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an72 STB-49–STB-54 available in bound format

Patricia Branton, Stata Corporation, stata@stata.com

The ninth year of the Stata Technical Bulletin (issues 49–54) has been reprinted in a bound book called The Stata Technical
Bulletin Reprints, Volume 9. The volume of reprints is available from StataCorp for $25, plus shipping. Authors of inserts in
STB-49–STB-54 will automatically receive the book at no charge and need not order.

This book of reprints includes everything that appeared in issues 49–54 of the STB. As a consequence, you do not need
to purchase the reprints if you saved your STBs. However, many subscribers find the reprints useful since they are bound in a
convenient volume. Our primary reason for reprinting the STB, though, is to make it easier and cheaper for new users to obtain
back issues. For those not purchasing the Reprints, note that zz10 in this issue provides a cumulative index for the ninth year
of the original STBs.

You may order the Reprints Volumes online at www.stata.com/bookstore/stbr.html or use the enclosed order form.

ip9.1 Update of the byvar command

Patrick Royston, Imperial College School of Medicine, London, UK, p.royston@ic.ac.uk

Abstract: The byvar command has been updated for Stata 6 and a few new features added.

Keywords: Stata commands.

The byvar command introduced in Royston (1995) has been updated for Stata 6 and a few new features added.

References
Royston, P. 1995. ip9: Repeat Stata command by variable(s). Stata Technical Bulletin 27: 3–5. Reprinted in Stata Technical Bulletin Reprints, vol. 5,

pp. 67–69.

sbe32.1 Errata for sbe32

López Vizcaı́no, M. E., Santiago Pérez M. I., Abraira Garcı́a L., Dirección Xeral de Saude Publica, Spain, dxsp3@jet.es

Abstract: Errors in the Methodology section of López Vizcaı́no et al. (2000) are corrected.

Keywords: Outbreak, regression, threshold, public health surveillance.

In the process of editing López Vizcaı́no et al. (2000), errors were introduced into the Methodology section. In the first
two equations in that section the gi’s should have been i’s, while the mi should have been �i. Finally, the sentence that begins
after the third displayed equation should say that the Poisson model corresponds to � = 1 rather that � = 0.

References
López Vizcaı́no M. E., M.I. Santiago Pérez, and L. Abraira Garcı́a. 2000. sbe32: Automated outbreak detection from public health surveillance data.

Stata Technical Bulletin 54: 23–25.

sbe33 Comparing several methods of measuring the same quantity

Paul Seed, GKT School of Medicine, King’s London, UK, paul.seed@kcl.ac.uk

Abstract: New commands are given, based on the Bland–Altman approach to the analysis of studies comparing two or more
methods for measuring the same quantity. An extension to more than two methods is explained, with an associated command.
A new command, based on Pitman’s method, gives confidence intervals for the variance ratio of paired data. It is more
powerful than Stata’s sdtest, particularly for large correlations. For more than two methods, with no reference standard,
a new generalization of Bland–Altman methods is shown and compared with an approach based on factor analysis.

Keywords: Method comparison, Bland–Altman, variance ratio.

The problem

New techniques for taking clinical measurements are always being developed. How can we decide which is best? Sometimes
a new measurement technique is compared with an established “Gold Standard,” which may or may not be regarded as exact.
How good is the new technique? Alternatively, there may be several methods, all seen as imperfect. Which is best?
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Some typical datasets

Consider blood iron where one might want to compare an established method (colorimetry) with two new clinical techniques:
inductively coupled plasma optical emission spectrometry (ICPOES) with 18 pairs of measurements

. use col_icp

. summarize

Variable | Obs Mean Std. Dev. Min Max

---------+-----------------------------------------------------

colorime | 20 19.3 4.878524 11 26

icpoes | 0

icp | 18 31.66667 10.07034 16 56

mean | 18 25.44444 6.116249 13.5 40

diff | 18 -12.44444 10.26257 -38 -5

and ICPOES following protein precipitation with trichloroacetic acid (TCA) with 52 pairs.

. use tca_col,clear

. summarize

Variable | Obs Mean Std. Dev. Min Max

---------+-----------------------------------------------------

colorime | 52 15.09615 5.668141 8 26

tca_ppt_ | 52 13.21154 5.413623 5 23

mean | 52 14.15385 5.498251 6.5 24.5

diff | 52 1.884615 1.395425 -1 5

The question is how does the new test compare with the old?

The second example compares five eyesight tests carried out on 15 patients before and after operations for astigmatism.
We are interested in the percentage improvement in eyesight as measured by each of the five tests.

. use tan_part, clear

. summarize pct_*

Variable | Obs Mean Std. Dev. Min Max

---------+-----------------------------------------------------

pct_1 | 15 20.19054 18.39144 0 60.40134

pct_2 | 15 33.52114 35.62084 .4051345 114.6789

pct_3 | 15 36.47013 57.8477 -13.49776 220.4319

pct_4 | 15 15.95635 11.46139 .7299263 41.23711

pct_5 | 15 24.67195 11.49144 9.999998 42.85715

One last example is tumor activity adjusted for partial volume and glucose uptake (the variable log gp) and that adjusted
for partial volume alone (the variable log p)

. use suv2, clear

. summarize log_g*

Variable | Obs Mean Std. Dev. Min Max

---------+-----------------------------------------------------

log_p | 86 2.260328 .6361188 .2615947 4.098669

log_gp | 86 2.183237 .7080229 -.8204135 3.929667

Simple methods that don’t work

I have found two methods in particular that don’t perform very well in such problems. First, very high correlations are
almost always found. The null hypothesis that there is no association is just not credible. The significance test tells us nothing
we don’t already know. Secondly, the F test, provided by Stata’s sdtest command, is not appropriate for paired data. Pitman’s
test (below) is more powerful, particularly with a large correlation. It is not safe to assume that the measure with the smaller
variance has the smaller component of error. While this is often the case, it might just be less sensitive to genuine variation.

Other methods to use with caution

Linear regression looks for any linear relationship: m2 = a+ bm1, whereas we are often interested in m2 = m1, that is,
a = 0 and b = 1. The method also assumes that m1 is measured without error. This is scarcely likely. If m1 is measured with
error, the estimate of b is biased towards zero.

Paired t tests and confidence intervals for differences in means are useful as evidence of systematic bias, but measures
with large random error can have a nonsignificant t test, even when bias exists. We are mainly interested in the error in each
individual measurement. Bias is not as important as the absolute size of the likely difference.
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Simple approaches that can be useful

The reference range for differences between individual measurements is defined as the mean plus or minus two standard
deviations. Approximately 95% of values will be between these limits. If two measures agree well, the reference range will be
very narrow. Note that the reference range is in the same units as the actual measurement. In Stata we can use

. gen diff = m2 - m1

. summarize diff

. local mdiff = r(mean)

. local lrr = `mdiff' - 2*r(Var)^.5

. local urr = `mdiff' + 2*r(Var)^.5

. display "Mean difference = `mdiff'"

. display "Reference Range = `lrr' to `urr'"

Bland–Altman plots

Bland and Altman (1983) introduced the idea of plotting the difference of paired variables versus their average, with
horizontal lines for the reference range for the difference. Any plots of the actual data are useful to show oddities. The plots
will show no trend if the variance of m1 and m2 are the same. A positive trend shows the variance of e2 is larger than that of
e1. We can use

. gen av = (m1 + m2)/2

. graph diff av, xlab ylab yline(`mdiff', `lrr', `urr')

or use the command baplot included with this insert

. baplot m2 m1

Syntax for baplot command

baplot varname1 varname2
�
if exp

� �
in range

� �
, format(str) avlab(str) difflab(str) graph options

�
Options for baplot

format(str) sets the format for the results given.

avlab(str) gives a variable label to the average before plotting the graph.

difflab(str) gives a variable label to the difference before plotting the graph.

graph options are any of the options allowed with graph, twoway; see [G] graph options.

Examples

Consider comparing a new measure with a gold standard. For the blood-iron data, we can compare ICPOES with Colorimetry
giving the output below and the plot in Figure 1.

. use col_icp, clear

. summarize icp colorime

Variable | Obs Mean Std. Dev. Min Max

---------+-----------------------------------------------------

icp | 18 31.66667 10.07034 16 56

colorime | 18 19.22222 5.105425 11 26

. baplot icp colorime , xlab(0,10,20,30,40) ylab(-40,-20,0,20,40) avlab("ICPOES vs

> Colorimetry")

Bland-Altman comparison of icp and colorime

Limits of agreement (Reference Range for difference): -8.081 to 32.970

Mean difference: 12.444 (CI 7.341 to 17.548)

Range : 13.500 to 40.000

Pitman's Test of difference in variance: r = 0.600, n = 18, p = 0.008

(Figure 1 on next page)
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Figure 1. Comparing ICPOES and colorimetry for the blood-iron data.

We can compare tca-precipitated ICPOES with Colorimetry giving the output below and the graph in Figure 2.

. use tca_col.dta, clear

. summarize colorime tca_ppt_

Variable | Obs Mean Std. Dev. Min Max

---------+-----------------------------------------------------

colorime | 52 15.09615 5.668141 8 26

tca_ppt_ | 52 13.21154 5.413623 5 23

. baplot tca_ppt_ colorime, xlab(0,10,20,30,40) ylab(-40,-20,0,20,40) avlab("Adjust

> ed ICPOES vs Colorimetry")

Bland-Altman comparison of tca_ppt_ and colorime

Limits of agreement (Reference Range for difference): -4.675 to 0.906

Mean difference: -1.885 (CI -2.273 to -1.496)

Range : 6.500 to 24.500

Pitman's Test of difference in variance: r = -0.184, n = 52, p = 0.207
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Figure 2. Comparing tca-precipitated ICPOES with colorimetry.

Pitman’s test of difference in variance

As mentioned earlier, if m1 and m2 have equal variance, the covariance (and hence the correlation) between their average
and their difference will be zero. Pitman’s test looks for a significant correlation between the difference and the average of m1

and m2. If one exists, this is evidence that the variances are not the same. Because this uses the fact that the data are paired, it
can be much more powerful than the usual F test (consider paired and unpaired t tests).

Pitman, quoted in Snedecor and Cochran (1967), extended this test to give a confidence interval for the variance ratio. This
can be obtained by using the new command sdpair included with this insert.
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Syntax for the sdpair command

sdpair varname1 varname2
�
weight

� �
if exp

� �
in range

� �
, format(str) level(#)

�
fweights and aweights are allowed.

Options for sdpair

format(str) sets the format for the display of results.

level(#) specifies the confidence level, in percent, for confidence intervals. The default is level(95) or as set by set level.

Example of Pitman’s test:

Compare tumor activity adjusted for partial volume and glucose uptake with that for partial volume alone:

. sdtest log_p = log_gp

(output omitted )
P < F_obs = 0.1627 P < F_L + P > F_U = 0.3254 P > F_obs = 0.8373

. sdpair log_p log_gp

Pitman's variance ratio test between log_p and log_gp:

Ratio of Standard deviations = 0.8984

95% Confidence Interval 0.8365 to 0.9649

t = -2.986, df = 84, p = 0.004

Multiple Bland–Altman plots for comparing more than two methods

The command bamat produces a matrix of Bland–Altman plots for all possible pairs of methods. This is very useful for a
first comparison of methods, and may identify a method that is clearly inferior to the others. It is illustrated with the eyesight
data.

Syntax for bamat

bamat varlist
�
if exp

� �
in range

� �
, format(str) notable data avlab(str) difflab(str) obs(#)

listwise title(str) graph options
�

Options for bamat

format(str) sets the format for display of results.

notable suppresses display of results.

data lists data used in plotting each graph.

avlab(str) gives a variable label to the average before plotting the graph.

difflab(str) gives a variable label to the difference before plotting the graph.

obs(#) specifies the minimum number of nonmissing values per observation needed for a point to be plotted. The default value
is 2 (pairwise deletion).

listwise specifies listwise deletion of missing data. Default is pairwise. Only observations with no missing values are used.

title(str) adds a single title to the block of graphs.

graph options are any of the options allowed with graph, twoway; see [G] graph options.

Example of bamat

Once again we consider the eyesight data.

. use tan_part,clear

. bamat pct_*

Reference ranges for differences between two methods

Method 1 Method 2 Mean [95% Reference Range] Minimum Maximum

----------------------------------------------------------------------

pct_2 pct_1 13.331 -50.777 77.438 -31.678 88.525

pct_3 pct_1 16.280 -100.401 132.960 -42.994 195.588

pct_3 pct_2 2.949 -100.526 106.424 -44.137 162.944

pct_4 pct_1 -4.234 -47.425 38.956 -46.533 41.237
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pct_4 pct_2 -17.565 -84.648 49.518 -98.993 5.375

pct_4 pct_3 -20.514 -126.212 85.184 -184.780 26.829

pct_5 pct_1 4.481 -32.680 41.643 -31.142 37.500

pct_5 pct_2 -8.849 -64.287 46.589 -71.822 21.817

pct_5 pct_3 -11.798 -115.825 92.229 -182.932 35.720

pct_5 pct_4 8.716 -15.297 32.729 -4.839 27.171

----------------------------------------------------------------------

Range of x values is -6.546 to 139, range of y values is -195.6 to 195.6
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Figure 3. Matrix of Bland–Altman plots for the eyesight data.

Modified Bland–Altman plots

We would like to modify Bland–Altman plots for use with more than two measures when there is no gold standard measure.
For example, if we have eight measures, there would be 28 Bland–Altman plots. We consider a modification that gives one
comparison per measure. The average is just the average of all the measures. We hope this is close to the truth. The difference
we use for the ith measure is the average of the ith measure minus the average of the other measures. We work out a reference
range as before.

If each measure is of the form mi = t+ ei, with the errors independent and of equal variance, then the correlation between
the average and the difference will be zero. If for some particularly useful method, mi has smaller than average variance, there
will be a negative trend.

This method has difficulties if the errors are correlated or the model breaks down in other ways; for example, if mi is a
linear function of the truth, that is, mi = ai + bit+ ei.

We can do this by brute force in Stata by

. egen av = rmean(m1-m5)

. egen mean1 = rmean(m2-m5)

. gen diff = m1 - mean1

. summ diff

. local mdiff = _r(mean)

. local lrr = `mdiff' - 2*r(Var)^.5

. local urr = `mdiff' + 2*r(Var)^.5

. graph diff av, xlab ylab yline(`lrr', `mdiff', `urr')

or use the new command bagroup included with this insert.

Syntax for bagroup

bagroup varlist
�
if exp

� �
in range

� �
, format(str) rows(#) avlab(str) difflab(str)

title(str) obs(#) listwise graph options
�

Options for bagroup

format(str) sets the format for display of results.

rows(#) specifies the number of rows of graphs to be shown.

avlab(str) gives a variable label to the average before plotting the graph.

difflab(str) gives a variable label to the difference before plotting the graph.
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title(str) adds a single title to the block of graphs.

obs(#) specifies the minimum number of nonmissing values per observation needed for a point to be plotted. The default value
is 2 (pairwise deletion).

listwise specifies listwise deletion of missing data. Default is pairwise. Only observations with no missing values are used.

graph options are any of the options allowed with graph, twoway; see [G] graph options.

Example of bagroup

For the eyesight data we obtain the results below and the plot in Figure 4.

. use tan_part, clear

. summarize pct_*

Variable | Obs Mean Std. Dev. Min Max

---------+-----------------------------------------------------

pct_1 | 15 20.19054 18.39144 0 60.40134

pct_2 | 15 33.52114 35.62084 .4051345 114.6789

pct_3 | 15 36.47013 57.8477 -13.49776 220.4319

pct_4 | 15 15.95635 11.46139 .7299263 41.23711

pct_5 | 15 24.67195 11.49144 9.999998 42.85715

. bagroup pct *

Comparisons with the average of the other measures

Variable | Obs Mean SD Difference Reference Range

---------+----------------------------------------------------------

pct_1 | 15 20.19 18.39 -7.46 -59.32 to 44.40

pct_2 | 15 33.52 35.62 9.20 -46.78 to 65.17

pct_3 | 15 36.47 57.85 12.89 -90.12 to 115.89

pct_4 | 15 15.96 11.46 -12.76 -55.15 to 29.63

pct_5 | 15 24.67 11.49 -1.86 -34.88 to 31.15
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Figure 4. Modified Bland–Altman plots for the eyesight data.

Factor analysis

Principal component factor analysis finds linear combinations of the variables. The first accounts for the largest possible
proportion of the total variation. Later factors account for as much as possible of what is left. Correlations, not covariances are
used. Effectively, each variable is standardized to have mean zero and variance one. This gives each the same importance in
determining the factors.

In a factor analysis, the first factor should be a good measure of the truth. If some methods are measuring the wrong thing,
their errors will be correlated. This confounder will tend to appear in secondary, orthogonal factors not in the main measure.
Correlations of each measure with the principal factor are a useful measure of which is most predictive. Significance tests are
not available.

Because the variables are first standardized, factor analysis is not affected by calibration problems of the formmi = ai+bit+ei.
If there is a standard scale (as with the blood iron), this may be a problem. If not (as with the eyesight data), it may be a bonus.

As an example, consider the eyesight data.
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. factor pct_*

(obs=15)

(principal factors; 2 factors retained)

Factor Eigenvalue Difference Proportion Cumulative

------------------------------------------------------------------

1 2.24432 1.81878 0.9872 0.9872

2 0.42554 0.48863 0.1872 1.1743

3 -0.06309 0.08703 -0.0277 1.1466

4 -0.15012 0.03304 -0.0660 1.0806

5 -0.18316 . -0.0806 1.0000

Factor Loadings

Variable | 1 2 Uniqueness

----------+--------------------------------

pct_1 | 0.34981 0.39493 0.72166

pct_2 | 0.81906 0.25653 0.26332

pct_3 | 0.65937 -0.26935 0.49268

pct_4 | 0.52325 -0.36159 0.59546

pct_5 | 0.86169 0.02151 0.25702

. score pct_fac

(based on unrotated factors)

(1 scoring not used)

Scoring Coefficients

Variable | 1

----------+----------

pct_1 | 0.04699

pct_2 | 0.34960

pct_3 | 0.18434

pct_4 | 0.12185

pct_5 | 0.41533

. corr pct_*

(obs=15)

| pct_1 pct_2 pct_3 pct_4 pct_5 pct_fac

---------+------------------------------------------------------

pct_1 | 1.0000

pct_2 | 0.4424 1.0000

pct_3 | 0.1321 0.4704 1.0000

pct_4 | 0.0077 0.3370 0.5163 1.0000

pct_5 | 0.2959 0.7727 0.5814 0.4527 1.0000

pct_fac | 0.3803 0.8905 0.7169 0.5689 0.9369 1.0000

Modeling approaches

If we use the model mi = ai + bit + ei, there are several possibilities, depending on the data. With repeated measures,
we could use errors-in-variables regression (Strike 1991, 1996). With data from more than two methods of measurement, either
restricted factor analysis (Dunn 1989) or multilevel modeling (Goldstein 1995) are possible. None of these are yet available in
Stata.

Conclusions

Bland–Altman plots are a simple, effective way of comparing two methods of measuring the same quantity. More obvious
methods, such as t tests, correlation, and regression can be seriously misleading.

The Stata command sdtest is not appropriate for comparisons of variances with paired data, while the new command
sdpair, based on Pitman’s method, is more powerful, and gives confidence intervals for the variance ratio.

Bland–Altman plots can be generalized to handle more than two methods, while factor analysis allows comparison of each
measure with a good estimate of the truth and is not affected by calibration problems.

References
Bland, J. M. and D. G. Altman. 1983. Measurement in medicine: The analysis of method comparison studies. Statistician 32: 307–317.

Dunn, G. 1989. Design and Analysis of Reliability Studies. London: Edward Arnold.

Goldstein, H. 1995. Multilevel Statistical Models. 2d ed. New York: Halstead.

Snedecor, G. W. and W. S. Cochran. 1967. Statistical Methods. 6th ed. Aimes, IA: Iowa State University Press.

Strike, P. 1991. Statistical Methods in Laboratory Medicine. Oxford: Butterworth.

——. 1996. Measurement in Laboratory Medicine. A Primer on Control and Interpretation. Oxford: Butterworth.
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sbe34 Loglinear modeling using iterative proportional fitting

Adrian Mander, MRC Biostatistics Unit, Cambridge, UK, adrian.mander@mrc-bsu.cam.ac.uk

Abstract: Iterative proportional fitting is a procedure that calculates the expected frequencies within a contingency table. The
algorithm converges to maximum likelihood estimates even when the likelihood is badly behaved and is extremely fast
when the contingency table has a large number of cells.

Keywords: Loglinear modeling, contingency tables, constrained estimation.

Syntax

ipf
�
varlist

� �
weight

�
, fit(string)

�
confile(filename) convars(varlist) save(filename)

expect constr(string) nolog
�

fweights are allowed.

Description

The iterative proportional fitting (IPF) algorithm is a simple method to calculate the expected counts of a hierarchical
loglinear model. The algorithm’s rate of convergence is first order. The more commonly used Newton–Raphson algorithm is
second order. However, each iteration of the IPF algorithm is quicker because Newton–Raphson inverts matrices. This makes the
IPF algorithm much quicker for contingency tables with numerous cells.

The IPF algorithm has the following steps:

1. Initial estimates of the expected frequencies are given. The initial estimates should have associations and interactions that
are less complex than the model being fitted. By default the initial frequencies are 1.

2. The estimates of the expected frequencies are successively adjusted by scaling factors so they match each marginal table.

3. The scaling continues until the log likelihood converges.

The algorithm always converges to the correct expected frequencies even when the likelihood is poorly behaved, for example,
when there are zero fitted counts.

The varlist defines the dimension of the contingency table that the Poisson likelihood is calculated over. If the varlist is
not specified, the variables in the fit option define the dimensions of the contingency table.

Options

fit(string) specifies the loglinear model. It requires special syntax of the form var1*var2+var3+var4. The term var1*var2

includes all the interactions between the two variables and also the main effects of var1 and var2. The main effects var3
and var4 are also included in the model but no interactions. This syntax is used in most books on loglinear modeling.

confile(filename) specifies a .dta file that contains initial values for the expected counts, the variable containing the frequencies
must be called Efreqold. Any missing values in this file will be replaced by 1. This option requires the use of the option
convars.

convars(varlist) specifies the variables in the file specified by confile, excluding Efreqold. This varlist may be a subset of
the variables in the model. All cells not specified with an initial expected frequency will have initial value of 1.

save(filename) specifies the expected frequencies, observed frequencies and estimated probabilities for every cell to be saved
in a .dta file.

expect specifies that the expected frequencies are displayed.

constr(string) specifies initial values for the expected frequencies. The syntax requires a condition in square brackets followed
by a value for the expected frequency. Hence [sex=="male"]2 replaces all initial values for males to be 2.

nolog specifies whether the log likelihood is displayed at each iteration.

Examples

To illustrate the command, data has been taken from Agresti (1990, 308).

. use fish

. describe
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Contains data from fish.dta

obs: 56

vars: 5 23 Nov 1999 15:06

size: 1,344 (99.8% of memory free)

-------------------------------------------------------------------------------

1. lake float %9.0g l

2. gender float %9.0g g g

3. size float %9.0g s

4. food float %12.0g f

5. freq float %9.0g

-------------------------------------------------------------------------------

Sorted by:

and we reconstruct the table on page 309 of Agresti (1990) via the IPF algorithm:

Table 1. Goodness of fit of models

Model G
2

X
2 df

(1) food+ lake � size � gender 116.76114 106.49216 60
(2) food � gender+ lake � size � gender 114.65707 101.24765 56
(3) food � size+ lake � size � gender 101.61156 86.887138 56
(4) food � lake+ lake � size � gender 73.565895 79.579025 48
(5) food � lake+ food � size+ lake � size � gender 52.478477 58.016632 44
(6) food � lake+ food � size+ food � gender+ lake � size � gender 50.263695 52.566868 40

In Table 2, we collapse the information in Table 1 over gender.

Table 2. Goodness of fit of models for a table collapsed over gender

Model G
2

X
2 df

(7) food+ lake � size 81.36248 73.059517 28
(8) food � size+ lake � size 66.212906 54.29039 24
(9) food � lake+ lake � size 38.167236 32.742958 16
(10) food � lake+ food � size+ lake � size 17.079826 15.043343 12

The study is about the factors that influence the primary food choice of alligators. The response variable is the food and
the choices are subclassified by size of alligator, gender of alligator, and one of four lakes the alligators are sampled from. There
were 219 alligators distributed over 80 possible cells. As the data are sparse, the likelihood-ratio test (G2) and the Pearson �2 test
are not reliable, but comparison of the models can be made using G2. Let F = food, L = lake, G = gender, and S = size,
and the following shorthand G2[(F;LGS)j(FG;LGS)] = 2.1 and G2[(FS; FL;LGS)j(FG;FL; FS; LGS)] = 2.2 is used
to compare models (1) and (2) and models (5) and (6), respectively. Both tests are based on 4 degrees of freedom, suggesting
that the table should be collapsed over gender. From the collapsed table, it is clear that both lake and size have effects on the
food choice of the alligator.

Constrained estimation

Constrained estimation can be implemented by selecting appropriate models and initial expected frequencies. This will be
illustrated using a case–control study. Let the variables E and D be exposure and disease (both variables are binary, exposed
cases are defined by D = 1 and E = 1, respectively). The command that fits a model of independence of disease and exposure is

. ipf [fw=freq], fit(E+D) exp

D E Efreq Ofreq prob

0 0 13.962963 16 .2585734

0 1 15.037037 13 .2784636

1 0 12.037037 10 .2229081

1 1 12.962963 15 .2400549

This model constrains the odds ratio to be 1. To constrain the odds ratio to equal 2 requires the initial expected frequency in
either the cell (0,0) or the cell (1,1) for (D,E) to equal 2. The simplest way to alter one cell’s initial expected frequency is by
using the constr option.

. ipf [fw=freq], fit( D + E) constr( [D==0 & E==0]2 ) exp
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D E Efreq Ofreq prob

0 0 16.260628 16 .3011227

0 1 12.739385 13 .2359145

1 0 9.7393703 10 .1803587

1 1 15.260615 15 .282604

An alternative method uses convars and confile. First, create a file of initial values for table and save this file as constr.dta
making sure that it is sorted on D and E. The ipf command will merge this file with the main dataset. Any cells that have no
initial frequency after the merge will not be constrained.

. list

D E Efreqold

1. 0 0 2

2. 0 1 1

3. 1 0 1

4. 1 1 1

The model fit using the constrain file is shown below. Note that all the variables of the constrain file must be specified in
the convars option.

. ipf [fw=freq], fit( D + E) convars(D E) confile(constr) exp

D E Efreq Ofreq prob

0 0 16.260628 16 .3011227

0 1 12.739385 13 .2359145

1 0 9.7393703 10 .1803587

1 1 15.260615 15 .282604

Partial constraints in a marginal table

For illustration purposes, the variables D and E are extended to include one extra category each, call this 2. The basic fit is
now given below.

. ipf [fw=freq], fit( D + E) exp

D E Efreq Ofreq prob

0 0 11.79661 14 .1999426

0 1 7.8644066 2 .133295

0 2 9.3389826 13 .1582879

1 0 8.949152 9 .1516806

1 1 5.9661016 11 .1011204

1 2 7.0847454 2 .1200804

2 0 3.2542372 1 .0551566

2 1 2.1694915 3 .036771

2 2 2.5762711 4 .0436656

The same constrain.dta file as used previously gives the following output.

. ipf [fw=freq], fit( D + E) convars(D E) confile(constr) exp

D E Efreq Ofreq prob

0 0 11.611365 14 .1968022

0 1 4.3895254 2 .0743985

0 2 13 13 .2203383

1 0 11.388637 9 .1930272

1 1 8.6106501 11 .1459428

1 2 2 2 .0338982

2 0 1 1 .0169491

2 1 3 3 .0508473

2 2 4 4 .0677964

Observe that the initial values are missing for all cells except the top left 2� 2 table. Hence this table is partially constrained to
have an odds ratio of 2 in the top left part of the table, but the rest of the table is unconstrained. Note that the partial constraints
are a subset of the marginal table defined by the varlist in the convars option; thus, in this example, the model being fit is
actually D � E with the partially constrained odds ratio 2. If the constr.dta file contained only missing values, then this would
be equivalent to fitting the model D � E.

References
Agresti, A. 1990. Categorical Data Analysis. New York: John Wiley & Sons.
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sg135 Test for autoregressive conditional heteroskedasticity in regression error distribution

Christopher F. Baum, Boston College, baum@bc.edu
Vince Wiggins, Stata Corporation, vwiggins@stata.com

Abstract: Implements Engle’s (1982) test for autoregressive conditional heteroskedasticity (ARCH) in a time-series linear regression
model.

Keywords: Conditional heteroskedasticity, ARCH, Engle.

Syntax

archlm
�
if exp

� �
in range

� �
, lags(numlist) nosample

�
Description

Consider a regression of a time series of T values of a response yt on a regressor matrix X . The errors in this regression
model may be unconditionally heteroskedastic and independently distributed, satisfying the assumptions for the application of
ordinary least squares estimation, but their distribution may exhibit autoregressive conditional heteroskedasticity (ARCH), as
defined by Engle (1982).

archlm computes Engle’s Lagrange multiplier test for ARCH(p), that is, for the absence of ARCH effects up to and including
pth-order, in a time-series model. See Davidson and MacKinnon (1993, 557).

This command is to be used after regress. The test is for use with time-series data; you must tsset your data before
using these tests. The command displays the test statistic, degrees of freedom and p-value, and places values in the return

array. Type return list to see such values.

Options

lags(numlist) specifies the lag order(s) to be tested by archlm. Test results will then be produced for each specified lag order
in numlist. By default, archlm will use p = 1, that is, a single lag.

nosample indicates that the test be performed on either all observations or all observations included in archlm’s if and in

conditions if specified. By default, archlm includes only observations from the estimation sample.

Remarks

The ARCH Lagrange multiplier test is a general test of the null hypothesis that the regression errors �t are not conditionally
heteroskedastic, versus the alternative that their distribution involves a pth-order ARCH process:

H1 : �
2
t = 0 + 1�

2
t�1 + 2�

2
t�2 + :::+ p�

2
t�p

Under the null hypothesis, all of the slope coefficients, 1 through p, are zero. As Engle (1982) first showed, this hypothesis
may be tested by regressing the squares of the regression residuals on a constant and p lagged values of the squared residuals.
Under the null hypothesis, T times the centered R2 from this regression will be distributed �2 (p), where T is the sample size
and p is the number of lagged residual vectors included in the regression. If rejections are encountered, Stata’s arch command
may be used to estimate variations of the ARCH model.

Examples

We access the Klein (1950) Model I data used as an example in the discussion of Stata’s reg3 discussion via net-aware
Stata,

. do http://fmwww.bc.edu/RePEc/bocode/k/klein.do

. tsset year, yearly

. regress consump wagegovt

(output omitted )

. archlm,lags(1 2 3 4)

ARCH LM test statistic, order( 1): 5.542637 Chi-sq( 1) P-value = .0186

ARCH LM test statistic, order( 2): 9.431075 Chi-sq( 2) P-value = .009

ARCH LM test statistic, order( 3): 9.039037 Chi-sq( 3) P-value = .0288

ARCH LM test statistic, order( 4): 8.787176 Chi-sq( 4) P-value = .0666
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Consumption is regressed on the government wage bill. The tests for ARCH(p) effects for orders 1, 2, 3 and 4 each reject the
null hypothesis of no ARCH effects at stronger than the 10% level of significance. As Davidson and MacKinnon stress (1993,
557), such a finding may or may not indicate the presence of conditional heteroskedasticity; it may also point to other forms of
misspecification.

References
Davidson, R. and J. MacKinnon. 1993. Estimation and Inference in Econometrics. New York: Oxford University Press.

Engle, R. 1982. Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50: 987–1007.

Klein, L. 1950. Economic fluctuations in the United States 1921–1941. New York: John Wiley & Sons.

sg136 Tests for serial correlation in regression error distribution

Christopher F. Baum, Boston College, baum@bc.edu
Vince Wiggins, Stata Corporation, vwiggins@stata.com

Abstract: Implements Durbin’s (1970) h test and Breusch (1978) and Godfrey’s (1978) tests for autocorrelation in the disturbances.
Both tests are valid in the presence of stochastic regressors, including lagged dependent variables. The h test is strictly for
first-order autocorrelation whereas the Breusch–Godfrey test is applicable to autocorrelation or moving average of arbitrary
degree.

Keywords: Autocorrelation, moving average, Durbin, Breusch, Godfrey, stochastic regressor, lagged dependent variable.

Syntax

durbinh

bgtest
�
, lags(p)

�
Both commands are to be used after regress; see [R] regress. Both tests are for use with time-series data. You must tsset

your data before using these tests; see [R] tsset.

Description

Consider a regression of a time series of T values of a response yt on a regressor matrix X , possibly including one or
more lagged values of the response variable. For ordinary least squares (OLS) to be the appropriate estimator, the error process
�t should be independently and identically distributed. In the context of time-series data, serial correlation is often encountered,
violating the distributional assumptions on the error process. If lagged dependent variables are included in the regressor matrix,
alternative tests of those distributional assumptions are required.

durbinh computes a form of the Durbin h test (1970) for first-order serial correlation in a model containing a lagged
dependent variable among the regressors. In that context, the commonly applied Durbin–Watson test (see dwstat) is biased
toward acceptance of the null hypothesis of zero autocorrelation. The Durbin h test provides a consistent estimate of the
first-order autocorrelation coefficient � in the AR(1) process �t = ��t�1 + �t when the regressors include yt�1. See Davidson
and MacKinnon (1993, 357–364) for details.

bgtest computes the Breusch–Godfrey Lagrange multiplier test (Breusch 1978, Godfrey 1978) for nonindependence in the
error distribution, conditional on the lag order p. The test’s null hypothesis of independence in the error distribution has “locally
equivalent” alternatives (Godfrey and Wickens 1982) of either AR(p) or MA(p): that is, a pth-order autoregressive or moving
average process. The test statistic, a TR2 Lagrange multiplier measure, is distributed �2 (p) under the null hypothesis. The test
is asymptotically equivalent to the Box–Pierce or Ljung–Box portmanteau tests (the Q statistic implemented in the wntestq

command) for p lags. Unlike either form of the Q statistic, the Breusch–Godfrey test is valid in the presence of stochastic
regressors such as lagged values of the dependent variable.

Both commands display the test statistic, degrees of freedom and p-value, and save results in r(); see [R] saved results.
Type return list to see such values.

The Breusch–Godfrey test for p = 1 is asymptotically equivalent to the Durbin h test. The Durbin h test statistic is presented
as a Student-t test with one degree of freedom.

Options

lags(p) specifies that an autoregressive or moving average process of order p for the regression errors is to be tested. This
option only applies to bgtest. bgtest by default will use only a single lag. A greater number of lagged values may be
included in the test via the lags option.
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Remarks

The Breusch–Godfrey test is a general test of the null hypothesis that the regression errors �t are independently distributed,
versus the alternative that their distribution involves a pth-order process:

H1 : �t = AR(p) or �t = MA(p)

where AR(p) denotes the pth-order autoregressive process, and MA(p) denotes the pth-order moving average process. The test
statistic is computed from the regression of the least squares residuals et on the full matrix of regressors, X , and p lags of the
residuals. Under the null hypothesis, T times the uncentered R2 from this regression will be distributed �2 (p), where T is the
sample size and p is the number of lagged residual vectors included in the regression. A rejection of the null hypothesis implies
that the errors are distributed as AR(p) or MA(p). The indeterminacy arises from the equivalence of the derivatives of these two
models when evaluated under the null hypothesis; in Godfrey and Wickens (1982) terms, they are locally equivalent alternatives
under the null hypothesis.

The Durbin h test is a special case of the Breusch–Godfrey test where p = 1. Textbook discussions of this test often provide
an alternative formula which can be problematic due to the square root of a potentially negative quantity. The Breusch–Godfrey
form of the test may always be computed, and is asymptotically equivalent.

Examples

We access the Klein (1950) Model I data used as an example in Stata’s discussion of the reg3 command via net-aware
Stata.

. do http://fmwww.bc.edu/RePEc/bocode/k/klein.do

. tsset year, yearly

. regress consump wagegovt L.consump

(output omitted )

. durbinh

Durbin-Watson h-statistic: .7848839 t = 3.401193 P-value = .0037

. bgtest

Breusch-Godfrey LM statistic: 8.393221 Chi-sq( 1) P-value = .0038

. bgtest, lags(2)

Breusch-Godfrey LM statistic: 7.866155 Chi-sq( 2) P-value = .0196

Consumption is regressed on the government wage bill and lagged consumption.

The presence of the lagged dependent variable necessitates the use of the Durbin h or Breusch–Godfrey tests. Both tests
overwhelmingly reject the null hypothesis of independent errors, as does the Breusch–Godfrey test with two lags (an alternative
hypothesis of AR(2) or MA(2) in the error distribution).

References
Breusch, T. 1978. Testing for autocorrelation in dynamic linear models. Australian Economic Papers 17: 334–355.

Davidson, R. and J. MacKinnon. 1993. Estimation and Inference in Econometrics. New York: Oxford University Press.

Durbin, J. 1970. Testing for serial correlation in least-squares regression when some of the regressors are lagged dependent variables. Econometrica
38: 410–421.

Godfrey, L. 1978. Testing against general autoregressive and moving average error models when the regressors include lagged dependent variables.
Econometrica 46: 1293–1301.

Godfrey, L. and M. Wickens. 1982. Tests of misspecification using locally equivalent alternative models. In Evaluating the Reliability of Econometric
Models, eds. G. Chow and P. Corsi, 71–99. New York: John Wiley & Sons.

Klein, L. 1950. Economic fluctuations in the United States 1921–1941. New York: John Wiley & Sons.

sg137 Tests for heteroskedasticity in regression error distribution

Christopher F. Baum, Boston College, baum@bc.edu
Nicholas J. Cox, University of Durham, UK, n.j.cox@durham.ac.uk

Vince Wiggins, Stata Corporation, vwiggins@stata.com

Abstract: Implements commands to perform White’s (1980) general test for heteroskedasticity and Breusch and Pagan’s (1979)
LM test for heteroskedasticity with respect to a specified set of variables. Both tests are for linear regression models.

Keywords: Heteroskedasticity, heteroskedastic, White, Breusch–Pagan.
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Syntax

whitetst
�
if exp

� �
in range

� �
, nosample

�
bpagan varlist

�
if exp

� �
in range

�
Description

Consider a regression of n values of a response on a regressor matrix X including p nonconstant regressors.

whitetst computes the White (1980) general test for heteroskedasticity in the error distribution by regressing the squared
residuals on all distinct regressors, and their squares and cross-products. The test statistic, a Lagrange multiplier measure, is
distributed as �2 (p) under the null hypothesis of homoskedasticity. See Greene (2000, 507–511).

bpagan computes the Breusch–Pagan (1979) Lagrange multiplier test for heteroskedasticity in the error distribution,
conditional on a set of variables which are presumed to influence the error variance. The test statistic, a Lagrange multiplier
measure, is distributed as �2 (p) under the null hypothesis of homoskedasticity.

Both commands are to be used after regress. Both commands display the test statistic, degrees of freedom and p-value,
and return results in r(). Type return list to see such values.

The Breusch–Pagan test is asymptotically equivalent to White’s (1980) general test for heteroskedasticity performed by
whitetst if the same auxiliary variables are specified (for White’s test, all distinct regressors, and their squares and cross-
products). This test should not be confused with another Breusch–Pagan test implemented in Stata’s mvreg for the independence
of error vectors in a multivariate setting.

Options

nosample when specified with whitetst indicates that the test be performed on either all observations or all observations
included in whitetst’s if and in conditions if specified. By default, whitetst includes only observations from the
estimation sample.

Remarks

Both these tests are general tests of heteroskedasticity which allow the researcher to take advantage of the consistency of
the least squares point estimates of the coefficient vector, even in the presence of heteroskedasticity. This implies that the least
squares residuals may be used to construct a test to detect heteroskedastic behavior in the true disturbances.

The White test may be described as a general test of the null hypothesis

H0 : �
2
i = �

2 for all i

If the null hypothesis is satisfied, the appropriate covariance matrix for the least squares coefficients will be the conventional
estimator, which is based on the correct estimated covariance matrix of the least squares estimator

V = s
2 (X 0

X)
�1

If the null hypothesis is not appropriate, the correct covariance matrix will be

V = s
2 (X 0

X)
�1

[X 0
X] (X 0
X)

�1

where 
 is a diagonal matrix containing �2i on the diagonal. V may be consistently estimated by

bV = s
2 (X 0

X)
�1

"
nX
i=1

e
2
i xi x

0
i

#
(X 0

X)
�1

where ei are the least squares residuals and xi is the ith row of the regressor matrix. This is the variance estimated by regress

when the robust option is specified. The two estimates of the covariance matrix will differ if the null hypothesis is not supported
by the data. White’s test takes advantage of this difference. It is computed as nR2 in the regression of e2i , the squared residuals,
on a constant and all unique variables in X 
X . The statistic is asymptotically distributed as �2 (p) where p is the number of
nonconstant regressors in the equation.

Although the White test is extremely general, this is also its weakness. A rejection may reveal heteroskedasticity, but it may
also identify some form of misspecification, such as the exclusion of relevant variables from the equation. It is a nonconstructive
test, in that a rejection does not provide a suggested remedy.
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The Breusch–Pagan test is a more specific test in which the null hypothesis may be specified as

H0 : �
2
i = �

2
f (�0 + �

0
zi)

where zi is a set of independent variables. The model is homoskedastic if � = 0. Like the White test, the test produces a
Lagrange multiplier statistic, one-half the explained sum of squares in the regression of e2i = (e

0e=n) on zi. Under the null
hypothesis, this statistic is asymptotically distributed as �2 (p) where p is the number of variables in z.

Examples

With Stata’s auto data read in,

. regress price mpg weight length

. whitetst

White's general test statistic : 39.59324 Chi-sq( 9) P-value = 9.0e-06

The nine degrees of freedom for this test statistic correspond to the three regressors, mpg, weight, length, their squares, and
their three unique crossproducts. The small p-value indicates that the null hypothesis of homoskedasticity is overwhelmingly
rejected.

. gen gpm=1/mpg

. regress price mpg weight length

. bpagan mpg gpm

Breusch-Pagan LM statistic: 6.75232 Chi-sq( 2) P-value = .0342

The two degrees of freedom for the test statistic correspond to the two variables, mpg and gpm, given on the bpagan command.
The p-value indicates that the null hypothesis of homoskedasticity of the errors may be rejected at stronger than the 5% level
of significance.

Note on authorship

whitetst was authored by Baum and Cox; the code was much improved by the availability of rmcoll (documented
online in Stata updated after 28 September 1999). bpagan was authored by Baum and Wiggins.

References
Breusch, T. and A. Pagan. 1979. A simple test for heteroskedasticity and random coefficient variation. Econometrica 47: 1287–1294.
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sg138 Bootstrap inferences about measures of correlation

Dan J. Neal, Syracuse University, djneal@syr.edu

Abstract: This insert presents bootcor, a program that allows researchers to compare the strength of correlation coefficients
in cases where Fisher r-to-z confidence intervals may be inaccurate. bootcor uses bootstrapping to compare Pearson’s
R, intraclass correlations, and concordance coefficients. Results allow the researcher to obtain confidence intervals for the
parameter estimates and a z-score and p-value for the difference of the correlations.

Keywords: Pearson’s R, intraclass correlation, concordance coefficient, bootstrapping.

Syntax

bootcor var1 var2 var3
�
var4

� �
if exp

� �
in range

� �
, reps(#) stat(pearson j icc j concord)

level(#) saving(newfile)
�

Introduction

Applied researchers are often interested in comparing the relative strength of association between different variables. The
standard approach used in these situations is to compute correlations, use the Fisher r-to-z transformation on two of the correlation
coefficients, and then compute a standard error for the difference of these transforms. A simple z-test is then used to infer whether
there is a difference between the two correlations. Additionally, confidence intervals can be constructed around the parameter
estimates for each correlation coefficient.
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There are drawbacks to the Fisher r-to-z technique. One drawback is the assumption that the original data are distributed
bivariate normal. In applied research, this is rarely the case, and when the assumption of bivariate normality breaks down,
confidence intervals and inferences about correlations can be inaccurate. A second drawback, and one that is much more
problematic, is that the researcher often wants to compare correlations calculated from the same sample of observations, that is,
elements of a correlation matrix. Such coefficients are not independent of each other, and therefore formulas for the standard
error of the difference in z-transforms may not be readily available.

This insert presents bootcor, a program that uses bootstrapping (Efron and Tibshirani 1993) to make more accurate
inferences about the difference of correlation coefficients. bootcor creates a user-specified number of bootstrap resamples of
the dataset, and computes the two correlation coefficients being compared for each resample. These two correlation coefficients
are then r-to-z transformed (to improve the symmetry of the distributions) and a difference score is calculated. A z-test is used
on the distribution of difference scores.

bootcor can make inferences about Pearson product-moment correlation coefficients, intraclass correlation coefficients,
and concordance coefficients. The user can specify three or four variables. If three variables are selected, a comparison is made
between r(var1,var2) and r(var1,var3). If four variables are selected, a comparison is made between r(var1,var2) and
r(var3,var4).

Options

reps(#) allows the user to specify how many bootstrap replications B to compute. The default value of B is 50. It is
recommended that B be at least 1000 for adequate accuracy when estimating percentiles of sampling distributions.

stat(pearson j icc j concord) specifies which measure of correlation should be used in the comparison. The Pearson
product-moment correlation coefficient (pearson) is the default setting. The user can also choose from two other measures
of agreement: the intraclass correlation coefficient (icc) or the concordance coefficient (concord). The user does not need
to have additional commands installed for computing intraclass or concordance coefficients.

level(#) allows the user to specify the level of confidence for the individual correlation coefficients. Level can range from 1
to 99.9. The default is 95.

saving(newfile) will export the bootstrap replications to a .dct file that the user can later analyze in more detail. Five variables
are saved, with each resample listed casewise. r boot1 is r1, r boot2 is r2, z boot1 is the Fisher-transformed value of
r boot1, z boot2 is the Fisher-transformed value of r boot2, and z bootd is the difference of z boot1 and z boot2.
The user can load this file into Stata using the command

. infile using newfile.dct

Examples

The following examples are demonstrated on a subset of data from a dataset of alcohol-related measures in college students.
Data were collected at two times, within one week of each other. The dataset is called bootcor.dta and is provided on the
STB diskette.

. use bootcor.dta, clear

. describe

Contains data from bootcor.dta

obs: 82

vars: 8 18 May 1999 23:35

size: 1,476 (99.1% of memory free)

-----------------------------------------------------------------------------

1. ads1 byte %8.0g Alcohol Dependence Time 1

2. ads2 byte %8.0g Alcohol Dependence Time 2

3. rapiy1 byte %8.0g Alcohol Related Problems in the

Last Year Time 1

4. rapim1 byte %8.0g Alcohol Related Problems in the

Last Month Time 1

5. rapiy2 byte %8.0g Alcohol Related Problems in the

Last Year Time 2

6. rapim2 byte %8.0g Alcohol Related Problems in the

Last Month Time 2

7. bac1 float %9.0g Peak BAC Time 1

8. bac2 float %9.0g Peak BAC Time 2

-----------------------------------------------------------------------------

Sorted by:
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. summarize

Variable | Obs Mean Std. Dev. Min Max

---------+-----------------------------------------------------

ads1 | 82 6.719512 3.976084 0 18

ads2 | 82 6.02439 3.6106 1 15

rapiy1 | 82 5.987805 6.621129 0 37

rapim1 | 82 1.256098 1.929696 0 9

rapiy2 | 82 5.512195 6.070052 0 29

rapim2 | 82 1.207317 2.083076 0 9

bac1 | 82 .0771341 .0663231 0 .268

bac2 | 82 .0782512 .0595403 0 .236

Comparing the test-retest reliabilities of measures

In this first analysis, it is of interest whether the intraclass test-retest correlation coefficients of the two measures of
alcohol-related problems are equal. In other words, is there any difference in the reliability of estimates of the number of alcohol
problems in the past month versus problems in the last year?

. bootcor rapiy1 rapiy2 rapim1 rapim2, r(1000) stat(icc) level(90)

Results of Bootstrap Comparison of Intraclass Correlation

------------------------------------------------------------------------

Bootstrap Replications: 1000 Observations: 82

------------------------------------------------------------------------

Variables Observed Bootstrap Mean(R) [ 90% CI ]

rapiy1 & rapiy2 0.901 0.900 0.865 0.926

rapim1 & rapim2 0.676 0.667 0.507 0.783

------------------------------------------------------------------------

Z-score of Fisher R-to-Z Difference: 4.671 P-Value: 0.000

------------------------------------------------------------------------

The results of this bootstrap comparison yield a highly significant result, with a z = 4.671. We would reject the null
hypothesis that these two assessments have the same test-retest reliability; it appears that people are reliably better at reporting
alcohol-related problems over the past year than in the past month. Also of interest are the confidence intervals for the two
parameter estimates. The 90% confidence intervals for the parameters rho(rapiy1,rapiy2) and rho(rapim1,rapim2) are
listed above.

In the second analysis, the question of interest is whether the strength of the relationship between peak blood alcohol content
and alcohol-related problems is the same as peak blood alcohol content and alcohol dependence symptoms.

. bootcor bac1 rapim1 ads1, reps(1000) level(90)

(0 observations deleted)

Results of Bootstrap Comparison of Pearson's R

------------------------------------------------------------------------

Bootstrap Replications: 1000 Observations: 82

------------------------------------------------------------------------

Variables Observed Bootstrap Mean(R) [ 90% CI ]

bac1 & rapim1 0.652 0.655 0.504 0.766

bac1 & ads1 0.502 0.502 0.356 0.624

------------------------------------------------------------------------

Z-score of Fisher R-to-Z Difference: 1.577 P-Value: 0.115

------------------------------------------------------------------------

The results of this bootstrap comparison yield a nonsignificant result, with a z = 1.577 and p = .115. The 90% confidence
intervals for the parameters rho(bac1,rapim1) and rho(bac1,ads1) are listed above as well.

(Continued on next page)
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Saved Results

bootcor saves in r():

Scalars

r(z) observed z-value of the mean of the difference scores
r(p) probability of observing a z equal to or more extreme than observed
r(corr1) value of r1 as calculated from the dataset
r(bcorr1) observed mean of the bootstrap distribution of r1
r(bcorr1l) lower limit of the confidence interval of r1
r(bcorr1u) upper limit of the confidence interval of r1
r(corr2) value of r2 as calculated from the dataset
r(bcorr2) observed mean of the bootstrap distribution of r2
r(bcorr2l) lower limit of the confidence interval of r2
r(bcorr2u) upper limit of the confidence interval of r2
r(bse1) standard error of the bootstrap distribution of r1
r(bse2) standard error of the bootstrap distribution of r2
r(bsed) standard error of the bootstrap distribution of difference scores
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sg139 Logistic regression when binary outcome is measured with uncertainty

Mario Cleves, Stata Corporation, mcleves@stata.com
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Abstract: Traditional logit or logistic regression assumes that the outcome variable is measured without error. In some studies,
however, the outcome variable is measured with imperfect sensitivity and specificity. It is known that the resulting
misclassification will lead to biased parameter point estimates and variances. In this insert we implement an EM algorithm
suggested by Magder and Hughes (1997) that produces unbiased estimates of parameters and their variances.

Keywords: Logit, logistic models, sensitivity, specificity, EM algorithm, measurement error.

Syntax

logitem depvar
�
indepvars

� �
if exp

� �
in range

�
, sens(sensvar j #) spec(specvar j #)�

level(#) robust nolog noor iterate(#) tolerance(#) ltolerance(#)
�

Syntax for predict

predict
�
type

�
newvarname

�
if exp

� �
in range

� �
, statistic

�
where statistic is

p probability of a positive outcome (the default)
xb xjb, fitted values
stdp standard error of the prediction
� number sequential number of the covariate pattern

Unstarred statistics are available both in and out of sample; type predict : : : if e(sample) : : : if wanted only for the estimation sample. Starred

statistics are calculated only for the estimation sample even when if e(sample) is not specified.

Description

logitem uses an expectation-maximization (EM) algorithm to estimate a maximum-likelihood logit regression model when
the outcome variable is measured with an imperfect test of known sensitivity and specificity.

The method allows the sensitivity and specificity to vary across observations.
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Options

sens(sensvar j #) specifies the value or the name of the sensitivity variable. Sensitivity should be between 0 and 1.

spec(specvar j #) specifies the value or the name of the specificity variable. Specificity should be between 0 and 1.

level(#) specifies the confidence level, in percent, for confidence intervals. The default is level(95) or as set by set level.

robust specifies that the Huber/White/sandwich estimator of variance is to be used in place of the traditional calculation.

nolog prevents logitem from showing the iteration log.

noor reports the estimated coefficients instead of odds ratios. This option affects how results are displayed, not how they are
estimated. noor may be specified at estimation or when redisplaying previously estimated results.

iterate(#), tolerance(#), and ltolerance(#) specify the definition of convergence.

iterate(16000) tolerance(1e-6) ltolerance(0) is the default.

Convergence is declared when

mreldif(bi+1;bi) � tolerance()

or reldif(lnL(bi+1); lnL(bi)) � ltolerance()

for two consecutive EM steps. In addition, iteration stops when i = iterate(); in that case, results along with the message
“convergence not achieved” are presented. The return code is still set to 0.

Options for predict

p, the default, calculates the probability of a positive outcome.

xb calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

number numbers the covariate patterns—observations with the same covariate pattern have the same number. Observations not
used in estimation have the prediction set to missing. The “first” covariate pattern is numbered 1, the second 2, and so on.

Remarks

Traditional logit or logistic regression assumes that the outcome variable is measured without error. In some studies, however,
the outcome variable is not measured perfectly. This can occur, for example, when using a diagnostic test having sensitivity
and/or specificity lower than 100%. The resulting misclassification can lead to bias in the coefficients estimated and related
statistics (Copeland, et al. 1977).

Magder and Hughes (1997) proposed an EM algorithm that incorporates the values of the sensitivity and specificity of
the classification test into the estimation of the logistic parameters. They showed that in the presence of misclassification,
their procedure produced unbiased estimates of both the coefficients and their variances. It is this EM algorithm that we have
implemented in logitem. Note that when sensitivity and specificity are both set to one, logitem and logistic produce the
same estimates.

Examples

Tosetto, et al. (1999) conducted a case–control study to determine the importance of the prothrombin gene allele G20210A as
a risk factor in venous thromboembolism (VTE). The study consisted of 116 VTE patients and 232 healthy individuals ascertained
randomly from a well defined population. For each subject in the study, they obtained information regarding previous diagnosis
of VTE using a survey tool with an estimated sensitivity of 71.3% and specificity of 98.9%.

Each subject in the study was also typed at the prothrombin locus. No homozygous carriers of the mutated allele (G20210A)
were found. Thirteen (3.7%) subjects were heterozygous for the mutation and the remaining 335 subjects did not have the
mutation.

In our data, case indicates whether the patient has been diagnosed with VTE, and pro whether the individual has the
mutation. Here are the results from logistic:

. logistic case pro

Logit estimates Number of obs = 348

LR chi2(1) = 0.16

Prob > chi2 = 0.6926

Log likelihood = -221.42878 Pseudo R2 = 0.0004
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------------------------------------------------------------------------------

case | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

pro | 1.261261 .7337818 0.399 0.690 .403264 3.94476

------------------------------------------------------------------------------

and those from logitem incorporating the sensitivity and specificity:

. logitem case pro, sens(.713) spec(.989) nolog

logistic regression when outcome is uncertain

Number of obs = 348

LR chi2(1) = 0.00

Log likelihood = -221.42878 Prob > chi2 = 0.9998

------------------------------------------------------------------------------

| Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

pro | 1.355498 1.065479 0.387 0.699 .2904148 6.326728

------------------------------------------------------------------------------

Neither model provides evidence supporting the hypothesis of an association between the mutated allele and VTE. Note that
although the odds ratio reported by logitem is larger—further from the null—than that reported by standard logistic regression,
its standard error is larger, reflecting the added uncertainty about the outcome variable. This is a known property of this method;
namely, the EM algorithm typically produces larger odds ratios and larger variances.

Saved Results

logitem saves in e():

Scalars
e(N) number of observations
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(df m) model degrees of freedom
e(chi2) �2

e(r2 p) pseudo R-squared
Macros

e(cmd) logitem

e(depvar) name of dependent variable
e(chi2type) LR; type of model �2 test

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and Formulas

Let Yi = 1 if individual i truly has the outcome of interest (diseased) and 0 otherwise (nondiseased). Let Ti = 1 if individual
i is classified as having the outcome and 0 otherwise. Assume that bYi is the probability that the ith individual truly has the
condition being studied given the values of Ti and k � 1 covariate vector Xi. Then if individual i is classified as having the
outcome (Ti = 1),

bYi = Prob(Yi = 1jXi; �) � sensitivity
Prob(Yi = 1jXi; �) � sensitivity + Prob(Yi = 0jXi; �) � (1� speci�city)

and if Ti = 0, bYi = Prob(Yi = 1jXi; �) � (1� sensitivity)

Prob(Yi = 1jXi; �) � (1� sensitivity) + Prob(Yi = 0jXi; �) � speci�city

where � is a k � 1 coefficient vector to be estimated, and

Prob(Yi = 1jXi; �) =
exp(

Pk

j=0 �jXij)

1 + exp(
Pk

j=0 �jXij)
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The EM algorithm begins by first setting � to an arbitrary value and computing bYi for each observation. This is the
expectation step.

The data are then duplicated and each observation included twice, once with the outcome variable set to 1 and another
with the outcome set to zero. A weighted logistic regression model is fitted with weights equal to bYi if the outcome variable is
1 and (1� bYi) if it is zero. This constitutes the maximization step.

The new �’s obtained from the fitted logistic model are used to calculate new bYi’s and the process repeated until convergence
is declared.
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sg140 The Gumbel quantile plot and a test for choice of extreme models

Manuel G. Scotto, University of Lisbon, arima@mail.telepac.pt

Abstract: Some statistical tools for exploratory data analysis are presented. The Gumbel quantile plot is described as an informal
way to test if the Gumbel distribution provides a good fit for data. Furthermore, we include a method of statistical choice
among the three extreme value distributions.

Keywords: Generalized extreme value distribution, hypothesis testing, Gumbel quantile plot.

Syntax

gqpt varname
�
if exp

� �
in range

�
Introduction

The main goal of this work is in dealing with the statistical choice of extreme models. This is essential in applications
where the attention is focused at rarely occurring events, such as an annual maximal flood exceeding dykes, or a seasonal
minimal temperature below the critical value for crop production. We restrict ourselves to the one-dimensional case and start
with a discussion of the problem.

Let X1; : : : ; Xn be independent and identically distributed random variables with underlying marginal distribution given by

G�(x;�; �) = exp

 
�
�
1 + �

x� �

�

��1=�
!
; 1 + �

x� �

�
> 0; �1 < � <1

which is the well-known generalized extreme value distribution (GEV). The parameters � and � are the location and scale
parameters respectively and � is the shape parameter and may be used to model a wide range of tail behaviors. There are three
particular forms of G corresponding to � > 0 (Fréchet distribution), � < 0 (Weibull distribution), and � = 0 being interpreted
as the limit as � ! 0, widely called the Gumbel distribution. We use the Gumbel quantile plot (GQP) and the statistic first
introduced by Gumbel and developed by Tiago de Oliveira and Gomes (1984), hereafter referred to as OG. for a quick statistical
choice between the extreme models.

The quantile plot for the Gumbel distribution

Probability plotting papers are commonly used to assess, in an informal way, whether a sample comes from a particular
distribution. For the Gumbel distribution, the quantile function is given by

�(x;�; �) = exp

�
� exp(�x� �

�
)

�
; �1 < x <1

which leads to so called double logarithmic plotting. To this end, we first take the ordered sample X1:n � : : : � Xn:n and plot
Xi:n versus � log(� log(pi)), where pi = i=(n+1) is the classical plotting position. If the Gumbel distribution provides a good
fit to our data, then the GQP should look roughly linear. Furthermore, both Fréchet and Weibull models can also be validated by
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means of the GQP. If the plot has a downside concavity we can assume a Fréchet model whereas an upside concavity indicates
a Weibull model. Finally, note that

� log(� log(pi)) = ��
�
+
Xi:n

�

Using linear regression, quick estimates for � and � can be deduced from the slope and the intercept. Maximum likelihood
estimators can be obtained by means of the gumbel command introduced in Scotto and Tobias (1998).

Statistical choice between the extreme models

Statistical choice among the extreme models gives a central and preeminent position to the Gumbel distribution due to the
simplicity of inferences associated with this distribution. We present a test for H0: � = 0 in the GEV(�) model. We consider the
statistic,

Qn =
Xn:n �X([n=2]+1):n

X([n=2]+1):n �X1:n

which is location and dispersion-parameter free. Under the validity of H0, it was shown by OG that there exist an > 0 and
bn such that Wn = an(Qn � bn) ! �(_). One choice is an = log log 2 and bn = (logn + log log 2)=(log logn� log log 2).
OG proposed a simple deciding rule in order to decide among the extreme models; choose 0 < b < a < 1 and decide for
the Gumbel distribution when b � Wn � a, for the Fréchet distribution when Wn > a, and for the Weibull distribution when
Wn < b. The values of a and b corresponding to the usual significance are given in the table below.

� a b

0.050 -1.561334 3.161461
0.025 -1.719620 3.843121
0.010 -1.893530 4.740459
0.001 -2.222295 7.010001

Example

We applied both the GQP and the statistical test described above, to the annual maximum sea levels in Venice dataset during
the period 1981–82 (Smith 1986).

. gqpt seal

Variable | Delta Lambda Q W

---------------------------------------------------------------

seal | 15.938767 96.122623 2.3608653 .41984981

---------------------------------------------------------------

-----------------------------------------------------

Values corresponding to the usual significance levels

-----------------------------------------------------

alpha b a

.050 -1.561334 3.161461

.025 -1.719620 3.841321

.010 -1.893530 4.740459

.001 -2.222951 7.010001

This gives rise to the graph in Figure 1.

(Graph on next page)
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Figure 1. Gumbel quantile plot of annual maximum sea level in Venice, for the period 1981–82.
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sg141 Treatment effects model

Ronna Cong, Stata Corporation, rcong@stata.com
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Abstract: This article describes the new command treatreg and the treatment effects model that it estimates. treatreg
estimates a treatment effects model using either a two-step consistent estimator or full maximum-likelihood. The treatment
effects model considers the effect of an endogenously chosen binary treatment on another endogenous continuous variable,
conditional on two sets of independent variables. In addition to a verbal and mathematical description of the treatment
effects model and complete syntax diagram for the command, this article has several empirical examples which illustrate
how the command is used and how to interpret its output.

Keywords: Probit, endogenous treatment, simultaneous LDV models.

Syntax

Basic syntax

treatreg depvar
�
varlist

�
, treat(depvars = varlists)

�
twostep

�
Full syntax for maximum likelihood estimates only

treatreg depvar
�
varlist

� �
weight

� �
if exp

� �
in range

�
, treat(depvars = varlists

�
, noconstant

�
)�

robust cluster(varname) hazard(newvarname) noconstant first noskip level(#)

iterate(#) maximize options
�

Full syntax for two-step consistent estimates only

treatreg depvar
�
varlist

� �
if exp

� �
in range

�
, twostep treat(depvars = varlists

�
, noconstant

�
)�

hazard(newvarname) noconstant first level(#)
�

pweights, aweights, fweights, and iweights are allowed with maximum likelihood estimation; see [U] 14.1.6 weight. No weights are allowed if
twostep is specified.

treatreg shares the features of all estimation commands; see [U] 23 Estimation and post-estimation commands.
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Syntax for predict

predict
�
type

�
newvarname

�
if exp

� �
in range

� �
, statistic

�
where statistic is

xb xjb, fitted values (the default)

yctrt E(yj j treatment = 1)

ycntrt E(yj j treatment = 0)

ptrt P(treatment = 1)

xbtrt linear prediction for treatment equation
stdptrt standard error of the linear prediction for treatment equation

stdp standard error of the prediction
stdf standard error of the forecast

Description

treatreg estimates a treatment effects model using either a two-step consistent estimator or full maximum likelihood.
The treatment effects model considers the effect of an endogenously chosen binary treatment on another endogenous continuous
variable, conditional on two sets of independent variables.

Options

treat(: : :) specifies the variables and options for the treatment equation. It is an integral part of specifying a treatment effects
model and is not optional.

twostep specifies that two-step efficient estimates of the parameters, standard errors, and covariance matrix are to be produced.

robust specifies that the Huber/White/sandwich estimator of the variance is to be used in place of the conventional MLE

variance estimator. robust combined with cluster() further allows observations which are not independent within cluster
(although they must be independent between clusters).

If you specify pweights, robust is implied; See [U] 23.11 Obtaining robust variance estimates.

cluster(varname) specifies that the observations are independent across groups (clusters) but not necessarily independent within
groups. varname specifies to which group each observation belongs. cluster() affects the estimation of the variance–
covariance matrix and, thus, of the standard errors (VCE), but not the estimated coefficients. cluster() can be used with
pweights to produce estimates for unstratified cluster-sampled data.

cluster() implies robust; that is, specifying robust cluster() is equivalent to typing cluster() by itself.

hazard(newvarname) will create a new variable containing the hazard from the treatment equation. The hazard is computed
from the estimated parameters of the treatment equation.

noconstant suppresses the constant term (intercept) in the model. This option may be specified on the regression equation, the
treatment equation, or both.

first specifies that the first-step probit estimates of the treatment equation be displayed prior to estimation.

noskip specifies that a full maximum likelihood model with only a constant for the regression equation be estimated. This
model is not displayed but is used as the base model to compute a likelihood-ratio test for the model test statistic displayed
in the estimation header. By default, the overall model test statistic is an asymptotically equivalent Wald test of all the
parameters in the regression equation being zero (except the constant). For many models, this option can significantly
increase estimation time.

level(#) specifies the confidence level, in percent, for confidence intervals. The default is level(95) or as set by set level.

iterate(#) restricts the maximum number of iterations during optimization to the specified number; see [R] maximize.

iterate(0) produces two-step parameter estimates with standard errors computed from the inverse Hessian of the full
information matrix at the two-step solution for the parameters. As an alternative, the twostep option computes two-step
consistent estimates of the standard errors.

maximize options control the maximization process; see [R] maximize. You will seldom need to specify any of the maximize
options except for iterate(0) and possibly difficult. If the iteration log shows many “not concave” messages and it
is taking many iterations to converge, try the difficult option to see if that helps it to converge in fewer steps.



Stata Technical Bulletin 27

Options for predict

xb the default, calculates the linear prediction xjb.

yctrt calculates the expected value of the dependent variable conditional on the presence of the treatment; E(yj j treatment = 1).

ycntrt calculates the expected value of the dependent variable conditional on the absence of the treatment; E(yj j treatment = 0).

ptrt calculates the probability of the presence of the treatment: P(treatment = 1) = Pr(wj + uj > 0).

xbtrt calculates the linear prediction for the treatment equation.

stdptrt calculates the standard error of the linear prediction for the treatment equation.

stdp calculates the standard error of the prediction. It can be thought of as the standard error of the predicted expected value
or mean for the observation’s covariate pattern. This is also referred to as the standard error of the fitted value.

stdf calculates the standard error of the forecast. This is the standard error of the point prediction for a single observation. It
is commonly referred to as the standard error of the future or forecast value. By construction, the standard errors produced
by stdf are always larger than those produced by stdp; see [R] regress Methods and Formulas.

Remarks

The treatment effects model estimates the effect of an endogenous binary treatment, Zj , on a continuous, fully-observed
variable yj , conditional on the independent variables xj and wj . The primary interest is in the regression function

yj = xj� + �zj + �j

where zj is an endogenous dummy variable indicating whether the treatment is assigned or not. The binary decision to obtain
the treatment zj is modeled as the outcome of an unobserved latent variable, z�j . It is assumed that z�j is a linear function of
the exogenous covariates wj and a random component uj . Specifically,

z
�
j = wj + uj

and the observed decision is

zj =

�
1; if z�j > 0
0; otherwise

where � and u are bivariate normal with mean zero and covariance matrix�
� �

� 1

�

There are many variations of this model in the literature. Maddala (1983) derives the maximum likelihood and two-step
estimators of the version implemented here. Maddala (1983) also gives a brief review of several empirical applications of this
model. Barnow, et al. (1981) provide another useful derivation of this model. Barnow et al. (1981) concentrate on deriving the
conditions in which the self-selection bias of the simple OLS estimator of the treatment effect, �, is nonzero and of a specific
sign.

Example

We will illustrate treatreg using a subset of the Mroz data distributed with Berndt (1991). This dataset contains 753
observations on women’s labor supply. Our subsample is of 250 observations, with 150 market laborers and 100 nonmarket
laborers. Since 40% of the women in our sample chose not to enter the labor market, the simple treatment regression model
is not the correct model for these data. Ideally, we would like a model that accounts for the sample selection on entering the
labor force and the endogeneity of the college degree. Despite this misspecification, this dataset can be used to illustrate how
the treatreg command works.

. use labor, clear

. describe

Contains data from labor.dta

obs: 250

vars: 15

size: 16,000 (98.4% of memory free)

-------------------------------------------------------------------------------

1. lfp float %9.0g 1 if woman worked in 1975

2. whrs float %9.0g wife's hours of work
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3. kl6 float %9.0g # of children younger than 6

4. k618 float %9.0g # of children between 6 and 18

5. wa float %9.0g wife's age

6. we float %9.0g wife's education attainment

7. ww float %9.0g wife's wage

8. hhrs float %9.0g husband's hours worked in 1975

9. ha float %9.0g husband's age

10. he float %9.0g husband's educational attainment

11. hw float %9.0g husband's wage

12. faminc float %9.0g family income

13. wmed float %9.0g wife's mother's educational

attainment

14. wfed float %9.0g wife's father's educational

attainment

15. cit float %9.0g 1 if live in large city

-------------------------------------------------------------------------------

Sorted by:

. summarize

Variable | Obs Mean Std. Dev. Min Max

---------+-----------------------------------------------------

lfp | 250 .6 .4908807 0 1

whrs | 250 799.84 915.6035 0 4950

kl6 | 250 .236 .5112234 0 3

k618 | 250 1.364 1.370774 0 8

wa | 250 42.92 8.426483 30 60

we | 250 12.352 2.164912 5 17

ww | 250 2.27523 2.59775 0 14.631

hhrs | 250 2234.832 600.6702 768 5010

ha | 250 45.024 8.171322 30 60

he | 250 12.536 3.106009 3 17

hw | 250 7.494435 4.636192 1.0898 40.509

faminc | 250 23062.54 12923.98 3305 91044

wmed | 250 9.136 3.536031 0 17

wfed | 250 8.608 3.751082 0 17

cit | 250 .624 .4853517 0 1

We will assume that the wife went to college if her educational attainment was more than 12 years. Let wc be the dummy
variable indicating whether the individual went to college. With this definition, our sample contains the following distribution
of college education.

. gen wc = 0

. replace wc = 1 if we > 12

(69 real changes made)

. tab wc

wc | Freq. Percent Cum.

------------+-----------------------------------

0 | 181 72.40 72.40

1 | 69 27.60 100.00

------------+-----------------------------------

Total | 250 100.00

We will model the wife’s wage as a function of her age, whether the family was living in a big city, and whether she went to
college. An ordinary least squares estimation produces the following results:

. regress ww wa cit wc

Source | SS df MS Number of obs = 250

---------+------------------------------ F( 3, 246) = 4.82

Model | 93.2398568 3 31.0799523 Prob > F = 0.0028

Residual | 1587.08776 246 6.45157627 R-squared = 0.0555

---------+------------------------------ Adj R-squared = 0.0440

Total | 1680.32762 249 6.74830369 Root MSE = 2.54

------------------------------------------------------------------------------

ww | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

wa | -.0104985 .0192667 -0.545 0.586 -.0484472 .0274502

cit | .1278922 .3389058 0.377 0.706 -.5396351 .7954194

wc | 1.332192 .3644344 3.656 0.000 .6143819 2.050001

_cons | 2.278337 .8432385 2.702 0.007 .6174489 3.939225

------------------------------------------------------------------------------

Is 1.332 a consistent estimate of the marginal effect of a college education on wages? If individuals choose whether or not
to attend college and the error term of the model that gives rise to this choice is correlated with the error term in the wage
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equation, then the answer is no. (See Barnow et al. 1981 for a good discussion of the existence and sign of selectivity bias.)
One might suspect that individuals with higher abilities, either innate or due to the circumstances of their birth, would be more
likely to go to college and to earn higher wages. Such ability is, of course, unobserved. Furthermore, if the error term in our
model for going to college is correlated with ability, and the error term in our wage equation is correlated with ability, then
the two terms should be positively correlated. These conditions make the problem of signing the selectivity bias equivalent to
an omitted-variable problem. In the case at hand, since we would anticipate the correlation between the omitted variable and a
college education to be positive, we suspect that OLS is biased upwards.

To account for the bias, we fit the treatment effects model. We model the wife’s college decision as a function of her
mother’s and her father’s educational attainment. Thus, we are interested in estimating the model

ww = �0 + �1wa+ �2cit+ �wc+ �

wc
� = 0 + 1wmed+ 2wfed+ u

where

wc =

�
1; wc

�
> 0, i.e., wife went to college

0; otherwise

and where � and u have a bivariate normal distribution with covariance matrix�
� �

� 1

�
The following output gives the maximum likelihood estimates of the parameters of this model.

. treatreg ww wa cit, treat(wc=wmed wfed)

Iteration 0: log likelihood = -707.07237

Iteration 1: log likelihood = -707.07215

Iteration 2: log likelihood = -707.07215

Treatment effects model -- MLE Number of obs = 250

Wald chi2(3) = 4.11

Log likelihood = -707.07215 Prob > chi2 = 0.2501

------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

ww |

wa | -.0110424 .0199652 -0.553 0.580 -.0501735 .0280887

cit | .127636 .3361938 0.380 0.704 -.5312917 .7865638

wc | 1.271327 .7412951 1.715 0.086 -.1815842 2.724239

_cons | 2.318638 .9397573 2.467 0.014 .4767477 4.160529

---------+--------------------------------------------------------------------

wc |

wmed | .1198055 .0320056 3.743 0.000 .0570757 .1825352

wfed | .0961886 .0290868 3.307 0.001 .0391795 .1531977

_cons | -2.631876 .3309128 -7.953 0.000 -3.280453 -1.983299

---------+--------------------------------------------------------------------

/athrho | .0178668 .1899898 0.094 0.925 -.3545063 .3902399

/lnsigma | .9241584 .0447455 20.654 0.000 .8364588 1.011858

---------+---------------------------------------------------------------------

rho | .0178649 .1899291 -.3403659 .371567

sigma | 2.519747 .1127473 2.308179 2.750707

lambda | .0450149 .4786442 -.8931105 .9831404

-------------------------------------------------------------------------------

LR test of indep. eqns. (rho = 0): chi2(1) = 0.01 Prob > chi2 = 0.9251

-------------------------------------------------------------------------------

In the input, we specified that the continuous dependent variable, ww (wife’s wage), is a linear function of cit and wa. Note
the syntax for the treatment variable. The treatment wc is not included in the first variable list; it is specified in the treat()

option. In this example, wmed and wfed are specified as the exogenous variables in the treatment equation.

The output has the form of many two-equation estimators in Stata. We note that our conjecture that the OLS estimate was
biased upwards is verified. But perhaps more interesting, the size of the bias is negligible and the likelihood-ratio test at the
bottom of the output indicates that we cannot reject the null hypothesis that the two error terms are uncorrelated. This result
might be due to several specification errors. We ignored the selectivity bias due to the endogeneity of entering the labor market.
We have also written both the wage equation and the college education equation in crude linear form, ignoring any higher power
terms or interactions.
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The results for the two ancillary parameters require explanation. For numerical stability during optimization, treatreg
does not directly estimate � or �. Instead, treatreg estimates the inverse hyperbolic tangent of �,

atanh � =
1

2
ln

�
1 + �

1� �

�
and ln�. Also, treatreg reports � = ��, along with an estimate of the standard error of the estimate and a confidence interval
for it.

Technical Note

If each of the equations in the model had contained many regressors, the treatreg command could become quite long. An
alternate way of specifying our wage model would be to make use of Stata’s local macros. The following lines are an equivalent
way of estimating our model.

. local wageeq "ww wa cit"

. local trteq "wc=wmed wfed"

. treatreg `wageeq', treat(`trteq')

Example (continued)

Stata will also produce a two-step estimator of the model with the twostep option. Maximum likelihood estimation of the
parameters can be time-consuming with large datasets, and the two-step estimates may provide a good alternative in such cases.
Continuing with the women’s wage model, we can obtain the two-step estimates with consistent covariance estimates by typing

. treatreg ww wa cit, treat(wc=wmed wfed) twostep

Treatment effects model -- two-step estimates Number of obs = 250

Wald chi2(3) = 3.67

Prob > chi2 = 0.2998

------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

ww |

wa | -.0111623 .020152 -0.554 0.580 -.0506594 .0283348

cit | .1276102 .33619 0.380 0.704 -.53131 .7865305

wc | 1.257995 .8007428 1.571 0.116 -.3114319 2.827422

_cons | 2.327482 .9610271 2.422 0.015 .4439031 4.21106

---------+--------------------------------------------------------------------

wc |

wmed | .1198888 .0319859 3.748 0.000 .0571976 .1825801

wfed | .0960764 .0290581 3.306 0.001 .0391236 .1530292

_cons | -2.631496 .3308344 -7.954 0.000 -3.279919 -1.983072

---------+--------------------------------------------------------------------

hazard |

lambda | .0548738 .5283928 0.104 0.917 -.9807571 1.090505

------------------------------------------------------------------------------

rho | 0.02178

sigma | 2.5198211

lambda | .05487379 .5283928

-------------------------------------------------------------------------------

The reported lambda (�) is the parameter estimate on the hazard from the augmented regression. The augmented regression
is derived in Maddala (1983) and presented in the Methods and Formulas section below.

The default statistic produced by predict after treatreg is the expected value of the dependent variable from the
underlying distribution of the regression model. For the case at hand this statistic is

ww = �0 + �1wa+ �2cit+ �wc+ �

Several other interesting aspects of the treatment effects model can be explored with predict. Continuing with our wage
model, the wife’s expected wage, conditional on attending college, can be obtained with the yctrt option. The wife’s expected
wages, conditional on not attending college, can be obtained with the ycntrt option. Thus, the difference in expected wages
between participants and nonparticipants is the difference between yctrt and ycntrt. For the case at hand, we have the
following calculation:

. predict wwctrt, yctrt
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. predict wwcntrt, ycntrt

. gen diff = wwctrt - wwcntrt

. summarize diff

Variable | Obs Mean Std. Dev. Min Max

---------+-----------------------------------------------------

diff | 250 1.356912 .0134202 1.34558 1.420173

Technical Note

The difference in expected earnings between participants and nonparticipants is

E [yi j zi = 1]� E [yi j zi = 0] = � + ��

�
�i

�i (1� �i)

�
If the correlation between the error terms, �, is zero, then the problem reduces to one estimable by OLS and the difference is
simply �. Since � is positive in our example, we see that least squares overestimates the treatment effect.

Saved Results

treatreg saves in e():

Scalars
e(N) number of observations e(selambda) standard error of �
e(k) number of variables e(rc) return code
e(k eq) number of equations e(sigma) �

e(k dv) number of dependent variables e(chi2) �2

e(df m) model degrees of freedom e(chi2 c) �2 for comparison test
e(ll) log likelihood e(p c) p-value for comparison test
e(p) p-value for �2 test e(rho) �

e(N clust) number of clusters e(ic) number of iterations
e(lambda) �

Macros
e(cmd) treatreg e(user) name of likelihood-evaluator program
e(depvar) name(s) of dependent variable(s) e(opt) type of optimization
e(title) title in estimation output e(chi2type) Wald or LR; type of model �2 test
e(clustvar) name of cluster variable e(chi2 ct) Wald or LR; type of model �2 test
e(wtype) weight type corresponding to e(chi2 c)

e(wexp) weight expression e(hazard) variable containing hazard
e(method) requested estimation method e(predict) program used to implement predict
e(vcetype) covariance estimation method

Matrices
e(b) coefficient vector e(V) variance–covariance matrix of the

estimators

Functions
e(sample) marks estimation sample

Methods and Formulas

treatreg is implemented as an ado-file. Maddala (1983, 117–122) derives both the maximum likelihood and the two-step
estimator implemented here. Greene (2000, 933–934) also provides an introduction to the treatment effects model.

The primary regression equation of interest is
yj = xj� + �zj + �j

where zj is a binary decision variable. The binary variable is assumed to stem from an unobservable latent variable

z
�
j = wj + uj

The decision to obtain the treatment is made according to the rule

zj =

�
1; if z�j > 0
0; otherwise
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where � and u are bivariate normal with mean zero and covariance matrix�
� �

� 1

�

The likelihood function for this model is given in Maddala (1983, 122). Greene (2000, 180) discusses the standard method
of reducing a bivariate normal to a function of a univariate normal and the correlation �. Combining the two yields the following
log likelihood for observation j:

lj =

8>>>>>><>>>>>>:
ln�

 
wj + (yj � xj� � �)�=�p

1� �2

!
� 1

2

�
yj � xj� � �

�

�2

� ln(
p
2��) zj = 1

ln�

 
�wj � (yj � xj�)�=�p

1� �2

!
� 1

2

�
yj � xj�

�

�2

� ln(
p
2��) zj = 0

where �() is the distribution function of the standard normal distribution.

In the maximum likelihood estimation, � and � are not directly estimated. Directly estimated are ln� and atanh �, where

atanh � =
1

2
ln

�
1 + �

1� �

�
The standard error of � = �� is approximated through the propagation of error (delta) method, which is given by

Var(�) � DVar
�
[atanh � ln�]

�
D0

where D is the Jacobian of � with respect to atanh � and ln�.

Maddala (1983, 120–122), also derives the two-step estimator. In the first stage, one obtains probit estimates of the treatment
equation

Pr(zj = 1 j wj) = �(wj)

From these estimates the hazard, hj , for each observation j is computed as

hj =

8>>>><>>>>:
�(wjb)
�(wjb) zj = 1

��(wjb)
1� �(wjb) zj = 0

where � is the standard normal density function. We also define

dj = hj(hj + bwj)

Then,
E [yi j zi] = Xj� + �zj + ��hj

Var [yi j zi] = �
2
�
1� �

2
dj

�
The two-step parameter estimates of � and � are obtained by augmenting the regression equation with the hazard h. Thus,

the regressors become [X z h ] and we obtain the additional parameter estimate �h on the variable containing the hazard. A
consistent estimate of the regression disturbance variance is obtained using the residuals from the augmented regression and the
parameter estimate on the hazard

b�2 = e0e+ �
2
h

PN
j=1 dj

N

The two-step estimate of � is then b� = �hb�
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We will now describe how the consistent estimates of the coefficient covariance matrix based on the augmented regression
are derived. Let A = [X Z h ] and D be a square diagonal matrix of rank N with (1� b� 2

dj) on the diagonal elements.

Vtwostep = b�2(A0A)�1(A0DA+Q)(A0A)�1

where
Q = b� 2(A0DA)Vp(A

0DA)

and Vp is the variance–covariance estimate from the probit estimation of the treatment equation.
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sg142 Uniform layer effect models for the analysis of differences in two-way associations

Maurizio Pisati, University of Trento, Italy, maurizio.pisati@galactica.it

Abstract: Many relevant research questions pertain to how the association between two categorical variables (say R and C)
depends on the values taken on by a third categorical variable (say L). The uniform layer effect models illustrated in this
insert represent a particular way to tackle these questions. Specifically, they are a variety of the standard loglinear model
based on three assumptions: a) there is an association between variables R and C, b) the pattern of association between R
and C is constant across the categories of variable L, and c) the strength of association between R and C varies between
any pair of categories of L by a uniform amount. This insert focuses on two different specifications of the uniform layer
effect model: Yamaguchi’s additive model and Xie’s multiplicative model.

Keywords: Contingency table analysis, mobility table analysis, loglinear model, additive model, multiplicative model.

Overview

Many relevant research questions pertain to how the association between two categorical variables (say R and C) depends
on the values taken on by a third categorical variable (say L). To tackle these questions, we first arrange the data into a three-way
contingency table, whose cell frequencies can be expressed in terms of the standard saturated loglinear model

log(Fijk) = �+ �
R
i + �

C
j + �

L
k + �

RL
ik + �

CL
jk + �

RC
ij + �

RCL
ijk

where log(Fijk) denotes the natural logarithm of the expected frequency in cell (i; j; k), i indexes the I categories of the row
variable R, j indexes the J categories of the column variable C, k indexes the K categories of the layer variable L, and the �
parameters are subject to a standard set of constraints that make them identifiable (Powers and Xie 2000).

When dealing with the kind of questions mentioned above, the researcher typically focuses on the specification of both the
two-way interaction term which expresses the baseline pattern of association between variables R and C, and the three-way
interaction term which expresses how the R by C association observed in each layer k departs from that baseline pattern. There
are many ways to specify �RCij and �RCLijk , all of which can be seen as lying on a continuum whose extremes correspond on

the one hand to the conditional independence model, which sets �RCij = �
RCL
ijk = 0 for all combinations of i, j, and k, and

on the other hand to the saturated model, which specifies the association between R and C conditional on L using all the
(I � 1)� (J � 1)�K available degrees of freedom.

The uniform layer effect models illustrated in this insert represent a particular way to specify the interaction terms �RCij and
�
RCL
ijk (Goodman and Hout 1998). In their standard formulation, the models belonging to this category share three assumptions:

� There is an association between variables R and C, that is, �RCij 6= 0.

� The pattern of association between variables R and C, as represented by the fundamental set of (conditional) log-odds ratios
log(�ijjk) = log(Fijk) + log(F(i+1)(j+1)k)� log(F(i+1)jk)� log(Fi(j+1)k) for i = 1; : : : ; I � 1 and j = 1; : : : ; J � 1
is constant across layers.

� The strength of association between variables R and C varies between any pair of layers by a uniform amount.
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This insert focuses on two different specifications of the uniform layer effect model: the additive model and the multiplicative
model. The additive model has been proposed by Yamaguchi (1987) and can be formulated as

log(Fijk) = �+ �
R
i + �

C
j + �

L
k + �

RL
ik + �

CL
jk + �

RC
ij + ij�k

where the � and � parameters are subject to appropriate constraints that make them identifiable. As we can see, the additive
model retains the two-way interaction term but replaces the three-way interaction term with the product ij�k. This means that
the conditional log-odds ratios pertaining to each layer k take the parametric form

log(�ijjk) = �
RC
ij + �

RC
(i+1)(j+1) � �

RC
(i+1)j � �

RC
i(j+1) + �k

Hence, in the additive model the � parameters express the extent to which the strength of the association between variables
R and C varies across layers. More precisely, the difference between any pair of � parameters (say �k and �k� ) expresses in
absolute terms how much the R by C association is uniformly stronger or weaker in layer k than in layer k� (Goodman and
Hout 1998, 184). Formally,

�k�k� = log(�ijjk)� log(�ijjk�) = �k � �k� ; i = 1; : : : ; I � 1; j = 1; : : : ; J � 1

It should be noted that because of the presence of the ij product in the equation, the results produced by the additive model
depend on the ordering of both the row and column categories (Goodman and Hout 1998, 184).

Sometimes the layers can be assigned exogenous scores that have a theoretical meaning (Yamaguchi 1987, 486). In such
cases, the additive model can be reformulated as

log(Fijk) = �+ �
R
i + �

C
j + �

L
k + �

RL
ik + �

CL
jk + �

RC
ij +

VX
v=1

ijSvk�v

where v indexes the V exogenous scores assigned to the layers, Svk denotes the value taken on by score v in layer k, and �v
denotes the linear effect exerted by score v on the log-odds ratios. Thus, according to this version of the additive model, which
I will refer to as the linear additive model, the difference between any pair of conditional log-odds ratios pertaining to layers k
and k� is equal to

�k�k� = log(�ijjk)� log(�ijjk�) =

VX
v=1

(Svk � Svk�)�v; i = 1; : : : ; I; j = 1; : : : ; J

It should be noted that in most cases, to ensure both identification and meaningfulness of the � parameters, it is required that
V � K � 2.

The multiplicative model has been proposed by Xie (1992), see also Erikson and Goldthorpe (1992, 91–93) and can be
formulated as

log(Fijk) = �+ �
R
i + �

C
j + �

L
k + �

RL
ik + �

CL
jk +  ij�k

where the �,  , and � parameters are subject to appropriate constraints that make them identifiable. As we can see, the
multiplicative model replaces both the two-way interaction term �

RC
ij and the three-way interaction term �

RCL
ijk with the product

 ij�k, where  ij denotes cell-specific scores that express the baseline pattern of association between variables R and C, and
�k denotes layer-specific scores that express the strength of the R by C association in each layer. The  and � parameters can
be seen as latent scores estimated from the data using iterative procedures (Xie 1992, 382; Goodman and Hout 1998, 181–182).

The formula for the multiplicative model implies that the conditional log-odds ratios pertaining to each layer k take the
parametric form

log(�ijjk) = ( ij +  (i+1)(j+1) �  (i+1)j �  i(j+1))�k

Consequently, in the multiplicative model the ratio between any pair of � parameters (say �k and ��k) expresses in relative terms
how much the association between variables R and C is uniformly stronger or weaker in layer k than in layer k� (Goodman
and Hout 1998, 185). Formally,

�k=k� = log(�ijjk)= log(�ijjk�) = �k=�k� ; i = 1; : : : ; I � 1; j = 1; : : : ; J � 1

Both the additive and the multiplicative uniform layer effect models have been originally devised to compare social mobility
tables across countries or over time. However, both models can be applied to any research question where the R by C association
is assumed to have the same pattern but possibly different strengths across layers (see Xie 1991, Goodman and Hout 1998).
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Syntax

unidiff cellvar , row(rowvar) column(colvar) layer(layvar) effect(null j add j addlin j mult)
pattern(fi j qpm j qs j cp j ua j re j ce j rce j hrce j own1 j own2) � quasi

design(varlist) scores(varlist) extra(varlist) refcat(#) constraints(numlist)

lambda(rawlog j rawexp j stdlog j stdexp) shd(log j exp) saveexp(newvar)

savelambda(newvar) nodetail nodisprc nodispextra
�

Description

unidiff estimates the null, additive, linear additive, and multiplicative uniform layer effect models, displays relevant
goodness-of-fit statistics and parameter estimates, and optionally computes several ancillary quantities of interest. The dataset to
be analyzed must include at least four variables:

� cellvar contains the observed cell frequencies that make up the three-way contingency table object of analysis.

� rowvar indexes (and optionally labels) the I categories of the row variable.

� colvar indexes (and optionally labels) the J categories of the column variable.

� layvar indexes (and optionally labels) the K categories of the layer variable.

Note that unidiff drops without warning all variables starting with rc .

Options

row(rowvar) is required. It specifies the name of the row variable.

column(colvar) is required. It specifies the name of the column variable.

layer(layvar) is required. It specifies the name of the layer variable.

effect(null j add j addlin j mult) is required. It specifies the type of uniform layer effect model to be estimated.

effect(null) estimates the null effect model, that is, a model that postulates constant pattern and strength of the R by
C association across layers.

effect(add) estimates the additive model.

effect(addlin) estimates the linear additive model.

effect(mult) estimates the multiplicative model.

pattern(fi j qpm j qs j cp j ua j re j ce j rce j hrce j own1 j own2) is required. It specifies the baseline pattern of
association between variables R and C , that is, the form taken by the two-way interaction term �

RC
ij or, in the case of the

multiplicative model, by the  ij parameters. Some patterns are allowed only when I = J . For details on all these patterns
of association, see Hout (1983).

pattern(fi) specifies the “full interaction” (saturated) pattern of association.

pattern(qpm) specifies the “quasi-perfect mobility” pattern of association. It is allowed only when I = J .

pattern(qs) specifies the “quasi-symmetry” pattern of association. It is allowed only when I = J .

pattern(cp) specifies the “crossing parameters” pattern of association. It is allowed only when I = J .

pattern(ua) specifies the “uniform association” pattern of association.

pattern(re) specifies the “row effects” pattern of association.

pattern(ce) specifies the “column effects” pattern of association.

pattern(rce) specifies the “row and column effects I” pattern of association.

pattern(hrce) specifies the “homogeneous row and column effects I” pattern of association. It is allowed only when
I = J .

pattern(own1) specifies a user-defined pattern of association expressed by a single “topological,” that is, categorical
variable.

pattern(own2) specifies a user-defined pattern of association expressed by one or more quantitative variables.
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quasi requires that the “quasi-version” (i.e., with diagonal-specific parameters) of the selected pattern of the R by C association
be applied. It is allowed only when I = J .

design(varlist) is required if pattern(own1) or pattern(own2) is specified. It specifies the list of variables that expresses
the user-defined baseline pattern of association between variables R and C.

extra(varlist) specifies a list of additional variables intended to express particular features of the model that lie outside its
standard formulation. When this option is specified, the formulas for the additive, linear-additive and multiplicative-uniform
layer effect models reported above must be complemented with the term

PT

t=1 �txtijk, where t indexes the T “extra”
variables included in the model, xtijk denotes the value taken on by “extra” variable t in cell (i; j; k), and �t denotes the
parameter associated with the “extra” variable t.

scores(varlist) is required if effect(addlin) is specified. It specifies the list of variables that represent the V exogenous
scores assigned to the layers.

refcat(#) specifies the layer to be taken as the reference category in the estimation of parameters �k or �k. For identification
purposes, the following constraints are imposed: �r = 0 for the additive model, and �r = 1 for the multiplicative model,
where r is the index specified by refcat. By default, layer 1 is taken as the reference category.

constraints(numlist) specifies equality constraints to be imposed on the estimation of parameters �k or �k. Suppose we are
analyzing a table with four layers and want to make �1 = �2. To impose this equality restriction we specify constraints (1
1 2 3).

lambda(rawlog j rawexp j stdlog j stdexp) displays in tabular form the total interaction effects estimated by the fitted
model for each layer, that is, the equivalent of the sum �

RC
ij + �

RCL
ijk for all combinations of i, j, and k.

lambda(rawlog) displays the raw effects in additive (logarithmic) form (�ijjk).

lambda(rawexp) displays the raw effects in multiplicative (exponential) form (exp(�ijjk)).

lambda(stdlog) displays the standardized effects in additive form (~�ijjk). Standardization is achieved by “double-centering”
the effects around their mean, so that within each row, column, and layer they sum to zero (see Goodman 1991, 1088).

lambda(stdexp) displays the standardized effects in multiplicative form (exp(~�ijjk)).

shd(log j exp) displays in tabular form layer-specific structural shift parameters (with standard errors), structural distances (with
standard errors), mean structural distances, and overall structural effect computed according to the Sobel–Hout–Duncan
approach to mobility table modeling (Sobel, et al. 1985). These quantities are particularly relevant in the analysis of social
mobility tables and can be computed only when I = J .

shd(log) displays all the above quantities in additive (logarithmic) form.

shd(exp) displays all the above quantities in multiplicative (exponential) form.

saveexp(newvar) creates newvar containing the expected cell frequencies under the fitted model.

savelambda(newvar) creates newvar containing the total interaction effects estimated by the fitted model. The effects are saved
in standardized additive form (~�ijjk).

nodetail suppresses the output describing the structure of the contingency table object of analysis and the specification of the
fitted model.

nodisprc suppresses the output of the table reporting the parameter estimates associated with the variables that express the R
by C association pattern.

nodispextra suppresses the output of the table reporting the parameter estimates associated with the extra variables.

Example 1

In this first example, I reanalyze the social mobility data used by Yamaguchi (1987) and Xie (1992) in their illustration of,
respectively, the additive and the multiplicative uniform layer effect models. It is a 5�5�3 contingency table that cross-classifies
father’s occupational class (the row variable), son’s occupational class (the column variable), and country (the layer variable).
The pattern of association between father’s class and son’s class is assumed to be constant across countries. The purpose of the
analysis is to detect any cross-national variation in the strength of the father-son association.

. use example1.dta, clear

. describe
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Contains data from example1.dta

obs: 75

vars: 4

size: 675 (97.5% of memory free)

-------------------------------------------------------------------------------

1. obs int %8.0g Observed cell frequencies

2. country byte %13.0g country Country

3. father byte %15.0g class Father's occupational class

4. son byte %15.0g class Son's occupational class

-------------------------------------------------------------------------------

Sorted by:

. label list

country:

1 United States

2 Britain

3 Japan

class:

1 UpNonManual

2 LowNonManual

3 UpManual

4 LowManual

5 Farm

Let us start with the additive model. To reproduce Yamaguchi’s (1987) results, two assumptions must be taken into account.
First, occupational classes are ordered hierarchically along a vertical status dimension ranging from upper nonmanual (highest)
to farm (lowest). Second, models are applied to off-diagonal cells only, due to the particular meaning that diagonal cells have in
mobility table analysis. This means that diagonal cells must be “blocked,”, that is, their frequencies must be exactly reproduced
by the models. To this aim, we must create and include in the models as “extra” variables, 15 (= I �K) indicator variables,
one for each diagonal cell of each layer.

. local COUNTRY "US GB JA"

. local i=1

. while `i'<=3 {

2. local ITEM : word `i' of `COUNTRY'

3. local j=1

4. while `j'<=5 {

5. generate diag`i'`j'=country==`i' & father==`j' & son==`j'

6. lab var diag`i'`j' "`ITEM': Immobility in class `j'"

7. local j=`j'+1

8. }

9. local i=`i'+1

10. }

. describe

Contains data from example1.dta

obs: 75

vars: 19

size: 5,175 (97.5% of memory free)

-------------------------------------------------------------------------------

1. obs int %8.0g Observed cell frequencies

2. country byte %13.0g country Country

3. father byte %15.0g class Father's occupational class

4. son byte %15.0g class Son's occupational class

5. diag11 float %9.0g US: Immobility in class 1

6. diag12 float %9.0g US: Immobility in class 2

7. diag13 float %9.0g US: Immobility in class 3

8. diag14 float %9.0g US: Immobility in class 4

9. diag15 float %9.0g US: Immobility in class 5

10. diag21 float %9.0g GB: Immobility in class 1

11. diag22 float %9.0g GB: Immobility in class 2

12. diag23 float %9.0g GB: Immobility in class 3

13. diag24 float %9.0g GB: Immobility in class 4

14. diag25 float %9.0g GB: Immobility in class 5

15. diag31 float %9.0g JA: Immobility in class 1

16. diag32 float %9.0g JA: Immobility in class 2

17. diag33 float %9.0g JA: Immobility in class 3

18. diag34 float %9.0g JA: Immobility in class 4

19. diag35 float %9.0g JA: Immobility in class 5

-------------------------------------------------------------------------------

Sorted by:

In his analysis, Yamaguchi (1987) tests several specifications of the pattern of association between father’s class and son’s
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class. For illustration purposes, I will focus on two of them; the “full interaction” pattern and the “homogeneous row and column
effects” pattern. The additive model with full interaction pattern of the R by C association and “blocked” diagonal cells can be
estimated by

. unidiff obs, row(father) col(son) lay(country) effect(add) pattern(fi)

> extra(diag11-diag35)

Analysis of differences in two-way associations

Table structure

-------------------------------------------------------------------------------

Name Label N. of categories

-------------------------------------------------------------------------------

Row father Father's occupational class 5

Column son Son's occupational class 5

Layer country Country 3

-------------------------------------------------------------------------------

Model specification

-------------------------------------------------------------------------------

Layer effect: additive

R-C association pattern: full interaction

Additional variables: diag11 diag12 diag13 diag14 diag15 diag21

diag22 diag23 diag24 diag25 diag31 diag32

diag33 diag34 diag35

-------------------------------------------------------------------------------

Goodness-of-fit statistics

-------------------------------------------------------------------------------

Model N df X2 p G2 p rG2 BIC DI

-------------------------------------------------------------------------------

Cond. indep. 28887 48 6659.6 0.00 5591.5 0.00 0.0 5098.5 16.0

Null effect 28887 22 36.2 0.03 36.2 0.03 99.4 -189.7 0.9

Additive effect 28887 20 30.7 0.06 30.7 0.06 99.5 -174.7 0.7

-------------------------------------------------------------------------------

Beta parameters

--------------+-----------------------------------

Country | estimate s.e. p-value

--------------+-----------------------------------

United States | 0.0000 0.0000 0.0000

Britain | 0.0035 0.0147 0.8133

Japan | -0.0411 0.0180 0.0227

--------------+-----------------------------------

R-C association parameters

--------------------------------------------------------------------------

Variable Label estimate s.e. p-value

--------------------------------------------------------------------------

rc_fi2 Full interaction: level 2 -3.1828 0.2629 0.0000

rc_fi3 Full interaction: level 3 -3.1345 0.2618 0.0000

rc_fi4 Full interaction: level 4 -3.0926 0.2598 0.0000

rc_fi5 Full interaction: level 5 -3.3612 0.2348 0.0000

rc_fi6 Full interaction: level 6 -3.2003 0.2598 0.0000

rc_fi7 Full interaction: level 7 -1.6144 0.2949 0.0000

rc_fi8 Full interaction: level 8 -2.3159 0.2541 0.0000

rc_fi9 Full interaction: level 9 -2.8696 0.2285 0.0000

rc_fi10 Full interaction: level 10 -3.0470 0.2584 0.0000

rc_fi11 Full interaction: level 11 -2.0611 0.2552 0.0000

rc_fi12 Full interaction: level 12 -1.6946 0.2556 0.0000

rc_fi13 Full interaction: level 13 -2.7080 0.2261 0.0000

rc_fi14 Full interaction: level 14 -2.9291 0.2545 0.0000

rc_fi15 Full interaction: level 15 -1.8084 0.2493 0.0000

rc_fi16 Full interaction: level 16 -1.3609 0.2445 0.0000

rc_fi17 Full interaction: level 17 0.0000 0.0000 0.0000

--------------------------------------------------------------------------

Extra variable parameters

--------------------------------------------------------------------------

Variable Label estimate s.e. p-value

--------------------------------------------------------------------------

diag11 US: Immobility in class 1 3.8151 0.2524 0.0000

diag12 US: Immobility in class 2 0.0000 0.0000 0.0000

diag13 US: Immobility in class 3 -0.5863 0.1402 0.0000

diag14 US: Immobility in class 4 0.0235 0.0690 0.7334

diag15 US: Immobility in class 5 0.2605 0.2189 0.2340

diag21 GB: Immobility in class 1 4.0496 0.2775 0.0000

diag22 GB: Immobility in class 2 0.1899 0.1024 0.0636
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diag23 GB: Immobility in class 3 -0.4477 0.1475 0.0024

diag24 GB: Immobility in class 4 0.0000 0.0000 0.0000

diag25 GB: Immobility in class 5 1.1400 0.2498 0.0000

diag31 JA: Immobility in class 1 4.1316 0.3223 0.0000

diag32 JA: Immobility in class 2 0.2619 0.1284 0.0414

diag33 JA: Immobility in class 3 0.0000 0.0000 0.0000

diag34 JA: Immobility in class 4 -0.0485 0.1693 0.7744

diag35 JA: Immobility in class 5 0.0000 0.0000 0.0000

--------------------------------------------------------------------------

Kappa indices

--------------+-------

Country | Kappa

--------------+-------

United States | 0.55

Britain | 0.70

Japan | 0.51

--------------+-------

As we can see, the output consists of seven items:

� A description of the structure of the contingency table object of analysis.

� A description of the specification of the fitted model. The output of these first two items can be suppressed by specifying
the option nodetail.

� A table reporting goodness-of-fit statistics for both the main model (in this case the additive model) and two benchmark
models: the conditional independence model and the null effect model (see above). In this table, N denotes the total number
of observations, df the residual degrees of freedom, X2 the Pearson chi-squared statistic (with corresponding p-value), G2
the likelihood-ratio chi-squared statistic (with corresponding p-value), rG2 the percent reduction in G

2 compared to the
conditional independence model, BIC the Bayesian information criterion, and DI the dissimilarity index. For more details
on these measures, see the Methods and Formulas section below.

� A table reporting the maximum likelihood estimates (with corresponding standard errors and p-values) of the � parameters.
Note that the sign of � for Great Britain reported in Table 2 of Yamaguchi’s (1987) article is reversed.

� A table reporting the maximum likelihood estimates (with corresponding standard errors and p-values) of the parameters
associated with the variables that express the R by C association pattern. The output of this table can be suppressed by
specifying the option nodisprc.

� A table reporting the maximum likelihood estimates (with corresponding standard errors and p-values) of the parameters
associated with the extra variables. The output of this table can be suppressed by specifying the option nodispextra.

� A table reporting kappa indices, which express in standardized form the strength of the R by C association within each
layer (Hout, et al. 1995, 813; Goodman 1991, 1089). For more details on the kappa index, see the Methods and Formulas
section below.

Yamaguchi (1987) estimates a second version of this model which constrains the beta parameters for the United States and
Great Britain to be equal. To this aim, we use the option constraints as follows:

. unidiff obs, row(father) col(son) lay(country) effect(add) pattern(fi)

> extra(diag11-diag35) constraints(1 1 2) nodetail nodisprc nodispext

Analysis of differences in two-way associations

Goodness-of-fit statistics

-------------------------------------------------------------------------------

Model N df X2 p G2 p rG2 BIC DI

-------------------------------------------------------------------------------

Cond. indep. 28887 48 6659.6 0.00 5591.5 0.00 0.0 5098.5 16.0

Null effect 28887 22 36.2 0.03 36.2 0.03 99.4 -189.7 0.9

Additive effect 28887 21 30.8 0.08 30.8 0.08 99.4 -184.9 0.7

-------------------------------------------------------------------------------

Beta parameters

--------------+-----------------------------------

Country | estimate s.e. p-value

--------------+-----------------------------------

United States | 0.0000 0.0000 0.0000

Britain | 0.0000 0.0000 0.0000

Japan | -0.0417 0.0178 0.0192

--------------+-----------------------------------
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Kappa indices

--------------+-------

Country | Kappa

--------------+-------

United States | 0.55

Britain | 0.70

Japan | 0.51

--------------+-------

Let us consider now the “homogeneous row and column effects” specification of the pattern of association between father’s
class and son’s class. To specify this pattern within unidiff, we have

. unidiff obs, row(father) col(son) lay(country) effect(add) pattern(hrce)

> extra(diag11-diag35) nodispext

Analysis of differences in two-way associations

Table structure

-------------------------------------------------------------------------------

Name Label N. of categories

-------------------------------------------------------------------------------

Row father Father's occupational class 5

Column son Son's occupational class 5

Layer country Country 3

-------------------------------------------------------------------------------

Model specification

-------------------------------------------------------------------------------

Layer effect: additive

R-C association pattern: homogeneous row & column effects I

Additional variables: diag11 diag12 diag13 diag14 diag15 diag21

diag22 diag23 diag24 diag25 diag31 diag32

diag33 diag34 diag35

-------------------------------------------------------------------------------

Goodness-of-fit statistics

-------------------------------------------------------------------------------

Model N df X2 p G2 p rG2 BIC DI

-------------------------------------------------------------------------------

Cond. indep. 28887 48 6659.6 0.00 5591.5 0.00 0.0 5098.5 16.0

Null effect 28887 29 125.5 0.00 107.0 0.00 98.1 -190.9 1.3

Additive effect 28887 27 117.2 0.00 98.4 0.00 98.2 -179.0 1.2

-------------------------------------------------------------------------------

Beta parameters

--------------+-----------------------------------

Country | estimate s.e. p-value

--------------+-----------------------------------

United States | 0.0000 0.0000 0.0000

Britain | -0.0025 0.0148 0.8657

Japan | -0.0524 0.0178 0.0034

--------------+-----------------------------------

R-C association parameters

--------------------------------------------------------------------------

Variable Label estimate s.e. p-value

--------------------------------------------------------------------------

rc_rc2 Row-Column effect 2 0.1012 0.0329 0.0021

rc_rc3 Row-Column effect 3 0.2729 0.0250 0.0000

rc_rc4 Row-Column effect 4 0.3333 0.0258 0.0000

rc_rc5 Row-Column effect 5 0.3323 0.0227 0.0000

--------------------------------------------------------------------------

Kappa indices

--------------+-------

Country | Kappa

--------------+-------

United States | 0.62

Britain | 0.77

Japan | 0.52

--------------+-------

The multiplicative version of the uniform layer effect model with full interaction pattern of the R by C association and
“blocked” diagonal cells can be estimated by

. unidiff obs, row(father) col(son) lay(country) effect(mult) pattern(fi)

> extra(diag11-diag35) nodispext
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Iteration 1: deviance = 53.4755

Iteration 2: deviance = 35.3281

Iteration 3: deviance = 0.6868

Iteration 4: deviance = 0.0206

Iteration 5: deviance = 0.0009

Iteration 6: deviance = 0.0000

Analysis of differences in two-way associations

Table structure

-------------------------------------------------------------------------------

Name Label N. of categories

-------------------------------------------------------------------------------

Row father Father's occupational class 5

Column son Son's occupational class 5

Layer country Country 3

-------------------------------------------------------------------------------

Model specification

-------------------------------------------------------------------------------

Layer effect: multiplicative

R-C association pattern: full interaction

Additional variables: diag11 diag12 diag13 diag14 diag15 diag21

diag22 diag23 diag24 diag25 diag31 diag32

diag33 diag34 diag35

-------------------------------------------------------------------------------

Goodness-of-fit statistics

-------------------------------------------------------------------------------

Model N df X2 p G2 p rG2 BIC DI

-------------------------------------------------------------------------------

Cond. indep. 28887 48 6659.6 0.00 5591.5 0.00 0.0 5098.5 16.0

Null effect 28887 22 36.2 0.03 36.2 0.03 99.4 -189.7 0.9

Multipl. effect 28887 20 30.7 0.06 30.9 0.06 99.4 -174.5 0.7

-------------------------------------------------------------------------------

Phi parameters (layer scores)

--------------+-----------------------------------

Country | Raw Scaled 1 Scaled 2

--------------+-----------------------------------

United States | 1.7025 1.0000 0.6064

Britain | 1.7703 1.0398 0.6305

Japan | 1.3605 0.7991 0.4845

--------------+-----------------------------------

Psi parameters (R-C association scores)

-------------+---------------------------------------

Father's |

occupational | Son's occupational class

class | UpNonM LowNon UpManu LowMan Farm

-------------+---------------------------------------

UpNonManual | 0.00 0.00 0.00 0.00 0.00

LowNonManual | 0.00 0.59 0.51 0.54 0.37

UpManual | 0.00 0.48 1.14 0.99 0.64

LowManual | 0.00 0.57 1.14 1.35 0.73

Farm | 0.00 0.64 1.29 1.55 2.93

-------------+---------------------------------------

Kappa indices

--------------+-------

Country | Kappa

--------------+-------

United States | 0.55

Britain | 0.70

Japan | 0.51

--------------+-------

As we can see, the output includes two new items:

� A table reporting the maximum likelihood estimates of the � parameters (layer scores). Three series of � parameters are
reported: raw estimates, estimates rescaled so that �r = 1, and estimates rescaled so that

PK
k=1 �

2
k = 1 (see Xie 1992,

382).

� A table reporting the maximum likelihood estimates of the  parameters (R by C association scores).
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Example 2

To illustrate the estimation of the linear additive uniform layer effect model, in this second example I make use of the
sixteen-country social mobility data originally assembled by Hazelrigg and Garnier (1976) and subsequently analyzed by several
researchers (Grusky and Hauser 1984, Xie 1992). It is a 3� 3� 16 contingency table that cross-classifies father’s occupational
class (the row variable), son’s occupational class (the column variable), and country (the layer variable). As in the previous
example, the pattern of association between father’s class and son’s class is assumed to be constant across countries. The purpose
of the analysis is to estimate the effect exerted by some country-level variables on the strength of that association. Following
Hauser and Grusky (1988), four variables have been selected: degree of economic development (measured as per capita energy
consumption in tons of coal), degree of social democracy (measured as percentage of seats in the national legislature held by
social democratic parties), a dummy variable indicating countries belonging to the Eastern block, and a dummy variable indicating
Asian countries (for details, see Hauser and Grusky 1988).

. use example2.dta, clear

. describe

Contains data from example2.dta

obs: 144

vars: 8 27 Dec 1999 10:09

size: 2,736 (98.5% of memory free)

-------------------------------------------------------------------------------

1. obs int %9.0g Observed cell frequencies

2. father byte %9.0g class Father's occupational class

3. son byte %9.0g class Son's occupational class

4. country byte %13.0g country Country

5. develop float %9.0g Economic development index

6. socdem float %9.0g Social democracy index

7. east byte %9.0g Eastern block country

8. asia byte %9.0g Asian country

-------------------------------------------------------------------------------

Sorted by:

. label list

class:

1 NonManual

2 Manual

3 Farm

country:

1 Australia

2 Belgium

3 France

4 Hungary

5 Italy

6 Japan

7 Philippines

8 Spain

9 United States

10 West Germany

11 West Malaysia

12 Yugoslavia

13 Denmark

14 Finland

15 Norway

16 Sweden

To begin, let us use unidiff to replicate Xie’s (1992) application of the multiplicative model to the sixteen-country social
mobility data:

. unidiff obs, row(father) col(son) lay(country) effect(mult) pattern(fi)

Iteration 1: deviance = 378.0271

Iteration 2: deviance = 67.2783

Iteration 3: deviance = 6.9561

Iteration 4: deviance = 0.5449

Iteration 5: deviance = 0.0430

Iteration 6: deviance = 0.0029

Iteration 7: deviance = 0.0010

Iteration 8: deviance = 0.0000
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Analysis of differences in two-way associations

Table structure

-------------------------------------------------------------------------------

Name Label N. of categories

-------------------------------------------------------------------------------

Row father Father's occupational class 3

Column son Son's occupational class 3

Layer country Country 16

-------------------------------------------------------------------------------

Model specification

-------------------------------------------------------------------------------

Layer effect: multiplicative

R-C association pattern: full interaction

Additional variables: none

-------------------------------------------------------------------------------

Goodness-of-fit statistics

-------------------------------------------------------------------------------

Model N df X2 p G2 p rG2 BIC DI

-------------------------------------------------------------------------------

Cond. indep. 113556 64 43389.7 0.00 42970.0 0.00 0.0 42225.0 25.6

Null effect 113556 60 1327.3 0.00 1328.8 0.00 96.9 630.4 3.7

Multipl. effect 113556 45 787.0 0.00 821.7 0.00 98.1 297.9 2.6

-------------------------------------------------------------------------------

Phi parameters (layer scores)

--------------+-----------------------------------

Country | Raw Scaled 1 Scaled 2

--------------+-----------------------------------

Australia | 6.7022 1.0000 0.2170

Belgium | 9.1682 1.3679 0.2968

France | 8.6107 1.2848 0.2788

Hungary | 7.5955 1.1333 0.2459

Italy | 9.2504 1.3802 0.2995

Japan | 7.1213 1.0625 0.2306

Philippines | 7.3397 1.0951 0.2376

Spain | 9.1393 1.3636 0.2959

United States | 7.3490 1.0965 0.2379

West Germany | 6.8584 1.0233 0.2220

West Malaysia | 6.1284 0.9144 0.1984

Yugoslavia | 6.9040 1.0301 0.2235

Denmark | 8.6761 1.2945 0.2809

Finland | 6.9970 1.0440 0.2265

Norway | 6.0621 0.9045 0.1963

Sweden | 8.5000 1.2682 0.2752

--------------+-----------------------------------

Psi parameters (R-C association scores)

----------+-----------------------

Father's | Son's occupational

occupatio | class

nal class | NonMan Manual Farm

----------+-----------------------

NonManual | 0.00 0.00 0.00

Manual | 0.00 0.23 0.14

Farm | 0.00 0.21 0.48

----------+-----------------------

Kappa indices

--------------+-------

Country | Kappa

--------------+-------

Australia | 0.61

Belgium | 0.83

France | 0.78

Hungary | 0.69

Italy | 0.84

Japan | 0.64

Philippines | 0.66

Spain | 0.83

United States | 0.66

West Germany | 0.62

West Malaysia | 0.55

Yugoslavia | 0.62
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Denmark | 0.78

Finland | 0.63

Norway | 0.55

Sweden | 0.77

--------------+-------

In his analysis, Xie (1992) explores the effect exerted by four country-level variables (partially different from ours) on
the strength of the father-son association by computing zero-order correlation coefficients between those variables and the �
parameters estimated by the multiplicative model. Alternatively, we can estimate the effect of country-level explanatory variables
by means of the linear additive uniform layer effect model.

. unidiff obs, row(father) col(son) lay(country) effect(addlin) pattern(fi)

> scores(develop socdem east asia)

Analysis of differences in two-way associations

Table structure

-------------------------------------------------------------------------------

Name Label N. of categories

-------------------------------------------------------------------------------

Row father Father's occupational class 3

Column son Son's occupational class 3

Layer country Country 16

-------------------------------------------------------------------------------

Model specification

-------------------------------------------------------------------------------

Layer effect: linear additive

Layer score variables: develop socdem east asia

R-C association pattern: full interaction

Additional variables: none

-------------------------------------------------------------------------------

Goodness-of-fit statistics

-------------------------------------------------------------------------------

Model N df X2 p G2 p rG2 BIC DI

-------------------------------------------------------------------------------

Cond. indep. 113556 64 43389.7 0.00 42970.0 0.00 0.0 42225.0 25.6

Null effect 113556 60 1327.3 0.00 1328.8 0.00 96.9 630.4 3.7

Lin.add. effect 113556 56 1014.6 0.00 1005.2 0.00 97.7 353.4 3.2

-------------------------------------------------------------------------------

Beta parameters

--------------------------------------------------------------------------

Variable Label estimate s.e. p-value

--------------------------------------------------------------------------

develop Economic development index -0.0058 0.0037 0.1165

socdem Social democracy index -0.0051 0.0005 0.0000

east Eastern block country 0.2025 0.0329 0.0000

asia Asian country -0.2327 0.0220 0.0000

--------------------------------------------------------------------------

Layer scores

--------------+---------------------------------------

Country | develop socdem east asia

--------------+---------------------------------------

Australia | 4.80 39.50 0.00 0.00

Belgium | 4.73 34.90 0.00 0.00

France | 2.95 11.60 0.00 0.00

Hungary | 2.81 0.00 1.00 0.00

Italy | 1.79 18.60 0.00 0.00

Japan | 1.78 35.70 0.00 1.00

Philippines | 0.21 0.00 0.00 1.00

Spain | 1.02 0.00 0.00 0.00

United States | 9.20 0.00 0.00 0.00

West Germany | 4.23 37.40 0.00 0.00

West Malaysia | 0.36 8.20 0.00 1.00

Yugoslavia | 1.19 0.00 1.00 0.00

Denmark | 4.17 44.20 0.00 0.00

Finland | 2.68 26.50 0.00 0.00

Norway | 3.59 49.30 0.00 0.00

Sweden | 4.51 48.30 0.00 0.00

--------------+---------------------------------------

R-C association parameters

--------------------------------------------------------------------------
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Variable Label estimate s.e. p-value

--------------------------------------------------------------------------

rc_fi2 Full interaction: level 2 1.9650 0.0224 0.0000

rc_fi3 Full interaction: level 3 1.4379 0.0472 0.0000

rc_fi4 Full interaction: level 4 1.8955 0.0286 0.0000

rc_fi5 Full interaction: level 5 4.2721 0.0530 0.0000

--------------------------------------------------------------------------

Kappa indices

--------------+-------

Country | Kappa

--------------+-------

Australia | 0.67

Belgium | 0.68

France | 0.75

Hungary | 0.91

Italy | 0.73

Japan | 0.55

Philippines | 0.65

Spain | 0.79

United States | 0.79

West Germany | 0.67

West Malaysia | 0.63

Yugoslavia | 0.91

Denmark | 0.65

Finland | 0.71

Norway | 0.64

Sweden | 0.64

--------------+-------

As we can see from the table reporting the � parameters, the strength of the association between father’s class and son’s
class decreases as both economic development and social democracy increase. Moreover, the father-son association is, coeteris
paribus, stronger in the countries belonging to the Eastern block and weaker in the Asian countries. It is important to stress that,
given the bad fit of the model, these results should be considered only for pedagogic purposes.

Saved Results

unidiff saves in r():

Scalars
r(di) dissimilarity index r(bic) Bayesian information criterion
r(rG2) reduction in G2 r(G2 p) p-value for G2

r(G2) G2 r(X2 p) p-value for X2

r(X2) X2 r(df) residual degrees of freedom
r(N) number of observations r(ncells) number of cells
r(nrow) number of categories of row variable r(ncol) number of categories of column variable
r(nlay) number of categories of layer variable

Macros
r(cellvar) name of variable containing the observed cell frequencies r(rowvar) name of row variable
r(colvar) name of column variable r(layvar) name of layer variable
r(effect) type of uniform layer effect r(pattern) type of R by C association pattern
r(design) list of design variables r(extra) list of extra variables

Methods and Formulas

Let fijk denote the observed frequency in cell (i; j; k), Fijk denote the expected frequency in cell (i; j; k) under the fitted
model, N denote the total number of observations, and df denote the residual degrees of freedom under the fitted model. The
Pearson chi-squared statistic is

X
2 =

IX
i=1

JX
j=1

KX
k=1

(fijk � Fijk)
2

Fijk

The likelihood-ratio chi-squared statistic is

G
2 = 2

IX
i=1

JX
j=1

KX
k=1

fijk log(fijk=Fijk)
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The percent reduction in G2 is
rG

2 = (1�G
2
M1=G

2
M0)� 100

where G2
M1 denotes the likelihood-ratio chi-squared statistic associated with the fitted model, and G2

M0 denotes the likelihood-ratio
chi-squared statistic associated with the conditional independence model.

The Bayesian information criterion is
BIC = G

2 � df � log(N)

The dissimilarity index is

� =

IX
i=1

JX
j=1

KX
k=1

jfijk � Fijkj
2N

� 100

The raw total interaction effects estimated with option lambda(rawlog) are

�ijjk =

8>>>>><>>>>>:

�
RC
ij +

PT

t=1 �txtijk; for the null model

�
RC
ij + ij�k +

PT
t=1 �txtijk; for the additive model

�
RC
ij +

PV
v=1 ijSvk�v +

PT
t=1 �txtijk; for the linear additive model

 ij�k +
PT

t=1 �txtijk; for the multiplicative model

where the two-way terms �RCij and  ij are parameterized according to the selected pattern of the R by C association.

The standardized total interaction effects estimated with option lambda(stdlog) satisfy the following conditions:

IX
i=1

~�ijjk = 0; j = 1; : : : ; J; k = 1; : : : ;K

JX
j=1

~�ijjk = 0; i = 1; : : : ; I; k = 1; : : : ;K

The layer-specific kappa indices are

�k =

vuut IX
i=1

JX
j=1

~�2
ijjk

IJ
; k = 1; : : : ;K

The structural shift parameters estimated with option shd(log) are

log(�jjk) = (�Cj + �
CL
jk )� (�Cj + �

CL
jk ); j = 1; : : : ; J; k = 1; : : : ;K

where log(�1jk) = 0 for identification purposes.

The structural distances estimated with option shd(log) are

log(�(j=j�)jk) = log(�jjk)� log(�j�jk); j; j
� = 1; : : : ; J; k = 1; : : : ;K

The mean structural distances estimated with option shd(log) are

log(�(j= �C)jk) =

PJ
j�=1 log(�(j=j�)jk)

J � 1
; j = 1; : : : ; J; k = 1; : : : ;K

The overall structural effects estimated with option shd(log) are

log(�k) =

PJ

j=1

PJ

j�=1 j log(�(j=j�)jk)j
(J � J)� J

; k = 1; : : : ;K
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snp15 somersd—Confidence intervals for nonparametric statistics and their differences

Roger Newson, Guy’s, King’s and St Thomas’ School of Medicine, London, UK, roger.newson@kcl.ac.uk

Abstract: Rank order or so-called nonparametric methods are in fact based on population parameters, which are zero under the
null hypothesis. Two of these parameters are Kendall’s �a and Somers’ D, the parameter tested by a Wilcoxon rank-sum
test. Confidence limits for these parameters are more informative than p-values alone, for three reasons. Firstly, confidence
intervals show that a high p-value does not prove a null hypothesis. Secondly, for continuous data, Kendall’s �a can often
be used to define robust confidence limits for Pearson’s correlation by Greiner’s relation. Thirdly, we can define confidence
limits for differences between two Kendall’s �a’s or Somers’ D’s, and these are informative, because a larger Kendall’s
�a or Somers’ D cannot be secondary to a smaller one. The program somersd calculates confidence intervals for Somers’
D or Kendall’s �a, using jackknife variances. There is a choice of transformations, including Fisher’s z, Daniels’ arcsine,
Greiner’s �, and the z-transform of Greiner’s �. A cluster option is available. The estimation results are saved as for a
model fit, so that differences can be estimated using lincom.

Keywords: Somers’ D, Kendall’s tau, rank correlation, rank-sum test, Wilcoxon test, confidence intervals, nonparametric methods.

Syntax

somersd varlist
�
weight

� �
if exp

� �
in range

� �
, cluster(varname) level(#) taua tdist

transf(transformation name)
�

where transformation name is one of

iden j z j asin j rho j zrho
fweights, iweights and pweights are allowed.

Description

somersd calculates the nonparametric statistics Somers’ D (corresponding to rank-sum tests) and Kendall’s �a, with
confidence limits. Somers’ D or �a is calculated for the first variable of varlist as a predictor of each of the other variables in
varlist, with estimates and jackknife variances and confidence intervals output and saved in e() as if for the parameters of a
model fit. It is possible to use lincom to output confidence limits for differences between the population Somers’ D or Kendall’s
�a values.
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Options

cluster(varname) specifies the variable which defines sampling clusters. If cluster is defined, then the between-cluster
Somers’ D or �a is calculated, and the variances are calculated assuming that the data are sampled from a population of
clusters, rather than a population of observations.

level(#) specifies the confidence level, in percent, for confidence intervals of the estimates. The default is level(95) or as
set by set level.

taua causes somersd to calculate Kendall’s �a. If taua is absent, then somersd calculates Somers’ D.

tdist specifies that the estimates are assumed to have a t-distribution with n� 1 degrees of freedom, where n is the number
of clusters if cluster is specified, or the number of observations if cluster is not specified.

transf(transformation name) specifies that the estimates are to be transformed, defining estimates for the transformed population
value. iden (identity or untransformed) is the default. z specifies Fisher’s z (the hyperbolic arctangent), asin specifies
Daniels’ arcsine, rho specifies Greiner’s � (Pearson correlation estimated using Greiner’s relation), and zrho specifies the
z-transform of Greiner’s �.

If a varlist is supplied, then all options are allowed. If not, then somersd replays the previous somersd estimation (if available),
and the only option allowed is level(#).

Remarks

The population value of Kendall’s �a (Kendall 1970) is defined as

�XY = E [sign(X1 �X2)sign(Y1 � Y2)] (1)

where (X1; Y1) and (X2; Y2) are bivariate random variables sampled independently from the same population, and E[�] denotes
expectation. The population value of Somers’ D (Somers 1962) is defined as

DY X =
�XY

�XX
(2)

Therefore, �XY is the difference between two probabilities, namely the probability that the larger of the two X-values is
associated with the larger of the two Y -values and the probability that the larger X-value is associated with the smaller Y -value.
DY X is the difference between the two corresponding conditional probabilities, given that the two X-values are not equal.
Kendall’s �a is the covariance between sign(X1 �X2) and sign(Y1 � Y2), whereas Somers’ D is the regression coefficient
of sign(Y1 � Y2) with respect to sign(X1 �X2). (The correlation coefficient between sign(X1 �X2) and sign(Y1 � Y2) is
known as Kendall’s �b, and is the geometric mean of DY X and DXY .)

Given a sample of data points (Xi; Yi), we may estimate and test the population values of Kendall’s �a and Somers’ D by
the corresponding sample statistics b�XY and bDY X . These are commonly known as nonparametric statistics, even though �XY
and DY X are parameters. The two Wilcoxon rank-sum tests (see [R] signrank) both test hypotheses predicting DY X = 0. The
two-sample rank-sum test represents the case where X is a binary variable indicating membership of one of two subpopulations.
The matched-pairs rank-sum test represents the case where there are paired data (Wi1;Wi2), such that Xi = sign(Wi1�Wi2),
and Yi = jWi1 �Wi2j. Kendall’s �a is usually tested on “continuous” data, using ktau (see [R] spearman).

There are several reasons for preferring confidence intervals to p-values alone:

1. Nonstatisticians often quote a nonsignificant result for a nonparametric test and argue as if they have “proved” a null
hypothesis, when a confidence interval would show a wide range of other hypotheses which also fit the data.

2. In the case of continuous bivariate data, there is a correspondence between Kendall’s �a and the more familiar Pearson’s
correlation coefficient �, known as Greiner’s relation (Kendall 1970). This states that

� = sin
�
�

2
�a

�
(3)

and holds if the joint distribution of X and Y is bivariate normal. Under this relation, Kendall’s �a-values of 0, � 1
3

, � 1
2

and �1 correspond to Pearson’s correlations of 0, � 1
2

, � 1p
2

and �1, respectively. A similar correspondence is likely to
hold in a wider range of continuous bivariate distributions (Kendall 1949, Newson 1987).

3. Kendall’s �a has the desirable property that a larger �a cannot be secondary to a smaller �a, that is, if a positive �XY is
caused entirely by a monotonic positive relationship of both variables with a third variable W , then �WX and �WY must
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both be greater than �XY . If we can show that �XY � �WY > 0 (or, equivalently, that DY X � DYW > 0), then this
implies that the correlation between X and Y is not caused entirely by the influence of W .

To understand the third point, assume that trivariate data points (Wi; Xi; Yi) are sampled independently from a common
population, with discrete probability mass function fW;X;Y (�; �; �) and marginal probability mass function fW;X(�; �). Define the
conditional expectation

Z(w1; x1; w2; x2) = E [sign(Y2 � Y1)jW1 = w1; X1 = x1;W2 = w2; X2 = x2] (4)

for any w1 and w2 in the range of W -values and any x1 and x2 in the range of X-values. If we state that the positive relationship
between Xi and Yi is caused entirely by a monotonic positive relationship between both variables and Wi, then that is equivalent
to stating that

Z(w1; x1; w2; x2) � 0 (5)

whenever w1 � w2 and x2 � x1. However, the difference between the two �a coefficients is

�WY � �XY =2
X
w

X
x2<x1

fW;X(w; x1)fW;X(w; x2)Z(w; x1; w; x2)

+ 2
X
x

X
w1<w2

fW;X(w1; x)fW;X(w2; x)Z(w1; x; w2; x)

+ 4
X

w1<w2

X
x2<x1

fW;X(w1; x1)fW;X(w2; x2)Z(w1; x1; w2; x2): (6)

This difference must be nonnegative whenever the inequality (5) applies. In particular, if the distribution of the Wi and Xi

is nearly continuous, then the difference (6) will be dominated by the third term, representing discordant (Wi; Xi)-pairs. The
difference between �a-values will then be determined by the ordering of the Y -values when the larger of two W -values is
associated with the smaller of two X-values.

We now define the formulas for estimating �XY , DY X and their differences. We assume the general case where the
observations are clustered, which becomes the familiar unclustered case when there is one observation per cluster. Suppose there
are n clusters, and the hth cluster contains mh observations. Define whi, Xhi and Yhi to be the importance weight, X-value
and Y -value, respectively, for the ith observation of the hth cluster. (Like most estimation commands, somersd treats iweights
and pweights as importance weights, and treats fweights as if they denoted a number of identical observations.) Define

vhijk =

�
whiwjk; h 6= j

0; h = j

t
(XY )

hijk =whiwjksign(Xhi �Xjk)sign(Yhi � Yjk) (7)

(for any two observations). We will use the usual dot-substitution notation to define (for instance)

vh:j: =

mhX
i=1

mjX
k=1

vhijk; t
(XY )

h:j: =

mhX
i=1

mjX
k=1

t
(XY )

hijk ; vh::: =

nX
j=1

vh:j:; t
(XY )

h::: =

nX
j=1

t
(XY )

h:j: (8)

and any other sums over any other indices. Given that the clusters are sampled independently from a common population of
clusters, we can define

V = E [vh:j:] ; TXY = E

h
t
(XY )

h:j:

i
(9)

for all h 6= j. (In the terminology of Hoeffding (1948), these quantities are regular functionals of the cluster population distribution,
and the expressions inside the square brackets are kernels of these regular functionals.) The quantities we really want to estimate
are Kendall’s �a and Somers’ D, defined respectively by

�XY = TXY =V; DY X = TXY =TXX = �XY =�XX (10)

(These are equal to the familiar formulas (1) and (2) if each cluster contains one observation with an importance weight of one.)
To estimate these, we use the jackknife method of Arvesen (1969) on the regular functionals (9) and use appropriate Taylor
polynomials. The functionals V and TXY are estimated by the Hoeffding (1948) U -statistics

bV =
v::::

n(n� 1)
; bTXY =

t
(XY )
::::

n(n� 1)
(11)
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and the respective jackknife pseudovalues corresponding to the hth cluster are given by

 
(V )

h =(n� 1)�1
v:::: � (n� 2)�1 [v:::: � 2vh:::]

 
(XY )

h =(n� 1)�1
t
(XY )
:::: � (n� 2)�1

h
t
(XY )
:::: � 2t

(XY )

h:::

i
(12)

somersd calculates correlation measures for a single variable X with a set of Y -variates (Y (1)
; : : : ; Y

(p)). It calculates, in the
first instance, the covariance matrix for bV , bTXX , and bTXY (i) for 1 � i � p. This is done using the jackknife influence matrix
�, which has n rows labeled by the cluster subscripts, and p+ 2 columns labeled (in Stata fashion) by the names V , X , and
Y

(i) for 1 � i � p. It is defined by

� [h; V ] =  
(V )

h � bV ; � [h;X] =  
(XX)

h � bTXX ; �
h
h; Y

(i)
i
=  

(XY (i))

h � bTXY (i) (13)

The jackknife covariance matrix is then equal to bC = [n(n� 1)]
�1

�0� (14)

The estimates for Kendall’s �a and Somers’ D are defined byb�XY = bTXY =bV ; bDY X = bTXY = bTXX (15)

and the covariance matrices are defined using Taylor polynomials. In the case of Somers’ D, we define the p � (p + 2)
matrix of estimated derivatives b�(D), whose rows are labeled by the names Y (1)

; : : : ; Y
(p), and whose columns are labeled by

V;X; Y
(1)
; : : : ; Y

(p). This matrix is defined by

b�(D)
h
Y

(i)
; X

i
=
@ bDY X

@ bTXX = �
bTXYbT 2
XXb�(D)

h
Y

(i)
; Y

(i)
i
=
@ bDY X

@ bTXY =
1bTXX (16)

all other entries being zero. In the case of Kendall’s �a, we define a (p + 1) � (p + 2) matrix of estimated derivatives b�(�),
whose rows are labeled by X;Y (1)

; : : : ; Y
(p), and whose columns are labeled by V;X; Y (1)

; : : : ; Y
(p). This matrix is defined

by

b�(�) [X;V ] =
@b�XX
@ bV = �

bTXXbV 2b�(�) [X;X] =
@b�XX
@ bTXX =

1bV
b�(�)

h
Y

(i)
; V

i
=
@b�XY
@ bV = �

bTXYbV 2b�(�)
h
Y

(i)
; Y

(i)
i
=
@b�XY (i)

@ bTXY (i)

=
1bV (17)

all other entries again being zero. The estimated dispersion matrices of the Somers’ D and �a estimates are therefore bC(D) andbC(�), respectively, defined by bC(D) = b�(D) bC b�(D) 0
; bC(�) = b�(�) bC b�(�) 0 (18)

The transf option offers a choice of transformations. Since these are available both for Somers’ D and for Kendall’s �a, we
will denote the original estimate as � (which can stand for D or � ) and the transformed estimate as �. They are summarized
below, together with their derivatives d�=d� and their inverses �(�).

transf Transform name �(�) d�=d� �(�)

iden Untransformed � 1 �

z Fisher’s z arctanh(�)= (1��2)
�1 tanh(�)=

1
2

log[(1+�)=(1��)] [exp(2�)�1]=[exp(2�)+1]

asin Daniels’ arcsine arcsin(�) (1��2)
�1=2 sin(�)

rho Greiner’s � sin(�
2
�) �

2
cos(�

2
�) (2=�)arcsin(�)

zrho Greiner’s � arctanh[sin(�
2
�)] �

2
cos(�

2
�)[1�sin(�

2
�)2]�1 (2=�)arcsin[tanh(�)]

(z-transformed)
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If transf is specified, then somersd displays and saves the transformed estimates and their estimated covariance, instead
of the untransformed versions. If bC(�) is the covariance matrix for the untransformed estimates given by (18), and b�(�) is the
diagonal matrix whose diagonal entries are the d�=d� estimates specified in the table, then the transformed parameter and its
covariance matrix are b� = �(b�); bC(�) = b�(�) bC(�) b�(�) 0 (19)

Fisher’s z-transform was originally recommended for the Pearson correlation coefficient by Fisher (1921) (see also Gayen
1951), but Edwardes (1995) recommended it specifically for Somers’ D on the basis of simulation studies. Daniels’ arcsine
was suggested as a normalizing transform in Daniels and Kendall (1947). If transf(z) or transf(asin) is specified, then
somersd prints asymmetric confidence intervals for the untransformed D or �a values, calculated from symmetric confidence
intervals for the transformed parameters using the inverse function �(�). (This feature corresponds to the eform option of other
estimation commands.) Greiner’s � (Kendall 1970) is based on the relation (3), and is designed to estimate the Pearson correlation
coefficient corresponding to the measured �a. If transf(zrho) is specified, somersd prints asymmetric confidence intervals
for Greiner’s �, using the inverse z-transform on symmetric confidence intervals for the z-transformed Greiner’s �.

Example 1

In the auto data, we compare US cars with foreign cars regarding weight and fuel efficiency. First, we use ranksum to
give significance tests without confidence intervals:

. ranksum mpg,by(foreign)

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

foreign | obs rank sum expected

---------+---------------------------------

Domestic | 52 1688.5 1950

Foreign | 22 1086.5 825

---------+---------------------------------

combined | 74 2775 2775

unadjusted variance 7150.00

adjustment for ties -36.95

----------

adjusted variance 7113.05

Ho: mpg(foreign==Domestic) = mpg(foreign==Foreign)

z = -3.101

Prob > |z| = 0.0019

. ranksum weight,by(foreign)

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

foreign | obs rank sum expected

---------+---------------------------------

Domestic | 52 2379.5 1950

Foreign | 22 395.5 825

---------+---------------------------------

combined | 74 2775 2775

unadjusted variance 7150.00

adjustment for ties -1.06

----------

adjusted variance 7148.94

Ho: weight(foreign==Domestic) = weight(foreign==Foreign)

z = 5.080

Prob > |z| = 0.0000

We note that American cars are typically heavier and travel fewer miles per gallon than foreign cars. For confidence
intervals, we use somersd:

. somersd foreign mpg weight

Somers' D

Transformation: Untransformed

Valid observations: 74

------------------------------------------------------------------------------

| Jackknife

foreign | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

mpg | .4571678 .135146 3.383 0.001 .1922866 .7220491

weight | -.7508741 .0832485 -9.020 0.000 -.9140383 -.58771

------------------------------------------------------------------------------

We see that, given a randomly-chosen foreign car and a randomly-chosen American car, the foreign car is 46% more
likely to travel more miles per gallon than the American car than vice versa, with confidence limits from 19% to 72% more



52 Stata Technical Bulletin STB-55

likely. However, being foreign seems to be more reliable as a negative predictor of weight than as a positive predictor of “fuel
efficiency”. We can use lincom to define confidence limits for the difference:

. lincom -weight-mpg

( 1) - mpg - weight = 0.0

------------------------------------------------------------------------------

foreign | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

(1) | .2937063 .0884397 3.321 0.001 .1203677 .4670449

------------------------------------------------------------------------------

The difference between Somers’ D-values is positive. This indicates that, if there are two cars, one heavier and consuming
fewer gallons per mile, the other lighter and consuming more gallons per mile, then the second is more likely to be foreign.
So maybe 1970’s American cars were not as wasteful as some people think, and were, if anything, more fuel-efficient for their
weight than non-American cars at the time. Figure 1 illustrates this graphically. Data points are domestic cars (“D”) and foreign
cars (“F”). A regression analysis could show the same thing, but Somers’ D shows it in stronger terms, without contentious
assumptions such as linearity. (On the other hand, a regression model is more informative if its assumptions are true, so the two
methods are mutually complementary.)
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Figure 1. Applying somersd to the auto data.

The confidence intervals for such high values of Somers’ D would probably be more reliable if we used the z-transform,
recommended by Edwardes (1995). The results of this are as follows:

. somersd foreign mpg weight,tran(z)

Somers' D

Transformation: Fisher's z

Valid observations: 74

------------------------------------------------------------------------------

| Jackknife

foreign | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

mpg | .4937249 .1708551 2.890 0.004 .1588551 .8285947

weight | -.9749561 .1908547 -5.108 0.000 -1.349024 -.6008878

------------------------------------------------------------------------------

95% CI for untransformed Somers' D

Somers_D Minimum Maximum

mpg .45716783 .15753219 .67972072

weight -.75087413 -.87382282 -.53768098

. lincom -weight-mpg

( 1) - mpg - weight = 0.0

------------------------------------------------------------------------------

foreign | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

(1) | .4812312 .1235452 3.895 0.000 .2390871 .7233753

------------------------------------------------------------------------------

Note that somersd gives not only symmetric confidence limits for the z-transformed Somers’ D estimates, but also the
more informative asymmetric confidence limits for the untransformed Somers’ D estimates (corresponding to the eform option).
The asymmetric confidence limits for the untransformed estimates are closer to zero than the symmetric confidence limits for the
untransformed estimates in the previous output, and are probably more realistic. The output to lincom gives confidence limits
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for the difference between z-transformed Somers’ D values. This difference is expressed in z-units, but must, of course, be in
the same direction as the difference between untransformed Somers’ D values. The conclusions are similar.

Example 2

In this example, we demonstrate Kendall’s �a by comparing weight (pounds) and displacement (cubic inches) as predictors
of fuel efficiency (miles per gallon). We first use ktau to carry out significance tests with no confidence limits:

. ktau mpg weight

Number of obs = 74

Kendall's tau-a = -0.6857

Kendall's tau-b = -0.7059

Kendall's score = -1852

SE of score = 213.605 (corrected for ties)

Test of Ho: mpg and weight independent

Pr > |z| = 0.0000 (continuity corrected)

. ktau mpg displ

Number of obs = 74

Kendall's tau-a = -0.5942

Kendall's tau-b = -0.6257

Kendall's score = -1605

SE of score = 212.850 (corrected for ties)

Test of Ho: mpg and displ independent

Pr > |z| = 0.0000 (continuity corrected)

We then use somersd (with the taua option and the z-transform) to compute the same statistics with confidence limits. Note
that somersd also outputs the �a of mpg with mpg, which is simply the probability that two independently sampled mpg-values
are not equal.

. somersd mpg weight displ,taua tr(z)

Kendall's tau-a

Transformation: Fisher's z

Valid observations: 74

------------------------------------------------------------------------------

| Jackknife

mpg | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

mpg | 1.802426 .0748368 24.085 0.000 1.655748 1.949103

weight | -.8397412 .084022 -9.994 0.000 -1.004421 -.6750612

displ | -.6841711 .093055 -7.352 0.000 -.8665556 -.5017866

------------------------------------------------------------------------------

95% CI for untransformed Kendall's tau-a

Tau_a Minimum Maximum

mpg .94705665 .92964223 .96024957

weight -.68567197 -.76344472 -.58829928

displ -.59422436 -.69961991 -.46352103

We can use lincom to compare the two predictors and test whether smaller and heavier cars travel fewer miles per gallon
than larger and lighter cars. This seems to be the case, as weight is a more negative predictor of mpg than displ:

. lincom weight-displ

( 1) weight - displ = 0.0

------------------------------------------------------------------------------

mpg | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

(1) | -.1555701 .0742717 -2.095 0.036 -.3011399 -.0100003

------------------------------------------------------------------------------

We demonstrate the cluster option using the variable manuf, equal to the first word of make, and used in [U] 23.11
Obtaining robust variance estimates to denote manufacturer. This analysis assumes that we are sampling from the population
of car manufacturers rather than the population of car models. The results are as follows:

. somersd mpg weight displ,taua tr(z) cluster(manuf)

Kendall's tau-a

Transformation: Fisher's z

Valid observations: 74

Number of clusters: 23

(standard errors adjusted for clustering on manuf)



54 Stata Technical Bulletin STB-55

------------------------------------------------------------------------------

| Jackknife

mpg | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

mpg | 1.83398 .0821029 22.338 0.000 1.673061 1.994898

weight | -.8391083 .0917593 -9.145 0.000 -1.018953 -.6592633

displ | -.694607 .0976751 -7.111 0.000 -.8860467 -.5031674

------------------------------------------------------------------------------

95% CI for untransformed Kendall's tau-a

Tau_a Minimum Maximum

mpg .95021392 .93195521 .96366535

weight -.68533644 -.76943983 -.57787293

displ -.60093349 -.70943563 -.46460448

. lincom weight-displ

( 1) weight - displ = 0.0

------------------------------------------------------------------------------

mpg | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

(1) | -.1445012 .0801437 -1.803 0.071 -.30158 .0125775

------------------------------------------------------------------------------

Note that, in contrast to the case of most estimation commands, the cluster option affects the estimates as well as their
standard errors. This is because the clustered estimates are calculated only from between-cluster comparisons, in this case pairs
of car models from different manufacturers.

Suppose that we are writing for an audience more familiar with Pearson’s correlation than with Kendall’s �a. To estimate
the Pearson correlations corresponding to our �a coefficients, we use the zrho transform. The results are as follows:

. somersd mpg weight displ,taua tr(zrho)

Kendall's tau-a

Transformation: z-transform of Greiner's rho

Valid observations: 74

------------------------------------------------------------------------------

| Jackknife

mpg | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

mpg | 3.179521 .1458796 21.796 0.000 2.893602 3.465439

weight | -1.378273 .1475561 -9.341 0.000 -1.667478 -1.089069

displ | -1.108838 .158893 -6.979 0.000 -1.420262 -.7974132

------------------------------------------------------------------------------

95% CI for untransformed Greiner's rho

Rho Minimum Maximum

mpg .99654393 .99388566 .99804762

weight -.88056403 -.93121746 -.79653796

displ -.80365118 -.88965364 -.66258811

The �59% �a between displacement and fuel efficiency (from the unclustered output) is seen to correspond to a more
impressive �80% Pearson correlation. The estimated Greiner’s � is probably less likely to be oversensitive to outliers than the
usual Pearson coefficient.

Saved Results

somersd saves in e():
Scalars

e(N) number of observations e(df r) residual degrees of freedom (if tdist present)
e(N clust) number of clusters

Macros

e(cmd) somersd e(param) parameter (somersd or taua)
e(parmlab) parameter label in output e(tdist) tdist if specified
e(depvar) name of X-variable e(clustvar) name of cluster variable
e(vcetype) covariance estimation method (Jackknife) e(wtype) weight type
e(transf) transformation specified by transf e(tranlab) transformation label in output

Matrices

e(b) coefficient vector e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

Note that (confusingly) e(depvar) is the X-variable, or predictor variable, in the conventional terminology for defining
Somers’ D. somersd is also different from most estimation commands in that its results are not designed to be used by predict.
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[an] Announcements
STB-49 2 an69 STB-43–STB-48 available in bound format
STB-50 2 an70 Fall NetCourse schedule announced
STB-53 2 an71 Spring NetCourse schedule announced

[stata] Stata Corporation updates
STB-50 34 stata53 censored option added to sts graph command
STB-54 2 stata54 Multiple curves plotted with stcurv command
STB-54 4 stata55 Search web for installable packages
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STB-51 2 dm66.2 Update of cut to Stata 6
STB-49 7 dm67 Numbers of missing and present values
STB-50 3 dm68 Display of variables in blocks
STB-50 5 dm69 Further new matrix commands
STB-50 9 dm70 Extensions to generate, extended
STB-51 3 dm71 Calculating the product of observations
STB-51 5 dm72 Alternative ranking procedures
STB-52 2 dm72.1 Alternative ranking procedures: update
STB-52 2 dm73 Using categorical variables in Stata
STB-54 7 dm73.1 Contrasts for categorical variables: update
STB-52 8 dm74 Changing the order of variables in a dataset
STB-53 6 dm75 Safe and easy matched merging
STB-54 8 dm76 ICD-9 diagnostic and procedure codes
STB-54 16 dm77 Removing duplicate observations in a dataset
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[gr] Graphics
STB-49 8 gr34.2 Drawing Venn diagrams
STB-54 17 gr34.3 An update to drawing Venn diagrams
STB-49 8 gr36 An extension of for, useful for graphics commands
STB-49 10 gr37 Cumulative distribution function plots
STB-50 17 gr38 Enhancement to the hilite command
STB-51 7 gr39 3D surface plots
STB-51 10 gr40 A simple contour plot
STB-51 12 gr41 Distribution function plots
STB-51 16 gr42 Quantile plots, generalized
STB-54 19 gr43 Overlaying graphs

[ip] Instruction on Programming
STB-52 9 ip18.1 Update to resample
STB-50 20 ip28 Automatically sorting by subgroup
STB-52 10 ip29 Metadata for user-written contributions to the Stata programming language
STB-54 21 ip29.1 Metadata for user-written contributions to the Stata programming language: extensions

[os] Operating system, hardware, & interprogram communication
STB-51 19 os17 Command-name registration at www.stata.com

[sbe] Biostatistics & Epidemiology
STB-49 12 sbe27 Assessing confounding effects in epidemiological studies
STB-49 15 sbe28 Meta-analysis of p-values
STB-50 21 sbe29 Generalized linear models: extensions to the binomial family
STB-51 24 sbe30 Improved confidence intervals for odds ratios
STB-52 12 sbe31 Exact confidence intervals for odds ratios from case–control studies
STB-54 23 sbe32 Automated outbreak detection from public health surveillance data

[sg] General Statistics
STB-53 17 sg35.2 Robust tests for the equality of variances: update to Stata 6
STB-49 17 sg64.1 Update to pwcorrs
STB-51 27 sg67.1 Update to univar
STB-49 17 sg81.1 Multivariable fractional polynomials: update
STB-50 25 sg81.2 Multivariable fractional polynomials: update
STB-54 25 sg84.2 Concordance correlation coefficient: update for Stata 6
STB-49 23 sg97.1 Revision of outreg
STB-49 23 sg107.1 Generalized Lorenz curves and related graphs
STB-49 24 sg111 A modified likelihood-ratio test command
STB-49 25 sg112 Nonlinear regression models involving power or exponential functions of covariates
STB-50 26 sg112.1 Nonlinear regression models involving power or exponential functions of covariates: update
STB-50 26 sg113 Tabulation of modes
STB-50 27 sg114 rglm - Robust variance estimates for generalized linear models
STB-51 28 sg115 Bootstrap standard errors for indices of inequality
STB-51 32 sg116 Hotdeck imputation
STB-54 26 sg116.1 Update to hotdeck imputation
STB-51 34 sg117 Robust standard errors for the Foster–Greer–Thorbecke class of poverty indices
STB-51 37 sg118 Partitions of Pearson’s �2 for analyzing two-way tables that have ordered columns
STB-52 16 sg119 Improved confidence intervals for binomial proportions
STB-52 19 sg120 Receiver Operating Characteristic (ROC) analysis
STB-53 18 sg120.1 Two new options added to rocfit command
STB-54 26 sg120.2 Correction to roccomp command
STB-52 34 sg121 Seemingly unrelated estimation and the cluster-adjusted sandwich estimator
STB-52 47 sg122 Truncated regression
STB-52 52 sg123 Hodges–Lehmann estimation of a shift in location between two populations
STB-53 19 sg124 Interpreting logistic regression in all its forms
STB-53 29 sg125 Automatic estimation of interaction effects and their confidence intervals
STB-53 31 sg126 Two-parameter log-gamma and log-inverse Gaussian models
STB-53 32 sg127 Summary statistics for estimation sample
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STB-53 35 sg128 Some programs for growth estimation in fisheries biology
STB-53 47 sg129 Generalized linear latent and mixed models
STB-54 27 sg130 Box–Cox regression models
STB-54 36 sg131 On the manipulability of Wald tests in Box–Cox regression models
STB-54 42 sg132 Analysis of variance from summary statistics
STB-54 46 sg133 Sequential and drop one term likelihood-ratio tests
STB-54 47 sg134 Model selection using the Akaike information criterion

[ssa] Survival Analysis
STB-49 30 ssa13 Analysis of multiple failure-time data with Stata

[sts] Time-series, Econometrics
STB-51 40 sts14 Bivariate Granger causality test

[sxd] Experimental Design
STB-50 36 sxd1.1 Update to random allocation of treatments to blocks
STB-54 49 sxd1.2 Random allocation of treatments balanced in blocks: update

[zz] Not elsewhere classified
STB-49 40 zz9 Cumulative index for STB-43–STB-48
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STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt datasets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology ssa survival analysis
sed exploratory data analysis ssi simulation & random numbers
sg general statistics sss social science & psychometrics
smv multivariate analysis sts time-series, econometrics
snp nonparametric methods svy survey sampling
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified
srd robust methods & statistical diagnostics

In addition, we have granted one other prefix, stata, to the manufacturers of Stata for their exclusive use.

Guidelines for authors

The Stata Technical Bulletin (STB) is a journal that is intended to provide a forum for Stata users of all disciplines and
levels of sophistication. The STB contains articles written by StataCorp, Stata users, and others.

Articles include new Stata commands (ado-files), programming tutorials, illustrations of data analysis techniques, discus-
sions on teaching statistics, debates on appropriate statistical techniques, reports on other programs, and interesting datasets,
announcements, questions, and suggestions.

A submission to the STB consists of

1. An insert (article) describing the purpose of the submission. The STB is produced using plain TEX so submissions using
TEX (or LATEX) are the easiest for the editor to handle, but any word processor is appropriate. If you are not using TEX and
your insert contains a significant amount of mathematics, please FAX (979–845–3144) a copy of the insert so we can see
the intended appearance of the text.

2. Any ado-files, .exe files, or other software that accompanies the submission.

3. A help file for each ado-file included in the submission. See any recent STB diskette for the structure a help file. If you
have questions, fill in as much of the information as possible and we will take care of the details.

4. A do-file that replicates the examples in your text. Also include the datasets used in the example. This allows us to verify
that the software works as described and allows users to replicate the examples as a way of learning how to use the software.

5. Files containing the graphs to be included in the insert. If you have used STAGE to edit the graphs in your submission, be
sure to include the .gph files. Do not add titles (e.g., “Figure 1: ...”) to your graphs as we will have to strip them off.

The easiest way to submit an insert to the STB is to first create a single “archive file” (either a .zip file or a compressed
.tar file) containing all of the files associated with the submission, and then email it to the editor at stb@stata.com either
by first using uuencode if you are working on a Unix platform or by attaching it to an email message if your mailer allows
the sending of attachments. In Unix, for example, to email the current directory and all of its subdirectories:

tar -cf - . | compress | uuencode xyzz.tar.Z > whatever

mail stb@stata.com < whatever
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