Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.

# RE: st: FW: Model SS/R-square in nl

 From "CJ Lan" To Subject RE: st: FW: Model SS/R-square in nl Date Thu, 30 Jun 2011 16:24:28 -0400

```If you look at the residual SS, i.e., sum of (yi-yhat)^2, the 1st model renders 28315 and the 2nd model renders 28427, which sounds reasonable because one parameter is eliminated.  My point is the Total SS, i.e., sum of (yi-mean(y))^2, should not be changed (=39434).  Therefore, in the 2nd model, the Model SS = (Total SS)-(residual SS) = 39434-28427 = 11007 and the R2 should have been 0.2791, which is the answer I got from Matlab.

The curve will not be forced through the origin.  The curve of the 1st model starts at (b0+b1=45.6) and decreases at an exponential rate.  Similarly the curve of the 2nd model starts at (b1=44.5) and decreases at a similar exponential rate.

-----Original Message-----
From: owner-statalist@hsphsun2.harvard.edu [mailto:owner-statalist@hsphsun2.harvard.edu] On Behalf Of Nick Cox
Sent: Thursday, June 30, 2011 4:05 PM
To: statalist@hsphsun2.harvard.edu
Subject: Re: st: FW: Model SS/R-square in nl

No, it is not a bug.

Your constant may not be significant by itself, but the model is
different. R-squares for different models are often difficult to
compare effectively.

Plot the fitted curves and the data to see what it is going on.

In my experience, especially with nonlinear models, it is far better
to rely on physical, biological, economic or other scientific
understanding to choose the better model and to compare fitted curves
with the data, rather than to rely blindly on a significance test.
Does it make sense to force the curve through the origin?

Nick

On Thu, Jun 30, 2011 at 6:06 PM, CJ Lan <CJ@jupiter.fl.us> wrote:
> I was using nl to run a 3-parameter NLS model estimation and got R2=0.28
> (see the first output).  Since the parameter b0 is insignificant, I drop
> it and re-estimate it again.  This time, I got the wrong R2 (=0.86 in
> the 2nd output).  It is apparent that either the "Model SS" or "Total
> SS" is wrongly calculated.  Is this bug?  Thank you for help.
>
> (1)
> . nl exp3 : passby A in 1/152
> (obs =152)
> Iteration 0:  residual SS =3D  29741.65
> Iteration 1:  residual SS =3D  28448.53
> Iteration 2:  residual SS =3D  28316.37
> Iteration 3:  residual SS =3D  28315.61
> Iteration 4:  residual SS =3D   28315.6
> Iteration 5:  residual SS =3D   28315.6
> Iteration 6:  residual SS =3D   28315.6
> Iteration 7:  residual SS =3D   28315.6
>      Source |       SS       df       MS     Number of obs =152
> -------------+------------------------------  F(  2,   149) =29.25
>       Model |  11118.3472     2   5559.1736  Prob > F      =0.0000
>    Residual |  28315.6009   149   190.03759  R-squared     =0.2819
>       Total |  39433.9482   151  261.151975  Root MSE      =13.78541
>                                              Res. dev.     =1225.905
> 3-parameter asymptotic regression, passby = b0 + b1*b2^A
> ------------------------------------------------------------------------
>      passby |      Coef.   Std. Err.      t    P>|t| 95% Conf.Interval]
> -------------+----------------------------------------------------------
>          b0 |   11.59292   10.68695     1.08   0.280    -9.52 32.71048
>          b1 |   34.10476   9.433555     3.62   0.000     15.4 52.74559
>          b2 |    .998132   .0011685   854.19   0.000     .995 1.000441
> ------------------------------------------------------------------------
> * Parameter b0 taken as constant term in model & ANOVA table
>  (SEs, P values, CIs, and correlations are asymptotic approximations)
>
> (2)
> . nl exp2 : passby A in 1/152
> (obs =3D 152)
> Iteration 0:  residual SS =3D  29510.02
> Iteration 1:  residual SS =3D  28427.14
> Iteration 2:  residual SS =3D  28426.97
> Iteration 3:  residual SS =3D  28426.97
>      Source |       SS       df       MS     Number of obs =152
> -------------+------------------------------  F(  2,   150) =468.32
>       Model |  177506.602     2  88753.3012  Prob > F      =0.0000
>    Residual |  28426.9672   150  189.513115  R-squared     =0.8620
>       Total |   205933.57   152  1354.82612  Root MSE      =13.76638
>                                              Res. dev.     =1226.502
> 2-parameter exp. growth curve, passby =3D b1*b2^A
> ------------------------------------------------------------------------
>      passby |      Coef.   Std. Err.      t    P>|t|[95% Conf.interval]
> -------------+----------------------------------------------------------
>          b1 |   44.54536   2.038308    21.85   0.000  40.51785 48.57286
>          b2 |   .9988862   .0001727  5783.22   0.000  .9985449 .9992275
> ------------------------------------------------------------------------
>  (SEs, P values, CIs, and correlations are asymptotic approximations)
>

*
*   For searches and help try:
*   http://www.stata.com/help.cgi?search
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/