Notice: On March 31, it was announced that Statalist is moving from an email list to a forum. The old list will shut down on April 23, and its replacement, statalist.org is already up and running.

Re: st: xtreg - continuous or discrete time

 From Ricardo Ovaldia To statalist@hsphsun2.harvard.edu Subject Re: st: xtreg - continuous or discrete time Date Tue, 16 Aug 2011 11:45:42 -0700 (PDT)

```I have a longitudinal data on children measured at ages 5, 10, 15 and 20.
They were all measured within two weeks of their birthday.
When using -xtreg-, I get very different results depending of whether I use time as a continuous or categorical variable.

I am tempted to use time as continuous, but I am not sure which to use. Any suggestions will be appreciated.

Below is my output from the two models. I am interested in the group differences:

Than you,
Ricardo

Ricardo Ovaldia, MS
Statistician
Oklahoma City, OK

Random-effects GLS regression                   Number of obs      =      1413
Group variable: id                              Number of groups   =       360

R-sq:  within  = 0.1989                         Obs per group: min =         1
between = 0.0435                                        avg =       3.9
overall = 0.1426                                        max =         4

Wald chi2(12)      =    275.48
corr(u_i, X)   = 0 (assumed)                    Prob > chi2        =    0.0000

------------------------------------------------------------------------------
instad |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
group |
2  |  -.3593535   .8898889    -0.40   0.686    -2.103504    1.384797
3  |  -1.664428   .8971943    -1.86   0.064    -3.422897    .0940402
|
time |
10  |   5.120189    .786916     6.51   0.000     3.577862    6.662516
15  |   6.054063   .7869046     7.69   0.000     4.511758    7.596368
20  |   .6104585   .7870224     0.78   0.438     -.932077    2.152994
|
group#time |
2 10  |  -1.245678   1.122178    -1.11   0.267    -3.445106    .9537501
2 15  |  -1.581695   1.126637    -1.40   0.160    -3.789864    .6264734
2 20  |  -2.830481    1.12774    -2.51   0.012     -5.04081   -.6201511
3 10  |  -.3909519   1.135047    -0.34   0.731    -2.615604      1.8337
3 15  |  -.7709906   1.134923    -0.68   0.497    -2.995398    1.453417
3 20  |  -.5713752   1.135312    -0.50   0.615    -2.796547    1.653796
|
ses |  -.0209192   .0203155    -1.03   0.303    -.0607368    .0188984
_cons |   104.1393   1.187133    87.72   0.000     101.8125     106.466
-------------+----------------------------------------------------------------
sigma_u |  3.1002125
sigma_e |  6.1590537
rho |  .20215091   (fraction of variance due to u_i)
------------------------------------------------------------------------------

Random-effects GLS regression                   Number of obs      =      1413
Group variable: id                              Number of groups   =       360

R-sq:  within  = 0.0049                         Obs per group: min =         1
between = 0.0414                                        avg =       3.9
overall = 0.0193                                        max =         4

Wald chi2(6)       =     21.62
corr(u_i, X)   = 0 (assumed)                    Prob > chi2        =    0.0014

------------------------------------------------------------------------------
instad |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
group |
2  |   .4061883   1.137796     0.36   0.721    -1.823851    2.636228
3  |  -1.590677   1.146674    -1.39   0.165    -3.838116     .656763
|
time |   .0580776   .0553659     1.05   0.294    -.0504374    .1665927
|
group#c.time |
2  |  -.1741696    .079296    -2.20   0.028     -.329587   -.0187523
3  |  -.0427001    .079865    -0.53   0.593    -.1992325    .1138324
|
ses |  -.0261362   .0206384    -1.27   0.205    -.0665867    .0143142
_cons |    106.608   1.288649    82.73   0.000     104.0823    109.1337
-------------+----------------------------------------------------------------
sigma_u |  2.6938033
sigma_e |  6.8485734
rho |   .1339852   (fraction of variance due to u_i)
------------------------------------------------------------------------------

Ricardo Ovaldia, MS
Statistician
Oklahoma City, OK

*
*   For searches and help try:
*   http://www.stata.com/help.cgi?search
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/
```