# st: GLLAMM

 From "Stephen Soldz" To Subject st: GLLAMM Date Tue, 24 Sep 2002 17:36:55 -0400

```I'm trying to use GLLAMM for structural equation modeling with a binary
outcome (school attendance 12 months after entering substance abuse
treatment). I'm primarily interested in a path model, with manifest
variables, though there may be one latent variable.  What I really need to
be able to do is translate a path diagram into gllamm code.  I've been going
over the manual, but can't see how to do it.  I don't really have a
multilevel problem, so the i() variable is just client id.

Even for an extremely simple model, predicting school attendance at 12
months from attendance at admission, my model doesn't converge, whereas a
simple logistic model does.

***********************

----------------------------------------------------------------------------
---
log:  C:\Data\MIST\MISTStata\glamm_test.log
log type:  text
opened on:  24 Sep 2002, 17:08:28

.
. logit inschool12 inschool,

Iteration 0:   log likelihood =  -111.1575
Iteration 1:   log likelihood = -104.90761
Iteration 2:   log likelihood = -104.86177
Iteration 3:   log likelihood = -104.86177

Logit estimates                                   Number of obs   =
175
LR chi2(1)      =
12.59
Prob > chi2     =
0.0004
Log likelihood = -104.86177                       Pseudo R2       =
0.0566

----------------------------------------------------------------------------
--
inschool12 |      Coef.   Std. Err.      z    P>|z|     [95% Conf.
Interval]
-------------+--------------------------------------------------------------
--
inschool |   1.203973   .3422187     3.52   0.000     .5332364
1.874709
_cons |   -.071459   .2674319    -0.27   0.789    -.5956158
.4526978
----------------------------------------------------------------------------
--

.
. gllamm inschool12 inschool, i(twistid) family(binom) link(logit) dots
nip(20)

................Iteration 0:   log likelihood = -104.90004
.....................................Iteration 1:   log likelihood
= -104.86177
>   (not concave)
............................................................................
...
> ..............................numerical derivatives are approximate
flat or discontinuous region encountered
............................................................................
...
> .........................numerical derivatives are approximate
flat or discontinuous region encountered
............................................................................
...
> ...........................numerical derivatives are approximate
flat or discontinuous region encountered
....Iteration 2:   log likelihood =  77082.381  (not concave)
............................................................................
...
> ..............................numerical derivatives are approximate
flat or discontinuous region encountered
............................................................................
...
> .........................numerical derivatives are approximate
flat or discontinuous region encountered
............................................................................
...
> ...........................numerical derivatives are approximate
flat or discontinuous region encountered
....Iteration 3:   log likelihood =  77161.125  (not concave)
............................................................................
...
> ........................................................numerical
derivatives
>  are approximate
flat or discontinuous region encountered
............................................................................
...
> ...........................numerical derivatives are approximate
flat or discontinuous region encountered
....Iteration 4:   log likelihood =  77163.479  (not concave)
............................................................................
...
> ...............................numerical derivatives are approximate
flat or discontinuous region encountered
............................................................................
...
> .........................numerical derivatives are approximate
flat or discontinuous region encountered
....................................................Iteration 5:   log
likeliho
> od =  77163.479  (not concave)

number of level 1 units = 175
number of level 2 units = 175

Condition Number could not be computed

gllamm model

log likelihood = 77163.479

----------------------------------------------------------------------------
--
inschool12 |      Coef.   Std. Err.      z    P>|z|     [95% Conf.
Interval]
-------------+--------------------------------------------------------------
--
inschool |   4.53e+07   811588.2    55.86   0.000     4.37e+07
4.69e+07
_cons |  -1.39e+08    7423013   -18.72
0.000    -1.54e+08   -1.24e+08
----------------------------------------------------------------------------
--

Variances and covariances of random effects
----------------------------------------------------------------------------
--

***level 2 (twistid)

var(1): 4.143e+13 (0)
----------------------------------------------------------------------------
--

.
. log close
log:  C:\Data\MIST\MISTStata\glamm_test.log
log type:  text
closed on:  24 Sep 2002, 17:12:50
----------------------------------------------------------------------------
---

. gllamm inschool12 inschool, i(twistid) family(binom) link(logit) dots
nip(20)
....
........................................Iteration 0:   log likelihood
= -104.86
> 177
..................................................................Iteration
1:
>   log likelihood = -104.86177  (not concave)

number of level 1 units = 175
number of level 2 units = 175

Condition Number could not be computed

gllamm model

log likelihood = -104.86177

---------------------------------------------------------------------------
---
inschool12 |      Coef.   Std. Err.      z    P>|z|     [95% Conf.
Interval]
-------------+-------------------------------------------------------------
---
inschool |   1.249865   .3549912     3.52   0.000     .5540955
1.945636
_cons |  -.0745689   .2784373    -0.27   0.789    -.6202959
.4711581
---------------------------------------------------------------------------
---

Variances and covariances of random effects
---------------------------------------------------------------------------
---

***level 2 (twistid)

var(1): .17140917 (0)
---------------------------------------------------------------------------
---

***********

Among other questions, what is the meaning of the level 2 variance, and why
are the coefficients different than the simple logit model.

Any guidance apreciated.

Stephen Soldz
1581 Beacon St.
Brookline, MA 02146
(617) 277-3915

*
*   For searches and help try:
*   http://www.stata.com/support/faqs/res/findit.html
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/
```

• Follow-Ups: