Bookmark and Share

Notice: On March 31, it was announced that Statalist is moving from an email list to a forum. The old list will shut down at the end of May, and its replacement, statalist.org is already up and running.


[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: st: Odd ratio / relative risk in logistic regression


From   Srinivas <geevasan@yahoo.com>
To   statalist@hsphsun2.harvard.edu
Subject   Re: st: Odd ratio / relative risk in logistic regression
Date   Tue, 9 Apr 2013 04:28:57 -0700 (PDT)

Hi 
after the variable list insert ,or
rgds
dr.srinivasan
--- On Mon, 4/8/13, Ching Wong <ching.y.wong@student.adelaide.edu.au> wrote:

> From: Ching Wong <ching.y.wong@student.adelaide.edu.au>
> Subject: st: Odd ratio / relative risk in logistic regression
> To: statalist@hsphsun2.harvard.edu
> Date: Monday, April 8, 2013, 9:06 PM
> Hi,
> 
> My analysis involves two steps:
> 
> 1. Chi-square testing:
> I did a few chi-sqare testing with different variables.
> -tab grade var1, chi2
> -tab grade var2, chi2
> -tab grade var 3, ch2 etc.
> Basesd on the result of the chi-sqaure testings, the
> variables which
> are significant (i.e. p<0.05) will then put into the
> logistic
> regression.
> 
> 2. logistic regression:
> I put the command as followings:
> - binreg grade var1 var3 var4 etc.
> And I have got the following output.
> 
> Iteration 1:   deviance =  113.0721
> Iteration 2:   deviance =  92.10798
> Iteration 3:   deviance =  87.45499
> Iteration 4:   deviance =  86.88055
> Iteration 5:   deviance =  86.86395
> Iteration 6:   deviance =  86.86393
> Iteration 7:   deviance =  86.86393
> Generalized linear models         
>                 No.
> of obs      =   
>    297
> Optimization     : MQL Fisher
> scoring             
> Residual df     =   
>    294
>                
>    (IRLS EIM)       
>               Scale
> parameter =         1
> Deviance         = 
> 86.86392755             
>       (1/df) Deviance =  .2954555
> Pearson          = 
> 311.8670508             
>       (1/df) Pearson  =  1.060772
> Variance function: V(u) = u*(1-u/1)     
>           [Binomial]
> Link function    : g(u) = ln(u/(1-u))   
>           [Logit]
>                
>                
>                
>    BIC         
>    = -1587.093
> ------------------------------------------------------------------------------
>              | 
>            
>    EIM
> grade |      Coef.   Std.
> Err.      z    P>|z| 
>    [95% Conf. Interval]
> -------------+----------------------------------------------------------------
> var1
> |   2.955512   1.066853 
>    2.77   0.006 
>    .8645186    5.046506
> var4|   .4058033    1.07797 
>    0.38   0.707 
>    -1.70698    2.518587
>        _cons | 
> -4.464928   .6125685   
> -7.29   0.000   
> -5.665541   -3.264316
> ------------------------------------------------------------------------------
> 
> 
> In this case, I can tell var 1 is significant in the
> logistic
> regression model, since it has a p-value =0.006. However,
> how can I
> find out the odd ratio or the relative risk of this model?
> Did I use
> the wrong command?
> 
> Thanks.
> 
> Regards,
> 
> Wong
> *
> *   For searches and help try:
> *   http://www.stata.com/help.cgi?search
> *   http://www.stata.com/support/faqs/resources/statalist-faq/
> *   http://www.ats.ucla.edu/stat/stata/
> 

*
*   For searches and help try:
*   http://www.stata.com/help.cgi?search
*   http://www.stata.com/support/faqs/resources/statalist-faq/
*   http://www.ats.ucla.edu/stat/stata/


© Copyright 1996–2014 StataCorp LP   |   Terms of use   |   Privacy   |   Contact us   |   Site index