	Options
	Remarks
	Controlling the number of contour lines and their values
	Controlling the colors of the contour lines
	Choose the interpolation method

	Also see

	graph twoway dot
	Syntax
	Menu
	Description
	Options
	Remarks
	Reference
	Also see

	graph twoway dropline
	Syntax
	Menu
	Description
	Options
	Remarks
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway fpfit
	Syntax
	Menu
	Description
	Options
	Remarks
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway fpfitci
	Syntax
	Menu
	Description
	Options
	Remarks
	Typical use
	Advanced use
	Cautions
	Use with by()

	Also see

	graph twoway function
	Syntax
	Menu
	Description
	Options
	Remarks
	Typical use
	Advanced use 1
	Advanced use 2

	Reference
	Also see

	graph twoway histogram
	Syntax
	Menu
	Description
	Options for use in the discrete case
	Options for use in the continuous case
	Options for use in both the discrete and continuous cases
	Remarks
	Relationship between graph twoway histogram and histogram
	Typical use
	Use with by()
	History

	References
	Also see

	graph twoway kdensity
	Syntax
	Menu
	Description
	Options
	Remarks
	Typical use
	Use with by()

	References
	Also see

	graph twoway lfit
	Syntax
	Menu
	Description
	Options
	Remarks
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway lfitci
	Syntax
	Menu
	Description
	Options
	Remarks
	Typical use
	Advanced use
	Cautions
	Use with by()

	Also see

	graph twoway line
	Syntax
	Menu
	Description
	Options
	Remarks
	Oneway equivalency of line and scatter
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway lowess
	Syntax
	Menu
	Description
	Options
	Remarks
	Typical use
	Use with by()

	References
	Also see

	graph twoway lpoly
	Syntax
	Menu
	Description
	Options
	Remarks
	Typical use
	Use with by()

	References
	Also see

	graph twoway lpolyci
	Syntax
	Menu
	Description
	Options
	Remarks
	Typical use
	Use with by()

	Also see

	graph twoway mband
	Syntax
	Menu
	Description
	Options
	Remarks
	Typical use
	Use with by()

	Also see

	graph twoway mspline
	Syntax
	Menu
	Description
	Options
	Remarks
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway pcarrow
	Syntax
	Menu
	Description
	Options
	Remarks
	Basic use
	Advanced use

	References
	Also see

	graph twoway pcarrowi
	Syntax
	Menu
	Description
	Options
	Remarks
	Also see

	graph twoway pccapsym
	Syntax
	Menu
	Description
	Options
	Remarks
	Basic use 1
	Basic use 2

	Also see

	graph twoway pci
	Syntax
	Menu
	Description
	Options
	Remarks
	Also see

	graph twoway pcscatter
	Syntax
	Menu
	Description
	Options
	Remarks
	Also see

	graph twoway pcspike
	Syntax
	Menu
	Description
	Options
	Remarks
	Basic use
	Advanced use
	Advanced use 2

	Reference
	Also see

	graph twoway qfit
	Syntax
	Menu
	Description
	Options
	Remarks
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway qfitci
	Syntax
	Menu
	Description
	Options
	Remarks
	Typical use
	Advanced use
	Cautions
	Use with by()

	Also see

	graph twoway rarea
	Syntax
	Menu
	Description
	Options
	Remarks
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway rbar
	Syntax
	Menu
	Description
	Options
	Remarks
	Typical use
	Advanced use

	Reference
	Also see

	graph twoway rcap
	Syntax
	Menu
	Description
	Options
	Remarks
	Typical use
	Advanced use
	Advanced use 2

	Also see

	graph twoway rcapsym
	Syntax
	Menu
	Description
	Options
	Remarks
	Also see

	graph twoway rconnected
	Syntax
	Menu
	Description
	Options
	Remarks
	Also see

	graph twoway rline
	Syntax
	Menu
	Description
	Options
	Remarks
	Also see

	graph twoway rscatter
	Syntax
	Menu
	Description
	Options
	Remarks
	Also see

	graph twoway rspike
	Syntax
	Menu
	Description
	Options
	Remarks
	Typical use
	Advanced use
	Advanced use 2

	Also see

	graph twoway scatter
	Syntax
	Menu
	Description
	Options
	Remarks
	Typical use
	Scatter syntax
	The overall look for the graph
	The size and aspect ratio of the graph
	Titles
	Axis titles
	Axis labels and ticking
	Grid lines
	Added lines
	Axis range
	Log scales
	Multiple axes
	Markers
	Weighted markers
	Jittered markers
	Connected lines
	Graphs by groups
	Saving graphs
	Appendix: Styles and composite styles

	References
	Also see

	graph twoway scatteri
	Syntax
	Menu
	Description
	Options
	Remarks
	Also see

	graph twoway spike
	Syntax
	Menu
	Description
	Options
	Remarks
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway tsline
	Syntax
	Menu
	Description
	Also see

	graph use
	Syntax
	Description
	Options
	Remarks
	Also see

	palette
	Syntax
	Description
	Options
	Remarks
	Also see

	set graphics
	Syntax
	Description
	Remarks
	Also see

	set printcolor
	Syntax
	Description
	Option
	Remarks
	What set printcolor affects
	The problem set printcolor solves
	set printcolor automatic
	set printcolor asis
	set printcolor gs1, gs2, and gs3
	The scheme matters, not the background color you set

	Also see

	set scheme
	Syntax
	Description
	Option
	Remarks
	Also see

	Options
	added_line_options
	Syntax
	Description
	Options
	Suboptions
	Remarks
	Typical use
	Interpretation of repeated options

	Reference
	Also see

	added_text_options
	Syntax
	Description
	Options
	Suboptions
	Remarks
	Typical use
	Advanced use
	Use of the textbox option width()

	Also see

	addplot_option
	Syntax
	Description
	Option
	Remarks
	Commands that allow the addplot() option
	Advantage of graph twoway commands
	Advantages of graphic commands implemented outside graph twoway
	Use of the addplot() option

	Also see

	advanced_options
	Syntax
	Description
	Options
	Remarks
	Use of yvarlabel() and xvarlabel()
	Use of yvarformat() and xvarformat()
	Use of recast()

	Also see

	area_options
	Syntax
	Description
	Options
	Remarks
	Use with twoway
	Use with graph dot

	Also see

	aspect_option
	Syntax
	Description
	Option
	Suboption
	Remarks
	Reference
	Also see

	axis_choice_options
	Syntax
	Description
	Options
	Remarks
	Usual case: one set of axes
	Special case: multiple axes due to multiple scales
	yaxis(1) and xaxis(1) are the defaults
	Notation style is irrelevant
	yaxis() and xaxis() are plot options
	Specifying the other axes options with multiple axes
	Each plot may have at most one x scale and one y scale
	Special case: Multiple axes with a shared scale

	Reference
	Also see

	axis_label_options
	Syntax
	Description
	Options
	Suboptions
	Remarks
	Default labeling and ticking
	Controlling the labeling and ticking
	Adding extra ticks
	Adding minor labels and ticks
	Adding grid lines
	Suppressing grid lines
	Substituting text for labels
	Contour axes---zlabel(), etc.
	Appendix: Details of syntax

	Reference
	Also see

	axis_options
	Syntax
	Description
	Options
	Remarks
	Use of axis-appearance options with graph twoway
	Multiple y and x scales
	Axis on the left, axis on the right?
	Contour axes---zscale(), zlabel(), etc.

	Also see

	axis_scale_options
	Syntax
	Description
	Options
	yscale(), xscale(), and tscale() suboptions
	Remarks
	Use of the yscale() and xscale()
	Specifying the range of a scale
	Obtaining log scales
	Obtaining reversed scales
	Suppressing the axes
	Contour axes---zscale()

	Reference
	Also see

	axis_title_options
	Syntax
	Description
	Options
	Suboptions
	Remarks
	Default axis titles
	Overriding default titles
	Specifying multiline titles
	Suppressing axis titles
	Interpretation of repeated options
	Titles with multiple y axes or multiple x axes
	Contour axes---ztitle()

	Also see

	barlook_options
	Syntax
	Description
	Options
	Remarks
	Also see

	blabel_option
	Syntax
	Description
	Options
	Suboptions for use with blabel()
	Remarks
	Increasing the information content
	Changing how bars are labeled

	Also see

	by_option
	Syntax
	Description
	Option
	byopts
	Remarks
	Typical use
	Placement of graphs
	Treatment of titles
	by() uses subtitle() with graph
	Placement of the subtitle()
	by() uses the overall note()
	Use of legends with by()
	By-styles
	Labeling the edges
	Specifying separate scales for the separate plots
	History

	References
	Also see

	cat_axis_label_options
	Syntax
	Description
	Options
	Remarks
	Also see

	cat_axis_line_options
	Syntax
	Description
	Options
	Remarks
	Also see

	clegend_option
	Syntax
	Description
	Option
	Content and appearance suboptions for use with clegend()
	Suboptions for use with clegend(region())
	Location suboptions for use with clegend()

	Remarks
	When contour legends appear
	Where contour legends appear
	Putting titles on contour legends
	Controlling the axis in contour legends
	Use of legends with by()

	Also see

	cline_options
	Syntax
	Description
	Options
	Remarks
	Also see

	connect_options
	Syntax
	Description
	Options
	Remarks
	Also see

	eps_options
	Syntax
	Description
	Options
	Remarks
	Using the eps_options
	Setting defaults
	Note about PostScript fonts

	Also see

	fcline_options
	Syntax
	Description
	Options
	Remarks

	fitarea_options
	Syntax
	Description
	Options
	Remarks

	legend_options
	Syntax
	Description
	Options
	Content suboptions for use with legend() and plegend()
	Suboptions for use with legend(region())
	Location suboptions for use with legend()

	Remarks
	When legends appear
	The contents of legends
	Where legends appear
	Putting titles on legends
	Use of legends with by()
	Problems arising with or because of legends

	Also see

	line_options
	Syntax
	Description
	Options
	Remarks
	Also see

	marker_label_options
	Syntax
	Description
	Options
	Remarks
	Typical use
	Eliminating overprinting and overruns
	Advanced use
	Using marker labels in place of markers

	Also see

	marker_options
	Syntax
	Description
	Options
	Remarks
	Also see

	name_option
	Syntax
	Description
	Option
	Remarks
	Also see

	nodraw_option
	Syntax
	Description
	Option
	Remarks
	Also see

	play_option
	Syntax
	Description
	Option
	Remarks
	Also see

	png_options
	Syntax
	Description
	Options
	Remarks
	Using png_options
	Specifying the width or height

	Also see

	pr_options
	Syntax
	Description
	Options
	Remarks
	Using the pr_options
	Setting defaults
	Note for Unix users

	Also see

	ps_options
	Syntax
	Description
	Options
	Remarks
	Using the ps_options
	Setting defaults
	Note about PostScript fonts
	Note for Unix users

	Also see

	rcap_options
	Syntax
	Description
	Options
	Remarks
	Also see

	region_options
	Syntax
	Description
	Options
	Suboptions
	Remarks
	Setting the offset between the axes and the plot region
	Controlling the aspect ratio
	Suppressing the border around the plot region
	Setting background and fill colors
	How graphs are constructed

	Also see

	rspike_options
	Syntax
	Description
	Options
	Remarks
	Also see

	saving_option
	Syntax
	Description
	Option
	Suboptions
	Remarks
	Also see

	scale_option
	Syntax
	Description
	Option
	Remarks
	Also see

	scheme_option
	Syntax
	Description
	Option
	Remarks
	Also see

	std_options
	Syntax
	Description
	Options
	Remarks
	Also see

	textbox_options
	Syntax
	Description
	Options
	Remarks
	Definition of a textbox
	Position
	Justification
	Position and justification combined
	Margins
	Width and height
	Appendix: Overriding default or context-specified positioning

	Also see

	tif_options
	Syntax
	Description
	Options
	Remarks
	Using tif_options
	Specifying the width or height

	Also see

	title_options
	Syntax
	Description
	Options
	Suboptions
	Remarks
	Multiple-line titles
	Interpretation of repeated options
	Positioning of titles
	Alignment of titles
	Spanning
	Using the textbox options box and bexpand

	Also see

	twoway_options
	Syntax
	Description
	Options
	Remarks
	Also see

	Styles/concepts/schemes
	addedlinestyle
	Syntax
	Description
	Remarks
	What is an added line?
	What is an addedlinestyle?
	You do not need to specify an addedlinestyle

	Also see

	alignmentstyle
	Syntax
	Description
	Remarks
	Also see

	anglestyle
	Syntax
	Description
	Remarks
	Also see

	areastyle
	Syntax
	Description
	Remarks
	Overview of areastyles
	Numbered styles
	Using numbered styles
	When to use areastyles

	Also see

	axisstyle
	Syntax
	Description
	Remarks
	Also see

	bystyle
	Syntax
	Description
	Remarks
	What is a by-graph?
	What is a bystyle?

	Also see

	clockposstyle
	Syntax
	Description
	Remarks
	Also see

	colorstyle
	Syntax
	Description
	Remarks
	Colors are independent of the background color
	White backgrounds and black backgrounds
	RGB values
	CMYK values
	HSV values
	Adjusting intensity

	Also see

	compassdirstyle
	Syntax
	Description
	Remarks
	Also see

	concept: gph files
	Description
	Remarks
	Background
	Gph files are machine/operating system independent
	Gph files come in three forms
	Advantages of live-format files
	Advantages of as-is format files
	Retrieving data from live-format files

	Also see

	concept: lines
	Syntax
	Description
	Remarks
	linestyle
	linepatternstyle
	linewidthstyle
	colorstyle

	Also see

	concept: repeated options
	Syntax
	Remarks
	Also see

	connectstyle
	Syntax
	Description
	Remarks
	Also see

	gridstyle
	Syntax
	Description
	Remarks
	What is a grid?
	What is a gridstyle?
	You do not need to specify a gridstyle
	Turning off and on the grid

	Also see

	intensitystyle
	Syntax
	Description
	Remarks
	Also see

	justificationstyle
	Syntax
	Description
	Remarks
	Also see

	legendstyle
	Syntax
	Description
	Remarks
	What is a legend?
	What is a legendstyle?
	You do not need to specify a legendstyle

	Also see

	linepatternstyle
	Syntax
	Description
	Remarks
	Also see

	linestyle
	Syntax
	Description
	Remarks
	What is a line?
	What is a linestyle?
	You do not need to specify a linestyle
	Specifying a linestyle can be convenient
	What are numbered styles?
	Suppressing lines

	Reference
	Also see

	linewidthstyle
	Syntax
	Description
	Remarks
	Also see

	marginstyle
	Syntax
	Description
	Remarks
	Also see

	markerlabelstyle
	Syntax
	Description
	Remarks
	What is a markerlabel?
	What is a markerlabelstyle?
	You do not need to specify a markerlabelstyle
	Specifying a markerlabelstyle can be convenient
	What are numbered styles?

	Also see

	markersizestyle
	Syntax
	Description
	Remarks
	Also see

	markerstyle
	Syntax
	Description
	Remarks
	What is a marker?
	What is a markerstyle?
	You do not have to specify a markerstyle
	Specifying a markerstyle can be convenient
	What are numbered styles?

	Also see

	orientationstyle
	Syntax
	Description
	Remarks
	Also see

	plotregionstyle
	Syntax
	Description
	Remarks
	Also see

	pstyle
	Syntax
	Description
	Remarks
	What is a plot?
	What is a pstyle?
	The pstyle() option
	Specifying a pstyle
	What are numbered styles?

	Also see

	relativesize
	Syntax
	Description
	Remarks
	Also see

	ringposstyle
	Syntax
	Description
	Remarks
	Also see

	schemes intro
	Syntax
	Description
	Remarks
	The role of schemes
	Finding out about other schemes
	Setting your default scheme
	The scheme is applied at display time
	Background color
	Foreground color
	Obtaining new schemes

	Also see

	scheme economist
	Syntax
	Description
	Remarks
	Also see

	scheme s1
	Syntax
	Description
	Remarks
	Also see

	scheme s2
	Syntax
	Description
	Remarks
	Also see

	scheme sj
	Syntax
	Description
	Remarks
	Also see

	shadestyle
	Syntax
	Description
	Remarks
	What is a shadestyle?
	What are numbered styles?

	Also see

	stylelists
	Syntax
	Description
	Also see

	symbolstyle
	Syntax
	Description
	Remarks
	Typical use
	Filled and hollow symbols
	Size of symbols

	Also see

	text
	Description
	Remarks
	Overview
	Bold and italics
	Superscripts and subscripts
	Fonts, standard
	Fonts, advanced
	Greek letters and other symbols
	Full list of SMCL tags useful in graph text

	Also see

	textboxstyle
	Syntax
	Description
	Remarks
	What is a textbox?
	What is a textboxstyle?
	You do not need to specify a textboxstyle

	Also see

	textsizestyle
	Syntax
	Description
	Also see

	textstyle
	Syntax
	Description
	Remarks
	What is text?
	What is a textstyle?
	You do not need to specify a textstyle
	Relationship between textstyles and textboxstyles

	Also see

	ticksetstyle
	Syntax
	Description
	Also see

	tickstyle
	Syntax
	Description
	Remarks
	What is a tick? What is a tick label?
	What is a tickstyle?
	You do not need to specify a tickstyle
	Suppressing ticks and/or tick labels

	Also see

	Subject and author index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	[MI] Multiple Imputation
	Table of contents
	intro substantive
	Description
	Remarks
	Motivating example
	What is multiple imputation?
	Theory underlying multiple imputation
	How large should M be?
	Assumptions about missing data
	Patterns of missing data
	Proper imputation methods
	Analysis of multiply imputed data
	A brief introduction to MI using Stata
	Summary

	References
	Also see

	intro
	Syntax
	Description
	Remarks
	A simple example
	Suggested reading order
	What's new

	Acknowledgments
	Also see

	estimation
	Description
	Also see

	mi add
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Also see

	mi append
	Syntax
	Menu
	Description
	Options
	Remarks
	Adding new observations
	Adding new observations and imputations
	Adding new observations and imputations, M unequal
	Treatment of registered variables

	Saved results
	Also see

	mi convert
	Syntax
	Menu
	Description
	Options
	Remarks
	Using mi convert as a convenience tool
	Converting from flongsep
	Converting to flongsep

	Also see

	mi copy
	Syntax
	Menu
	Description
	Option
	Remarks
	Also see

	mi describe
	Syntax
	Menu
	Description
	Options
	Remarks
	mi query
	mi describe

	Saved results
	Also see

	mi erase
	Syntax
	Menu
	Description
	Option
	Remarks
	Also see

	mi estimate
	Syntax
	Menu
	Description
	Options
	Remarks
	Using mi estimate
	Example 1: Completed-data logistic analysis
	Example 2: Completed-data linear regression analysis
	Example 3: Completed-data survival analysis
	Example 4: Panel data and multilevel models
	Example 5: Estimating transformations
	Example 6: Monte Carlo error estimates
	Potential problems that can arise when using mi estimate

	Saved results
	Methods and formulas
	Univariate case
	Multivariate case

	Acknowledgments
	References
	Also see

	mi estimate using
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	mi estimate postestimation
	Description
	Remarks
	Using the command-specific postestimation tools

	Also see

	mi expand
	Syntax
	Menu
	Description
	Options
	Remarks
	Also see

	mi export
	Syntax
	Description
	Remarks
	References
	Also see

	mi export ice
	Syntax
	Menu
	Description
	Option
	Remarks
	References
	Also see

	mi export nhanes1
	Syntax
	Menu
	Description
	Options
	Remarks
	Also see

	mi extract
	Syntax
	Menu
	Description
	Options
	Remarks
	Also see

	mi import
	Syntax
	Description
	Remarks
	When to use which mi import command
	Import data into Stata before importing into mi
	Using mi import nhanes1, ice, flong, and flongsep

	References
	Also see

	mi import flong
	Syntax
	Menu
	Description
	Options
	Remarks
	Also see

	mi import flongsep
	Syntax
	Menu
	Description
	Options
	Remarks
	Also see

	mi import ice
	Syntax
	Menu
	Description
	Options
	Remarks
	References
	Also see

	mi import nhanes1
	Syntax
	Menu
	Description
	Options
	Remarks
	Description of the nhanes1 format
	Importing nhanes1 data

	Also see

	mi import wide
	Syntax
	Menu
	Description
	Options
	Remarks
	Also see

	mi impute
	Syntax
	Menu
	Description
	Options
	Remarks
	Imputation methods
	Imputation modeling
	Model building
	Outcome variables
	Transformations
	Categorical variables
	The issue of perfect prediction during imputation of categorical data
	Convergence of iterative methods
	Imputation diagnostics

	Using mi impute
	Univariate imputation
	Multivariate imputation
	Imputing on subsamples
	Conditional imputation
	Imputation and estimation samples
	Imputing transformations of incomplete variables

	Saved results
	Methods and formulas
	References
	Also see

	mi impute chained
	Syntax
	Menu
	Description
	Options
	Remarks
	Multivariate imputation using chained equations
	Compatibility of conditionals
	Convergence of ICE
	First use
	Using mi impute chained
	Default prediction equations
	Custom prediction equations
	Link between mi impute chained and mi impute monotone
	Examples

	Saved results
	Methods and formulas
	Acknowledgments
	References
	Also see

	mi impute intreg
	Syntax
	Menu
	Description
	Options
	Remarks
	Univariate imputation using interval regression
	Using mi impute intreg
	Example

	Saved results
	Methods and formulas
	Reference
	Also see

	mi impute logit
	Syntax
	Menu
	Description
	Options
	Remarks
	Univariate imputation using logistic regression
	Using mi impute logit

	Saved results
	Methods and formulas
	References
	Also see

	mi impute mlogit
	Syntax
	Menu
	Description
	Options
	Remarks
	Univariate imputation using multinomial logistic regression
	Using mi impute mlogit

	Saved results
	Methods and formulas
	References
	Also see

	mi impute monotone
	Syntax
	Menu
	Description
	Options
	Remarks
	Multivariate imputation when a missing-data pattern is monotone
	First use
	Using mi impute monotone
	Default syntax of mi impute monotone
	The alternative syntax of mi impute monotone---custom prediction equations
	Examples of using default prediction equations
	Examples of using custom prediction equations

	Saved results
	Methods and formulas
	References
	Also see

	mi impute mvn
	Syntax
	Menu
	Description
	Options
	Remarks
	Incomplete continuous data with arbitrary pattern of missing values
	Multivariate imputation using data augmentation
	Convergence of the MCMC method
	Using mi impute mvn
	Examples

	Saved results
	Methods and formulas
	Data augmentation
	Prior distribution
	Initial values: EM algorithm
	 Worst linear function

	References
	Also see

	mi impute nbreg
	Syntax
	Menu
	Description
	Options
	Remarks
	Univariate imputation using negative binomial regression
	Using mi impute nbreg

	Saved results
	Methods and formulas
	Reference
	Also see

	mi impute ologit
	Syntax
	Menu
	Description
	Options
	Remarks
	Univariate imputation using ordered logistic regression
	Using mi impute ologit

	Saved results
	Methods and formulas
	References
	Also see

	mi impute pmm
	Syntax
	Menu
	Description
	Options
	Remarks
	Univariate imputation using predictive mean matching
	Using mi impute pmm

	Saved results
	Methods and formulas
	References
	Also see

	mi impute poisson
	Syntax
	Menu
	Description
	Options
	Remarks
	Univariate imputation using Poisson regression
	Using mi impute poisson

	Saved results
	Methods and formulas
	References
	Also see

	mi impute regress
	Syntax
	Menu
	Description
	Options
	Remarks
	Univariate imputation using linear regression
	Using mi impute regress

	Saved results
	Methods and formulas
	References
	Also see

	mi impute truncreg
	Syntax
	Menu
	Description
	Options
	Remarks
	Univariate imputation using truncated regression
	Using mi impute truncreg

	Saved results
	Methods and formulas
	References
	Also see

	mi merge
	Syntax
	Menu
	Description
	Options
	Remarks
	Merging with non-mi data
	Merging with mi data
	Merging with mi data containing overlapping variables

	Saved results
	Also see

	mi misstable
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Also see

	mi passive
	Syntax
	Menu
	Description
	Options
	Remarks
	mi passive basics
	mi passive works with the by prefix
	mi passive works fastest with the wide style
	mi passive and super-varying variables
	Renaming passive variables
	Dropping passive variables
	Update passive variables when imputed values change
	Alternatives to mi passive

	Also see

	mi predict
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Using mi predict and mi predictnl
	Example 1: Obtain MI linear predictions and other statistics
	Example 2: Obtain MI linear predictions for the estimation sample
	Example 3: Obtain MI estimates of probabilities
	Example 4: Obtain other MI predictions
	Example 5: Obtain MI predictions after multiple-equation commands

	Methods and formulas
	References
	Also see

	mi ptrace
	Syntax
	Description
	Options
	Remarks
	Saved results
	Also see

	mi rename
	Syntax
	Menu
	Description
	Option
	Remarks
	Specifying the noupdate option
	What to do if you accidentally use rename
	What to do if you accidentally use rename on wide data
	What to do if you accidentally use rename on mlong data
	What to do if you accidentally use rename on flong data
	What to do if you accidentally use rename on flongsep data

	Also see

	mi replace0
	Syntax
	Menu
	Description
	Option
	Remarks
	Also see

	mi reset
	Syntax
	Menu
	Description
	Options
	Remarks
	Using mi reset
	Technical notes and relation to mi update

	Also see

	mi reshape
	Syntax
	Menu
	Description
	Options
	Remarks
	Also see

	mi select
	Syntax
	Description
	Option
	Remarks
	Saved results
	Also see

	mi set
	Syntax
	Menu
	Description
	Remarks
	mi set style
	mi register and mi unregister
	mi set M and mi set m
	mi unset

	Also see

	mi stsplit
	Syntax
	Menu
	Description
	Options
	Remarks
	Also see

	mi test
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Overview
	Example 1: Testing subsets of coefficients equal to zero
	Example 2: Testing linear hypotheses
	Example 3: Testing nonlinear hypotheses

	Saved results
	Methods and formulas
	References
	Also see

	mi update
	Syntax
	Menu
	Description
	Remarks
	Purpose of mi update
	What mi update does
	mi update is run automatically

	Also see

	mi varying
	Syntax
	Menu
	Description
	Options
	Remarks
	Detecting problems
	Fixing problems

	Saved results
	Also see

	mi xeq
	Syntax
	Description
	Remarks
	Using mi xeq with reporting commands
	Using mi xeq with data-modification commands
	Using mi xeq with data-modification commands on flongsep data

	Saved results
	Also see

	mi XXXset
	Syntax
	Description
	Remarks
	Also see

	noupdate option
	Syntax
	Description
	Option
	Remarks
	Also see

	styles
	Syntax
	Description
	Remarks
	The four styles
	Style wide

	Style flong
	Style mlong
	Style flongsep
	How we constructed this example

	Using mi system variables
	Advice for using flongsep

	Also see

	technical
	Description
	Remarks
	Notation
	Definition of styles
	Style all
	Style wide
	Style mlong
	Style flong
	Style flongsep
	Style flongsep_sub

	Adding new commands to mi
	Outline for new commands
	Utility routines
	u_mi_assert_set
	u_mi_certify_data
	u_mi_no_sys_vars and u_mi_no_wide_vars
	u_mi_zap_chars
	u_mi_xeq_on_tmp_flongsep
	u_mi_get_flongsep_tmpname
	mata: u_mi_flongsep_erase()
	u_mi_sortback
	u_mi_save and u_mi_use
	mata: u_mi_wide_swapvars()
	u_mi_fixchars
	mata: u_mi_cpchars_get() and mata: u_mi_cpchars_put()
	mata: u_mi_get_mata_instanced_var()
	mata: u_mi_ptrace_*()

	How to write other set commands to work with mi

	Also see

	workflow
	Description
	Remarks
	Suggested workflow for original data
	Suggested workflow for data that already have imputations
	Example

	Also see

	Glossary
	Description
	Glossary
	Also see

	Subject and author index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	[MV] Multivariate Statistics
	Table of contents
	intro
	Description
	Remarks
	What's new

	Also see

	multivariate
	Description
	Remarks
	Cluster analysis
	Discriminant analysis
	Factor analysis and principal component analysis
	Rotation
	Multivariate analysis of variance and related techniques
	Structural equation modeling
	Multidimensional scaling and biplots
	Correspondence analysis

	Also see

	biplot
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	ca
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	A first example
	How many dimensions?
	Statistics on the points
	Normalization and interpretation of correspondence analysis
	Plotting the points
	Supplementary points
	Matrix input
	Crossed variables

	Saved results
	Methods and formulas
	References
	Also see

	ca postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu
	Options for predict
	Syntax for estat
	Menu
	Options for estat
	Syntax for cabiplot
	Menu
	Options for cabiplot
	Syntax for caprojection
	Menu
	Options for caprojection
	Remarks
	Postestimation statistics
	Postestimation graphs
	Predicting new variables

	Saved results
	Methods and formulas
	References
	Also see

	candisc
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	canon
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	canon postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu
	Options for predict
	Syntax for estat
	Menu
	Option for estat
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	cluster
	Syntax
	Description
	Remarks
	Introduction to cluster analysis
	Stata's cluster-analysis system
	Data transformations and variable selection
	Similarity and dissimilarity measures
	Partition cluster-analysis methods
	Hierarchical cluster-analysis methods
	Hierarchical cluster analysis applied to a dissimilarity matrix
	Postclustering commands
	Cluster-management tools

	References
	Also see

	clustermat
	Syntax
	Description
	Remarks
	References
	Also see

	cluster dendrogram
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Reference
	Also see

	cluster generate
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Also see

	cluster kmeans and kmedians
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Also see

	cluster linkage
	Syntax
	Menu
	Description
	Options for cluster linkage commands
	Options for clustermat linkage commands
	Remarks
	Methods and formulas
	Also see

	cluster notes
	Syntax
	Menu
	Description
	Remarks
	Methods and formulas
	Also see

	cluster programming subroutines
	Description
	Remarks
	Adding a cluster subroutine
	Adding a cluster generate function
	Adding a cluster stopping rule
	Applying an alternate cluster dendrogram routine

	Reference
	Also see

	cluster programming utilities
	Syntax
	Description
	Options for cluster set
	Options for cluster delete
	Options for cluster measures
	Remarks
	Saved results
	Methods and formulas
	Also see

	cluster stop
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	cluster utility
	Syntax
	Menu
	Description
	Options for cluster list
	Options for cluster renamevar
	Remarks
	Methods and formulas
	Also see

	discrim
	Syntax
	Description
	Remarks
	Introduction
	A simple example
	Prior probabilities, costs, and ties

	Methods and formulas
	References
	Also see

	discrim estat
	Description
	Special-interest postestimation commands

	Syntax for estat classtable
	Menu
	Options for estat classtable
	Syntax for estat errorrate
	Menu
	Options for estat errorrate
	Syntax for estat grsummarize
	Menu
	Options for estat grsummarize
	Syntax for estat list
	Menu
	Options for estat list
	Syntax for estat summarize
	Menu
	Options for estat summarize
	Remarks
	Discriminating-variable summaries
	Discrimination listings
	Classification tables and error rates

	Saved results
	Methods and formulas
	References
	Also see

	discrim knn
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	A first example
	Mahalanobis transformation
	Binary data

	Saved results
	Methods and formulas
	References
	Also see

	discrim knn postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Also see

	discrim lda
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Descriptive LDA
	Predictive LDA
	A classic example

	Saved results
	Methods and formulas
	Predictive LDA
	Descriptive LDA

	References
	Also see

	discrim lda postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu
	Options for predict
	Syntax for estat anova
	Menu
	Syntax for estat canontest
	Menu
	Syntax for estat classfunctions
	Menu
	Options for estat classfunctions
	Syntax for estat correlations
	Menu
	Options for estat correlations
	Syntax for estat covariance
	Menu
	Options for estat covariance
	Syntax for estat grdistances
	Menu
	Options for estat grdistances
	Syntax for estat grmeans
	Menu
	Options for estat grmeans
	Syntax for estat loadings
	Menu
	Options for estat loadings
	Syntax for estat manova
	Menu
	Syntax for estat structure
	Menu
	Option for estat structure
	Remarks
	Classification tables, error rates, and listings
	ANOVA, MANOVA, and canonical correlations
	Discriminant and classification functions
	Scree, loading, and score plots
	Means and distances
	Covariance and correlation matrices
	Predictions

	Saved results
	Methods and formulas
	References
	Also see

	discrim logistic
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	discrim logistic postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Reference
	Also see

	discrim qda
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	discrim qda postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu
	Options for predict
	Syntax for estat correlations
	Menu
	Options for estat correlations
	Syntax for estat covariance
	Menu
	Options for estat covariance
	Syntax for estat grdistances
	Menu
	Options for estat grdistances
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	factor
	Syntax
	Menu
	Description
	Options for factor and factormat
	Options unique to factormat
	Remarks
	Introduction
	Factor analysis
	Factor analysis from a correlation matrix

	Saved results
	Methods and formulas
	References
	Also see

	factor postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu
	Options for predict
	Syntax for estat
	Menu
	Options for estat
	Remarks
	Postestimation statistics
	Plots of eigenvalues, factor loadings, and scores
	Rotating the factor loadings
	Factor scores

	Saved results
	Methods and formulas
	estat
	rotate
	predict

	References
	Also see

	hotelling
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	manova
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	One-way MANOVA
	Reporting coefficients
	Two-way MANOVA
	N-way MANOVA
	MANCOVA
	MANOVA for Latin-square designs
	MANOVA for nested designs
	MANOVA for mixed designs
	MANOVA with repeated measures

	Saved results
	Methods and formulas
	References
	Also see

	manova postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu
	Options for predict
	Syntax for manovatest
	Menu
	Options for manovatest
	Syntax for test following manova
	Menu
	Options for test after manova
	Remarks
	Saved results
	Methods and formulas
	Also see

	matrix dissimilarity
	Syntax
	Description
	Options
	Remarks
	References
	Also see

	mca
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Compare MCA on two variables and CA
	MCA on four variables
	CA of the indicator matrix
	CA of the Burt matrix
	Joint correspondence analysis

	Saved results
	Methods and formulas
	Notation
	Using ca to compute MCA
	CA of an indicator or Burt matrix
	JCA
	Supplementary variables
	predict

	References
	Also see

	mca postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu
	Options for predict
	Syntax for estat coordinates
	Menu
	Options for estat coordinates
	Syntax for estat subinertia
	Menu
	Syntax for estat summarize
	Menu
	Options for estat summarize
	Syntax for mcaplot
	Menu
	Options for mcaplot
	Syntax for mcaprojection
	Menu
	Options for mcaprojection
	Remarks
	Postestimation statistics
	Postestimation graphs
	Predicting new variables

	Saved results
	Methods and formulas
	References
	Also see

	mds
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Euclidean distances
	Non-Euclidean dissimilarity measures
	Introduction to modern MDS
	Protecting from local minimums

	Saved results
	Methods and formulas
	References
	Also see

	mds postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu
	Options for predict
	Syntax for estat
	Menu
	Options for estat
	Syntax for mdsconfig
	Menu
	Options for mdsconfig
	Syntax for mdsshepard
	Menu
	Options for mdsshepard
	Remarks
	Postestimation statistics
	Matching configuration plot and the Shepard diagram
	Predictions

	Saved results
	Methods and formulas
	References
	Also see

	mdslong
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Proximity data in long format
	Modern nonmetric MDS

	Saved results
	Methods and formulas
	References
	Also see

	mdsmat
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Proximity data in a Stata matrix
	Modern MDS and local minimums

	Saved results
	Methods and formulas
	Classical multidimensional scaling
	Modern multidimensional scaling
	Conversion of similarities to dissimilarities

	References
	Also see

	measure_option
	Syntax
	Description
	Options
	References
	Also see

	mvtest
	Syntax
	Description
	References
	Also see

	mvtest correlations
	Syntax
	Menu
	Description
	Options for multiple-sample tests
	Options for one-sample tests
	Remarks
	One-sample tests for correlation matrices
	A multiple-sample test for correlation matrices

	Saved results
	Methods and formulas
	One-sample tests for correlation matrices
	A multiple-sample test for correlation matrices

	References
	Also see

	mvtest covariances
	Syntax
	Menu
	Description
	Options for multiple-sample tests
	Options for one-sample tests
	Remarks
	One-sample tests for covariance matrices
	A multiple-sample test for covariance matrices

	Saved results
	Methods and formulas
	One-sample tests for covariance matrices
	A multiple-sample test for covariance matrices

	References
	Also see

	mvtest means
	Syntax
	Menu
	Description
	Options for multiple-sample tests
	Options with one-sample tests
	Remarks
	One-sample tests for mean vectors
	Multiple-sample tests for mean vectors

	Saved results
	Methods and formulas
	One-sample tests for mean vectors
	Multiple-sample tests for mean vectors

	References
	Also see

	mvtest normality
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Mardia mSkewness and mKurtosis
	Henze--Zirkler
	Doornik--Hansen

	Acknowledgment
	References
	Also see

	pca
	Syntax
	Menu
	Description
	Options
	Options unique to pcamat
	Remarks
	Saved results
	Methods and formulas
	Notation
	Inference on eigenvalues and eigenvectors
	More general tests for multivariate normal distributions

	References
	Also see

	pca postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu
	Options for predict
	Syntax for estat
	Menu
	Options for estat
	Remarks
	Postestimation statistics
	Plots of eigenvalues, component loadings, and scores
	Rotating the components
	How rotate interacts with pca
	Predicting the component scores

	Saved results
	Methods and formulas
	References
	Also see

	procrustes
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction to Procrustes methods
	Orthogonal Procrustes analysis
	Is an orthogonal Procrustes analysis symmetric?
	Other transformations

	Saved results
	Methods and formulas
	Introduction
	Orthogonal transformations
	Oblique transformations
	Unrestricted transformations
	Reported statistics

	References
	Also see

	procrustes postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu
	Options for predict
	Syntax for estat
	Menu
	Options for estat
	Syntax for procoverlay
	Menu
	Options for procoverlay
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	rotate
	Syntax
	Menu
	Description
	Options
	Rotation criteria

	Remarks
	Orthogonal rotations
	Oblique rotations
	Other types of rotation

	Saved results
	Methods and formulas
	References
	Also see

	rotatemat
	Syntax
	Menu
	Description
	Options
	Rotation criteria

	Remarks
	Introduction
	Orthogonal rotations
	Oblique rotations
	Promax rotation

	Saved results
	Methods and formulas
	References
	Also see

	scoreplot
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Also see

	screeplot
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	Glossary
	References

	Subject and author index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

	[R] Base Reference
	Table of contents
	Introduction
	intro
	Description
	Remarks
	Arrangement of the reference manuals
	Arrangement of each entry
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	Also see

	A
	about
	Syntax
	Menu
	Description
	Remarks
	Also see

	adoupdate
	Syntax
	Description
	Options
	Remarks
	Using adoupdate
	Possible problem the first time you run adoupdate and the solution
	Notes for developers

	Saved results
	Methods and formulas
	Also see

	alpha
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	ameans
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Acknowledgments
	References
	Also see

	anova
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	One-way ANOVA
	Two-way ANOVA
	N-way ANOVA
	Weighted data
	ANCOVA
	Nested designs
	Mixed designs
	Latin-square designs
	Repeated-measures ANOVA

	Saved results
	Methods and formulas
	References
	Also see

	anova postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Syntax for test after anova
	Menu
	Options for test after anova
	Remarks
	Testing effects
	Obtaining symbolic forms
	Testing coefficients and contrasts of margins

	Methods and formulas
	References
	Also see

	areg
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Reference
	Also see

	areg postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Methods and formulas
	Also see

	asclogit
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	asclogit postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu
	Options for predict
	Syntax for estat alternatives
	Menu
	Syntax for estat mfx
	Menu
	Options for estat mfx
	Remarks
	Predicted probabilities
	Obtaining estimation statistics

	Saved results
	Methods and formulas
	Also see

	asmprobit
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Variance structures

	Saved results
	Methods and formulas
	Simulated likelihood

	References
	Also see

	asmprobit postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu
	Options for predict
	Syntax for estat alternatives
	Menu
	Syntax for estat covariance
	Menu
	Options for estat covariance
	Syntax for estat correlation
	Menu
	Options for estat correlation
	Syntax for estat facweights
	Menu
	Options for estat facweights
	Syntax for estat mfx
	Menu
	Options for estat mfx
	Remarks
	Predicted probabilities
	Obtaining estimation statistics
	Obtaining marginal effects

	Saved results
	Methods and formulas
	Marginal effects

	Also see

	asroprobit
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Reference
	Also see

	asroprobit postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu
	Options for predict
	Syntax for estat alternatives
	Menu
	Syntax for estat covariance
	Menu
	Options for estat covariance
	Syntax for estat correlation
	Menu
	Options for estat correlation
	Syntax for estat facweights
	Menu
	Options for estat facweights
	Syntax for estat mfx
	Menu
	Options for estat mfx
	Remarks
	Predicted probabilities
	Obtaining estimation statistics

	Saved results
	Methods and formulas
	Also see

	B
	BIC note
	Description
	Remarks
	Background
	The problem of determining N
	The problem of conformable likelihoods
	The first problem does not arise with AIC; the second problem does
	Calculating BIC correctly

	Methods and formulas
	References
	Also see

	binreg
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	binreg postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Methods and formulas
	References
	Also see

	biprobit
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	biprobit postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Methods and formulas
	Also see

	bitest
	Syntax
	Menu
	Description
	Option
	Remarks
	bitest
	bitesti

	Saved results
	Methods and formulas
	References
	Also see

	bootstrap
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Regression coefficients
	Expressions
	Combining bootstrap datasets
	A note about macros
	Achieved significance level
	Bootstrapping a ratio
	Warning messages and e(sample)
	Bootstrapping statistics from data with a complex structure

	Saved results
	Methods and formulas
	References
	Also see

	bootstrap postestimation
	Description
	Special-interest postestimation command

	Syntax for predict
	Syntax for estat bootstrap
	Menu
	Options for estat bootstrap
	Remarks
	Methods and formulas
	Also see

	boxcox
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Theta model
	Lambda model
	Left-hand-side-only model
	Right-hand-side-only model

	Saved results
	Methods and formulas
	References
	Also see

	boxcox postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Also see

	brier
	Syntax
	Menu
	Description
	Option
	Remarks
	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	bsample
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Also see

	bstat
	Syntax
	Menu
	Description
	Options
	Remarks
	Bootstrap datasets
	Creating a bootstrap dataset

	Saved results
	Methods and formulas
	Reference
	Also see

	C
	centile
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Default case
	Normal case
	meansd case

	Acknowledgment
	References
	Also see

	ci
	Syntax
	Menu
	Description
	Options
	Remarks
	Ordinary confidence intervals
	Binomial confidence intervals
	Poisson confidence intervals
	Immediate form

	Saved results
	Methods and formulas
	Ordinary
	Binomial
	Poisson

	Acknowledgment
	References
	Also see

	clogit
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Matched case--control data
	Use of weights
	Fixed-effects logit

	Saved results
	Methods and formulas
	References
	Also see

	clogit postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Reference
	Also see

	cloglog
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction to complementary log-log regression
	Robust standard errors

	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	cloglog postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Also see

	cnsreg
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	cnsreg postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Methods and formulas
	Also see

	constraint
	Syntax
	Menu
	Description
	Remarks
	Reference
	Also see

	contrast
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	One-way models
	Estimated cell means
	Testing equality of cell means
	Reference category contrasts
	Reverse adjacent contrasts
	Orthogonal polynomial contrasts

	Two-way models
	Estimated interaction cell means
	Simple effects
	Interaction effects
	Main effects
	Partial interaction effects

	Three-way and higher-order models
	Contrast operators
	Differences from a reference level (r.)
	Differences from the next level (a.)
	Differences from the previous level (ar.)
	Differences from the grand mean (g.)
	Differences from the mean of subsequent levels (h.)
	Differences from the mean of previous levels (j.)
	Orthogonal polynomials (p. and q.)

	User-defined contrasts
	Empty cells
	Empty cells, ANOVA style
	Nested effects
	Multiple comparisons
	Unbalanced data
	Using observed cell frequencies
	Weighted contrast operators

	Testing factor effects on slopes
	Chow tests
	Beyond linear models
	Multiple equations

	Saved results
	Methods and formulas
	Marginal linear predictions
	Contrast operators
	Reference level contrasts
	Adjacent contrasts
	Grand mean contrasts
	Helmert contrasts
	Reverse Helmert contrasts
	Orthogonal polynomial contrasts

	Contrasts within interactions
	Multiple comparisons

	References
	Also see

	contrast postestimation
	Description
	Remarks
	Also see

	copyright
	Syntax
	Description
	Remarks
	Also see

	copyright boost
	Description
	Also see

	copyright freetype
	Description
	Legal Terms
	0. Definitions
	1. No Warranty
	2. Redistribution
	3. Advertising
	4. Contacts

	Also see

	copyright icu
	Description
	Also see

	copyright jagpdf
	Description
	Also see

	copyright lapack
	Description
	Also see

	copyright libpng
	Description
	Also see

	copyright scintilla
	Description
	Also see

	copyright ttf2pt1
	Description
	Also see

	copyright zlib
	Description
	Also see

	correlate
	Syntax
	Menu
	Description
	Options for correlate
	Options for pwcorr
	Remarks
	correlate
	pwcorr

	Saved results
	Methods and formulas
	References
	Also see

	cumul
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Acknowledgment
	References
	Also see

	cusum
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	D
	db
	Syntax
	Description
	Options
	Remarks
	Methods and formulas
	Also see

	diagnostic plots
	Syntax
	Menu
	Description
	Options for symplot, quantile, and qqplot
	Options for qnorm and pnorm
	Options for qchi and pchi
	Remarks
	symplot
	quantile
	qqplot
	qnorm
	pnorm
	qchi
	pchi

	Methods and formulas
	Acknowledgments
	References
	Also see

	display
	Syntax
	Description
	Remarks
	Also see

	do
	Syntax
	Menu
	Description
	Option
	Remarks
	Reference
	Also see

	doedit
	Syntax
	Menu
	Description
	Remarks
	Also see

	dotplot
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Acknowledgments
	References

	dstdize
	Syntax
	Menu
	Description
	Options for dstdize
	Options for istdize
	Remarks
	Direct standardization
	Indirect standardization

	Saved results
	Methods and formulas
	Acknowledgments
	References
	Also see

	dydx
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	E
	eform_option
	Description
	Remarks
	Also see

	eivreg
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	eivreg postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Methods and formulas
	Also see

	error messages
	Description
	Also see

	estat
	Syntax
	Menu
	Description
	Option for estat ic
	Options for estat summarize
	Options for estat vce
	Remarks
	estat ic
	estat summarize
	estat vce

	Saved results
	Methods and formulas
	References
	Also see

	estimates
	Syntax
	Description
	Remarks
	Saving and using estimation results
	Storing and restoring estimation results
	Comparing estimation results
	Jargon

	Also see

	estimates describe
	Syntax
	Menu
	Description
	Option
	Remarks
	Saved results
	Methods and formulas
	Also see

	estimates for
	Syntax
	Description
	Options
	Remarks
	Methods and formulas
	Also see

	estimates notes
	Syntax
	Description
	Remarks
	Methods and formulas
	Also see

	estimates replay
	Syntax
	Menu
	Description
	Remarks
	Methods and formulas
	Also see

	estimates save
	Syntax
	Menu
	Description
	Options
	Remarks
	Setting e(sample)
	Resetting e(sample)
	Determining who set e(sample)

	Saved results
	Methods and formulas
	Also see

	estimates stats
	Syntax
	Menu
	Description
	Option
	Remarks
	Saved results
	Methods and formulas
	Also see

	estimates store
	Syntax
	Menu
	Description
	Option
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	estimates table
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Reference
	Also see

	estimates title
	Syntax
	Menu
	Description
	Remarks
	Methods and formulas
	Also see

	estimation options
	Description
	Options
	Also see

	exit
	Syntax
	Description
	Option
	Remarks
	Also see

	exlogistic
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Sufficient statistics
	Conditional distribution and CMLE
	Median unbiased estimates and exact CI
	Conditional hypothesis tests
	Sufficient-statistic p-value

	References
	Also see

	exlogistic postestimation
	Description
	Special-interest postestimation commands

	Syntax for estat predict
	Menu
	Options for estat predict
	Syntax for estat se
	Menu
	Option for estat se
	Remarks
	Saved results
	Methods and formulas
	Reference
	Also see

	expoisson
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Conditional distribution

	References
	Also see

	expoisson postestimation
	Description
	Special-interest postestimation command

	Syntax for estat se
	Menu
	Option for estat se
	Remarks
	Methods and formulas
	Also see

	F
	fracpoly
	Syntax
	Menu
	Description
	Options for fracpoly
	Options for fracgen
	Remarks
	Introduction
	fracpoly
	Centering
	Output with the compare option
	fracgen
	Models with several continuous covariates
	Examples

	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	fracpoly postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Syntax for fracplot and fracpred
	Menu
	Options for fracplot
	Options for fracpred
	Remarks
	Methods and formulas
	Acknowledgment
	Also see

	frontier
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	frontier postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Methods and formulas
	Also see

	fvrevar
	Syntax
	Description
	Options
	Remarks
	Saved results
	Also see

	fvset
	Syntax
	Description
	Options
	Remarks
	Saved results
	Methods and formulas

	G
	gllamm
	Description
	Remarks
	References
	Also see

	glm
	Syntax
	Menu
	Description
	Options
	Remarks
	General use
	Variance estimators
	User-defined functions

	Saved results
	Methods and formulas
	Acknowledgments
	References
	Also see

	glm postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Predictions
	Other postestimation commands

	Methods and formulas
	References
	Also see

	glogit
	Syntax
	Menu
	Description
	Options for blogit and bprobit
	Options for glogit and gprobit
	Remarks
	Maximum likelihood estimates
	Weighted least-squares estimates

	Saved results
	Methods and formulas
	Maximum likelihood estimates
	Weighted least-squares estimates

	References
	Also see

	glogit postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Methods and formulas
	Also see

	gmm
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Substitutable expressions
	The weight matrix and two-step estimation
	Obtaining standard errors
	Exponential (Poisson) regression models
	Specifying derivatives
	Exponential regression models with panel data
	Rational-expectations models
	System estimators
	Dynamic panel-data models
	Details of moment-evaluator programs

	Saved results
	Methods and formulas
	Initial weight matrix
	Weight matrix
	Variance--covariance matrix
	Hansen's J statistic
	Panel-style instruments

	References
	Also see

	gmm postestimation
	Description
	Special-interest postestimation command

	Syntax for predict
	Menu
	Option for predict
	Syntax for estat overid
	Menu
	Remarks
	Saved results
	Methods and formulas
	Reference
	Also see

	grmeanby
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	References

	H
	hausman
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	heckman
	Syntax
	Menu
	Description
	Options for Heckman selection model (ML)
	Options for Heckman selection model (two-step)
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	heckman postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Reference
	Also see

	heckprob
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	heckprob postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Also see

	help
	Syntax
	Menu
	Description
	Options
	Remarks
	Also see

	hetprob
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Robust standard errors

	Saved results
	Methods and formulas
	References
	Also see

	hetprob postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Also see

	histogram
	Syntax
	Menu
	Description
	Options for use in the continuous case
	Options for use in the discrete case
	Options for use in both the continuous and discrete cases
	Remarks
	Histograms of continuous variables
	Overlaying normal and kernel density estimates
	Histograms of discrete variables
	Use with by()

	Methods and formulas
	References
	Also see

	hsearch
	Syntax
	Description
	Option
	Remarks
	Using hsearch
	Alternatives to hsearch
	Recommendations
	How hsearch works

	Methods and formulas
	Also see

	I
	inequality
	Remarks
	References

	intreg
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	intreg postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Methods and formulas
	Also see

	ivprobit
	Syntax
	Menu
	Description
	Options for ML estimator
	Options for two-step estimator
	Remarks
	Model setup
	Model identification

	Saved results
	Methods and formulas
	Acknowledgments
	References
	Also see

	ivprobit postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Marginal effects
	Obtaining predicted values

	Methods and formulas
	Also see

	ivregress
	Syntax
	Menu
	Description
	Options
	Remarks
	2SLS and LIML estimators
	GMM estimator

	Saved results
	Methods and formulas
	Notation
	2SLS and LIML estimators
	GMM estimator

	References
	Also see

	ivregress postestimation
	Description
	Special-interest postestimation commands
	Syntax for predict
	Menu
	Options for predict
	Syntax for estat endogenous
	Menu
	Options for estat endogenous
	Syntax for estat firststage
	Menu
	Options for estat firststage
	Syntax for estat overid
	Menu
	Options for estat overid
	Remarks
	estat endogenous
	estat firststage
	estat overid

	Saved results
	Methods and formulas
	Notation
	estat endogenous
	estat firststage
	estat overid

	References
	Also see

	ivtobit
	Syntax
	Menu
	Description
	Options for ML estimator
	Options for two-step estimator
	Remarks
	Saved results
	Methods and formulas
	Acknowledgments
	References
	Also see

	ivtobit postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Marginal effects
	Obtaining predicted values

	Methods and formulas
	Also see

	J
	jackknife
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Jackknifed standard deviation
	Collecting multiple statistics
	Collecting coefficients

	Saved results
	Methods and formulas
	References
	Also see

	jackknife postestimation
	Description
	Syntax for predict
	Methods and formulas
	Also see

	K
	kappa
	Syntax
	Menu
	Description
	Options
	Remarks
	Two raters
	More than two raters

	Saved results
	Methods and formulas
	kap: m=2
	kappa: m>2, k=2
	kappa: m>2, k>2

	References

	kdensity
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Acknowledgments
	References
	Also see

	ksmirnov
	Syntax
	Menu
	Description
	Options for two-sample test
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	kwallis
	Syntax
	Menu
	Description
	Option
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	L
	ladder
	Syntax
	Menu
	Description
	Options for ladder
	Options for gladder
	Options for qladder
	Remarks
	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	level
	Syntax
	Description
	Option
	Remarks
	Also see

	lincom
	Syntax
	Menu
	Description
	Options
	Remarks
	Using lincom
	Odds ratios and incidence-rate ratios
	Multiple-equation models

	Saved results
	Methods and formulas
	References
	Also see

	linktest
	Syntax
	Menu
	Description
	Option
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	lnskew0
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Acknowledgment
	Reference
	Also see

	log
	Syntax
	Menu
	Description
	Options for use with both log and cmdlog
	Options for use with log
	Option for use with set logtype
	Remarks
	Saved results
	Also see

	logistic
	Syntax
	Menu
	Description
	Options
	Remarks
	logistic and logit
	Robust estimate of variance

	Saved results
	Methods and formulas
	References
	Also see

	logistic postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu
	Options for predict
	Syntax for estat classification
	Menu
	Options for estat classification
	Syntax for estat gof
	Menu
	Options for estat gof
	Syntax for lroc
	Menu
	Options for lroc
	Syntax for lsens
	Menu
	Options for lsens
	Remarks
	predict after logistic
	estat classification
	estat gof
	lroc
	lsens
	Samples other than the estimation sample
	Models other than the last fitted model

	Saved results
	Methods and formulas
	estat gof
	predict after logistic
	estat classification and lsens
	lroc

	References
	Also see

	logit
	Syntax
	Menu
	Description
	Options
	Remarks
	Basic usage
	Model identification

	Saved results
	Methods and formulas
	References
	Also see

	logit postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	References
	Also see

	loneway
	Syntax
	Menu
	Description
	Options
	Remarks
	The one-way ANOVA model
	R-squared
	The random-effects ANOVA model
	Intraclass correlation
	Estimated reliability of the group-averaged score

	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	lowess
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Acknowledgment
	References
	Also see

	lpoly
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Local polynomial smoothing
	Choice of a bandwidth
	Confidence bands

	Saved results
	Methods and formulas
	References
	Also see

	lrtest
	Syntax
	Menu
	Description
	Options
	Remarks
	Nested models
	Composite models

	Saved results
	Methods and formulas
	References
	Also see

	lv
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	M
	margins
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Obtaining margins of responses
	Example 1: A simple case after regress
	Example 2: A simple case after logistic
	Example 3: Average response versus response at average
	Example 4: Multiple margins from one command
	Example 5: Margins with interaction terms
	Example 6: Margins with continuous variables
	Example 7: Margins of continuous variables
	Example 8: Margins of interactions
	Example 9: Decomposing margins
	Example 10: Testing margins---contrasts of margins
	Example 11: Margins of a specified prediction
	Example 12: Margins of a specified expression
	Example 13: Margins with multiple outcomes (responses)
	Example 14: Margins with multiple equations
	Example 15: Margins evaluated out of sample

	Obtaining margins of derivatives of responses (a.k.a. marginal effects)
	Do not specify marginlist when you mean over()
	Use at() freely, especially with continuous variables
	Expressing derivatives as elasticities
	Derivatives versus discrete differences
	Example 16: Average marginal effect (partial effects)
	Example 17: Average marginal effect of all covariates
	Example 18: Evaluating marginal effects over the response surface

	Obtaining margins with survey data and representative samples
	Example 19: Inferences for populations, margins of response
	Example 20: Inferences for populations, marginal effects
	Example 21: Inferences for populations with svyset data

	Standardizing margins
	Obtaining margins as though the data were balanced
	Balancing using asbalanced
	Balancing by standardization
	Balancing nonlinear responses
	Treating a subset of covariates as balanced
	Using fvset design
	Balancing in the presence of empty cells

	Obtaining margins with nested designs
	Introduction
	Margins with nested designs as though the data were balanced
	Coding of nested designs

	Special topics
	Requirements for model specification
	Estimability of margins
	Manipulability of tests
	Using margins after the estimates use command
	Syntax of at()
	Estimation commands that may be used with margins

	Glossary

	Saved results
	Methods and formulas
	Notation
	Marginal effects
	Fixing covariates and balancing factors
	Estimable functions
	Standard errors conditional on the covariates
	Unconditional standard errors

	References
	Also see

	margins postestimation
	Description
	Remarks
	Also see

	margins, contrast
	Syntax
	Menu
	Description
	Suboptions
	Remarks
	Contrasts of margins
	Contrasts and the over() option
	The overjoint suboption
	The marginswithin suboption

	Contrasts and the at() option
	Conclusion

	Saved results
	Methods and formulas
	Also see

	margins, pwcompare
	Syntax
	Menu
	Description
	Suboptions
	Remarks
	Saved results
	Methods and formulas
	Also see

	marginsplot
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Dataset
	Profile plots
	Interaction plots
	Contrasts of margins---effects (discrete marginal effects)
	Three-way interactions
	Continuous covariates
	Plots at every value of a continuous covariate
	Contrasts of at() groups---discrete effects
	Controlling the graph's dimensions
	Pairwise comparisons
	Horizontal is sometimes better
	Marginal effects
	Plotting a subset of the results from margins
	Advanced usage
	Plots with multiple terms
	Plots with multiple at() options
	Adding scatterplots of the data

	Addendum: Advanced uses of dimlist
	Methods and formulas
	Acknowledgments
	Reference
	Also see

	matsize
	Syntax
	Description
	Option
	Remarks
	Also see

	maximize
	Syntax
	Description
	Maximization options
	Option for set maxiter
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	mean
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	The mean estimator
	Survey data
	The survey mean estimator
	The standardized mean estimator
	The poststratified mean estimator
	The standardized poststratified mean estimator
	Subpopulation estimation

	References
	Also see

	mean postestimation
	Description
	Remarks
	Methods and formulas
	Also see

	meta
	Remarks
	References

	mfp
	Syntax
	Menu
	Description
	Options
	Remarks
	Iteration report
	Estimation algorithm
	Methods of FP model selection
	Zeros and zero categories

	Saved results
	Methods and formulas
	Acknowledgments
	References
	Also see

	mfp postestimation
	Description
	Methods and formulas
	Also see

	misstable
	Syntax
	Menu
	Description
	Options for misstable summarize
	Options for misstable patterns
	Options for misstable tree
	Option for misstable nested
	Common options
	Remarks
	misstable summarize
	misstable patterns
	misstable tree
	misstable nested
	Execution time of misstable nested

	Saved results
	Methods and formulas
	Also see

	mkspline
	Syntax
	Menu
	Description
	Options
	Remarks
	Linear splines
	Restricted cubic splines

	Methods and formulas
	Linear splines
	Restricted cubic splines

	Acknowledgment
	References
	Also see

	ml
	Syntax
	Syntax of subroutines for use by evaluator programs
	Syntax of user-written evaluator

	Description
	Options for use with ml model in interactive or noninteractive mode
	Options for use with ml model in noninteractive mode
	Options for use when specifying equations
	Options for use with ml search
	Option for use with ml plot
	Options for use with ml init
	Options for use with ml maximize
	Option for use with ml graph
	Options for use with ml display
	Options for use with mleval
	Option for use with mlsum
	Option for use with mlvecsum
	Option for use with mlmatsum
	Options for use with mlmatbysum
	Options for use with ml score
	Remarks
	Survey options and ml

	Saved results
	Methods and formulas
	References
	Also see

	mlogit
	Syntax
	Menu
	Description
	Options
	Remarks
	Description of the model
	Fitting unconstrained models
	Fitting constrained models

	Saved results
	Methods and formulas
	References
	Also see

	mlogit postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Obtaining predicted values
	Calculating marginal effects
	Testing hypotheses about coefficients

	Methods and formulas
	Also see

	more
	Syntax
	Description
	Option
	Remarks
	Also see

	mprobit
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	mprobit postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	References
	Also see

	mvreg
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Reference
	Also see

	mvreg postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Methods and formulas
	Also see

	N
	nbreg
	Syntax
	Menu
	Description
	Options for nbreg
	Options for gnbreg
	Remarks
	Introduction to negative binomial regression
	nbreg
	gnbreg

	Saved results
	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	References
	Also see

	nbreg postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	Also see

	nestreg
	Syntax
	Menu
	Description
	Options
	Remarks
	Estimation commands
	Wald tests
	Likelihood-ratio tests
	Programming for nestreg

	Saved results
	Methods and formulas
	Acknowledgment
	Reference
	Also see

	net
	Syntax
	Description
	Options
	Remarks
	Definition of a package
	The purpose of the net and ado commands
	Content pages
	Package-description pages
	Where packages are installed
	A summary of the net command
	A summary of the ado command
	Relationship of net and ado to the point-and-click interface
	Creating your own site
	Format of content and package-description files
	Example 1
	Example 2
	Additional package directives
	SMCL in content and package-description files
	Error-free file delivery

	References
	Also see

	net search
	Syntax
	Description
	Options
	Remarks
	Topic searches
	Author searches
	Command searches
	Where does net search look?
	How does net search work?

	References
	Also see

	netio
	Syntax
	Description
	Options
	Remarks
	1. remote connection failed r(677);
	2. connection timed out r(2);

	Also see

	news
	Syntax
	Menu
	Description
	Remarks
	Also see

	nl
	Syntax
	Menu
	Description
	Options
	Remarks
	Substitutable expressions
	Substitutable expression programs
	Built-in functions
	Lognormal errors
	Other uses
	Weights
	Potential errors
	General comments on fitting nonlinear models
	Function evaluator programs

	Saved results
	Methods and formulas
	Acknowledgments
	References
	Also see

	nl postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Methods and formulas
	Also see

	nlcom
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Basics
	Using the post option
	Reparameterizing ML estimators for univariate data
	nlcom versus eform

	Saved results
	Methods and formulas
	References
	Also see

	nlogit
	Syntax
	Menu
	Description
	Options
	Specification and options for lev#_equation
	Options for nlogit
	Specification and options for nlogitgen
	Specification and options for nlogittree

	Remarks
	Introduction
	Data setup and the tree structure
	Estimation
	Testing for the IIA
	Nonnormalized model

	Saved results
	Methods and formulas
	Two-level nested logit model
	Three-level nested logit model

	References
	Also see

	nlogit postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Also see

	nlsur
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Substitutable expression programs
	Function evaluator programs

	Saved results
	Methods and formulas
	References
	Also see

	nlsur postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Also see

	nptrend
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Acknowledgments
	References
	Also see

	O
	ologit
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	ologit postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Also see

	oneway
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Obtaining observed means
	Multiple-comparison tests
	Weighted data

	Saved results
	Methods and formulas
	One-way analysis of variance
	Bartlett's test
	Multiple-comparison tests

	References
	Also see

	oprobit
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	oprobit postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Also see

	orthog
	Syntax
	Menu
	Description
	Options for orthog
	Options for orthpoly
	Remarks
	Methods and formulas
	References
	Also see

	P
	pcorr
	Syntax
	Menu
	Description
	Remarks
	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	permute
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	pk
	Description
	Remarks
	References

	pkcollapse
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Also see

	pkcross
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	References
	Also see

	pkequiv
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	pkexamine
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Reference
	Also see

	pkshape
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	References
	Also see

	pksumm
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Also see

	poisson
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	poisson postestimation
	Description
	Special-interest postestimation command

	Syntax for predict
	Menu
	Options for predict
	Syntax for estat gof
	Menu
	Remarks
	Methods and formulas
	Also see

	predict
	Syntax
	Menu
	Description
	Options
	Remarks
	Estimation-sample predictions
	Out-of-sample predictions
	Residuals
	Single-equation (SE) models
	SE model scores
	Multiple-equation (ME) models
	ME model scores

	Methods and formulas
	Also see

	predictnl
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Nonlinear transformations and standard errors
	Using xb() and predict()
	Multiple-equation (ME) estimators
	Test statistics and significance levels
	Manipulability
	Confidence intervals

	Methods and formulas
	References
	Also see

	probit
	Syntax
	Menu
	Description
	Options
	Remarks
	Robust standard errors
	Model identification

	Saved results
	Methods and formulas
	References
	Also see

	probit postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Obtaining predicted values
	Performing hypothesis tests

	Methods and formulas
	Also see

	proportion
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	proportion postestimation
	Description
	Methods and formulas
	Also see

	prtest
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	pwcompare
	Syntax
	Menu
	Description
	Options
	Remarks
	Pairwise comparisons of means
	Marginal means
	All pairwise comparisons

	Overview of multiple-comparison methods
	Fisher's protected least-significant difference (LSD)
	Bonferroni's adjustment
	{accent 20 S}id{accent 19 a}k's adjustment
	Scheff{accent 19 e}'s adjustment
	Tukey's HSD adjustment
	Student--Newman--Keuls' adjustment
	Duncan's adjustment
	Dunnett's adjustment

	Example adjustments using one-way models
	Fisher's protected LSD
	Tukey's HSD
	Dunnett's method for comparisons to a control

	Two-way models
	Pairwise comparisons of slopes
	Nonlinear models
	Multiple-equation models
	Unbalanced data
	Empty cells

	Saved results
	Methods and formulas
	Notation
	Unadjusted comparisons
	Bonferroni's method
	{accent 20 S}id{accent 19 a}k's method
	Scheff{accent 19 e}'s method
	Tukey's method
	Student--Newman--Keuls' method
	Duncan's method
	Dunnett's method

	References
	Also see

	pwcompare postestimation
	Description
	Remarks
	Also see

	pwmean
	Syntax
	Menu
	Description
	Options
	Remarks
	Group means
	Pairwise differences of means
	Group output
	Adjusting for multiple comparisons
	Tukey's method
	Dunnett's method

	Multiple over() variables
	Equal variance assumption

	Saved results
	Methods and formulas
	Reference
	Also see

	pwmean postestimation
	Description
	Remarks
	Also see

	Q
	qc
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	qreg
	Syntax
	Menu
	Description
	Options for qreg
	Options for iqreg
	Options for sqreg
	Options for bsqreg
	Options for _qreg
	Remarks
	Median regression
	Generalized quantile regression
	Estimated standard errors
	Interquantile and simultaneous-quantile regression

	Saved results
	Methods and formulas
	References
	Also see

	qreg postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Methods and formulas
	Also see

	query
	Syntax
	Description
	Remarks
	Also see

	R
	ranksum
	Syntax
	Menu
	Description
	Options for ranksum
	Options for median
	Remarks
	Saved results
	Methods and formulas
	ranksum
	median

	References
	Also see

	ratio
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	The ratio estimator
	Survey data
	The survey ratio estimator
	The standardized ratio estimator
	The poststratified ratio estimator
	The standardized poststratified ratio estimator
	Subpopulation estimation

	References
	Also see

	ratio postestimation
	Description
	Remarks
	Methods and formulas
	Also see

	reg3
	Syntax
	Menu
	Description
	Nomenclature

	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	reg3 postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Also see

	regress
	Syntax
	Menu
	Description
	Options
	Remarks
	Ordinary least squares
	Treatment of the constant
	Robust standard errors
	Weighted regression
	Instrumental variables and two-stage least-squares regression

	Saved results
	Methods and formulas
	Coefficient estimation and ANOVA table
	A general notation for the robust variance calculation
	Robust calculation for regress

	Acknowledgments
	References
	Also see

	regress postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu
	Options for predict
	Syntax for dfbeta
	Menu
	Option for dfbeta
	Syntax for estat hettest
	Menu
	Options for estat hettest
	Syntax for estat imtest
	Menu
	Options for estat imtest
	Syntax for estat ovtest
	Menu
	Option for estat ovtest
	Syntax for estat szroeter
	Menu
	Options for estat szroeter
	Syntax for estat vif
	Menu
	Option for estat vif
	Syntax for acprplot
	Menu
	Options for acprplot
	Syntax for avplot
	Menu
	Options for avplot
	Syntax for avplots
	Menu
	Options for avplots
	Syntax for cprplot
	Menu
	Options for cprplot
	Syntax for lvr2plot
	Menu
	Options for lvr2plot
	Syntax for rvfplot
	Menu
	Options for rvfplot
	Syntax for rvpplot
	Menu
	Options for rvpplot
	Remarks
	Fitted values and residuals
	Prediction standard errors
	Prediction with weighted data
	Residual-versus-fitted plots
	Added-variable plots
	Component-plus-residual plots
	Residual-versus-predictor plots
	Leverage statistics
	L-R plots
	Standardized and Studentized residuals
	DFITS, Cook's Distance, and Welsch Distance
	COVRATIO
	DFBETAs
	Formal tests for violations of assumptions
	Variance inflation factors

	Saved results
	Methods and formulas
	predict
	Special-interest postestimation commands

	Acknowledgments
	References
	Also see

	regress postestimation time series
	Description
	Syntax for estat archlm
	Options for estat archlm
	Syntax for estat bgodfrey
	Options for estat bgodfrey
	Syntax for estat durbinalt
	Options for estat durbinalt
	Syntax for estat dwatson
	Remarks
	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	#review
	Syntax
	Description
	Remarks

	roc
	Description
	Reference

	roccomp
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Comparing areas under the ROC curve
	Correlated data
	Independent data
	Comparing areas with a gold standard

	Saved results
	Methods and formulas
	References
	Also see

	rocfit
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	rocfit postestimation
	Description
	Special-interest postestimation command

	Syntax for rocplot
	Menu
	Options for rocplot
	Remarks
	Using lincom and test
	Using rocplot

	Methods and formulas
	Also see

	rocreg
	Syntax
	Menu
	Description
	Options for nonparametric ROC estimation, using bootstrap
	Options for parametric ROC estimation, using bootstrap
	Options for parametric ROC estimation, using maximum likelihood
	Options for rocreg, using bootstrap
	Remarks
	Introduction
	ROC statistics
	Covariate-adjusted ROC curves
	Parametric ROC curves: Estimating equations
	Parametric ROC curves: Maximum likelihood

	Saved results
	Methods and formulas
	ROC statistics
	Covariate-adjusted ROC curves
	Parametric ROC curves: Estimating equations
	Parametric ROC curves: Maximum likelihood

	Acknowledgments
	References
	Also see

	rocreg postestimation
	Description
	Special-interest postestimation command

	Syntax for predict
	Menu
	Options for predict
	Syntax for estat nproc
	Menu
	Options for estat nproc
	Remarks
	Using predict after rocreg
	Using estat nproc

	Saved results
	Methods and formulas
	Parametric model: Summary parameter definition
	Maximum likelihood estimation
	Estimating equations estimation

	References
	Also see

	rocregplot
	Syntax
	Menu
	Description
	probit_options
	common_options
	boot_options
	Remarks
	Plotting covariate-specific ROC curves
	Plotting marginal ROC curves

	Methods and formulas
	Parametric model: Summary parameter definition
	Maximum likelihood estimation
	Estimating equations estimation

	References
	Also see

	roctab
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Nonparametric ROC curves
	Lorenz-like curves

	Saved results
	Methods and formulas
	References
	Also see

	rologit
	Syntax
	Menu
	Description
	Options
	Remarks
	Examples
	Comparing respondents
	Incomplete rankings and ties
	Clustered choice data
	Comparison of rologit and clogit
	On reversals of rankings

	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	rologit postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Also see

	rreg
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	rreg postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Methods and formulas
	Also see

	runtest
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Acknowledgment
	References

	S
	sampsi
	Syntax
	Menu
	Description
	Options
	Remarks
	Studies with one measurement of the outcome
	Two-sample test of equality of means
	One-sample test of mean
	Two-sample test of equality of proportions
	One-sample test of proportion
	 Clinical trials with repeated measures

	Saved results
	Methods and formulas
	Acknowledgments
	References
	Also see

	saved results
	Syntax
	Description
	Option
	Remarks
	References
	Also see

	scobit
	Syntax
	Menu
	Description
	Options
	Remarks
	Skewed logistic model
	Robust standard errors

	Saved results
	Methods and formulas
	References
	Also see

	scobit postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Also see

	sdtest
	Syntax
	Menu
	Description
	Options
	Remarks
	Basic form
	Immediate form
	Robust test

	Saved results
	Methods and formulas
	References
	Also see

	search
	Syntax
	Menu
	Description
	Options for search
	Option for set searchdefault
	Remarks
	Introduction
	Internet searches
	Author searches
	Entry ID searches
	Return codes

	Methods and formulas
	Acknowledgment
	Also see

	serrbar
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Acknowledgment
	Also see

	set
	Syntax
	Description
	Remarks
	Also see

	set cformat
	Syntax
	Description
	Option
	Remarks
	Also see

	set_defaults
	Syntax
	Description
	Option
	Remarks
	Methods and formulas
	Also see

	set emptycells
	Syntax
	Description
	Option
	Remarks
	Also see

	set seed
	Syntax
	Description
	Remarks
	Examples
	Setting the seed
	How to choose a seed
	Do not set the seed too often
	Preserving and restoring the random-number generator state

	Also see

	set showbaselevels
	Syntax
	Description
	Option
	Remarks
	Also see

	signrank
	Syntax
	Menu
	Description
	Remarks
	Saved results
	Methods and formulas
	signrank
	signtest

	References
	Also see

	simulate
	Syntax
	Description
	Options
	Remarks
	Methods and formulas
	References
	Also see

	sj
	Description
	Remarks
	Installing the Stata Journal software
	Installing the STB software

	Also see

	sktest
	Syntax
	Menu
	Description
	Option
	Remarks
	Saved results
	Methods and formulas
	Acknowledgments
	References
	Also see

	slogit
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	One-dimensional model
	Higher-dimension models

	Saved results
	Methods and formulas
	References
	Also see

	slogit postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Also see

	smooth
	Syntax
	Menu
	Description
	Option
	Remarks
	Methods and formulas
	Running median smoothers of odd span
	Running median smoothers of even span
	Repeat operator
	Endpoint rule
	Splitting operator
	Hanning smoother
	Twicing

	Acknowledgments
	References
	Also see

	spearman
	Syntax
	Menu
	Description
	Options for spearman
	Options for ktau
	Remarks
	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	spikeplot
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Acknowledgments
	References
	Also see

	ssc
	Syntax
	Description
	Command overview

	Options for use with ssc new
	Options for use with ssc hot
	Option for use with ssc describe
	Options for use with ssc install
	Option for use with ssc type
	Options for use with ssc copy
	Remarks
	Methods and formulas
	Acknowledgments
	References
	Also see

	stem
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	stepwise
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Search logic for a step
	Full search logic
	Examples
	Estimation sample considerations
	Messages
	Programming for stepwise

	Saved results
	Methods and formulas
	References
	Also see

	suest
	Syntax
	Menu
	Description
	Options
	Remarks
	Using suest
	Remarks on regress
	Testing the assumption of the independence of irrelevant alternatives
	Testing proportionality
	Testing cross-model hypotheses

	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	summarize
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	sunflower
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Acknowledgments
	References

	sureg
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	sureg postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Also see

	swilk
	Syntax
	Menu
	Description
	Options for swilk
	Options for sfrancia
	Remarks
	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	symmetry
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Asymptotic tests
	Exact symmetry test

	References
	Also see

	T
	table
	Syntax
	Menu
	Description
	Options
	Limits

	Remarks
	One-way tables
	Two-way tables
	Three-way tables
	Four-way and higher-dimensional tables

	Methods and formulas
	Also see

	tabstat
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Acknowledgments
	Also see

	tabulate oneway
	Syntax
	Menu
	Description
	Options
	Limits

	Remarks
	tabulate
	tab1

	Saved results
	Methods and formulas
	References
	Also see

	tabulate twoway
	Syntax
	Menu
	Description
	Options
	Limits

	Remarks
	tabulate
	Measures of association
	N-way tables
	Weighted data
	Tables with immediate data
	tab2

	Saved results
	Methods and formulas
	References
	Also see

	tabulate, summarize()
	Syntax
	Menu
	Description
	Options
	Remarks
	One-way tables
	Two-way tables

	Also see

	test
	Syntax
	Menu
	Description
	Options for testparm
	Options for test
	Remarks
	Introductory examples
	Special syntaxes after multiple-equation estimation
	Constrained coefficients
	Multiple testing

	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	testnl
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Using testnl to perform linear tests
	Specifying constraints
	Dropped constraints
	Output
	Multiple constraints
	Manipulability

	Saved results
	Methods and formulas
	References
	Also see

	tetrachoric
	Syntax
	Menu
	Description
	Options
	Remarks
	Association in 2-by-2 tables
	Factor analysis of dichotomous variables
	Tetrachoric correlations with simulated data

	Saved results
	Methods and formulas
	References
	Also see

	tnbreg
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	Acknowledgment
	References
	Also see

	tnbreg postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	Also see

	tobit
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	tobit postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	References
	Also see

	total
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	The total estimator
	Survey data
	The survey total estimator
	The poststratified total estimator
	Subpopulation estimation

	References
	Also see

	total postestimation
	Description
	Remarks
	Methods and formulas
	Also see

	tpoisson
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	tpoisson postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Methods and formulas
	Also see

	translate
	Syntax
	Description
	Options for print
	Options for translate
	Remarks
	Printing files
	Printing files, Mac and Windows
	Printing files, Unix
	Translating files from one format to another

	Saved results
	Methods and formulas
	Also see

	treatreg
	Syntax
	Menu
	Description
	Options for maximum likelihood estimates
	Options for two-step consistent estimates
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	treatreg postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Also see

	truncreg
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	truncreg postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Methods and formulas
	Also see

	ttest
	Syntax
	Menu
	Description
	Options
	Remarks
	Immediate form

	Saved results
	Methods and formulas
	References
	Also see

	U
	update
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Also see

	V
	vce_option
	Syntax
	Description
	Options
	Remarks
	Prefix commands
	Passing options in vce()

	Methods and formulas
	Also see

	view
	Syntax
	Menu
	Description
	Options
	Remarks
	Also see

	vwls
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	vwls postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Methods and formulas
	Also see

	W
	which
	Syntax
	Description
	Option
	Remarks
	Also see

	X
	xi
	Syntax
	Menu
	Description
	Options
	Remarks
	Background
	Indicator variables for simple effects
	Controlling the omitted dummy
	Categorical variable interactions
	Interactions with continuous variables
	Using xi: Interpreting output
	How xi names variables
	xi as a command rather than a command prefix
	Warnings

	Saved results
	Methods and formulas
	References
	Also see

	Z
	zinb
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	zinb postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Methods and formulas
	Reference
	Also see

	zip
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	zip postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Methods and formulas
	Reference
	Also see

	Author index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Subject index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	[SEM] Structural Equation Modeling
	Table of contents
	intro 1
	Description
	Remarks
	Also see

	intro 2
	Description
	Remarks
	Using path diagrams to specify the model
	Specifying correlation
	Using the command language to specify the model

	Also see

	intro 3
	Description
	Remarks
	Assumptions and choice of estimation method
	What is being estimated and the assumptions we are making
	Joint normality can be too restrictive
	Conditional normality might be sufficient
	How the estimation methods respond to conditional normality

	Variable types: Observed, latent, endogenous, exogenous, and error
	Constraining parameters
	Constraining path coefficients to specific values
	Constraining intercepts to specific values (suppressing the intercept)
	Constraining path coefficients or intercepts to be equal
	Constraining covariances to be equal (or to specific values)
	Constraining variances to specific values (or to be equal)

	Identification 1: Substantive issues
	Not all models are identified
	How to count parameters
	What happens when models are unidentified
	How to diagnose and fix the problem

	Identification 2: Normalization constraints (anchoring)
	Why the problem arises
	How the problem would manifest itself
	How sem solves the problem for you
	Overriding sem's solution

	Starting values
	What happens when starting values are not good enough
	What to do when starting values are not good enough
	Distinguishing poor starting values from lack of identification

	Also see

	intro 4
	Description
	Remarks
	Single-factor measurement models
	Multiple-factor measurement models
	CFA models
	Structural models 1: Linear regression
	Structural models 2: Dependencies between endogenous variables
	Structural models 3: Unobserved inputs, outputs, or both
	Structural models 4: MIMIC
	Structural models 5: Seemingly unrelated regression (SUR)
	Structural models 6: Multivariate regression
	Correlations
	Higher-order CFA models
	Correlated uniqueness model
	Latent growth models
	Models with reliability

	Also see

	intro 5
	Description
	Remarks
	The generic SEM model
	Fitting the model for different groups of the data
	Which parameters vary by default, and which do not
	Specifying which parameters are allowed to vary in broad, sweeping terms
	Adding constraints for path coefficients across groups
	Adding constraints for means, variances, or covariances across groups
	Adding constraints for some groups but not others
	Adding paths for some groups but not others
	Relaxing constraints

	Also see

	intro 6
	Description
	Remarks
	Replaying the model
	Obtaining goodness-of-fit statistics
	Performing tests for including omitted paths and relaxing constraints
	Performing tests of model simplification
	Displaying other results, statistics, and tests
	Obtaining predicted values
	Accessing saved results

	Also see

	intro 7
	Description
	Options
	Remarks
	Also see

	intro 8
	Description
	Options
	Remarks
	Also see

	intro 9
	Description
	Remarks
	Also see

	intro 10
	Description
	Remarks
	Background
	How to use sem with SSD
	What you cannot do with SSD
	Entering SSD
	Entering SSD for multiple groups
	What happens when you do not set all the summary statistics
	Labeling SSD
	Making summary statistics from data for use by others

	Also see

	estat eqgof
	Syntax
	Menu
	Description
	Option
	Remarks
	Saved results
	Also see

	estat eqtest
	Syntax
	Menu
	Description
	Option
	Remarks
	Saved results
	Also see

	estat framework
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Also see

	estat ggof
	Syntax
	Menu
	Description
	Option
	Remarks
	Saved results
	Also see

	estat ginvariant
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Also see

	estat gof
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Also see

	estat mindices
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Also see

	estat residuals
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Also see

	estat scoretests
	Syntax
	Menu
	Description
	Option
	Remarks
	Saved results
	Also see

	estat stable
	Syntax
	Menu
	Description
	Option
	Remarks
	Saved results
	Also see

	estat stdize
	Syntax
	Menu
	Description
	Remarks
	Saved results
	Also see

	estat summarize
	Syntax
	Menu
	Description
	Options
	Saved results
	Also see

	estat teffects
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Also see

	example 1
	Description
	Remarks
	Single-factor measurement model
	The measurement error model interpretation

	Also see

	example 2
	Description
	Remarks
	Background
	Creating the SSD
	At this point, we could save the dataset and stop
	Labeling the SSD
	Listing the SSD

	Also see

	example 3
	Description
	Remarks
	Fitting multiple-factor measurement models
	Displaying standardized results
	Obtaining equation-level goodness of fit using estat eqgof

	Also see

	example 4
	Description
	Remarks
	Also see

	example 5
	Description
	Remarks
	Also see

	example 6
	Description
	Remarks
	Also see

	example 7
	Description
	Remarks
	Fitting the model
	Checking stability using estat stable
	Reporting total, direct, and indirect effects using estat teffects

	Also see

	example 8
	Description
	Remarks
	Using test to evaluate adding constraints
	Refitting the model with added constraints
	Using estat scoretests to test whether constraints can be relaxed

	Also see

	example 9
	Description
	Remarks
	Fitting the model
	Evaluating omitted paths using estat mindices
	Refitting the model

	Also see

	example 10
	Description
	Remarks
	Fitting the MIMIC model
	Evaluating the residuals using estat residuals
	Performing likelihood-ratio tests using lrtest

	Also see

	example 11
	Description
	Remarks
	Also see

	example 12
	Description
	Remarks
	Also see

	example 13
	Description
	Remarks
	Also see

	example 14
	Description
	Remarks
	Also see

	example 15
	Description
	Remarks
	Also see

	example 16
	Description
	Remarks
	Using sem to obtain correlation matrices
	Testing correlations using estat stdize and test

	Also see

	example 17
	Description
	Remarks
	Also see

	example 18
	Description
	Remarks
	Also see

	example 19
	Description
	Remarks
	Also see

	example 20
	Description
	Remarks
	Background
	Fitting the model using all the data
	Fitting the model using the group() option

	Also see

	example 21
	Description
	Remarks
	Also see

	example 22
	Description
	Remarks
	Also see

	example 23
	Description
	Remarks
	Background
	Fitting the constrained model

	Also see

	example 24
	Description
	Remarks
	Baseline model (reliability ignored)
	Model with reliability
	Model with two measurement variables and reliability

	Also see

	example 25
	Description
	Remarks
	Preparing data for conversion
	Converting to summary statistics form
	Publishing summary statistics data
	Creating summary statistics data with multiple groups

	Also see

	example 26
	Description
	Remarks
	Fitting the model using method(ml)
	Fitting the model using method(mlmv)

	Also see

	GUI
	Description

	lincom
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Also see

	lrtest
	Syntax
	Menu
	Description
	Remarks
	Saved results
	Also see

	methods and formulas
	Description
	Remarks
	Variable notation
	Model and parameterization
	Summary data
	Maximum likelihood
	Weighted least squares
	Groups
	Fitted parameters
	Standardized parameters
	Reliability
	Postestimation

	Also see

	nlcom
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Also see

	predict
	Syntax
	Menu
	Description
	Options
	Remarks
	Also see

	sem
	Syntax
	Menu
	Description
	Options
	Remarks
	Default normalization constraints
	Default covariance assumptions
	How to solve convergence problems

	Saved results
	Also see

	sem estimation options
	Syntax
	Description
	Options
	Remarks
	Also see

	sem group options
	Syntax
	Description
	Options
	Remarks
	Also see

	sem model description options
	Syntax
	Description
	Options
	Remarks
	Also see

	sem option constraints()
	Syntax
	Description
	Remarks
	Also see

	sem option covstructure()
	Syntax
	Description
	Option
	Remarks
	Also see

	sem option from()
	Syntax
	Description
	Option
	Remarks
	Syntax 1, especially useful when dealing with convergence problems
	Syntax 2, seldom used

	Also see

	sem option method()
	Syntax
	Description
	Options
	Remarks
	Also see

	sem option noxconditional
	Syntax
	Description
	Option
	Remarks
	What is x conditional?
	When to specify noxconditional
	Option forcexconditional (a technical note)

	Also see

	sem option reliability()
	Syntax
	Description
	Option
	Remarks
	Background
	Dealing with measurement error of exogenous variables
	Dealing with measurement error of endogenous variables
	What can go wrong

	Also see

	sem option select()
	Syntax
	Description
	Option
	Remarks
	Also see

	sem path notation
	Syntax
	Description
	Options
	Remarks
	Model notation when option group() is not specified
	Added syntax when option group() is specified

	Also see

	sem postestimation
	Syntax
	Description
	Remarks
	Also see

	sem reporting options
	Syntax
	Description
	Options
	Remarks
	Also see

	sem ssd options
	Syntax
	Description
	Options
	Remarks
	Also see

	sem syntax options
	Syntax
	Description
	Options
	Remarks
	Also see

	ssd
	Syntax
	Description
	Options
	Remarks
	Saved results
	Also see

	test
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Also see

	testnl
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Also see

	Glossary
	References
	References

	Subject and author index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	[ST] Survival Analysis
	Table of contents
	intro
	Description
	Remarks
	What's new

	Also see

	survival analysis
	Description
	Remarks
	Introduction
	Declaring and converting count data
	Converting snapshot data
	Declaring and summarizing survival-time data
	Manipulating survival-time data
	Obtaining summary statistics, confidence intervals, tables, etc.
	Fitting regression models
	Sample size and power determination for survival analysis
	Converting survival-time data
	Programmer's utilities
	Epidemiological tables

	Reference
	Also see

	ct
	Description
	Also see

	ctset
	Syntax
	Menu
	Description
	Options
	Remarks
	Examples
	Data errors flagged by ctset

	Methods and formulas
	Also see

	cttost
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Also see

	discrete
	Acknowledgment
	References
	Also see

	epitab
	Syntax
	Menu
	Description
	Options
	Remarks
	Incidence-rate data
	Stratified incidence-rate data
	Standardized estimates with stratified incidence-rate data
	Cumulative incidence data
	Stratified cumulative incidence data
	Standardized estimates with stratified cumulative incidence data
	Case--control data
	Stratified case--control data
	Case--control data with multiple levels of exposure
	Case--control data with confounders and possibly multiple levels of exposure
	Standardized estimates with stratified case--control data
	Matched case--control data

	Saved results
	Methods and formulas
	Unstratified incidence-rate data (ir and iri)
	Unstratified cumulative incidence data (cs and csi)
	Unstratified case--control data (cc and cci)
	Unstratified matched case--control data (mcc and mcci)
	Stratified incidence-rate data (ir with the by() option)
	Stratified cumulative incidence data (cs with the by() option)
	Stratified case--control data (cc with by() option, mhodds, tabodds)

	Acknowledgments
	References
	Also see

	ltable
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Acknowledgments
	References
	Also see

	snapspan
	Syntax
	Menu
	Description
	Options
	Remarks
	Snapshot and time-span datasets
	Specifying varlist

	Methods and formulas
	Also see

	st
	Description
	Reference
	Also see

	st_is
	Syntax
	Description
	Remarks
	Definitions of characteristics and st variables
	Outline of an st command
	Using the st_ct utility
	Comparison of st_ct with sttoct
	Verifying data
	Converting data

	Methods and formulas
	Also see

	stbase
	Syntax
	Menu
	Description
	Options
	Remarks
	stbase without the at() option
	stbase with the at() option
	Single-failure st data where all subjects enter at time 0
	Single-failure st data where some subjects enter after time 0
	Single-failure st data with gaps and perhaps delayed entry
	Multiple-failure st data

	Methods and formulas
	Also see

	stci
	Syntax
	Menu
	Description
	Options
	Remarks
	Single-failure data
	Multiple-failure data

	Saved results
	Methods and formulas
	References
	Also see

	stcox
	Syntax
	Menu
	Description
	Options
	Remarks
	Cox regression with uncensored data
	Cox regression with censored data
	Treatment of tied failure times
	Cox regression with discrete time-varying covariates
	Cox regression with continuous time-varying covariates
	Robust estimate of variance
	Cox regression with multiple-failure data
	Stratified estimation
	Cox regression as Poisson regression
	Cox regression with shared frailty

	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	stcox PH-assumption tests
	Syntax
	Menu
	Description
	Options for stphplot
	Options for stcoxkm
	Options for estat phtest
	Remarks
	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	stcox postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu
	Options for predict
	Syntax for estat concordance
	Menu
	Options for estat concordance
	Remarks
	Baseline functions
	Making baseline reasonable
	Residuals and diagnostic measures
	Multiple records per subject
	Predictions after stcox with the tvc() option
	Predictions after stcox with the shared() option
	estat concordance

	Saved results
	Methods and formulas
	estat concordance

	References
	Also see

	stcrreg
	Syntax
	Menu
	Description
	Options
	Remarks
	The case for competing-risks regression
	Using stcrreg
	Multiple competing-event types
	stcrreg as an alternative to stcox
	Multiple records per subject
	Option tvc() and testing the proportional-subhazards assumption

	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	stcrreg postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Baseline functions
	Null models
	Measures of influence

	Methods and formulas
	References
	Also see

	stcurve
	Syntax
	Menu
	Description
	Options
	Remarks
	stcurve after stcox
	stcurve after streg
	stcurve after stcrreg

	Methods and formulas
	References
	Also see

	stdescribe
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Reference
	Also see

	stfill
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Also see

	stgen
	Syntax
	Menu
	Description
	Functions
	Remarks
	Methods and formulas
	Also see

	stir
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Reference
	Also see

	stpower
	Syntax
	Description
	Remarks
	Theory and terminology
	Introduction to stpower subcommands
	Sample-size determination for survival studies
	Creating output tables
	Power curves

	Methods and formulas
	References
	Also see

	stpower cox
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Computing sample size in the absence of censoring
	Computing sample size in the presence of censoring
	Link to the sample-size and power computation for the log-rank test
	Power and effect-size determination
	Performing the analysis with the Cox PH model

	Saved results
	Methods and formulas
	References
	Also see

	stpower exponential
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Other ways of specifying the effect size
	Sample-size determination by using different approximations
	Sample-size determination in the presence of censoring
	Nonuniform accrual and exponential losses to follow-up
	The conditional versus unconditional approaches
	Link to the sample-size and power computation for the log-rank test
	Power determination

	Saved results
	Methods and formulas
	References
	Also see

	stpower logrank
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Computing sample size in the absence of censoring
	Computing sample size in the presence of censoring
	Withdrawal of subjects from the study
	Including information about subject accrual
	Power and effect-size determination
	Performing the analysis using the log-rank test

	Saved results
	Methods and formulas
	References
	Also see

	stptime
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	strate
	Syntax
	Menu
	Description
	Options for strate
	Options for stmh and stmc
	Remarks
	Tabulation of rates by using strate
	Stratified rate ratios using stmh
	Log-linear trend test for metric explanatory variables using stmh
	Controlling for age with fine strata by using stmc

	Saved results
	Methods and formulas
	Acknowledgments
	References
	Also see

	streg
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Distributions
	Examples
	Parameterization of ancillary parameters
	Stratified estimation
	(Unshared-) frailty models
	Shared-frailty models

	Saved results
	Methods and formulas
	Parameter estimation

	References
	Also see

	streg postestimation
	Description
	Special-interest postestimation command

	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	References
	Also see

	sts
	Syntax
	Description
	Remarks
	Listing, graphing, and generating variables
	Comparing survivor or cumulative hazard functions
	Testing equality of survivor functions
	Adjusted estimates
	Counting the number lost due to censoring

	Saved results
	Methods and formulas
	References
	Also see

	sts generate
	Syntax
	Menu
	Description
	Functions
	Options
	Remarks
	Methods and formulas
	References
	Also see

	sts graph
	Syntax
	Menu
	Description
	Options
	Remarks
	Including the number lost on the graph
	Graphing the Nelson{--}Aalen cumulative hazard function
	Graphing the hazard function
	Adding an at-risk table
	On boundary bias for smoothed hazards

	Methods and formulas
	References
	Also see

	sts list
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	References
	Also see

	sts test
	Syntax
	Menu
	Description
	Options
	Remarks
	The log-rank test
	The Wilcoxon (Breslow--Gehan) test
	The Tarone--Ware test
	The Peto--Peto--Prentice test
	The generalized Fleming--Harrington tests
	The ``Cox'' test
	The trend test

	Saved results
	Methods and formulas
	References
	Also see

	stset
	Syntax
	Menu
	Description
	Options for use with stset and streset
	Options unique to streset
	Options for st
	Remarks
	What are survival-time data?
	Key concepts
	Survival-time datasets
	Using stset
	Two concepts of time
	The substantive meaning of analysis time
	Setting the failure event
	Setting multiple failures
	First entry times
	Final exit times
	Intermediate exit and reentry times (gaps)
	if() versus if exp
	Past and future records
	Using streset
	Performance and multiple-record-per-subject datasets
	Sequencing of events within t
	Weights
	Data warnings and errors flagged by stset
	Using survival-time data in Stata

	Methods and formulas
	References
	Also see

	stsplit
	Syntax
	Menu
	Description
	Options for stsplit
	Option for stjoin
	Remarks
	What stsplit does and why
	Using stsplit to split at designated times
	Time versus analysis time
	Splitting data on recorded ages
	Using stsplit to split at failure times

	Methods and formulas
	Acknowledgments
	References
	Also see

	stsum
	Syntax
	Menu
	Description
	Options
	Remarks
	Single-failure data
	Multiple-failure data

	Saved results
	Methods and formulas
	Also see

	sttocc
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Acknowledgments
	References
	Also see

	sttoct
	Syntax
	Description
	Options
	Remarks
	Case 1: entvar not specified
	Case 2: entvar specified

	Methods and formulas
	Also see

	stvary
	Syntax
	Menu
	Description
	Option
	Remarks
	Saved results
	Methods and formulas
	Reference
	Also see

	Glossary
	Subject and author index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

	[SVY] Survey Data
	Table of contents
	intro
	Description
	Remarks
	What's new

	Also see

	survey
	Description
	Remarks
	Introduction
	Survey design tools
	Survey data analysis tools
	Survey data concepts
	Tools for programmers of new survey commands

	Acknowledgments
	References
	Also see

	bootstrap_options
	Syntax
	Description
	Options
	Also see

	brr_options
	Syntax
	Description
	Options
	Also see

	direct standardization
	Description
	Remarks
	Methods and formulas
	References
	Also see

	estat
	Syntax
	Menu
	Description
	Options for estat effects
	Options for estat lceffects
	Options for estat size
	Options for estat sd
	Options for estat cv
	Options for estat gof
	Options for estat vce
	Remarks
	Saved results
	Methods and formulas
	Design effects
	Linear combinations
	Misspecification effects
	Population and subpopulation standard deviations
	Coefficient of variation
	Goodness of fit for binary response models

	References
	Also see

	jackknife_options
	Syntax
	Description
	Options
	Also see

	ml for svy
	Remarks
	Reference
	Also see

	poststratification
	Description
	Remarks
	Methods and formulas
	References
	Also see

	sdr_options
	Syntax
	Description
	Options
	Also see

	subpopulation estimation
	Description
	Remarks
	Methods and formulas
	Subpopulation totals
	Subpopulation estimates other than the total
	Subpopulation with replication methods

	References
	Also see

	svy
	Syntax
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	svy bootstrap
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	svy brr
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	svy estimation
	Description
	Menu
	Remarks
	Overview of survey analysis in Stata
	Descriptive statistics
	Regression models
	Health surveys

	References
	Also see

	svy jackknife
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	svy postestimation
	Description
	Syntax for predict
	Remarks
	References
	Also see

	svy sdr
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Reference
	Also see

	svy: tabulate oneway
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Reference
	Also see

	svy: tabulate twoway
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	The Rao and Scott correction
	Wald statistics
	Properties of the statistics

	Saved results
	Methods and formulas
	The table items
	Confidence intervals
	The test statistics

	References
	Also see

	svydescribe
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	References
	Also see

	svymarkout
	Syntax
	Description
	Saved results
	Methods and formulas
	Also see

	svyset
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction to survey design characteristics
	Finite population correction (FPC)
	Multiple-stage designs and with-replacement sampling
	Replication-weight variables
	Combining datasets from multiple surveys

	Saved results
	Methods and formulas
	References
	Also see

	variance estimation
	Description
	Remarks
	Variance of the total
	Variance for census data
	Certainty sampling units
	Strata with one sampling unit
	Ratios and other functions of survey data
	Linearized/robust variance estimation
	The bootstrap
	BRR
	The jackknife
	Successive difference replication
	Confidence intervals

	References
	Also see

	Glossary
	Subject and author index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	Y
	Z

	[TS] Time Series
	Table of contents
	intro
	Description
	Remarks
	What's new

	Reference
	Also see

	time series
	Description
	Remarks
	Data-management tools and time-series operators
	Univariate time series
	Multivariate time series

	References
	Also see

	arch
	Syntax
	Details of syntax
	Common models
	Reading arch output

	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Priming values
	Likelihood from prediction error decomposition
	Missing data

	References
	Also see

	arch postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Also see

	arfima
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Introduction
	The likelihood function
	The autocovariance function
	The profile likelihood
	The MPL

	References
	Also see

	arfima postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	References
	Also see

	arima
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	ARIMA models
	Multiplicative seasonal ARIMA models
	ARMAX models
	Dynamic forecasting

	Saved results
	Methods and formulas
	ARIMA model
	Kalman filter equations
	Kalman filter or state-space representation of the ARIMA model
	Kalman filter recursions
	Kalman filter initial conditions
	Likelihood from prediction error decomposition
	Missing data

	References
	Also see

	arima postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Also see

	corrgram
	Syntax
	Menu
	Description
	Options for corrgram
	Options for ac and pac
	Remarks
	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	cumsp
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	References
	Also see

	dfactor
	Syntax
	Menu
	Description
	Options
	Remarks
	An introduction to dynamic-factor models
	Some examples

	Saved results
	Methods and formulas
	References
	Also see

	dfactor postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Also see

	dfgls
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Acknowledgments
	References
	Also see

	dfuller
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	fcast compute
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	References
	Also see

	fcast graph
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Also see

	haver
	Syntax
	Menu
	Description
	Option for use with haver describe
	Options for use with haver use
	Remarks
	Installation
	Determining the contents of a Haver dataset
	Loading a Haver dataset
	Combining variables
	Using subsets

	Also see

	irf
	Syntax
	Description
	Remarks
	References
	Also see

	irf add
	Syntax
	Menu
	Description
	Option
	Remarks
	Methods and formulas
	Also see

	irf cgraph
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Also see

	irf create
	Syntax
	Menu
	Description
	Options
	Remarks
	Introductory examples
	Technical aspects of IRF files
	IRFs and FEVDs
	IRF results for VARs
	IRF results for VECMs

	Methods and formulas
	Impulse--response function formulas for VARs
	Dynamic-multiplier function formulas for VARs
	Forecast-error variance decomposition formulas for VARs
	Impulse{--}response function formulas for VECMs
	Algorithms for bootstrapping the VAR IRF and FEVD standard errors

	References
	Also see

	irf ctable
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Also see

	irf describe
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Also see

	irf drop
	Syntax
	Menu
	Description
	Option
	Remarks
	Methods and formulas
	Also see

	irf graph
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Also see

	irf ograph
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Also see

	irf rename
	Syntax
	Menu
	Description
	Option
	Remarks
	Saved results
	Methods and formulas
	Also see

	irf set
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Also see

	irf table
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Also see

	mgarch
	Syntax
	Description
	Remarks
	An introduction to MGARCH models
	Diagonal vech MGARCH models
	Conditional correlation MGARCH models
	Constant conditional correlation MGARCH model
	Dynamic conditional correlation MGARCH model
	Varying conditional correlation MGARCH model

	Error distributions and quasimaximum likelihood
	Treatment of missing data

	References
	Also see

	mgarch ccc
	Syntax
	Menu
	Description
	Options
	Eqoptions
	Remarks
	Some examples

	Saved results
	Methods and formulas
	References
	Also see

	mgarch ccc postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Also see

	mgarch dcc
	Syntax
	Menu
	Description
	Options
	Eqoptions
	Remarks
	Some examples

	Saved results
	Methods and formulas
	References
	Also see

	mgarch dcc postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Also see

	mgarch dvech
	Syntax
	Menu
	Description
	Options
	Remarks
	Some examples

	Saved results
	Methods and formulas
	References
	Also see

	mgarch dvech postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Also see

	mgarch vcc
	Syntax
	Menu
	Description
	Options
	Eqoptions
	Remarks
	Some examples

	Saved results
	Methods and formulas
	References
	Also see

	mgarch vcc postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Also see

	newey
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	newey postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Methods and formulas
	Also see

	pergram
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	References
	Also see

	pperron
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	prais
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	prais postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Methods and formulas
	Also see

	psdensity
	Syntax
	Menu
	Description
	Options
	Remarks
	The frequency-domain approach to time series
	Some ARMA examples

	Methods and formulas
	Introduction
	Spectral density after arima or arfima
	Spectral density after ucm

	References
	Also see

	rolling
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	sspace
	Syntax
	Menu
	Description
	Options
	Remarks
	An introduction to state-space models
	Some stationary state-space models
	Some nonstationary state-space models

	Saved results
	Methods and formulas
	References
	Also see

	sspace postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	References
	Also see

	tsappend
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Using tsappend with time-series data
	Using tsappend with panel data

	Saved results
	Methods and formulas
	Also see

	tsfill
	Syntax
	Menu
	Description
	Option
	Remarks
	Using tsfill with time-series data
	Using tsfill with panel data

	Methods and formulas
	Also see

	tsfilter
	Syntax
	Description
	Remarks
	An example dataset
	A baseline method: Symmetric moving-average (SMA) filters
	An overview of filtering in the frequency domain
	SMA revisited: The Baxter--King filter
	Filtering a random walk: The Christiano--Fitzgerald filter
	A one-parameter high-pass filter: The Hodrick--Prescott filter
	A two-parameter high-pass filter: The Butterworth filter

	Methods and formulas
	Acknowledgments
	References
	Also see

	tsfilter bk
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	tsfilter bw
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	tsfilter cf
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	tsfilter hp
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	tsline
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Reference
	Also see

	tsreport
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Also see

	tsrevar
	Syntax
	Description
	Options
	Remarks
	Saved results
	Also see

	tsset
	Syntax
	Menu
	Description
	Options
	Remarks
	Panel data

	Saved results
	Methods and formulas
	Reference
	Also see

	tssmooth
	Syntax
	Description
	Remarks
	References
	Also see

	tssmooth dexponential
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	tssmooth exponential
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Examples
	Treatment of missing values

	Saved results
	Methods and formulas
	References
	Also see

	tssmooth hwinters
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	tssmooth ma
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Reference
	Also see

	tssmooth nl
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Also see

	tssmooth shwinters
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Holt{--}Winters seasonal multiplicative method
	Holt{--}Winters seasonal additive method

	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	ucm
	Syntax
	Menu
	Description
	Options
	Remarks
	An introduction to UCMs
	A random-walk-model example
	Frequency-domain concepts used in the stochastic-cycle model
	Another random-walk-model example
	Comparing UCM and ARIMA
	A local-level-model example
	Comparing UCM and ARIMA, revisited
	Models for the trend and idiosyncratic components
	Seasonal component

	Saved results
	Methods and formulas
	Introduction
	State-space formulation
	Cyclical component extensions

	References
	Also see

	ucm postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu
	Options for predict
	Syntax for estat period
	Menu
	Options for estat period
	Remarks
	Methods and formulas
	Also see

	var intro
	Description
	Remarks
	Introduction to VARs
	Introduction to SVARs
	Short-run SVAR models
	Long-run restrictions
	IRFs and FEVDs

	References
	Also see

	var
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Fitting models with some lags excluded
	Fitting models with exogenous variables
	Fitting models with constraints on the coefficients

	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	var postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Model selection and inference
	Forecasting

	Methods and formulas
	Also see

	var svar
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Short-run SVAR models
	Long-run SVAR models

	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	var svar postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Model selection and inference
	Forecasting

	Methods and formulas
	Also see

	varbasic
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	varbasic postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Also see

	vargranger
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	varlmar
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	varnorm
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	varsoc
	Syntax
	Menu
	Description
	Preestimation options
	Postestimation option
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	varstable
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	varwle
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	vec intro
	Description
	Remarks
	Introduction to cointegrating VECMs
	VECM estimation in Stata

	References
	Also see

	vec
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Specification of constants and trends
	Collinearity

	Saved results
	Methods and formulas
	General specification of the VECM
	The log-likelihood function
	Estimation with Johansen identification
	Estimation with constraints: beta identified
	Estimation with constraints: beta not identified
	Formulas for the information criteria
	Formulas for predict

	References
	Also see

	vec postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Model selection and inference
	Forecasting

	Methods and formulas
	Also see

	veclmar
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Reference
	Also see

	vecnorm
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	vecrank
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	The trace statistic
	The maximum-eigenvalue statistic
	Minimizing an information criterion

	Saved results
	Methods and formulas
	References
	Also see

	vecstable
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	wntestb
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	wntestq
	Syntax
	Menu
	Description
	Option
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	xcorr
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	References
	Also see

	Glossary
	References

	Subject and author index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	[XT] Longitudinal Data/Panel Data
	Table of contents
	intro
	Description
	Remarks
	What's new

	Also see

	xt
	Syntax
	Description
	Remarks
	References
	Also see

	quadchk
	Syntax
	Menu
	Description
	Options
	Remarks
	What makes a good random-effects model fit?
	How do I know whether I have a good quadrature approximation?
	What can I do to improve my results?

	Methods and formulas

	vce_options
	Syntax
	Description
	Options
	Remarks
	Methods and formulas
	Reference
	Also see

	xtabond
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	xtabond postestimation
	Description
	Special-interest postestimation commands
	Syntax for predict
	Menu
	Options for predict
	Syntax for estat abond
	Menu
	Option for estat abond
	Syntax for estat sargan
	Menu
	Remarks
	estat abond
	estat sargan

	Methods and formulas
	Also see

	xtcloglog
	Syntax
	Menu
	Description
	Options for RE model
	Options for PA model
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	xtcloglog postestimation
	Description
	Syntax for predict
	Menu
	Options for predict

	Remarks
	Also see

	xtdata
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Also see

	xtdescribe
	Syntax
	Menu
	Description
	Options
	Remarks
	Methods and formulas
	Reference
	Also see

	xtdpd
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	xtdpd postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu
	Options for predict
	Syntax for estat abond
	Menu
	Option for estat abond
	Syntax for estat sargan
	Menu
	Remarks
	estat abond
	estat sargan

	Methods and formulas
	Reference
	Also see

	xtdpdsys
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Acknowledgment
	References
	Also see

	xtdpdsys postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu
	Options for predict
	Syntax for estat abond
	Menu
	Option for estat abond
	Syntax for estat sargan
	Menu
	Remarks
	estat abond
	estat sargan

	Methods and formulas
	Reference
	Also see

	xtfrontier
	Syntax
	Menu
	Description
	Options for time-invariant model
	Options for time-varying decay model
	Remarks
	Introduction
	Time-invariant model
	Time-varying decay model

	Saved results
	Methods and formulas
	References
	Also see

	xtfrontier postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Also see

	xtgee
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Calculating GEE for GLM
	Correlation structures
	Nonstationary and unstructured

	References
	Also see

	xtgee postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu
	Options for predict
	Syntax for estat wcorrelation
	Menu
	Options for estat wcorrelation
	Remarks
	Methods and formulas
	Also see

	xtgls
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Heteroskedasticity across panels
	Correlation across panels (cross-sectional correlation)
	Autocorrelation within panels

	Saved results
	Methods and formulas
	References
	Also see

	xtgls postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Also see

	xthtaylor
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	xthtaylor postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Methods and formulas
	Also see

	xtintreg
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	xtintreg postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Also see

	xtivreg
	Syntax
	Menu
	Description
	Options for RE model
	Options for BE model
	Options for FE model
	Options for FD model
	Remarks
	Saved results
	Methods and formulas
	xtivreg, fd
	xtivreg, fe
	xtivreg, be
	xtivreg, re

	Acknowledgment
	References
	Also see

	xtivreg postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Also see

	xtline
	Syntax
	Menu
	Description
	Options for graph by panel
	Options for overlaid panels
	Remarks
	Methods and formulas
	Also see

	xtlogit
	Syntax
	Menu
	Description
	Options for RE model
	Options for FE model
	Options for PA model
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	xtlogit postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Also see

	xtmelogit
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Two-level models
	Other covariance structures
	Distribution theory for likelihood-ratio tests
	Three-level models
	Computation time and the Laplacian approximation
	Crossed-effects models

	Saved results
	Methods and formulas
	Acknowledgments
	References
	Also see

	xtmelogit postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu
	Options for predict
	Syntax for estat group
	Menu
	Syntax for estat recovariance
	Menu
	Options for estat recovariance
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	xtmepoisson
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	A two-level model
	A three-level model

	Saved results
	Methods and formulas
	Acknowledgments
	References
	Also see

	xtmepoisson postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu
	Options for predict
	Syntax for estat group
	Menu
	Syntax for estat recovariance
	Menu
	Options for estat recovariance
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	xtmixed
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	Two-level models
	Covariance structures
	Likelihood versus restricted likelihood
	Three-level models
	Blocked-diagonal covariance structures
	Heteroskedastic random effects
	Heteroskedastic residual errors
	Other residual-error structures
	Random-effects factor notation and crossed-effects models
	Diagnosing convergence problems
	Distribution theory for likelihood-ratio tests
	Survey data

	Saved results
	Methods and formulas
	Acknowledgments
	References
	Also see

	xtmixed postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu
	Options for predict
	Syntax for estat group
	Menu
	Syntax for estat recovariance
	Menu
	Options for estat recovariance
	Remarks
	Saved results
	Methods and formulas
	Reference
	Also see

	xtnbreg
	Syntax
	Menu
	Description
	Options for RE/FE models
	Options for PA model
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	xtnbreg postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Methods and formulas
	Also see

	xtpcse
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Acknowledgments
	References
	Also see

	xtpcse postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Methods and formulas
	Also see

	xtpoisson
	Syntax
	Menu
	Description
	Options for RE model
	Options for FE model
	Options for PA model
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	xtpoisson postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Also see

	xtprobit
	Syntax
	Menu
	Description
	Options for RE model
	Options for PA model
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	xtprobit postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Remarks
	Methods and formulas
	Also see

	xtrc
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	xtrc postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Methods and formulas
	Also see

	xtreg
	Syntax
	Menu
	Description
	Options for RE model
	Options for BE model
	Options for FE model
	Options for MLE model
	Options for PA model
	Remarks
	Assessing goodness of fit
	xtreg and associated commands

	Saved results
	Methods and formulas
	xtreg, fe
	xtreg, be
	xtreg, re
	xtreg, mle
	xtreg, pa

	Acknowledgments
	References
	Also see

	xtreg postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu
	Options for predict
	Syntax for xttest0
	Menu
	Remarks
	Methods and formulas
	References
	Also see

	xtregar
	Syntax
	Menu
	Description
	Options
	Remarks
	Introduction
	The fixed-effects model
	The random-effects model

	Saved results
	Methods and formulas
	Estimating rho
	Transforming the data to remove the AR(1) component
	The within estimator of the fixed-effects model
	The Baltagi--Wu GLS estimator
	The test statistics

	Acknowledgment
	References
	Also see

	xtregar postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Methods and formulas
	Also see

	xtset
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Also see

	xtsum
	Syntax
	Menu
	Description
	Remarks
	Methods and formulas
	Also see

	xttab
	Syntax
	Menu
	Description
	Option
	Remarks
	Saved results
	Methods and formulas
	Also see

	xttobit
	Syntax
	Menu
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	References
	Also see

	xttobit postestimation
	Description
	Syntax for predict
	Menu
	Options for predict
	Methods and formulas
	Also see

	xtunitroot
	Syntax
	Menu
	Description
	Options
	LLC_options
	HT_options
	Breitung_options
	IPS_options
	Fisher_options
	Hadri_options

	Remarks
	Overview
	Levin--Lin--Chu test
	Harris--Tsavalis test
	Breitung test
	Im--Pesaran--Shin test
	Fisher-type tests
	Hadri LM test

	Saved results
	Methods and formulas
	Levin--Lin--Chu test
	Harris--Tsavalis test
	Breitung test
	Im--Pesaran--Shin test
	Fisher-type tests
	Hadri LM test

	Acknowledgments
	References
	Also see

	Glossary
	Subject and author index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	[P] Programming
	Table of contents
	Combined subject table of contents
	intro
	Description
	Remarks
	What's new

	References
	Also see

	automation
	Description
	Remarks
	Also see

	break
	Syntax
	Description
	Remarks
	Also see

	byable
	Syntax
	Description
	Option
	Remarks
	byable(recall) programs
	Using sort in byable(recall) programs
	Byable estimation commands
	byable(onecall) programs
	Using sort in byable(onecall) programs
	Combining byable(onecall) with byable(recall)
	The by-group header

	Also see

	capture
	Syntax
	Description
	Remarks
	Also see

	char
	Syntax
	Description
	Option
	Remarks
	How to program with characteristics

	Also see

	class
	Description
	Remarks
	1. Introduction
	2. Definitions
	3. Version control
	4. Member variables
	5. Inheritance
	6. Member programs' return values
	7. Assignment
	8. Built-ins
	9. Prefix operators
	10. Using object values
	11. Object destruction
	12. Advanced topics
	Appendix A. Finding, loading, and clearing class definitions
	Appendix B. Jargon
	Appendix C. Syntax diagrams

	Also see

	class exit
	Syntax
	Description
	Remarks
	Examples

	Also see

	classutil
	Syntax
	Description
	Options for classutil describe
	Options for classutil dir
	Option for classutil which
	Remarks
	classutil drop
	classutil describe
	classutil dir
	classutil cdir
	classutil which

	Saved results
	Methods and formulas
	Also see

	comments
	Description
	Remarks
	Also see

	confirm
	Syntax
	Description
	Option
	Remarks
	confirm existence
	confirm file
	confirm format
	confirm names
	confirm number
	confirm matrix
	confirm scalar
	confirm variable

	Also see

	continue
	Syntax
	Description
	Option
	Remarks
	Also see

	creturn
	Syntax
	Menu
	Description
	Remarks
	System values
	Directories and paths
	System limits
	Numerical and string limits
	Current dataset
	Memory settings
	Output settings
	Interface settings
	Graphics settings
	Efficiency settings
	Network settings
	Update settings
	Trace (program debugging) settings
	Mata settings
	Other settings
	Other

	Also see

	_datasignature
	Syntax
	Description
	Options
	Remarks
	Saved results
	Reference
	Also see

	#delimit
	Syntax
	Description
	Remarks
	Also see

	dialog programming
	Description
	Remarks
	Also see

	discard
	Syntax
	Description
	Remarks
	Also see

	display
	Syntax
	Description
	Remarks
	Introduction
	Styles
	display used with quietly and noisily
	Columns
	display and SMCL
	Displaying variable names
	Obtaining input from the terminal

	Also see

	ereturn
	Syntax
	Description
	Options
	Remarks
	Estimation-class programs
	Setting individual estimation results
	Posting estimation coefficient and variance--covariance matrices

	Saved results
	Also see

	error
	Syntax
	Description
	Remarks
	Introduction
	Summary
	Other messages

	Also see

	estat programming
	Description
	Remarks
	Standard subcommands
	Adding subcommands to estat
	Overriding standard behavior of a subcommand

	Also see

	_estimates
	Syntax
	Description
	Options
	Remarks
	Saved results
	Also see

	exit
	Syntax
	Description
	Options
	Remarks
	Also see

	file
	Syntax
	Description
	Options
	ASCII text output specifications

	Remarks
	Use of file
	Use of file with tempfiles
	Writing ASCII text files
	Reading ASCII text files
	Use of seek when writing or reading ASCII text files
	Writing and reading binary files
	Writing binary files
	Reading binary files
	Use of seek when writing or reading binary files
	Appendix A.1 $mskip 	hinmuskip $ Useful commands and functions for use with file
	Appendix A.2 $mskip 	hinmuskip $ Actions of binary output formats with out-of-range values

	Saved results
	Reference
	Also see

	file formats .dta
	Description
	Remarks
	Also see

	findfile
	Syntax
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Also see

	foreach
	Syntax
	Description
	Remarks
	Introduction
	foreach {
elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of local and foreach {
elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of global
	foreach {
elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of varlist
	foreach {
elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of newlist
	foreach {
elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of numlist
	Use of foreach with continue
	The unprocessed list elements

	Also see

	forvalues
	Syntax
	Description
	Remarks
	Reference
	Also see

	fvexpand
	Syntax
	Description
	Remarks
	Saved results
	Also see

	gettoken
	Syntax
	Description
	Options
	Remarks
	Also see

	if
	Syntax
	Description
	Remarks
	Introduction
	Avoid single-line if and else with ++ and -/- macro expansion

	Reference
	Also see

	include
	Syntax
	Description
	Remarks
	Use with do-files
	Use with Mata
	Warning

	Also see

	levelsof
	Syntax
	Description
	Options
	Remarks
	Saved results
	Methods and formulas
	Acknowledgments
	References
	Also see

	macro
	Syntax
	Description
	Remarks
	Formal definition of a macro
	Global and local macro names
	Macro assignment
	Macro extended functions
	Macro extended function for extracting program properties
	Macro extended functions for extracting data attributes
	Macro extended function for naming variables
	Macro extended functions for filenames and file paths
	Macro extended function for accessing operating-system parameters
	Macro extended functions for names of saved results
	Macro extended function for formatting results
	Macro extended function for manipulating lists
	Macro extended functions related to matrices
	Macro extended function related to time-series operators
	Macro extended function for copying a macro
	Macro extended functions for parsing
	Macro expansion operators and function
	The tempvar, tempname, and tempfile commands
	Manipulation of macros
	Macros as arguments

	Also see

	macro lists
	Syntax
	Description
	Remarks
	Treatment of adornment
	Treatment of duplicate elements in lists

	Also see

	makecns
	Syntax
	Description
	Options
	Remarks
	Introduction
	Overview
	Mathematics
	Linkage of the mathematics to Stata

	Saved results
	Methods and formulas
	Also see

	mark
	Syntax
	Description
	Options
	Remarks
	Methods and formulas
	Reference
	Also see

	matlist
	Syntax
	Description
	Style options
	General options
	Required options for the second syntax
	Remarks
	All columns with the same format
	Different formats for each column
	Other output options

	Methods and formulas
	Also see

	matrix
	Description
	Remarks
	Overview of matrix commands
	Creating and replacing matrices
	Namespace
	Naming conventions in programs

	Also see

	matrix accum
	Syntax
	Description
	Options
	Remarks
	matrix accum
	matrix glsaccum
	matrix opaccum
	matrix vecaccum
	Treatment of user-specified weights

	Saved results
	Reference
	Also see

	matrix define
	Syntax
	Menu
	Description
	Remarks
	Introduction
	Inputting matrices by hand
	Matrix operators
	Matrix functions returning matrices
	Matrix functions returning scalars
	Subscripting and element-by-element definition
	Name conflicts in expressions (namespaces)
	Macro extended functions

	References
	Also see

	matrix dissimilarity
	Syntax
	Description
	Options
	Remarks
	References
	Also see

	matrix eigenvalues
	Syntax
	Menu
	Description
	Remarks
	Methods and formulas
	References
	Also see

	matrix get
	Syntax
	Description
	Remarks
	Also see

	matrix mkmat
	Syntax
	Menu
	Description
	Options
	Remarks
	mkmat
	svmat

	Methods and formulas
	Acknowledgment
	References
	Also see

	matrix rownames
	Syntax
	Description
	Remarks
	Also see

	matrix score
	Syntax
	Description
	Options
	Remarks
	Also see

	matrix svd
	Syntax
	Menu
	Description
	Remarks
	Methods and formulas
	Reference
	Also see

	matrix symeigen
	Syntax
	Menu
	Description
	Remarks
	Methods and formulas
	References
	Also see

	matrix utility
	Syntax
	Menu
	Description
	Options
	Remarks
	Also see

	more
	Syntax
	Description
	Remarks
	Also see

	nopreserve option
	Syntax
	Description
	Option
	Remarks
	Also see

	numlist
	Syntax
	Description
	Options
	Remarks
	Saved results
	Also see

	pause
	Syntax
	Description
	Remarks
	Methods and formulas
	Reference
	Also see

	plugin
	Syntax
	Description
	Options
	Remarks
	Also see

	postfile
	Syntax
	Description
	Options
	Remarks
	References
	Also see

	_predict
	Syntax
	Description
	Options
	Methods and formulas
	Reference
	Also see

	preserve
	Syntax
	Description
	Options
	Remarks
	Also see

	program
	Syntax
	Description
	Options
	Remarks
	Also see

	program properties
	Description
	Option
	Remarks
	Introduction
	Writing programs for use with nestreg and stepwise
	Writing programs for use with svy
	Writing programs for use with mi
	Properties for survival-analysis commands
	Properties for exponentiating coefficients
	Putting it all together
	Checking for program properties

	Also see

	quietly
	Syntax
	Description
	Remarks
	quietly used interactively
	quietly used in programs
	Note for programmers

	Also see

	_return
	Syntax
	Description
	Option
	Remarks
	Saved results
	Also see

	return
	Syntax
	Description
	Options
	Remarks
	Introduction
	Saving results in r()
	Saving results in e()
	Saving results in s()
	Recommended names for saved results
	Using hidden and historical saved results
	Programming hidden and historical saved results

	Also see

	_rmcoll
	Syntax
	Description
	Options
	Remarks
	Saved results
	Also see

	rmsg
	Syntax
	Description
	Option
	Remarks
	Also see

	_robust
	Syntax
	Description
	Options
	Remarks
	Introduction
	Clustered data
	Survey data
	Controlling the header display
	Maximum likelihood estimators
	Multiple-equation estimators

	Saved results
	Methods and formulas
	References
	Also see

	scalar
	Syntax
	Description
	Remarks
	Naming scalars

	Reference
	Also see

	serset
	Syntax
	Description
	Options for serset create
	Options for serset create_xmedians
	Option for serset create_cspline
	Option for serset summarize
	Option for serset use
	Remarks
	Introduction
	serset create
	serset create_xmedians
	serset create_cspline
	serset set
	serset sort
	serset summarize
	serset
	serset use
	serset reset_id
	serset drop
	serset clear
	serset dir
	file sersetwrite and file sersetread

	Saved results
	Also see

	signestimationsample
	Syntax
	Description
	Remarks
	Using signestimationsample and checkestimationsample
	Signing
	Checking
	Handling of weights
	Do not sign unnecessarily

	Saved results
	Methods and formulas
	Also see

	sleep
	Syntax
	Description
	Remarks

	smcl
	Description
	Remarks
	Introduction
	SMCL modes
	Command summary---general syntax
	Help file preprocessor directive for substituting repeated material
	Formatting directives for use in line and paragraph modes
	Link directives for use in line and paragraph modes
	Formatting directives for use in line mode
	Formatting directives for use in paragraph mode
	Directive for entering the as-is mode
	Directive for entering the Stata 6 help mode
	Inserting values from constant and current-value class
	Displaying characters using ASCII code
	Advice on using display
	Advice on formatting help files

	Also see

	sortpreserve
	Syntax
	Description
	Option
	Remarks
	Introduction
	sortpreserve
	The cost of sortpreserve
	How sortpreserve works
	Use of sortpreserve with preserve
	Use of sortpreserve with subroutines that use sortpreserve

	Also see

	syntax
	Syntax
	Description
	Syntax, continued
	Remarks
	Introduction
	The args command
	The syntax command

	Also see

	sysdir
	Syntax
	Description
	Option
	Remarks
	Introduction
	sysdir
	adopath
	set adosize

	Methods and formulas
	Also see

	tabdisp
	Syntax
	Description
	Options
	Remarks
	Limits
	Introduction
	Treatment of string variables
	Treatment of missing values

	Also see

	timer
	Syntax
	Description
	Remarks
	Saved results
	Also see

	tokenize
	Syntax
	Description
	Option
	Remarks
	Also see

	trace
	Syntax
	Description
	Options
	Remarks
	Also see

	unab
	Syntax
	Description
	Options
	Remarks
	Methods and formulas
	Reference
	Also see

	unabcmd
	Syntax
	Description
	Remarks
	Also see

	varabbrev
	Syntax
	Description
	Remarks
	Also see

	version
	Syntax
	Description
	Option
	Remarks
	Also see

	viewsource
	Syntax
	Description
	Remarks
	Methods and formulas
	Also see

	while
	Syntax
	Description
	Remarks
	Also see

	window programming
	Syntax
	Description
	Remarks
	Also see

	Subject and author index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

	[M] Mata
	Table of contents
	Introduction to the Mata manual
	intro
	Contents
	Description
	Remarks
	What's new

	Also see

	Introduction and advice
	intro
	Contents
	Description
	Remarks
	Reference
	Also see

	ado
	Description
	Remarks
	A first example
	Where to store the Mata functions
	Passing arguments to Mata functions
	Returning results to ado-code
	Advice: Use of matastrict
	Advice: Some useful Mata functions

	Also see

	first
	Description
	Remarks
	Invoking Mata
	Using Mata
	Making mistakes: Interpreting error messages
	Working with real numbers, complex numbers, and strings
	Working with scalars, vectors, and matrices
	Working with functions
	Distinguishing real and complex values
	Working with matrix and scalar functions
	Performing element-by-element calculations: Colon operators
	Writing programs
	More functions
	Mata environment commands
	Exiting Mata

	Also see

	help
	Syntax
	Description
	Remarks
	Also see

	how
	Description
	Remarks
	What happens when you define a program
	What happens when you work interactively
	What happens when you type a mata environment command
	Working with object code I: .mo files
	Working with object code II: .mlib libraries
	The Mata environment

	Reference
	Also see

	interactive
	Description
	Remarks
	1. Start in Stata; load the data
	2. Create any time-series variables
	3. Create a constant variable
	4. Drop unnecessary variables
	5. Drop observations with missing values
	6. Put variables on roughly the same numeric scale
	7. Enter Mata
	8. Use Mata's st_view() function to access your data
	9. Perform your matrix calculations

	Review
	Reference
	Also see

	LAPACK
	Description
	Remarks
	Acknowledgments
	Reference
	Also see

	limits
	Summary
	Description
	Remarks
	Also see

	naming
	Syntax
	Description
	Remarks
	Interactive use
	Naming variables
	Naming functions
	What happens when functions have the same names
	How to determine if a function name has been taken

	Also see

	permutation
	Syntax
	Description
	Remarks
	Permutation matrices
	How permutation matrices arise
	Permutation vectors

	Also see

	returnedargs
	Syntax
	Description
	Remarks
	Also see

	source
	Syntax
	Description
	Remarks
	Also see

	tolerance
	Syntax
	Description
	Remarks
	The problem
	Absolute versus relative tolerances
	Specifying tolerances

	Also see

	Language definition
	intro
	Contents
	Description
	Remarks
	Also see

	break
	Syntax
	Description
	Remarks
	Also see

	class
	Syntax
	Introduction
	Example
	Declaration of member variables
	Declaration and definition of methods (member functions)
	Default exposure in declarations

	Description
	Remarks
	Notation and jargon
	Declaring and defining a class
	Saving classes in files
	Workflow recommendation
	When you need to recompile
	Obtaining instances of a class
	Constructors and destructors
	Setting member variable and member function exposure
	Making a member final
	Making a member static
	Virtual functions
	Referring to the current class using this
	Using super to access the parent's concept
	Casting back to a parent
	Accessing external functions from member functions
	Pointers to classes

	Also see

	comments
	Syntax
	Description
	Remarks
	The /* */ enclosed comment
	The // rest-of-line comment

	Also see

	continue
	Syntax
	Description
	Remarks
	Also see

	declarations
	Syntax
	Description
	Remarks
	The purpose of declarations
	Types, element types, and organizational types
	Implicit declarations
	Element types
	Organizational types
	Function declarations
	Argument declarations
	The by-address calling convention
	Variable declarations
	Linking to external globals

	Also see

	do
	Syntax
	Description
	Remarks
	Also see

	errors
	Description
	Remarks
	The error codes

	Also see

	exp
	Syntax
	Description
	Remarks
	What's an expression
	Assignment suppresses display, as does (void)
	The pieces of an expression
	Numeric literals
	String literals
	Variable names
	Operators
	Functions

	Reference
	Also see

	for
	Syntax
	Description
	Remarks
	Also see

	ftof
	Syntax
	Description
	Remarks
	Passing functions to functions
	Writing functions that receive functions, the simplified convention
	Passing built-in functions

	Also see

	goto
	Syntax
	Description
	Remarks
	Reference
	Also see

	if
	Syntax
	Description
	Remarks
	Also see

	op_arith
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	op_assignment
	Syntax
	Description
	Remarks
	Assignment suppresses display
	The equal-assignment operator
	lvals, what appears on the left-hand side
	Row, column, and element lvals
	Pointer lvals

	Conformability
	Diagnostics
	Also see

	op_colon
	Syntax
	Description
	Remarks
	C-conformability: element by element
	Usefulness of colon logical operators
	Use parentheses

	Conformability
	Diagnostics
	Also see

	op_conditional
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	op_increment
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	op_join
	Syntax
	Description
	Remarks
	Comma and backslash are operators
	Comma as a separator
	Warning about the misuse of comma and backslash operators

	Conformability
	Diagnostics
	Also see

	op_kronecker
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Reference
	Also see

	op_logical
	Syntax
	Description
	Remarks
	Introduction
	Use of logical operators with pointers

	Conformability
	Diagnostics
	Also see

	op_range
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	op_transpose
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	optargs
	Syntax
	Description
	Remarks
	What are optional arguments?
	How to code optional arguments
	Examples revisited

	Also see

	pointers
	Syntax
	Description
	Remarks
	What is a pointer?
	Pointers to variables
	Pointers to expressions
	Pointers to functions
	Pointers to pointers
	Pointer arrays
	Mixed pointer arrays
	Definition of NULL
	Use of parentheses
	Pointer arithmetic
	Listing pointers
	Declaration of pointers
	Use of pointers to collect objects
	Efficiency

	Diagnostics
	Reference
	Also see

	pragma
	Syntax
	Description
	Remarks
	pragma unset
	pragma unused

	Also see

	reswords
	Syntax
	Description
	Remarks
	Future developments
	Version control

	Also see

	return
	Syntax
	Description
	Remarks
	Functions that return results
	Functions that return nothing (void functions)

	Also see

	semicolons
	Syntax
	Description
	Remarks
	Optional use of semicolons
	You cannot break a statement anywhere even if you use semicolons
	Use of semicolons to create multistatement lines
	Significant semicolons
	Do not use #delimit ;

	Also see

	struct
	Syntax
	Description
	Remarks
	Introduction
	Structures and functions must have different names
	Structure variables must be explicitly declared
	Declare structure variables to be scalars whenever possible
	Vectors and matrices of structures
	Structures of structures
	Pointers to structures
	Operators and functions for use with structure members
	Operators and functions for use with entire structures
	Listing structures
	Use of transmorphics as passthrus
	Saving compiled structure definitions
	Saving structure variables

	Reference
	Also see

	subscripts
	Syntax
	Description
	Remarks
	List subscripts
	Range subscripts
	When to use list subscripts and when to use range subscripts
	A fine distinction

	Conformability
	Diagnostics
	Reference
	Also see

	syntax
	Syntax
	Description
	Remarks
	Treatment of semicolons
	Types and declarations
	Void matrices
	Void functions
	Operators
	Subscripts
	Implied input tokens
	Function argument-passing convention
	Passing functions to functions
	Optional arguments

	Reference
	Also see

	version
	Syntax
	Description
	Remarks
	Purpose of version control
	Recommendations for do-files
	Recommendations for ado-files
	Compile-time and run-time versioning

	Also see

	void
	Syntax
	Description
	Remarks
	Void matrices, vectors, row vectors, and column vectors
	How to read conformability charts

	Also see

	while
	Syntax
	Description
	Remarks
	Also see

	Commands for controlling Mata
	intro
	Contents
	Description
	Remarks
	Also see

	end
	Syntax
	Description
	Remarks
	Also see

	mata
	Syntax
	Description
	Remarks
	Introduction
	The fine distinction between syntaxes 3 and 4
	The fine distinction between syntaxes 1 and 2

	Also see

	mata clear
	Syntax
	Description
	Remarks
	Also see

	mata describe
	Syntax
	Description
	Option
	Remarks
	Diagnostics
	Also see

	mata drop
	Syntax
	Description
	Remarks
	Also see

	mata help
	Syntax
	Description
	Remarks
	Also see

	mata matsave
	Syntax
	Description
	Option for mata matsave
	Option for mata matuse
	Remarks
	Diagnostics
	Also see

	mata memory
	Syntax
	Description
	Remarks
	Also see

	mata mlib
	Syntax
	Description
	Options
	Remarks
	Background
	Outline of the procedure for dealing with libraries
	Creating a .mlib library
	Adding members to a .mlib library
	Listing the contents of a library
	Making it so Mata knows to search your libraries
	Advice on organizing your source code

	Also see

	mata mosave
	Syntax
	Description
	Options
	Remarks
	Example of use
	Where to store .mo files
	Use of .mo files versus .mlib files

	Also see

	mata rename
	Syntax
	Description
	Also see

	mata set
	Syntax
	Description
	Option
	Remarks
	Relationship between Mata's mata set and Stata's set commands
	c() values

	Also see

	mata stata
	Syntax
	Description
	Remarks
	Also see

	mata which
	Syntax
	Description
	Remarks
	Also see

	namelists
	Syntax
	Description
	Remarks
	Also see

	Index and guide to functions
	intro
	Contents
	Description
	Remarks
	Also see

	io
	Contents
	Description
	Remarks
	Reference
	Also see

	manipulation
	Contents
	Description
	Remarks
	Also see

	mathematical
	Contents
	Description
	Remarks
	Also see

	matrix
	Contents
	Description
	Remarks
	Also see

	programming
	Contents
	Also see

	scalar
	Contents
	Description
	Remarks
	Also see

	solvers
	Contents
	Description
	Remarks
	Also see

	standard
	Contents
	Description
	Remarks
	Also see

	stata
	Contents
	Description
	Remarks
	Reference
	Also see

	statistical
	Contents
	Description
	Remarks
	Also see

	string
	Contents
	Description
	Remarks
	Also see

	utility
	Contents
	Description
	Remarks
	Also see

	Mata functions
	intro
	Contents
	Description
	Remarks
	Also see

	abbrev()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	abs()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	adosubdir()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	all()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	args()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	asarray()
	Syntax
	Description
	Remarks
	Example 1: Scalar keys and scalar contents
	Example 2: Scalar keys and matrix contents
	Example 3: Vector keys and scalar contents; sparse matrix
	Setting the efficiency parameters

	Conformability
	Diagnostics
	Also see

	ascii()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	assert()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	blockdiag()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	bufio()
	Syntax
	Description
	Remarks
	Basics
	Argument C
	Arguments B and offset
	Argument fh
	Argument bfmt
	bfmts for numeric data
	bfmts for string data
	Argument X
	Arguments r and c
	Advanced issues

	Conformability
	Diagnostics
	Also see

	byteorder()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	C()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	c()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	callersversion()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	cat()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	chdir()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	cholesky()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Reference
	Also see

	cholinv()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	cholsolve()
	Syntax
	Description
	Remarks
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	comb()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	cond()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	conj()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	corr()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	cross()
	Syntax
	Description
	Remarks
	Comment concerning cross() and missing values

	Conformability
	Diagnostics
	Also see

	crossdev()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	cvpermute()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	date()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	deriv()
	Syntax
	Description
	Remarks
	First example
	Notation and formulas
	Type d evaluators
	Example of a type d evaluator
	Type v evaluators
	User-defined arguments
	Example of a type v evaluator
	Type t evaluators
	Example of a type t evaluator
	Functions

	Conformability
	Diagnostics
	Methods and formulas
	References
	Also see

	designmatrix()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	det()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	_diag()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	diag()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	diag0cnt()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	diagonal()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	dir()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	direxists()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	direxternal()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	display()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	displayas()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	displayflush()
	Syntax
	Description
	Remarks
	Diagnostics
	Also see

	Dmatrix()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Reference
	Also see

	dsign()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	e()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	editmissing()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	edittoint()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	edittozero()
	Syntax
	Description
	Remarks
	Background
	Treatment of complex values
	Recommendations

	Conformability
	Diagnostics
	Also see

	editvalue()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	eigensystem()
	Syntax
	Description
	Remarks
	Eigenvalues and eigenvectors
	Left eigenvectors
	Symmetric eigensystems
	Normalization and order
	Eigenvalue condition
	Balancing
	eigensystem() and eigenvalues()
	lefteigensystem()
	symeigensystem() and symeigenvalues()

	Conformability
	Diagnostics
	References
	Also see

	eigensystemselect()
	Syntax
	Description
	Remarks
	Introduction
	Range selection
	Index selection
	Criterion selection
	Other functions

	Conformability
	Diagnostics
	Also see

	eltype()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	epsilon()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	_equilrc()
	Syntax
	Description
	Remarks
	Introduction
	Is equilibration necessary?
	The _equil*() family of functions
	The _perhapsequil*() family of functions
	rowscalefactors() and colscalefactors()

	Conformability
	Diagnostics
	Also see

	error()
	Syntax
	Description
	Remarks
	Use of _error()
	Use of error()

	Conformability
	Diagnostics
	Also see

	errprintf()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	exit()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	exp()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	factorial()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	favorspeed()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	ferrortext()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	fft()
	Syntax
	Description
	Remarks
	Definitions, notation, and conventions
	Fourier transform
	Convolution and deconvolution
	Correlation
	Utility routines
	Warnings

	Conformability
	Diagnostics
	Also see

	fileexists()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	_fillmissing()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	findexternal()
	Syntax
	Description
	Remarks
	Definition of a global
	Use of globals

	Conformability
	Diagnostics
	Also see

	findfile()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	floatround()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	fmtwidth()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	fopen()
	Syntax
	Description
	Remarks
	Opening and closing files
	Reading from a file
	Writing to a file
	Reading and writing in the same file
	Reading and writing matrices
	Repositioning in a file
	Truncating a file
	Error codes

	Conformability
	Diagnostics
	Also see

	fullsvd()
	Syntax
	Description
	Remarks
	Introduction
	Relationship between the full and thin SVDs
	The contents of s
	Possibility of convergence problems

	Conformability
	Diagnostics
	Also see

	geigensystem()
	Syntax
	Description
	Remarks
	Generalized eigenvalues
	Generalized eigenvectors
	Criterion selection
	Range selection
	Index selection

	Conformability
	Diagnostics
	References
	Also see

	ghessenbergd()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	ghk()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	ghkfast()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	gschurd()
	Syntax
	Description
	Remarks
	Generalized Schur decomposition
	Grouping the results

	Conformability
	Diagnostics
	Also see

	halton()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	References
	Also see

	hash1()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	References
	Also see

	hessenbergd()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	Hilbert()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	References
	Also see

	I()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	inbase()
	Syntax
	Description
	Remarks
	Positive integers
	Negative integers
	Numbers with nonzero fractional parts
	Use of the functions

	Conformability
	Diagnostics
	Reference
	Also see

	indexnot()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	invorder()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	invsym()
	Syntax
	Description
	Remarks
	Definition of generalized inverse
	Specifying the order in which columns are dropped
	Determining the rank, or counting the number of dropped columns
	Extracting linear dependencies

	Conformability
	Diagnostics
	Also see

	invtokens()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	isdiagonal()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	isfleeting()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	isreal()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	isrealvalues()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	issymmetric()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Reference
	Also see

	isview()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	J()
	Syntax
	Description
	Remarks
	First syntax: J(r, c, val), val a scalar
	Second syntax: J(r, c, mat), mat a matrix

	Conformability
	Diagnostics
	Also see

	Kmatrix()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Reference
	Also see

	lapack()
	Syntax
	Description
	Remarks
	Mapping calling sequence from Fortran to Mata
	Flopping: Preparing matrices for LAPACK
	Warning on the use of rows() and cols() after _flopin()
	Warning: It is your responsibility to check info
	Example

	Reference
	Also see

	liststruct()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	Lmatrix()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Reference
	Also see

	logit()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	lowertriangle()
	Syntax
	Description
	Remarks
	Optional argument d
	Nonsquare matrices

	Conformability
	Diagnostics
	Also see

	lud()
	Syntax
	Description
	Remarks
	LU decomposition
	LAPACK routine

	Conformability
	Diagnostics
	Also see

	luinv()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	lusolve()
	Syntax
	Description
	Remarks
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	makesymmetric()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	matexpsym()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	matpowersym()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	mean()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	mindouble()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Reference
	Also see

	minindex()
	Syntax
	Description
	Remarks
	Use of functions when v has all unique values
	Use of functions when v has repeated (tied) values
	Summary

	Conformability
	Diagnostics
	Also see

	minmax()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	missing()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	missingof()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	mod()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	moptimize()
	Syntax
	Step 1: Initialization
	Step 2: Definition of maximization or minimization problem
	Step 3: Perform optimization or perform a single function evaluation
	Step 4: Post, display, or obtain results
	Utility functions for use in all steps
	Definition of M
	Setting the sample
	Specifying dependent variables
	Specifying independent variables
	Specifying constraints
	Specifying weights or survey data
	Specifying clusters and panels
	Specifying optimization technique
	Specifying initial values
	Performing one evaluation of the objective function
	Performing optimization of the objective function
	Tracing optimization
	Specifying convergence criteria
	Accessing results
	Stata evaluators
	Advanced functions
	Syntax of evaluators
	Syntax of type lf evaluators
	Syntax of type d evaluators
	Syntax of type lf* evaluators
	Syntax of type gf evaluators
	Syntax of type q evaluators
	Passing extra information to evaluators
	Utility functions

	Description
	Remarks
	Relationship of moptimize() to Stata's ml and to Mata's optimize()
	Mathematical statement of the moptimize() problem
	Filling in moptimize() from the mathematical statement
	The type lf evaluator
	The type d, lf*, gf, and q evaluators
	Example using type d
	Example using type lf*

	Conformability
	Diagnostics
	References
	Also see

	more()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	_negate()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	norm()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	normal()
	Syntax
	Description
	Remarks
	R-conformability
	A note concerning invbinomial() and invbinomialtail()
	A note concerning ibeta()
	A note concerning gammap()

	Conformability
	Diagnostics
	Also see

	optimize()
	Syntax
	Description
	Remarks
	First example
	Notation
	Type d evaluators
	Example of d0, d1, and d2
	d1debug and d2debug
	Type gf evaluators
	Example of gf0, gf1, and gf2
	Functions

	Conformability
	Diagnostics
	References
	Also see

	panelsetup()
	Syntax
	Description
	Remarks
	Definition of panel data
	Definition of problem
	Preparation
	Use of panelsetup()
	Using panelstats()
	Using panelsubmatrix()
	Using panelsubview()

	Conformability
	Diagnostics
	Also see

	pathjoin()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	pinv()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	References
	Also see

	polyeval()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	printf()
	Syntax
	Description
	Remarks
	printf()
	sprintf()

	Conformability
	Diagnostics
	Also see

	qrd()
	Syntax
	Description
	Remarks
	QR decomposition
	Avoiding calculation of Q
	Pivoting
	Least-squares solutions with dropped columns

	Conformability
	Diagnostics
	Also see

	qrinv()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	qrsolve()
	Syntax
	Description
	Remarks
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	quadcross()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	range()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	rank()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	Re()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	reldif()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	rows()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	rowshape()
	Syntax
	Description
	Remarks
	Example of rowshape()
	Example of colshape()

	Conformability
	Diagnostics
	Also see

	runiform()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Reference
	Also see

	runningsum()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	schurd()
	Syntax
	Description
	Remarks
	Schur decomposition
	Grouping the results

	Conformability
	Diagnostics
	Reference
	Also see

	select()
	Syntax
	Description
	Remarks
	Examples
	Using st_select()

	Conformability
	Diagnostics
	Also see

	setbreakintr()
	Syntax
	Description
	Remarks
	Default break-key processing
	Suspending the break-key interrupt
	Break-key polling

	Conformability
	Diagnostics
	Also see

	sign()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	sin()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	sizeof()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	solve_tol()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	solvelower()
	Syntax
	Description
	Remarks
	Derivation
	Tolerance

	Conformability
	Diagnostics
	Also see

	sort()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	soundex()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	spline3()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Reference
	Also see

	sqrt()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	st_addobs()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	st_addvar()
	Syntax
	Description
	Remarks
	Creating a new variable
	Creating new variables
	Creating new string variables
	Creating a new temporary variable
	Creating temporary variables
	Handling errors
	Using nofill

	Conformability
	Diagnostics
	Reference
	Also see

	st_data()
	Syntax
	Description
	Remarks
	Description of _st_data() and _st_sdata()
	Description of st_data() and st_sdata()
	Details of observation subscripting using st_data() and st_sdata()

	Conformability
	Diagnostics
	Also see

	st_dir()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	st_dropvar()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	st_global()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Reference
	Also see

	st_isfmt()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	st_isname()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	st_local()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Reference
	Also see

	st_macroexpand()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	st_matrix()
	Syntax
	Description
	Remarks
	Processing Stata's row and column stripes
	Stata's matsize is irrelevant

	Conformability
	Diagnostics
	Also see

	st_numscalar()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	st_nvar()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	st_rclear()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	st_store()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	st_subview()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	st_tempname()
	Syntax
	Description
	Remarks
	Creating temporary objects
	When temporary objects will be eliminated

	Conformability
	Diagnostics
	Also see

	st_tsrevar()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	st_updata()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	st_varformat()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	st_varindex()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	st_varname()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	st_varrename()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	st_vartype()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	st_view()
	Syntax
	Description
	Remarks
	Overview
	Advantages and disadvantages of views
	When not to use views
	Cautions when using views 1: Conserving memory
	Cautions when using views 2: Assignment
	Efficiency

	Conformability
	Diagnostics
	Reference
	Also see

	st_viewvars()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	st_vlexists()
	Syntax
	Description
	Remarks
	Value-label mapping
	Value-label creation and editing
	Loading value labels

	Conformability
	Diagnostics
	Also see

	stata()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	stataversion()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	strdup()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	strlen()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	strmatch()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	strofreal()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	strpos()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	strreverse()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	strtoname()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	strtoreal()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	strtrim()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	strupper()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	subinstr()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	sublowertriangle()
	Syntax
	Description
	Remarks
	Get lower triangle of a matrix
	Nonsquare matrices

	Conformability
	Diagnostics
	Also see

	_substr()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	substr()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	sum()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	svd()
	Syntax
	Description
	Remarks
	Introduction
	Possibility of convergence problems

	Conformability
	Diagnostics
	References
	Also see

	svsolve()
	Syntax
	Description
	Remarks
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	swap()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	Toeplitz()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Reference
	Also see

	tokenget()
	Syntax
	Description
	Remarks
	Concepts
	Function overview

	Conformability
	Diagnostics
	Also see

	tokens()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	trace()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	_transpose()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	transposeonly()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	trunc()
	Syntax
	Description
	Remarks
	Relationship to Stata's functions
	Examples of rounding

	Conformability
	Diagnostics
	Also see

	uniqrows()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	unitcircle()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	unlink()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	valofexternal()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Also see

	Vandermonde()
	Syntax
	Description
	Remarks
	Conformability
	Diagnostics
	Reference
	Also see

	vec()
	Syntax
	Description
	Remarks
	Example of vec()
	Example of vech() and invvech()

	Conformability
	Diagnostics
	Also see

	Mata glossary of common terms
	Glossary
	Description
	Mata glossary
	Also see

	Subject and author index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

	[I] Index
	Table of contents
	Combined subject table of contents
	Quick references
	data types
	Description
	Also see

	estimation commands
	Description
	Also see

	file extensions
	Description

	format
	Description
	Remarks
	Also see

	immediate commands
	Description
	Also see

	missing values
	Description
	Remarks
	Also see

	postestimation commands
	Description
	Also see

	prefix commands
	Description
	Also see

	import and export data
	Description
	Remarks
	Summary of the different import methods
	import excel
	insheet
	odbc
	infile (free format){---}infile without a dictionary
	infix (fixed format)
	infile (fixed format){---}infile with a dictionary
	import sasxport
	haver (Windows only)
	xmluse

	Summary of the different export methods
	export excel
	outsheet
	odbc
	outfile
	export sasxport
	xmlsave

	Also see

	Acronym glossary

	Vignettes index
	Author index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Subject index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Subject index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

