Statalist


[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

st: Re: random effects logistic model


From   "Martin Weiss" <martin.weiss1@gmx.de>
To   <statalist@hsphsun2.harvard.edu>
Subject   st: Re: random effects logistic model
Date   Sun, 8 Mar 2009 19:09:22 +0100

<>

"rho becomes small and the Likelihood-ratio test of rho=0 is
significant"

In your second excerpt, the p-value is 0.48, which is as insignificant as it can possibly be...

HTH
Martin
_______________________
----- Original Message ----- From: "Eleonora Bartoloni06" <Eleonora.Bartoloni06@phd.wbs.ac.uk>
To: <statalist@hsphsun2.harvard.edu>
Sent: Sunday, March 08, 2009 6:43 PM
Subject: st: random effects logistic model


Hallo,

I’m running a random effects logistic regression. My dependent variable
is adummy (new_inn) indicating if a firm has or has not introduced an
innovation in the reference year. Among the regressors ros is a
profitability ratio. Other regressors are time invariant (inizio,
north_ea north_we centre).

When the model is estimated with contemporaneous regressors, rho is
important and quite “big”, thus signalling that the contribution of the
random effect to the total variance is significant (results shown
below).

xtlogit new_inn inizio add dredbv innset  north_ea north_we centre ros
q_immmat offat imat leverage, re
nolog

Random-effects logistic regression              Number of obs      =
20728
Group variable: codice_i                        Number of groups   =
2591

Random effects u_i ~ Gaussian                   Obs per group: min =
   8
                                                              avg =
 8.0
                                                              max =
   8

                                               Wald chi2(12)      =
1711.52
Log likelihood  = -7360.2547                    Prob > chi2        =
0.0000

------------------------------------------------------------------------------
    new_inn |      Coef.   Std. Err.      z    P>|z|     [95% Conf.
Interval]
-------------+----------------------------------------------------------------
     inizio |  -.0284325   .0044661    -6.37   0.000    -.0371859
-.0196792
        add |   .0002841   .0000894     3.18   0.001      .000109
.0004592
     dredbv |   .3748549   .0764724     4.90   0.000     .2249716
.5247381
     innset |   .2618379   .0071342    36.70   0.000     .2478551
.2758208
   north_ea |    3.97223   .3135382    12.67   0.000     3.357706
4.586753
   north_we |   3.357463   .3099188    10.83   0.000     2.750033
3.964892
     centre |   2.508734   .3235104     7.75   0.000     1.874665
3.142803
        ros |   .0249554    .005251     4.75   0.000     .0146636
.0352472
   q_immmat |  -.0004576   .0016871    -0.27   0.786    -.0037642
.002849
      offat |   .2740084   .0215686    12.70   0.000     .2317347
.3162821
       imat |   4.71e-06   1.61e-06     2.93   0.003     1.56e-06
7.86e-06
   leverage |   -.001068   .0004716    -2.26   0.024    -.0019923
-.0001437
      _cons |  -15.90129   .7207558   -22.06   0.000    -17.31394
-14.48863
-------------+----------------------------------------------------------------
   /lnsig2u |   1.721848   .0741979                      1.576422
1.867273
-------------+----------------------------------------------------------------
    sigma_u |   2.365345   .0877518                      2.199459
2.543742
        rho |   .6297163    .017301                       .595217
.6629404
------------------------------------------------------------------------------
Likelihood-ratio test of rho=0: chibar2(01) =   931.71 Prob >= chibar2 =
0.000


when I introduce lagged regressors (for example past profitability
l1.ros) , rho becomes small and the Likelihood-ratio test of rho=0 is
significant (results shown below)

xtlogit new_inn inizio add dredbv innset  north_ea north_we centre
l1.ros  q_immmat offat imat leverage
, re  nolog

Random-effects logistic regression              Number of obs      =
18137
Group variable: codice_i                        Number of groups   =
2591

Random effects u_i ~ Gaussian                   Obs per group: min =
   7
                                                              avg =
 7.0
                                                              max =
   7

                                               Wald chi2(12)      =
2372.31
Log likelihood  = -6130.5857                    Prob > chi2        =
0.0000

------------------------------------------------------------------------------
new_inn | Coef. Std. Err. z-------------+----------------------------------------------------------------
     inizio |  -.0102302   .0016877    -6.06   0.000     -.013538
-.0069225
        add |   .0001232   .0000313     3.94   0.000     .0000619
.0001845
     dredbv |    .300137   .0474086     6.33   0.000     .2072178
.3930561
     innset |   .0957805   .0021794    43.95   0.000      .091509
.100052
   north_ea |   1.830958   .1539548    11.89   0.000     1.529212
2.132703
   north_we |   1.691782   .1539812    10.99   0.000     1.389984
1.993579
     centre |   1.248131   .1606678     7.77   0.000     .9332275
1.563034
        ros |
        L1. |   .0282246   .0032985     8.56   0.000     .0217597
.0346895
   q_immmat |   .0010361   .0010641     0.97   0.330    -.0010496
.0031217
      offat |   .1227618   .0140188     8.76   0.000     .0952855
.1502382
       imat |   2.68e-06   8.63e-07     3.10   0.002     9.84e-07
4.37e-06
   leverage |  -.0008187   .0003264    -2.51   0.012    -.0014585
-.000179
      _cons |  -7.596277   .2974736   -25.54   0.000    -8.179314
-7.013239
-------------+----------------------------------------------------------------
   /lnsig2u |  -9.570329    6.08817                     -21.50292
2.362265
-------------+----------------------------------------------------------------
    sigma_u |   .0083528   .0254265                      .0000214
3.258061
        rho |   .0000212   .0001291                      1.39e-10
.7634011
------------------------------------------------------------------------------
Likelihood-ratio test of rho=0: chibar2(01) =  2.2e-03 Prob >= chibar2 =
0.481


Is there someone who can help me to interpret these results?
thank you
Eleonora Bartoloni


*
*   For searches and help try:
*   http://www.stata.com/help.cgi?search
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/


*
*   For searches and help try:
*   http://www.stata.com/help.cgi?search
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/



© Copyright 1996–2014 StataCorp LP   |   Terms of use   |   Privacy   |   Contact us   |   What's new   |   Site index