[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

# st: Number of values in Gaussian Normal Distribution

 From "vmz@vol.net.mt" To "statalist@hsphsun2.harvard.edu" Subject st: Number of values in Gaussian Normal Distribution Date Sun, 04 Oct 2009 22:28:39 +0100

```Dear Statlist,
I am trying to locate the number of values that constitute a Gaussian
Normal Distribution.I am working only on the right side,the positive
side,assuming that the left side is the negative of the positive side.
The way I am going about concluding the number of values in the right
hand side of the Gaussian Normal Distribution,is by taking thousand upon
thousands of draws from the Gaussian distribution, and keeping the
values for the particular interval,each time accumulating,sorting and
dropping the repeating values until I notice that the particular
interval doesn't grow any further.
I start with the interval (0 to .00004) ,as the first interval and then
(.00004 to .00008),as the second interval  ..... ,  ( .0076 to .0078) in
the 195th interval ,which seems to have roughly,the same number of
values,very close to 68518.I discovered some patterns in the number of
values that intervals hold,which made it somewhat easier for me.The
following is what I have found so far.Note that the variable x ,is the
number of time the same number of values,repeats.t

val       min        max       intrv  num  x          tot
68518   0       .00004    .00004  1     0           0
68525 .00776  .0078     .00004  195   195   13362375
50937 .0078   .00784    .00004  196   1     50937
42939 .00784  .00788    .00004  197   0     0
42944 .01556  .0156     .00004  390   194   8331136
34890 .0156   .01564    .00004  391   1     34890
53687 .01564  .01574    .0001   392   0     0
53687 .03114  .03124    .0001   547   156   8375172
13420 .03124  .03128    .00004  548   1     13420
53687 .03128  .03148    .0002   549   0     0
53687 .06228  .06248    .0002   704   156   8375172
18790 .06248  .0626     .00012  705   1     18790
53687 .0626   .063      .0004   706   0     0
53687 .1246   .125      .0004   861   156   8375172
67109 .125    .126      .001    862   0     0
67108 .249    .25       .001    986   125   8388500
33555 .25     .251      .001    987   0     0
33554 .499    .5        .001    1236  250   8388500
33555 .5      .502      .002    1237  0     0
33554 .998    1         .002    1486  250   8388500
33555 1       1.004     .004    1487  0     0
33554 1.996   2         .004    1736  250   8388500
41944 2       2.01      .01     1737  1     41944
41943 2.01    2.02      .01     1738  0     0
41925 3.44    3.45      .01     1881  144   6037200
41927 3.45    3.46      .01     1882  1     41927
41880 3.46    3.47      .01     1883  1     41880
40876 3.47    3.48      .01     1884  1     40876
39480 3.48    3.49      .01     1885  1     39480
38124 3.49    3.5       .01     1886  1     38124
36813 3.5     3.51      .01     1887  1     36813
35541 3.51    3.52      .01     1888  1     35541
34307 3.52    3.53      .01     1889  1     34307
33126 3.53    3.54      .01     1890  1     33126
31980 3.54    3.55      .01     1891  1     31980
30846 3.55    3.56      .01     1892  1     30846
29779 3.56    3.57      .01     1893  1     29779
28723 3.57    3.58      .01     1894  1     28723
27718 3.58    3.59      .01     1895  1     27718
26748 3.59    3.6       .01     1896  1     26748
25797 3.6     3.61      .01     1897  1     25797
24885 3.61    3.62      .01     1898  1     24885
24001 3.62    3.63      .01     1899  1     24001
23140 3.63    3.64      .01     1900  1     23140
22316 3.64    3.65      .01     1901  1     22316
21516 3.65    3.66      .01     1902  1     21516
20743 3.66    3.67      .01     1903  1     20743
19998 3.67    3.68      .01     1904  1     19998
19270 3.68    3.69      .01     1905  1     19270
18569 3.69    3.7       .01     1906  1     18569
17902 3.7     3.71      .01     1907  1     17902
17250 3.71    3.72      .01     1908  1     17250
16623 3.72    3.73      .01     1909  1     16623
15994 3.73    3.74      .01     1910  1     15994
15394 3.74    3.75      .01     1911  1     15394
14826 3.75    3.76      .01     1912  1     14826
14255 3.76    3.77      .01     1913  1     14255
13738 3.77    3.78      .01     1914  1     13738
13235 3.78    3.79      .01     1915  1     13235
12605 3.79    3.78      .01     1916  1     12605
38335 3.78    3.81      .03     1917  1     38335
44761 3.81    3.85      .04     1918  1     44761
47063 3.85    3.9       .05     1919  1     47063
38734 3.9     3.95      .05     1920  1     38734
31780 3.95    4         .05     1921  1     31780
47278 4       4.1       .1      1922  1     47278
52029 4.1     4.3       .2      1923  1     52029
36661 4.3     6.3       2       1924  1     36661

According to the previous data,the number of values that make up the
Gaussian distribution is 87796774 * 2  = 175593548.I am wondering if
there is a simpler way of calculating the number of values,that
constitutes the Gaussian Distribution.
Vicror M. Zammit

*
*   For searches and help try:
*   http://www.stata.com/help.cgi?search
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/
```

 © Copyright 1996–2017 StataCorp LLC   |   Terms of use   |   Privacy   |   Contact us   |   What's new   |   Site index