Bookmark and Share

Notice: On March 31, it was announced that Statalist is moving from an email list to a forum. The old list will shut down at the end of May, and its replacement, statalist.org is already up and running.


[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

st: Questions about xtfrontier and predict


From   "Huerta, Tim" <tim.huerta@ttu.edu>
To   "statalist@hsphsun2.harvard.edu" <statalist@hsphsun2.harvard.edu>
Subject   st: Questions about xtfrontier and predict
Date   Thu, 11 Aug 2011 14:59:00 -0500

Hello everyone,

First, thanks in advance for any help you can offer.

Second, I was using xtfrontier to run a cost efficiency model using panel data. I thought everything was going well… However, I ran "predict" to get the technical efficiency and the values aren't what I expected them to be. What am I missing here? Shouldn't CSCE_XTCE_te be less than 1 for the Technical Efficiency?

predict CSCE_XTCE_te, te
predict CSCE_XTCE_u, u
predict CSCE_XTCE_xb, xb

. sum CSCE_XTCE_te CSCE_XTCE_u CSCE_XTCE_xb if CEMatch_SET == 1

    Variable |       Obs        Mean    Std. Dev.       Min        Max
-------------+--------------------------------------------------------
CSCE_XTCE_te |      7818    4.871268    1.447222   1.245426   14.91451
 CSCE_XTCE_u |      8177    1.548295    .2953062   .2184742   2.694779
CSCE_XTCE_xb |      7818    5.535017    1.038628   2.859497   8.786513

XTFrontier output
. xtfrontier LNNTC  LNNPK  LNCMAJADM LNVTOT LNADJPD  OPDSURG ISHITECH6 COTH MNTEACH  $NPKOutInterac $OutputSquares $OutputInterac, tvd cost

Iteration 12:  log likelihood =  -186.6183

Time-varying decay inefficiency model           Number of obs      =      7818
Group variable: ID2                             Number of groups   =      1640

Time variable: DATAYR                           Obs per group: min =         1
                                                               avg =       4.8
                                                               max =         5

                                                Wald chi2(17)      =  15543.30
Log likelihood  =  -186.6183                    Prob > chi2        =    0.0000

------------------------------------------------------------------------------
       LNNTC |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       LNNPK |   .1230951   .0424456     2.90   0.004     .0399033     .206287
   LNCMAJADM |  -.9287228   .0899683   -10.32   0.000    -1.105057   -.7523882
      LNVTOT |  -.0698187   .0581154    -1.20   0.230    -.1837228    .0440853
     LNADJPD |     .49232   .0930324     5.29   0.000     .3099799    .6746601
     OPDSURG |   .3706684   .0735269     5.04   0.000     .2265583    .5147786
   ISHITECH6 |   .0061135   .0086548     0.71   0.480    -.0108496    .0230766
        COTH |   .3483112   .0282762    12.32   0.000     .2928909    .4037316
     MNTEACH |   .0538619   .0071517     7.53   0.000     .0398448     .067879
LNCMAJA~NNPK |   .0044411   .0054461     0.82   0.415     -.006233    .0151153
LNVTOT_LNNPK |  -.0163276   .0040237    -4.06   0.000    -.0242139   -.0084414
LNADJPD~NNPK |   .0085856   .0055698     1.54   0.123     -.002331    .0195022
LNCMAJADM_~M |   .0663485   .0079428     8.35   0.000     .0507809    .0819161
LNVTOT_LNV~T |   .0521146   .0034643    15.04   0.000     .0453248    .0589044
LNADJPD_LN~D |  -.0054209   .0080777    -0.67   0.502    -.0212528     .010411
LNCMAJADM_~T |  -.0341653   .0080563    -4.24   0.000    -.0499554   -.0183752
LNCMAJADM_~D |   .0548038   .0134572     4.07   0.000     .0284281    .0811795
LNVTOT_LNA~D |  -.0541317   .0066951    -8.09   0.000    -.0672539   -.0410096
       _cons |    2.70574   .5806837     4.66   0.000     1.567621    3.843859
-------------+----------------------------------------------------------------
         /mu |   1.548228   .3881607     3.99   0.000     .7874471    2.309009
        /eta |  -.0032212   .0012827    -2.51   0.012    -.0057352   -.0007071
   /lnsigma2 |  -2.040065   .0318383   -64.08   0.000    -2.102467   -1.977663
  /ilgtgamma |    .973871   .0515536    18.89   0.000     .8728277    1.074914
-------------+----------------------------------------------------------------
      sigma2 |   .1300203   .0041396                      .1221548    .1383923
       gamma |   .7258904   .0102578                      .7053337    .7455304
    sigma_u2 |   .0943805   .0042113                      .0861265    .1026345
    sigma_v2 |   .0356398   .0006713                      .0343241    .0369556
------------------------------------------------------------------------------




Thanks again in advance!
--

Timothy R. Huerta, Ph.D.
 Director, Center for Healthcare Innovation, Education and Research
 Assistant Professor, Rawls College of Business, Texas Tech University
 Texas Tech University
 Rawls College of Business
 15th and Flint
 Lubbock, TX 79409

*
*   For searches and help try:
*   http://www.stata.com/help.cgi?search
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/


© Copyright 1996–2014 StataCorp LP   |   Terms of use   |   Privacy   |   Contact us   |   Site index