
STATA September 1999

TECHNICAL STB-51

BULLETIN
A publication to promote communication among Stata users

Editor Associate Editors

H. Joseph Newton Nicholas J. Cox, University of Durham
Department of Statistics Francis X. Diebold, University of Pennsylvania
Texas A & M University Joanne M. Garrett, University of North Carolina
College Station, Texas 77843 Marcello Pagano, Harvard School of Public Health
409-845-3142 J. Patrick Royston, Imperial College School of Medicine
409-845-3144 FAX
stb@stata.com EMAIL

Subscriptions are available from Stata Corporation, email stata@stata.com, telephone 979-696-4600 or 800-STATAPC,
fax 979-696-4601. Current subscription prices are posted at www.stata.com/bookstore/stb.html.

Previous Issues are available individually from StataCorp. See www.stata.com/bookstore/stbj.html for details.

Submissions to the STB, including submissions to the supporting files (programs, datasets, and help files), are on
a nonexclusive, free-use basis. In particular, the author grants to StataCorp the nonexclusive right to copyright and
distribute the material in accordance with the Copyright Statement below. The author also grants to StataCorp the right
to freely use the ideas, including communication of the ideas to other parties, even if the material is never published
in the STB. Submissions should be addressed to the Editor. Submission guidelines can be obtained from either the
editor or StataCorp.

Copyright Statement. The Stata Technical Bulletin (STB) and the contents of the supporting files (programs,
datasets, and help files) are copyright c
 by StataCorp. The contents of the supporting files (programs, datasets, and
help files), may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy or
reproduction includes attribution to both (1) the author and (2) the STB.

The insertions appearing in the STB may be copied or reproduced as printed copies, in whole or in part, as long
as any copy or reproduction includes attribution to both (1) the author and (2) the STB. Written permission must be
obtained from Stata Corporation if you wish to make electronic copies of the insertions.

Users of any of the software, ideas, data, or other materials published in the STB or the supporting files understand
that such use is made without warranty of any kind, either by the STB, the author, or Stata Corporation. In particular,
there is no warranty of fitness of purpose or merchantability, nor for special, incidental, or consequential damages such
as loss of profits. The purpose of the STB is to promote free communication among Stata users.

The Stata Technical Bulletin (ISSN 1097-8879) is published six times per year by Stata Corporation. Stata is a registered
trademark of Stata Corporation.

Contents of this issue page

dm50.1. Update to defv 2
dm56.1. Update to labedit 2
dm61.1. Update to varxplor 2
dm66.2. Update of cut to Stata 6 2

dm71. Calculating the product of observations 3
dm72. Alternative ranking procedures 5
gr39. 3D surface plots 7
gr40. A simple contour plot 10
gr41. Distribution function plots 12
gr42. Quantile plots, generalized 16
os15. Command-name registration at www.stata.com 19

sbe30. Improved confidence intervals for odds ratios 24
sg67.1. Update to univar 27
sg115. Bootstrap standard errors for indices of inequality 28
sg116. Hotdeck imputation 32
sg117. Robust standard errors for the Foster–Greer–Thorbecke class of poverty indices 34
sg118. Partitions of Pearson’s �2 for analyzing two-way tables that have ordered columns 37
sts14. Bivariate Granger causality test 40

2 Stata Technical Bulletin STB-51

dm50.1 Update to defv

John R. Gleason, Syracuse University, loesljrg@accucom.net

The command defv in Gleason (1997) has been updated to take advantage of Stata Version 6.0. In particular, this means that
defv can now properly deal with definitions that contain embedded double-quote (‘"’) characters. Thus definitions resembling

. defv byte not_fem = (sex=="M") | (sex=="?")

are now acceptable. In addition, the syntax has been slightly expanded so that

. defv ?

will produce a brief reminder of proper usage by issuing the command ‘which defv’.

Reference
Gleason J. R. 1997. dm50: Defining variables and recording their definitions. Stata Technical Bulletin 40: 9–10. Reprinted in Stata Technical Bulletin

Reprints, vol. 7, pp. 48–49.

dm56.1 Update to labedit

John R. Gleason, Syracuse University, loesljrg@accucom.net

The labels editor labedit for Windows and Macintosh (Gleason 1998) has been updated to take full advantage of Stata
6.0. This means that labels with embedded double-quote (‘"’) characters are now permitted, labels can be up to 80 characters
long, value labels can be assigned to negative integers, and so on. Also a small bug introduced by other changes in Stata 6.0
has been fixed.

In addition, labedit will now load much faster when the varlist is long. labedit now indicates whether a variable has
notes and provides a button to display them. Numerous other minor changes have been made in the layout of the dialog box.

Reference
Gleason J. R. 1998. dm56: A labels editor for Windows and Macintosh. Stata Technical Bulletin 43: 3–6. Reprinted in Stata Technical Bulletin

Reprints, vol. 8, pp. 5–10.

dm61.1 Update to varxplor

John R. Gleason, Syracuse University, loesljrg@accucom.net

The visual tool varxplor for Windows and Macintosh (Gleason 1998) has been updated to take full advantage of Stata 6.0.
This means that commands entered from varxplor’s simulated command line may now contain double-quote (‘"’) characters,
as may the commands assigned to the five launch buttons. In addition, commands issued from the simulated command line are
now recorded in a command history buffer, and there are two buttons that traverse the buffer in a manner similar to that of the
PrevLine and NextLine keys for Stata’s (real) command line.

Reference
Gleason J. R. 1998. dm61: A tool for exploring Stata datasets (Windows and Macintosh only). Stata Technical Bulletin 45: 2–5. Reprinted in Stata

Technical Bulletin Reprints, vol. 8, pp. 22–27.

dm66.2 Update of cut to Stata 6

David Clayton, MRC Biostatistical Research Unit, Cambridge, david.clayton@mrc-bsu.cam.ac.uk
Michael Hills (retired), mhills@regress.demon.co.uk

Versions of cut (Clayton and Hills 1999) for both Stata 5 and 6 are included in this STB. The Stata 6 version takes advantage
of the new numlist concept. They are called by

. egen newvar=cutv5(var), ...

. egen newvar=cutv6(var), ...

respectively. To convert either to

. egen newvar=cut(var), ...

Stata Technical Bulletin 3

rename gcutvx.ado to gcut.ado and cutvx.hlp to cut.hlp and replace the program define line in gcut.ado to

program define _gcut

An error in the way noninteger break points were treated has also been fixed.

Reference
Clayton, D. and M. Hills. 1999. dm66.1: Stata 6 version of recoding variables using grouped values. Stata Technical Bulletin 50: 3.

dm71 Calculating the product of observations

Philip Ryan, University of Adelaide, Australia, pryan@medicine.adelaide.edu.au

This insert describes a new option in egen which creates a new variable whose values are the product of observations of
an expression.

Syntax
egen newvar = prod(expression)

�
if exp

� �
in range

� �
, by(grouping varlist) pmiss(ignore j missing j 1)�

Description

prod provides a multiplicative function for egen analogous to the additive sum function. The product of observations of
expression meeting optional in and if conditions is returned in newvar. The expression would most commonly be an existing
variable in the dataset. The underlying program file is gprod.ado, the help file is prod.hlp.

Options

by(grouping varlist) specifies the variable(s) defining groups within which the products are calculated.

pmiss(ignore j missing j 1) specifies what is to be the product of a group at least one of whose observations are missing.

� pmiss(ignore), the default, ignores missing values and returns the product of all nonmissing values in the group. If all
values are missing, then missing is returned.

� pmiss(missing) returns missing for the product of observations in a group if any observation in the group is missing.

� pmiss(1) returns 1 for the product of observations in a group if all observations in the group are missing. Otherwise it
returns the product of all nonmissing values. This choice would rarely be made.

Note that a missing value is returned for observations excluded by if or in qualifiers. (See, for example, observations 16
on px0 below.)

Example
. use testprod

Contains data from testprod.dta

obs: 22

vars: 3 6 Aug 1999 12:45

size: 154 (100.0% of memory free)

1. score byte %9.0g score

2. gvar1 byte %9.0g first group variable, 5 groups

3. gvar2 byte %9.0g second group variable nested in

gvar1, 2 groups

Sorted by:

. egen px = prod(score)

. egen px0 = prod(score) if score != 0

. egen px1i = prod(score), by(gvar1)

. egen px1m = prod(score), by(gvar1) pmiss(missing)

. egen px12i = prod(score), by(gvar1 gvar2) pmiss(ignore)

. egen px12m = prod(score), by(gvar1 gvar2) pmiss(missing)

4 Stata Technical Bulletin STB-51

. format px0 %12.0g /*without this, get px0 in scientific notation*/

. listblck _all, rep(3) /*requires -listblck.ado- (Weesie, STB-50)*/

score gvar1 gvar2 px px0 px1i

1. 3 1 1 0 7153920000 1200

2. 4 1 1 0 7153920000 1200

3. 5 1 1 0 7153920000 1200

4. 1 1 2 0 7153920000 1200

5. 2 1 2 0 7153920000 1200

6. 10 1 2 0 7153920000 1200

7. 4 2 1 0 7153920000 -360

8. 5 2 1 0 7153920000 -360

9. 6 2 1 0 7153920000 -360

10. -3 2 2 0 7153920000 -360

11. -1 3 1 0 7153920000 120

12. -3 3 1 0 7153920000 120

13. 4 3 1 0 7153920000 120

14. 2 3 2 0 7153920000 120

15. 5 3 2 0 7153920000 120

16. 0 4 1 0 . 0

17. -23 4 2 0 7153920000 0

18. 2 5 1 0 7153920000 6

19. . 5 1 0 7153920000 6

20. 3 5 1 0 7153920000 6

21. . 5 2 0 7153920000 6

22. . 5 2 0 7153920000 6

score gvar1 gvar2 px1m px12i px12m

1. 3 1 1 1200 60 60

2. 4 1 1 1200 60 60

3. 5 1 1 1200 60 60

4. 1 1 2 1200 20 20

5. 2 1 2 1200 20 20

6. 10 1 2 1200 20 20

7. 4 2 1 -360 120 120

8. 5 2 1 -360 120 120

9. 6 2 1 -360 120 120

10. -3 2 2 -360 -3 -3

11. -1 3 1 120 12 12

12. -3 3 1 120 12 12

13. 4 3 1 120 12 12

14. 2 3 2 120 10 10

15. 5 3 2 120 10 10

16. 0 4 1 0 0 0

17. -23 4 2 0 -23 -23

18. 2 5 1 . 6 .

19. . 5 1 . 6 .

20. 3 5 1 . 6 .

21. . 5 2 . . .

22. . 5 2 . . .

Acknowledgments

I am grateful to Nick Cox, Tom Steichen, Clyde Schecter and, especially, Michael Blasnik for helpful comments and coding
suggestions. Contributors to a thread on Statalist concerning handling of missing values in Stata functions are also thanked.
Jeroen Weesie provided the handy utility listblck in STB-50.

Appendix

In a thread on Statalist Clyde Schecter (clyde schechter@smtplink.mssm.edu) wrote (July 6, 1999) that

“From a mathematical standpoint, a product operator should obey the law: Prod(x in A [B) = Prod(x in A) Prod(x in
B) if A and B are disjoint sets. From this it automatically follows that if A is the empty set, Prod(x in A) = 1.”

However, this relationship depends upon B having no zero elements. If this assumption fails, Prod(x in A) will be
indeterminate. pmiss(1) is provided for those who wish to make this assumption, but caution is advised.

Stata Technical Bulletin 5

dm72 Alternative ranking procedures

Nicholas J. Cox, University of Durham, UK, n.j.cox@durham.ac.uk
Richard Goldstein, richgold@ix.netcom.com

Syntax

egen
�
type

�
newvar = rankf(exp)

�
if exp

� �
in range

� �
, by(varlist)

�
egen

�
type

�
newvar = rankt(exp)

�
if exp

� �
in range

� �
, by(varlist)

�
egen

�
type

�
newvar = ranku(exp)

�
if exp

� �
in range

� �
, by(varlist)

�
lbleqrnk varname

�
, suffix(suffix)

�

Description

The egen functions rankf(), rankt() and ranku() produce what are here called the “field,” ‘track,” and “unique”
ranks of exp, as alternatives to the ranks produced by the official egen function rank().

On-line help for these functions is available through help altrank.

lbleqrnk assigns value labels to tied ranks. The default label is of the form "rank=" whenever rank occurs twice or more.

Options

by(varlist) specifies that ranks are to be calculated separately for the distinct groups defined by varlist.

suffix(suffix) specifies a suffix for value labels indicating ties, for example, suffix(" (tied)").

The existing rank function

Stata’s egen, rank() ranks what is fed to it according to two conventions commonly used in statistics:

a. The lowest value has rank 1.

b. Tied values are assigned the average of the ranks that would have been allocated had the values been minutely different.
In other words, the sum of the ranks is preserved.

Hence a dataset of 0, 1, 2.71828, 3.14159 yields ranks 1, 2, 3, 4 and one of 1, 1, 1, 3.14159 yields ranks 2, 2, 2, 4.

This insert explains how to calculate ranks in Stata according to other procedures that are sometimes used.

High values have low ranks

The opposite convention to (a) above is clearly

a0. The highest value has rank 1.

This seems more natural, for example, in dealing with the modeling of extreme values, such as floods and earthquakes,
where scientific and statistical interest is concentrated on the highest flood discharges or earthquake magnitudes. The biggest
flood in each set of data thus has rank 1, and not a rank that is equal to the sample size, which often depends arbitrarily on how
data were produced or are available.

[R] egen explains that the syntax of rank() is, at its simplest,

. egen newvar = rank(exp)

The key point here is that rank() works on some expression exp; its argument is not restricted to a single variable name.
Hence to get ranks according to convention (a0), an easy way is to insert a minus sign:

. egen newvar = rank(- varname)

Alternatively, make use of the fact that the rank of an observation in the reversed order is equal to the number of values plus
one minus the rank of the observation in the usual order. (As an aside, note that it can be useful to be able to say things like

6 Stata Technical Bulletin STB-51

. egen newvar = rank(x - y)

without explicitly generating a new variable containing x - y.)

Field and track ranks

For some purposes, we do not want to adjust for ties using convention (b) above. In sports, in education, and in informal
quantitative analysis, and in fact in most spheres outside formal statistical analysis, two contestants or candidates or cities that tie
for second are described as “2nd equal,” not as “rank 2.5.” In general, the rank is just one plus the number of values “better.”
When lower values are better, we have what we may call the “track” convention: in track events, the winner had the lowest
time. When higher values are better, we have similarly the “field” convention: in field events, the winner had the greatest jump
or throw.

Given myvar, at its simplest, the code is for track ranks

. sort myvar

. gen rankt = _n

. qui replace rankt = rankt[_n-1] if myvar== myvar[_n-1]

and for field ranks

. gsort - myvar

. gen rankf = _n

. qui replace rankf = rankf[_n-1] if myvar== myvar[_n-1]

but to cope with common complications (if, in, by(), and missing values) two ados defining egen functions accompany this
insert. Strictly, only one of these is needed given that you can negate a variable, but the redundancy is not harmful.

If you wanted ranks of either field or track form, you might want to see them appearing in reports with some suitable suffix:
for example, as 1= or 1 (tied). The best way to achieve this is through value labels: lbleqrnk is supplied for this purpose.

Completed ranks

Tukey (1977, ch. 18) used what he called “completed ranks” in the analysis of some very right-skewed distributions. These
are the number of values with at least that value, or the largest rank assigned to that value. The completed ranks of 1, 1, 1,

3.14159 are 4, 4, 4, 1. Such ranks can be computed from field ranks by

. sort myvar

. egen rankf = rankf(myvar)

. qui by myvar: replace rankf = rankf + _N - 1

An analog of completed ranks evidently could be defined in terms of “at most” rather than “at least,” and it could be
computed from track ranks similarly.

Unique ranks

Sometimes it is useful to flout the so-far tacit rule that equal values should be assigned the same rank. In our experience
this arises only in graphing ranked data when equal values would otherwise be shown by coincident data points. Assigning each
value a unique rank, so that 1, 1, 1, 3.1459 are assigned ranks 1, 2, 3, 4, means that on a graph ties are evident by a
line of data points. The idea of unique ranks is built into the official quantile command, although the variable in question is,
strictly, fraction of the data. Mountain plots (Monti 1995; Goldstein 1996) provide a second and directly opposite example.

In Stata, the code is even simpler than in previous cases:

. sort myvar OR gsort - myvar

. gen ranku = _n

but once again to cope with common complications (if, in, by(), and missing values) an ado defining an egen function
accompanies this insert. This function ranku() is a slight generalization of the rank2() function included by Goldstein (1996)
with the Stata code for mountain plots.

Examples
. use auto

(1978 Automobile Data)

. egen mpgrank = rankt(mpg)

. lbleqrnk mpgrank

Stata Technical Bulletin 7

. list make mpg mpgrank in 1/10

make mpg mpgrank

1. Linc. Continental 12 1=

2. Linc. Mark V 12 1=

3. Linc. Versailles 14 3=

4. Merc. XR-7 14 3=

5. Cad. Deville 14 3=

6. Peugeot 604 14 3=

7. Cad. Eldorado 14 3=

8. Merc. Cougar 14 3=

9. Buick Electra 15 9=

10. Merc. Marquis 15 9=

. egen hdrrank = rankf(hdroom)

. lbleqrnk hdrrank

. list make hdroom hdrrank in 1/15

make hdroom hdrrank

1. Plym. Volare 5.0 1

2. Dodge St. Regis 4.5 2=

3. Olds Cutlass 4.5 2=

4. Buick Century 4.5 2=

5. Olds Omega 4.5 2=

6. Plym. Horizon 4.0 6=

7. Chev. Impala 4.0 6=

8. Olds Delta 88 4.0 6=

9. Pont. Catalina 4.0 6=

10. Buick Electra 4.0 6=

11. Dodge Diplomat 4.0 6=

12. Buick LeSabre 4.0 6=

13. Dodge Magnum 4.0 6=

14. Olds 98 4.0 6=

15. Cad. Deville 4.0 6=

References
Goldstein, R. 1996. sg58: Mountain plots. Stata Technical Bulletin 33: 9–10. Reprinted in The Stata Technical Bulletin Reprints, vol 6, pp. 143–145.

Monti, K. L. 1995. Folded empirical distribution function curves—mountain plots. American Statistician 49: 342–345.

Tukey, J. W. 1977. Exploratory data analysis. Reading, MA: Addison–Wesley.

gr39 3D surface plots

Adrian Mander, Cambridge, UK, adrian.mander@mrc-bsu.cam.ac.uk

This insert describes the command surface which draws a 3D wireform surface plot of three variables containing the x,
y, and z coordinates for a set of points. The program is fairly rigid and does not allow axis labeling and allows only the default
ticmarks, which are the maximum and minimum of each of the three variables.

The surface command can be used to add to the suite of 3D programs in van Melle (1998). His functions hidlin and
altitude require a function z = f(x; y) in order to generate a surface plot. In the same suite of programs the function makfun

can summarize 3-dimensional data which can then be passed to hidlin and altitude. The function surface is an attempt
to plot the exact data and relies upon no fixed functions or summaries of the data. Representation of 3-dimensional data is
complicated and surface is a first step to improving Stata’s capabilities.

Syntax

surface var1 var2 var3
�
, saving(filename) round(#) orient(str) nowire

�
where var1, var2, and var3 are the variables containing the x, y, and z coordinates of the points to be plotted.

Options

saving(filename) saves the resulting graph in filename. If the file already exists, it will be deleted and the new graph saved.

round(#) controls the number of lines drawn in the wireframe diagram when the data have numerous possible values for the
x and y variables.

nowire substitutes the wireframe for points with lines that join the point and the minimum of the z variable.

8 Stata Technical Bulletin STB-51

orient(str) interchanges axes labels in order to simulate a rotation. This option takes the letters xyz or a combination of them.
Whichever letter comes first is the x-axis, second is y-axis and third is the z-axis. Thus orient(zxy) means that var1
is now the y coordinates, var2 is the z coordinates and var3 is the x coordinates. This is different from changing the
variables around since the wireframe is still drawn across the original x and y values. This is a crude attempt to implement
rotation to obtain a clearer picture.

Examples

The first set of data illustrates the basic features of surface. By default the three axes are labeled x-axis, y-axis, and
z-axis. This is controlled by the order in which the three variables are in the command line. Regardless of which orientation
is used the axes will be correctly labeled. The range of values on each of the axes is the minimum to the maximum of the
respective variables.

. surface x y z

 x-axis 1 19

z

-
a

x
i
s

 -399

 360

 y-axis

 1

 20

Figure 1: The default behavior of surface.

There is one alternative to the wireframe diagram and that is each point is plotted individually. The point is represented as
a circle and the line represents the displacement from the minimum of the z variable. This command may be of most use when
plotting an irregular grid of points, where the wireframe diagram becomes cluttered. Using the same data as in Figure 1, we
have

. surface x y z, nowire

 x-axis 1 19

z

-
a

x
i
s

 -399

 360

 y-axis

 1

 20

Figure 2: An alternative view of the data in Figure 1.

Rotation

The next plot illustrates the orient option, which is an attempt to introduce some sort of rotation ability into the surface

command. This simple approach allows the user to interchange the axes of the diagram, hence allowing the user to view the
plot from a different angle.

. surface x y z, orient(zxy)

Stata Technical Bulletin 9

 z-axis -399 360

y

-
a

x
i
s

 1

 20

 x-axis

 1

 19

Figure 3: A reorientation of axes.

Nonregular grids and missing data

In order to look at the case where x and y do not form a perfect grid, here is an example surface.

. surface x y z

 x-axis 1 19

z

-
a

x
i
s

 -238

 162

 y-axis

 1

 20

Figure 4: A simple smooth surface.

If we add noise to the x and y values we will not have a regular grid with which to draw the wireframe. The surface
command will round the x and y values to reduce the number of different values and then attempt to draw the frame. This is
an automatic procedure to attempt to obtain a diagram resembling the underlying surface. The procedure is not guaranteed to
produce an adequate grid, for example

. surface x y z

WARNING the x-variable contains too many unique values attempting to round

WARNING the y-variable contains too many unique values attempting to round

and the resulting graph is empty.

If we use the round option, we can obtain a reasonable plot:

(Graph on next page)

10 Stata Technical Bulletin STB-51

. surface x y z, round(20)

 x-axis 0 39.69851684570313

z

-
a

x
i
s

 -386

 455

 y-axis

 0

 39.86039733886719

Figure 5: A wireframe plot from irregular x and y.

Missing values are omitted when drawing the wireframe. As can be seen from the diagram below, the lines may not reach
the edges of the grid due to missing values. Also, the x and y direction lines may not intersect at a few x and y coordinates
where the missing values should have been.

 x-axis -15 15

z

-
a

x
i
s

70e-13

59964

 y-axis

 -15

 15

Figure 6: A plot with missing values.

References
van Melle, G. D. 1998. gr30: A set of 3D-programs. Stata Technical Bulletin 45: 7–13. Reprinted in Stata Technical Bulletin Reprints, vol. 8,

pp. 41–50.

gr40 A simple contour plot

Adrian Mander, Cambridge, UK, adrian.mander@mrc-bsu.cam.ac.uk

This insert describes the command contour that plots a 2D contour plot of several variables. The variables must be called
x1, x2, x3, and so on. Missing data values are ignored. This specific structure of variable names allows the program to see that
data as a matrix. Explicit use of matrices was not implemented as the size of matrices may be too small.

The diagram uses straight lines to join variable entries of the same value. As the program is limited in nature, there is no
adjustment of lines between cells of differing values. Instead, the line is equidistant to the center of each cell. No smoothing is
possible of the lines as the algorithm is quite simple and constructs the contours by drawing horizontal lines and then vertical
lines and does not draw around a shape.

Syntax

contour x1 x2 ... xk
�
if exp

� �
, saving(filename) ticks(#) ltitle(string) btitle(string) title(string)

contour(#,#, ... ,#) pen(#,#, ... ,#) text legend box(#,#,#,#)
�

Stata Technical Bulletin 11

draws a contour plot of the variables x1 x2 ... xk. If the axis labels are cluttered use the ticks option. For clarity of individual
contours, use different colors by using the pen option.

Options

saving(filename) will save the resulting graph in the specified file name. If the file already exists it is deleted and the new
graph will be saved.

b|l title are titles for the x, y, and top portions of the graph. The default is the variable name in brackets followed by follow

up or timein depending on the axes.

ticks() specifies when a tick is drawn. The integer represents the gap between successive ticks. ticks(5) means that ticks
are drawn at 5, 10, and so on. The ticks represent a band corresponding to either the row or column.

legend specifies that colored numbers in the bottom right corner of the plot represent the corresponding values of the contour
lines. Obviously, if all the lines are the same color then the legend numbers will all be the same color.

text is an option that allows the values of each cell to be displayed. For small matrices of values this is quite clear, but for
larger dimensions the text will obscure the lines and hence reduce clarity.

contour() allows the user to specify at what values the contours should be drawn. The default is that the median and quartiles
of the data are used giving three lines. There is no restriction on the number of lines that can be drawn. Increasing the
number will slow the program down and give a very “busy” diagram.

pen() allows the user to specify separate colors for each line specified in the contour() option, for example, con(1,2)

pen(3,4), specifies that the line at 1 will be drawn in color pen 3 and the contour at 2 will be drawn by the color of pen
4. These pen values correspond to Stata’s gph pen command.

box() specifies bounding box parameters, for example, box(2500,20000,2500,20000). The first number is top y coordinate;
second is bottom y coordinate; third is left x coordinate; and fourth is right x coordinate.

Examples

The first example is the simplest; merely going with the built-in options. So the three contours representing the quartiles
are plotted.

. contour x*

Figure 1. The default behavior of contour.

The next example is on a slightly larger dataset and has most of the options activated. The legend is displayed in the bottom
right corner. The actual numbers in the variables are plotted on the diagram clearly showing how the contours are fitted. The
assumption of plotting the line in between lines is fairly bad for small datasets but will make no overall difference in larger plots.

(Continued on next page)

12 Stata Technical Bulletin STB-51

. contour x*, legend title(Contour Plot) ltitle(Y) btitle(X) ticks(1) text con(1,2,3,4) pen(3,4,5,6)

 1
 2
 3
 4

 1 2 3

 1

 2

 3

 4

 X

 Contour Plot Y

1

2

3

4

2

3

4

5

3

4

5

7

Figure 2. Using the contour options.

The last plot is for a larger dataset. The numbers are generated from a cubic function but have had some random noise
added, This makes a more detailed diagram.

. contour x*, legend title(Contour Plot) ltitle(Y) btitle(X) ticks(2)

 -471
 131.5
 606 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52
 54
 56
 58
 60
 62
 64
 66
 68
 70

 X

 Contour Plot Y

Figure 3. A more complex example.

gr41 Distribution function plots

Nicholas J. Cox, University of Durham, UK, n.j.cox@durham.ac.uk

Syntax

distplot varname
�
weight

� �
if exp

� �
in range

� �
, surv graph options by(byvar) freq generate(newvar)

mono missing
�

distplot varlist
�
weight

� �
if exp

� �
in range

� �
, surv graph options freq mono

�
fweights and aweights are allowed.

Description

distplot produces a plot of the (empirical) cumulative distribution function(s) for the variables in varlist. This shows the
proportion (or if desired the frequency) of values less than or equal to each value.

With the surv option, distplot produces a plot of the (empirical) survival (a.k.a. survivor, reliability, complementary or
reverse distribution) function for each varname. This shows the proportion (or if desired the frequency) of values greater than
each value, that is, the complement of the cumulative distribution function.

Stata Technical Bulletin 13

Options

surv specifies calculation and graphing of the survival function rather than the distribution function.

graph options are options allowed with graph, twoway.

by(byvar) specifies that calculations are to be carried out separately for each class defined by byvar. Any graph will, however,
show the functions for all classes. For a graph with separate panels for each class, use the generate() option and then
graph newvar varname, by(byvar). by() is only allowed with a single varname.

freq specifies calculation of frequency rather than probability.

generate(newvar) specifies a new variable in which the function will be stored. generate() is only allowed with a single
varname.

mono specifies a monochrome treatment, with a single pen color, connect style and point symbol.

missing, used only with by(), permits the use of nonmissing values of varname corresponding to missing values for the
variable named by by(). The default is to ignore such values.

Note that with by() each function is treated graphically as if it were a separate variable, so long as the number of groups
is not greater than the limit in Stata on the number of y variables on a scatter plot (20 in Stata 6.0).

With more groups, all functions must be treated graphically as a single variable, by using the mono option, which enforces
a monochrome treatment. The only connect line style appropriate is then c(L), and only one pen and one point symbol may
be used.

If ylog is specified, zero values of the survival function are automatically suppressed.

Remarks

For notation let Pr(event) denote the probability of event and #(event) denote the number of occurrences of event.

A plot of the cumulative distribution function of a variable X , namely a plot of F (x) = Pr(X � x) versus x, is often
a very useful display. The same information is conveyed by the survival (a.k.a. survivor, reliability, complementary or reverse
distribution) function 1 � F (x) = Pr(X > x). In many biomedical or engineering applications, the survival function appears
closer to the practical problem. The name ‘survival function’ is suitably evocative if data are indeed times to patient death,
component failure, or something similar, and just a name people use otherwise.

In practice, for n values x1; : : : ; xn, F (x) is estimated by #(X < xi)=n, which varies from almost 0 to 1. The estimate
of 1� F (x) thus varies from almost 1 to 0.

Such plots have several key advantages (see also D’Agostino, 1986):

� the plot indicates the general level, spread and shape of the distribution, and any peculiarities such as outliers or gaps,

� the idea works quite well not only over a range of sample sizes but also for several different groups or variables plotted
on the same graph,

� there is no need to choose arbitrary bin widths or origins, as there is with histograms.

According to Hald (1990, 108), the first graph of (the complement of) a distribution function appears in a 1669 letter from
Christiaan Huygens (1629–1695) to his brother Lodewijk (1631–1699). He plotted a survival function from data from the life
table of John Graunt (1620–1674). Huygens made numerous contributions to mathematics, astronomy and physics, studying,
among many other matters, games of chance, the collision of elastic bodies, the rings of Saturn, the pendulum clock and the
wave theory of light.

Comparison with cumul

The existing Stata command cumul (see [R] cumul) is available to calculate the cumulative distribution function for a
single variable, after which the function may be plotted using graph. The user with several variables to be compared or with
an interest in survival functions needs to repeat the cumul command or to take the further step of calculating survival functions
from cumulative distribution functions. It would seem convenient, therefore, to bundle these calculation and graphing steps into
a single program.

With the auto data read in, instead of

. cumul mpg, gen(cumpg)

. gra cumpg mpg

at its simplest, you can say

14 Stata Technical Bulletin STB-51

. distplot mpg

and, if you want to keep the cumulative,

. distplot mpg, g(cumpg)

cumul supports separate calculations for each class of some classifying variable, so you could say

. cumul mpg, gen(cumpg) by(foreign)

but for a useful graph you would need to separate out the different classes. In Stata 6.0, this is easy with separate (see
[R] separate):

. separate cumpg, by(foreign)

. gra `r(varlist)' mpg

but it is even easier with

. distplot mpg, by(foreign)

Comparison with quantile

Note that Stata does have the quantile command (see [R] diagplots) which produces, for sample data ordered such that
x(1) � : : : � x(n) a plot of x(i) versus the so-called plotting position (i � 0.5)=n, which provides, in essence, an estimate
of the proportion of data less than or equal to x(i). This conveys the same information as the cumulative distribution function
plot, but with the axes reversed. However, quantile is limited to single variables, does not support by() and is constrained
in other ways. An accompanying insert describes quantil2, which is a generalization of quantile.

Comparison with sts graph

Stata already has a graph command for survival functions, sts graph. If your data really are survival times and you have
any of the complications that are the stuff of survival analysis, such as censoring or subjects entering at different times, then
you should use sts graph. See [R] st sts graph. However, if you have data that are not survival times and you want to plot a
survival function, then you could pretend to Stata that your data are survival data, and you would get a graph quickly.

With the auto data, type

. stset mpg

. sts

and you get a graph of the survival function that is quite similar to that produced by distplot with various option choices.
By default, however, the t1title refers to Kaplan–Meier survival estimates and the b2title refers to analysis time. More
generally, the graphs produced by sts graph seem geared to what biostatisticians (and perhaps engineering statisticians) typically
do, with some design choices welded into the program. In particular, there seems to be a consensus that showing survival
functions as step functions (in Stata terms, using the connect style c(J)) is the only proper way. In other circumstances, or
for other tastes, another program may be of use. In territory familiar to me, for example, “what is the probability of a higher
rainfall?” is a natural question, but very few talk about Kaplan–Meier estimates, and so the default t1title is just confusing.
And it is easy to get thousands of values, so the connect() choices c(l), c(s), and c(J) have essentially the same effect in
practice.

Note also that Stata will not accept variables with zero or negative values as survival time data. In contrast, distplot will
happily plot survival functions for such variables. Examples would be residuals, which will be both negative and positive.

Note on ylog option in distplot

Often survival functions are inspected for tendencies to either exponential or power-law behavior. In either case, examining
the survival function on a logarithmic scale is clearly a natural step. A small but notable detail is that whenever the ylog option
is invoked, distplot automatically suppresses from the graph (but not from any generated variable) any zero values. This is
not true of sts graph.

This suppression can be justified on two grounds:

� On any survival function, zero occurs only for the maximum value of the data variable.

� Zeros arise because we are calculating Pr(X > x) or #(X > x). This is a conventional choice for the definition,
which meshes nicely with the convention Pr(X � x) or #(X � x) for the cumulative. However, some statisticians use

Stata Technical Bulletin 15

Pr(X � x) or #(X � x), with which zeros would not be observed. (For theoretical results with continuous variables, it
makes essentially no difference what you use, and if this difference made a practical difference to data analysis, then your
data are inadequate.)

On the other hand, in distplot the xlog option is not implemented in the same way. If zero is a reasonable value for
your variable, then presumably it could occur more than once, and it would be a distortion to omit those values from your
graph. Hence with zero or indeed negative values, xlog would fail, as with graph. Naturally, you can always explicitly exclude
nonpositive values using if myvar > 0 (or if myvar).

Comparison with cdf

distplot is complementary to cdf as published by Clayton and Hills (1999). Unlike distplot, cdf supports iweights
and pweights and the plotting of normal (Gaussian) distribution functions as reference curves. On the other hand, unlike cdf,
distplot supports plotting of functions for several variables, plotting of survival functions, and plotting of frequency curves
as well as probability curves.

Examples

The command

. distplot mpg , surv yla(0(0.1)1) xla(10(5)40) gap(3)

gives

P
ro

b
a

b
il

it
y

 >
 m

p
g

Mi leage (mpg)
10 15 20 25 30 35 40

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

Figure 1. The survival function for miles per gallon.

while

. distplot mpg, by(foreign) yla(0(0.1)1) xla(10(5)40) c(ll) gap(3)

gives

P
ro

b
a

b
il

it
y

 <
=

 m
p

g

Mi leage (mpg)

 Domestic Foreign

10 15 20 25 30 35 40

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

Figure 2. Distribution function for miles per gallon by domestic and foreign.

16 Stata Technical Bulletin STB-51

Acknowledgments

Elizabeth Allred made helpful comments during program development.

References
Clayton, D. and M. Hills. 1999. Cumulative distribution function plots. Stata Technical Bulletin 49: 10–12.

D’Agostino, R. B. 1986. Graphical analysis. In Goodness-of-fit techniques, ed. R. B. D’Agostino and M. A. Stephens. 7–62. New York: Marcel
Dekker.

Hald, A. 1990. A History of Probability and Statistics and Their Applications Before 1750. New York: John Wiley & Sons.

gr42 Quantile plots, generalized

Nicholas J. Cox, University of Durham, UK, n.j.cox@durham.ac.uk

Syntax

quantil2 varname
�
if exp

� �
in range

� �
, reverse graph options a(#) by(byvar) missing

�
quantil2 varlist

�
if exp

� �
in range

� �
, reverse graph options a(#)

�
Description

quantil2 produces a plot of the ordered values of varlist against the so-called plotting positions, which are essentially
quantiles of a uniform distribution on [0; 1] for the same number of values.

For n values of a variable x ordered so that x(1) � x(2) � � � � � x(n�1) � x(n) and a given constant a, the plotting
positions are (i� a)=(n� 2a+ 1) for i = 1; � � � ; n.

For more than one variable in varlist, only observations with all values of varlist present are shown.

Options

reverse reverses the sort order, so that values decrease from top left. Ordered values are plotted against 1� plotting position.

graph options are options allowed with graph, twoway.

a(#) specifies a in the formula for plotting position. The default is a = 0.5, giving (i� 0.5)=n. Other choices include a = 0,
giving i=(n+ 1), and a = 1=3, giving (i� 1=3)=(n+ 1=3).

by(byvar) specifies that calculations are to be carried out separately for each class defined by a single variable byvar. Any
graph will, however, show the functions for all classes. by() is only allowed with a single varname.

missing, used only with by(), permits the use of nonmissing values of varname corresponding to missing values for the
variable named by by(). The default is to ignore such values.

Note that with by() each function is treated graphically as if it were a separate variable, so long as the number of groups
is not greater than the limit in Stata on the number of y variables on a scatter plot (20 in Stata 6.0).

Remarks

Plotting quantiles (vertical axis) against plotting position (horizontal axis) in quantile plots can be seen as a variation on
the longer-established plotting of distribution functions, in which cumulative probability (vertical axis) is plotted against the
magnitude of a variable (horizontal axis). An accompanying insert describes distplot, a program for plotting distribution
functions and their complements. The term quantile plot appears in Chambers et al. (1983) and Cleveland (1993, 1994). Modern
use of quantile plots and their relatives stems largely from the path-breaking paper of Wilk and Gnanadesikan (1968). Examples
of antecedents from the nineteenth century can be found in Quetelet (1827) and Galton (1875); see Stigler (1986, 167, 270).

The official Stata command quantile produces quantile plots for single variables. See [R] diagplots.

quantil2 generalizes the quantile command in five ways:

1. One or more variables may be plotted.

2. The sort order may be reversed, so that values decrease from top left.

3. A single variable may be classified by another single variable, specified by the by() option.

Stata Technical Bulletin 17

4. There is support for graphical choices other than the set s(o) c(.) xsca(0,1) xlab(0,.25,.5,.75,1) wired into
quantile.

5. The plotting position is in general (i� a)=(n� 2a+ 1), in contrast to the more specific (i� 0.5)=n wired into quantile.
This is a minor point graphically, but may be useful to some users.

The plotting position is, in essence, an estimate of the proportion of data less than or equal to x(i). Popular choices for
a are 0.5, suggested by Hazen, and 0, suggested by Weibull and Gumbel, and wired into the official Stata commands pnorm,
qnorm, pchi and qchi.

For many years there has been debate about the relative merits of these plotting position formulae: see Barnett (1975),
Cunnane (1978), Harter (1984) and Hyndman and Fan (1996). It is agreed that the ideal plotting positions depend on the
distribution being fitted, and also on the precise purpose of plotting, whether model validation or parameter estimation. Cunnane
(1978) focuses on probability plotting as estimation of quantiles, ideally with no bias and minimum variance. This implies, for
example, that the Weibull or Gumbel formula with a = 0 is correct for the uniform distribution alone, while a = 0.375 should
be used for the Gaussian or normal distribution, and a = 0.44 for the exponential and Gumbel (extreme value I) distributions.
The latter values of a are closer to the Hazen proposal of 0.5 than to the Weibull or Gumbel proposal of 0. Many authors,
including Chambers et al. (1983) and Meeker and Escobar (1998), use a = 0.5 as a general rule.

From a slightly different perspective, it is worth noting that using a = 1=3 yields the median of the sampling distribution
of the estimated quantile, to a good approximation for any continuous distribution (Hoaglin 1983).

quantil2 uses the egen function pp() to calculate plotting positions, previously published by Cox (1999).

One feature of quantile cannot be emulated with quantil2. quantile draws a straight line connecting bottom left and
top right data points. quantil2 does not draw such lines. There are two reasons for this choice. First, they would complicate the
graph. Second, the rationale for drawing a straight line in quantile is presumably to aid comparison with a uniform distribution
with the same range. That kind of comparison appears uncommon in data analysis, and in any case with multiple datasets there
is likely to be far more interest in comparing datasets directly with each other.

Examples

The command

. quantil2 mpg

gives

Q
u

a
n

ti
le

s
 o

f
M

il
e

a
g

e
 (

m
p

g
)

Fraction of the data
0 .25 .5 .75 1

12

41

Figure 1. Quantile plot of miles per gallon.

while

. quantil2 mpg, by(foreign)

gives

18 Stata Technical Bulletin STB-51

Q
u

a
n

ti
le

s
 o

f
M

il
e

a
g

e
 (

m
p

g
)

Fraction of the data

 Domestic Foreign

0 .25 .5 .75 1

12

41

Figure 2. Miles per gallon for domestic and foreign cars.

and

. quantil2 mpg trunk hdroom, rescale

gives

Q
u

a
n

ti
le

s
 o

f
m

p
g

 t
ru

n
k

 h
d

ro
o

m

Fraction of the data

 mpg trunk
 hdroom

0 .25 .5 .75 1

Figure 3. Quantile plots of three variables.

References
Barnett, V. 1975. Probability plotting methods and order statistics. Applied Statistics 24: 95–108.

Chambers, J. M., W. S. Cleveland, B. Kleiner, and P. A. Tukey. 1983. Graphical Methods for Data Analysis. Belmont, CA: Wadsworth.

Cleveland, W. S. 1993. Visualizing Data. Summit, New Jersey: Hobart Press.

—–. 1994. The Elements of Graphing Data. Summit, New Jersey: Hobart Press.

Cox, N. J. 1999. Extensions to generate, extended. Stata Technical Bulletin 50: 9–17.

Cunnane, C. 1978. Unbiased plotting positions–a review. Journal of Hydrology 37: 205–22.

Galton, F. 1875. Statistics by intercomparison, with remarks on the law of frequency of error. Philosophical Magazine 4th series, 49: 33–46.

Harter, H. L. 1984. Another look at plotting positions. Communications in Statistics, Theory and Methods 13: 1613–33.

Hoaglin, D. C. 1983. Letter values: a set of selected order statistics. In Understanding Robust and Exploratory Data Analysis. ed. D. C. Hoaglin, F.
Mosteller, and J. W. Tukey. 33–57. New York: John Wiley & Sons.

Hyndman, R. J. and Y. Fan. 1996. Sample quantiles in statistical packages. American Statistician 50: 361–365.

Meeker, W. Q. and L. A. Escobar. 1998. Statistical Methods for Reliability Data. New York: John Wiley & Sons.

Quetelet, A. 1827. Recherches sur la population, les naissances, les décès, les prisons, les dépôts de mendicité, etc., dans le royaume des Pays-Bas.
Nouveaux mémoires de l’Académie royale des sciences et belles-lettres de Bruxelles 4: 117-192.

Stigler, S. M. 1986. The History of Statistics: the Measurement of Uncertainty Before 1900. Cambridge, MA: Harvard University Press.

Wilk, M. B. and R. Gnanadesikan. 1968. Probability plotting methods for the analysis of data. Biometrika 55: 1–17.

Stata Technical Bulletin 19

os15 Command-name registration at www.stata.com

William Gould, Stata Corporation, wgould@stata.com
Alan Riley, Stata Corporation, ariley@stata.com

Very active Stata programmers, and especially those who exchange ado-files with others, worry about choosing unique names
for their commands. Below is presented a new Stata command to help alleviate that concern. The new command, cmdname,
communicates with a registry we have installed at www.stata.com. Using cmdname, you can check whether a command name
is available, and you can register the name to yourself if it is available.

Below is presented a manual entry for cmdname written in a style as if all decisions concerning this registry have been
made and are final. This is, however, work in progress and nothing is final. If cmdname turns out to be useful, we intend to
make it an official part of Stata. Until that time, we invite comments.

The last section of this insert deals with programming commands that communicate in sophisticated ways with web servers.

Syntax
cmdname newcmd [, register name(string) email(string)]

Note: You may set the global macros S NAME and S EMAIL to avoid specifying the name() and email() options.

Description

cmdname without the register option contacts http://www.stata.com to find out whether you could register the new
command name newcmd.

cmdname with the register option contacts http://www.stata.com and registers newcmd in your name if that is possible.

Options

register specifies that you wish to register newcmd in your name. If register is not specified, a report is returned as to
whether you could register newcmd.

name() and email() must be specified if register is specified. name() specifies your name and email() your email address.
For example, you might type

. cmdname mynewcmd, register name(Bob Smith) email(bsmith@uni.edu)

If you set the global macros S NAME and S EMAIL to contain your name and email address, you need not specify options
name() and email():

. global S_NAME "Bob Smith"

. global S_EMAIL "bsmith@uni.edu"

Many users set S NAME and S EMAIL in their profile.do file.

Remarks

Very active Stata programmers, and especially those who exchange ado-files with others, worry about choosing unique
names for their commands. cmdname helps to alleviate that concern.

A command-name registry maintained at www.stata.com records the names programmers have chosen for new commands.
You can check whether a name is available and you can register names you have chosen.

The registry represents a loose agreement among Stata programmers to try to name new commands uniquely.

The concern cmdname alleviates

Say you write a new command called reghpb and somebody else on the other side of the world also writes a new command
of that name. Mostly when that occurs it does not matter because the two new commands never meet on the same computer.
If both programmers make their commands available to others, however, someone could want both. If both commands have the
same name, that will not be possible.

To avoid the problem, when you write reghpb, you could find out whether that name is available by typing

. cmdname reghpb

20 Stata Technical Bulletin STB-51

If it were available, you could make it yours by typing

. cmdname reghpb, register

Now if someone else comes up with the bright idea of writing a program named reghpb, he or she should type ‘cmdname
reghpb’ and so discover that you have already registered that name.

Registration rules enforced by cmdname

1. You may not register a name already registered.

2. You may not register a name that appears in the English-language dictionary.

3. You may not register a name that is less than 4 characters long.

When you type ‘cmdname name, register’, cmdname checks that the name is not already registered, that the name is not an
English word, and that the name is long enough.

In addition, there is a fourth rule that is only loosely enforced by cmdname:

4. You may not register a name that is a word of statistical jargon that is in common use.

Be careful because, in many cases cmdname will allow you to register such names. Periodically, newly registered names are
reviewed by human beings. If you have registered a name that is deemed to be common statistical jargon, your registration will
be revoked and you will be sent nice email alerting you to this. (That does not mean you have to change your program; it only
means that the name is not registered to you.)

Reason for the registration rules

The thinking is that really nice names should be reserved for really nice commands that are used by a large fraction of the
Stata community.

That thinking is then coupled with the argument that any command that fits the above definition is or will become part of
Stata as it is distributed by StataCorp.

Programmers other than StataCorp programmers can write really nice commands, but such commands get really nice names
only after being published in the STB or otherwise distributed under not-so-nice names and then being adopted for inclusion into
Stata, at which point they will be renamed. At that point, such programmers will also get a really nice reference in the manual.

Concerning names shorter than 4 characters, there is nothing wrong with giving your programs such names and the author
of cmdname admits that he, himself, has numerous such programs, all unregistered. StataCorp would like to keep short names
reserved for private use and, on rare occasion, for use for really common commands (think of d for describe). That is to say,
programs with short names should not be traded.

Administration of the command registry

The command registry is administered by StataCorp. Questions should be directed to registry@stata.com.

Registration is not a guarantee

Nobody forces other programmers to use cmdname, so even if you use cmdname, somebody else could still use “your”
name.

Also understand that, even if you register your command’s name, that registration might later be revoked. Such action is
not undertaken lightly, but it does happen. We apologize but there is no appeal. On the bright side, at least you will receive
email alerting you of this. And remember, there is nothing to stop you from continuing to call your program by an unregistered
or revoked name. If the name is revoked, you have merely been reminded that someday a command of the same name might
appear in Stata.

This is all a very loose arrangement. Nevertheless, if you do register your program name, you can be reasonably assured
that you will be able to keep the name. For instance, StataCorp will not publish an insert in the STB with the same name as
your program. StataCorp checks the registry and, if an STB insert comes in with the same name, they inform the author that the
program’s name must be changed.

Stata Technical Bulletin 21

Examples

cmdname without the register option merely checks whether a name is available. For instance, you are thinking about
writing a program named super:

. cmdname super

(contacting http://www.stata.com)

super is a word in the dictionary and not available for registration

You are thinking about writing a program named kapwgt:

. cmdname kapwgt

(contacting http://www.stata.com)

kapwgt already registered to Stata Corp., registry@stata.com

kapwgt is already a command of Stata.

You are thinking about writing a program named outreg:

. cmdname outreg

(contacting http://www.stata.com)

outreg already registered to STB, stb@stata.com

A command named outreg has already been published in the STB. (In setting up the registry, we went back and registered
all previously published commands. In the future, STB published commands will likely be registered to the author, not the STB

itself.)

You are thinking about writing a program named vi:

. cmdname vi

you may not register command names shorter than 4 characters

r(198);

You are thinking about writing a program named regdad:

. cmdname regdad

(contacting http://www.stata.com)

regdad is available for registration

You could register that name. (The authors request, however, that you do not register regdad because if you do, he will have
to rewrite this section of the on-line help file.)

Examples of registration

You register names by specifying the register option. You do not need to check that the name is available first:

. cmdname kapwgt, register

(contacting http://www.stata.com)

kapwgt already registered to Stata Corp., registry@stata.com

r(110);

If kapwgt had not already been registered, you would have seen

. cmdname kapwgt, register

kapwgt now registered to you (Your Name, you@email.adr)

and, from then on, if anyone else tried to register kapwgt, they would be told that “kapwgt already registered to Your Name,
you@email.adr”.

Now actually what would happen if you tried to register kapwgt would be

. cmdname kapwgt, register

must specify options -name()- and -email()- or you must set the

global macros S_NAME and S_EMAIL to contain your name and email

address.

r(198);

Either you would have to type

. cmdname kapwgt, register name(Your Name) email(you@email.adr)

or you could type

. global S_NAME "Your Name"

. global S_EMAIL "you@email.adr"

. cmdname kapwgt, register

22 Stata Technical Bulletin STB-51

Many users put the two definitions of S NAME and S EMAIL in their profile.do file.

An example you can try

We do not want you registering real names unless you intend to use them, but we know you want to try registering a name,
so we have created a convention for phony names you can register.

cmdname allows phony names of the form “1x: : : ”, names beginning with the character one followed by lowercase x.
Names starting with the characters 1x are obviously not valid command names, but cmdname will let you register them anyway.
These names really will be registered, but when we review the registry, we will remove names starting with 1x.

Try this:

. cmdname 1xthis, register

(contacting http://www.stata.com)

1xthis now registered to you (Your Name, you@email.adr)

Probably you will not be successful in registering 1xthis because someone else has already registered it. Try another name
starting with “1x”.

If you make a mistake when registering your command name and want to unregister it, please email registry@stata.com
and let us know what name you want to unregister.

Programming considerations

We have nothing more to say about using cmdname. The rest of this insert is intended for readers interested in programming
other commands that communicate with web servers, for which we will use cmdname as an example.

There are two components to cmdname:

1. cmdname.ado, the part that resides on the local computer;

2. http://www.stata.com/commands/register.cgi, the CGI script installed on our server with which cmdname commu-
nicates.

register.cgi does most of the work. It is register.cgi that maintains the registry and is able to answer questions
such as “is such-and-such already registered?” and perform tasks such as “register such-and-such if it is not already registered”.

cmdname.ado simply formulates the requests, passes them along to the CGI script, and then presents whatever output the
CGI script sends back.

Communication between cmdname.ado and register.cgi is handled by one Stata command—copy. Inside cmdname.ado
is

tempfile file

copy `"http://www.stata.com/commands/register.cgi?version=1&

subcmd=`subcmd'&

word=`sword'&

name=`sname'&

email=`smail'"' `"`file'"', text

except that the line in the code is all run together on one physical line. We have introduced spaces and alignment here simply
to improve readability.

Understand, Stata has a copy command that can copy files. If you have the file mytext.txt and type

. copy mytext.txt mytext2.txt

you will now have a copy of mytext.txt in the file mytext2.txt. copy can work over the Internet. If you type

. copy http://www.stata.com/index.html shome.txt

you will have a copy on your computer of Stata’s home page in the file shome.txt. Unless you are using a Unix system, however,
it would be a little better if you were to type

. copy http://www.stata.com/index.html shome.txt, text

because Stata Corporation has a Unix server and it will send the file to you with Unix-style line-end characters. copy’s text

option tells copy to expect a text file and to change the line-end characters to what is appropriate for your computer.

Whatever the server is willing to deliver, Stata can copy. So we installed a CGI script on our server and coded

tempfile file

Stata Technical Bulletin 23

copy `"http://www.stata.com/commands/register.cgi?version=1&

subcmd=`subcmd'&

word=`sword'&

name=`sname'&

email=`smail'"' `"`file'"', text

The result of this is to send to register.cgi the ampersand-separated information and to retrieve into a temporary file any
output register.cgi produced. Stata sends the ampersand-separated information as part of the HTTP request it makes to the
server, and the server passes it to register.cgi as if it were posted from a form using the GET method.

We wrote register.cgi to expect five arguments:

version=1 This must be the first argument

subcmd=query Check whether word is already registered
or subcmd=register or register word if not already registered

word=word word to be checked or registered
name=text name of person making request

email=text email address of person making request

and we wrote register.cgi to create standardized output: the first line of the output would contain a numeric “result code”
and the second and subsequent lines would contain additional detail, information, or messages. For instance, on a query request,
register.cgi might return on line 1

0 word available for registration
1 word already registered,

line[2] = text message saying same thing as numeric code
line[3] = who previously registered word
line[4] = email address of person who previously registered

2 word is in English-language dictionary
5 word is invalid (such as being null, too long, etc.)

96 no action taken; incompatible version
97 no action taken; register.cgi temporarily unavailable

Thus, the next step in cmdname.ado was to read back what register.cgi had to say, making the entire process

tempfile file

copy `"http://www.stata.com/commands/register.cgi?version=1&

subcmd=`subcmd'&

word=`sword'&

name=`sname'&

email=`smail'"' `"`file'"', text

infix str line 1-80 using `"`file'"'

There is, however, a complication that we gloss over that is of great importance when copying output from CGI scripts. The
actual code inside Stata reads

tempfile file

set checksum off /* <- turn off checksum */

capture {

copy `"http://www.stata.com/commands/register.cgi?version=1&

subcmd=`subcmd'&

word=`sword'&

name=`sname'&

email=`smail'"' `"`file'"', text

}

local rc = _rc

set checksum on /* <- turn checksum back on */

if `rc' { exit `rc' }

infix str line 1-80 using `"`file'"'

When Stata copies a file over the Internet, it also looks for the same filename with the extension .sum. It does not bother Stata
if the file is not found but, if it is, Stata interprets that as a checksum file and uses that to verify that the copy Stata received
was not corrupted.

In the case of CGI scripts, Stata’s requesting the corresponding .sum file can corrupt the input to the script. Stata does not
know it is calling a CGI script, so it searches from the end of the “filename” in the copy command for an extension to replace
with .sum. In cmdname, this would result in the last part of the email address being replaced with .sum So it is necessary to
turn off this feature before copying the file and then to turn it back on again afterwards.

24 Stata Technical Bulletin STB-51

In any case, the details of the design of cmdname do not really matter. What is important to understand is that Stata can
copy files over the web and that those “files” can include the output from CGI scripts installed on the web server. Using this,
one can create Stata commands that send instructions to web servers. Reading back the output, one can even create commands
that respond appropriately to how the server responds.

sbe30 Improved confidence intervals for odds ratios

John R. Gleason, Syracuse University, loesljrg@accucom.net

Commands in Stata’s epitab suite (see [R] epitab) calculate quantities of interest to epidemiologists, including confidence
intervals for odds ratios. This insert presents oddsrci and oddsrcii, two new commands for confidence intervals about odds
ratios. These commands differ from the current epitab offerings in several respects. First, they treat odds ratios as an ordinary
part of the analysis of 2 � 2 tables, free of the specialized jargon of epidemiology. Second, oddsrci provides a convenient,
impromptu means of defining the 2� 2 table underlying an odds ratio; oddsrcii is its immediate form. Most importantly, the
epitab commands implement only the Cornfield and Woolf methods of forming the confidence limits. oddsrci and oddsrcii

provide, in addition, the Gart method and the endpoint-adjusted, independence-smoothed confidence interval recently advocated
by Agresti (1999). The latter is arguably the method of choice for forming odds ratio confidence intervals.

Overview

We begin with a brief review of the basic ideas underlying the various methods of setting confidence intervals for odds
ratios. (We also acknowledge a large debt to Alan Agresti; this review borrows heavily from Agresti, 1999.) Epidemiologists
and others familiar with the details of odds ratios may wish to skip this section.

Consider a 2� 2 contingency table with observed cell counts fnijg and expected counts f�ijg, i; j = 1; 2. The odds ratio

is � = (�11�22)=(�12�21) and the obvious (and often, maximum likelihood) estimator is b� = (n11n22)=(n12n21). The obvious
estimator has an obvious problem; what to do about the possibility that nij = 0 in some cell. The problem is compounded in
the usual (normal theory) approach to forming a confidence interval for �. Under multinomial, independent binomial, or Poisson
sampling models, log(b�) is asymptotically normal with standard error estimated by (

P
n
�1
ij

)1=2. (All summations are over all
four cells of the 2� 2 table.)

The obvious problem has an obvious solution; add some constant to each cell count nij before computing log b� or its
estimated standard error. But what constant would be best? Anticipating future developments, write the (now modified) estimator
and its estimated standard error as

log b� = log

�
(n11 + c11)(n22 + c22)

(n12 + c12)(n21 + c21)

�
and b�

log �̂
=

qX
(nij + cij)

�1

where the fcijg are nonnegative constants. An approximate 100(1� �)% confidence interval for log � is then

log b� � z�=2b�log �̂
where z�=2 = ��1(1��=2) and ��1 is the N(0; 1) quantile function, evaluated in Stata with invnorm(). Exponentiating the
interval endpoints gives an approximate confidence interval for the odds ratio, �.

As noted above, setting all cij = 0 makes b� the unconditional maximum likelihood estimator in most settings; the resulting
confidence interval is known as the Woolf (1955) interval, and is computed by the woolf option of Stata’s cci command.
Perhaps the most common choice is cij = 0:5, which can be traced to Haldane (1955), Anscombe (1956), and Gart (1966). The
gart option of oddsrci and oddsrcii implements this approach.

Agresti (1999) argues for a different choice. Noting that adding cij = c to each cell count is tantamount to smoothing the
observed frequencies toward a model of equiprobability, Agresti points out that a better choice would be to smooth toward a
model of independence. In particular, consider the choice cij = 2(ni+n+j=n2), where ni+ and n+j are row and column total
counts, and n =

P
nij . In addition, Agresti argues (and not without reason) that a confidence interval for � should have a lower

limit of 0 if and only if n11n22 = 0, and an upper limit of +1 if and only if n12n21 = 0.

Denote the interval just described as the endpoint-adjusted, independence-smoothed confidence interval for the log odds
ratio, �. Agresti then goes on to demonstrate numerically that the performance of this interval is far better than that of other
available intervals. In fact, its coverage probability in the independent binomials case is accurate even for samples as small as
n1 = n2 = 10. This interval is implemented by the agresti option of the oddsrci and oddsrcii commands.

Finally, we note that epitab commands provide yet another confidence interval, one due to Cornfield (1956). oddsrci
and oddsrcii also offer this option, although the evidence in Agresti (1999) would indicate that it is a poor choice, especially
with small samples.

Stata Technical Bulletin 25

New commands for odds ratios

The command oddsrci has syntax

oddsrci
�
weight

� �
if exp

� �
in range

�
, c1(cond1) c2(cond2)

�
level(#) tabopt(tab options)

none all agresti cornf gart woolf
�

fweights are allowed.

Options

c1(cond1) provides a Boolean (true–false) expression that defines the rows of a 2� 2 table. (c1 is not optional.)

c2(cond2) provides another Boolean (true–false) expression that defines the columns of a 2� 2 table. (c2 is not optional.)

level(#) specifies the desired confidence level specified either as a proportion or as a percentage. The default level is the
current setting of the system macro S level.

tabopt(tab options) is used to pass options to the tabulate command; only the nofreq option is unavailable.

all, none choose among the following confidence intervals in the obvious way.

� agresti produces the “endpoint-adjusted, independence smoothed” confidence interval recommended by Agresti (1999).
(This is the default.)

� cornf yields the Cornfield confidence interval, as computed by cci.

� gart computes the Anscombe–Gart–Haldane confidence interval.

� woolf requests the Woolf confidence interval (same as in cci).

The arguments of the required options c1() and c2() are any two Boolean (true–false) conditions whose truth values
define the 2 � 2 table of interest. cond1 and cond2 can be arbitrarily complex expressions and they may contain embedded
double-quote (") characters; the only requirement is that they evaluate to true or false. oddsrci creates two temporary variables
with commands resembling ‘gen byte Var1 = (cond1)’ and ‘gen byte Var2 = (cond2)’, and then uses the tabulate command
to form the required table. The option tabopt() can be used to supply options to tabulate; the nofreq option is unavailable.

The remaining options choose confidence interval methods for the odds ratio. all selects each of the four available methods,
none chooses none of them (useful to see just the output of tabulate). agresti is the default method.

oddsrcii is an immediate command with the following syntax:

oddsrciia b c d
�
, notable level(level) tabopt(tab options) none all agresti cornf gart woolf

�
The arguments a, b, c, and d are the four cell counts of the 2�2 table. The option notable suppresses all output except for

the odds ratio confidence interval(s). The remaining options are identical to those of oddsrci; indeed, oddsrci calls oddsrcii
to display confidence intervals.

Each of the commands also has an alternative syntax that displays a quick reminder of usage:

oddsrci ?

oddsrcii ?

In each case, this form just uses the which command; for example:

. oddsrci ?

c:\ado\oddsrci.ado

*! CIs for the odds ratio defined by two Boolean conditions

*! Syntax: . oddsrci [fweight] [if] [in], C1(1st Boolean condition)

*! C2(2nd Boolean condition) [LEVel(0.xx)

*! TABopt(tab options) NONE ALL AGresti COrnf GArt WOolf]

*! Version 1.0.1 <JRG; 01Aug1999>

Example

To illustrate, consider the dataset cancer.dta supplied with Stata 6.0:

. use cancer, clear

(Patient Survival in Drug Trial)

26 Stata Technical Bulletin STB-51

. describe

Contains data from cancer.dta

obs: 48 Patient Survival in Drug Trial

vars: 4 16 Nov 1998 11:49

size: 576 (99.5% of memory free)

1. studytim int %8.0g Months to death or end of exp.

2. died int %8.0g 1 if patient died

3. drug int %8.0g Drug type (1=placebo)

4. age int %8.0g Patient's age at start of exp.

Sorted by:

Suppose we are interested in a possible relationship between whether a patient was older than 60 and whether that patient
survived for more than a year, considering only patients who received one of the two active drugs:

. oddsrci if drug > 1, c1(studytim > 12) c2(age > 60) all

Select cases: if drug > 1

Cond. 1: studytim > 12

Cond. 2: age > 60

| Cond. 2

Cond. 1 | False True | Total

----------+----------------------+----------

False | 5 3 | 8

True | 17 3 | 20

----------+----------------------+----------

Total | 22 6 | 28

Cornfield: Odds Ratio = .29412, [95% CI]: .04907 1.7131

Agresti: Odds Ratio = .31836, [95% CI]: .04844 2.0926

Gart: Odds Ratio = .31429, [95% CI]: .05383 1.8348

Woolf: Odds Ratio = .29412, [95% CI]: .04463 1.9382

None of the confidence intervals finds evidence of such a relationship. Given knowledge of the cell frequencies, one might
instead do something along these lines:

. oddsrcii 5 3 17 3, tab(V lr) lev(.975)

| col

row | 1 2 | Total

-----------+----------------------+----------

1 | 5 3 | 8

2 | 17 3 | 20

--------+----------------------+----------

Total | 22 6 | 28

likelihood-ratio chi2(1) = 1.6031 Pr = 0.205

Cramer's V = -0.2477

Agresti: Odds Ratio = .31836, [97.5% CI]: .03696 2.7422

Saved Results

oddsrcii saves in r(), whether or not called from oddsrci. Results saved by the (embedded) call to tabulate will also
be preserved. Thus, following the last example above:

. return list

scalars:

r(level) = 97.5

r(or_Agres) = .3183624801271863

r(lb_Agres) = .036960670590051

r(ub_Agres) = 2.742230244599933

r(CramersV) = -.2477168471534312

r(p_lr) = .2054650645448687

r(chi2_lr) = 1.603095668541514

r(c) = 2

r(r) = 2

r(N) = 28

In general, the estimated odds ratio (b�), lower and upper limits are saved for each confidence interval requested, in this case just
for the Agresti interval.

References
Agresti, A. 1999. On logit confidence intervals for the odds ratio with small samples. Biometrics 55: 597–602.

Stata Technical Bulletin 27

Anscombe, F. J. 1956. On estimating binomial response relations. Biometrika 43: 461–464.

Cornfield, J. 1956. a statistical problem arising from retrospective studies. In Proceedings of the Third Berkeley Symposium vol 4: ed. J. Neyman,
135–148. Berkeley, CA: University of California Press.

Gart, J. J. 1966. Alternative analyses of contingency tables. Journal of the Royal Statistical Society, Series B 28: 164–179.

Haldane, J. B. S. 1955. The estimation and significance of the logarithm of a ratio of frequencies. Annals of Human Genetics 20: 309–311.

Woolf, B. 1955. On estimating the relationship between blood group and disease. Annals of Human Genetics 19: 251–253.

sg67.1 Update to univar

John R. Gleason, Syracuse University, loesljrg@accucom.net

The command univar of Gleason (1997) has been updated. Aside from minor improvements in the code, three new options
have been introduced since its appearance. First, the vlabel option will display a variable’s label beside its univariate summary.
The other two options, onescal and onehdr modify the output when the byvar() option is given.

Previously, every boxplot was scaled to span columns 11–79 of the Results screen, even if the byvar() option was used
to specify subgroups of observations. With the byvar() and onescal options, all boxplots for a given variable are drawn in a
common scale. That is, the overall minimum and maximum appear at columns 11 and 79, and boxplots for individual subgroups
contract as necessary to fit that scale.

Also formerly, a display of column headings was printed for each new subgroup of observations identified with the byvar()
option. This style works well when there are few groups and a long varlist; it can appear cluttered when there are many groups
and only a few variables being summarized. The onehdr option combined with byvar() prints the column headings just once,
and shows summaries for subgroups of observations as distinct panels. That is, byvar() prints multiple tables by default; adding
the onehdr option gives one table with sub-tables.

Example

To demonstrate the new options, consider the dataset cancer.dta supplied with Stata 6.0:

. describe

obs: 48 Patient Survival in Drug Trial

vars: 4 16 Nov 1998 11:49

size: 576 (99.5% of memory free)

1. studytim int %8.0g Months to death or end of exp.

2. died int %8.0g 1 if patient died

3. drug int %8.0g Drug type (1=placebo)

4. age int %8.0g Patient's age at start of exp.

Sorted by:

First, a summary of studytim by drug groups, in the original style:

. univar studytim, by(drug) box

-> drug=1

----------:::::::::|:::::::::----------

Variable n Mean S.D. Min .25 Mdn .75 Max

studytim ---------:::::::::::::|::::::::::::----------------------------------

studytim 20 9.00 6.45 1.00 4.00 8.00 12.00 23.00

-> drug=2

----------:::::::::|:::::::::----------

Variable n Mean S.D. Min .25 Mdn .75 Max

studytim --------:::::::::::::|::::::::::::::::-------------------------------

studytim 14 14.93 7.60 6.00 9.00 14.00 20.00 32.00

-> drug=3

----------:::::::::|:::::::::----------

Variable n Mean S.D. Min .25 Mdn .75 Max

studytim ---------------------------:::::::::::::::|::::::::::::::------------

studytim 14 25.36 9.58 6.00 19.00 26.50 33.00 39.00

28 Stata Technical Bulletin STB-51

And the same summaries with the vlabel, onescal, and onehdr options in force:

. univar studytim, by(drug) vlab box onescal onehdr

----------:::::::::|:::::::::----------

Variable n Mean S.D. Min .25 Mdn .75 Max

-> drug=1

studytim Months to death or end of exp.

studytim -----::::::::|:::::::-------------------

studytim 20 9.00 6.45 1.00 4.00 8.00 12.00 23.00

-> drug=2

studytim Months to death or end of exp.

studytim -----:::::::::|:::::::::::---------------------

studytim 14 14.93 7.60 6.00 9.00 14.00 20.00 32.00

-> drug=3

studytim Months to death or end of exp.

studytim -----------------------::::::::::::::|:::::::::::-----------

studytim 14 25.36 9.58 6.00 19.00 26.50 33.00 39.00

A final modification is that typing ‘univar ?’ now issues the command which univar thereby displaying a brief reminder
of usage.

Reference
Gleason J. R. 1997. sg67: Univariate summaries with boxplots. Stata Technical Bulletin 36: 23–25. Reprinted in Stata Technical Bulletin Reprints,

vol. 6, pp. 179–183.

sg115 Bootstrap standard errors for indices of inequality

Dean Jolliffe, Center for Economic Research and Graduate Education, Czech Republic, dean.jolliffe@cerge.cuni.cz
Bohdan Krushelnytskyy, Center for Economic Research and Graduate Education,

Czech Republic, bohdan.krushelnytskyy@cerge.cuni.cz

This insert provides the program ineqerr for estimating three indices of inequality; the Gini, Theil, and variance of logs,
and bootstrap estimates of their sampling variances. The program offers three variations of the bootstrap variance estimates.
The first is the standard bootstrap which assumes that the sample was selected using a simple random design. The second is
a bootstrap estimate which assumes that the sample was selected in two-stages, both stages being simple random draws. The
third bootstrap estimate replicates a fairly standard sample design for household survey data in which primary sampling units
(PSUs) are selected with probability proportional to population (PPP) in the first stage and then in the second stage the ultimate
sampling units (USUs) are selected in a simple random draw.

While there are several other programs which provide measures of inequality indices (for example, Jenkins, 1999), there are
no Stata ado files which provide estimates of standard errors for the Gini, Theil, and variance of logs. It is only with estimates
of the sampling variance that one can answer the important policy questions of whether inequality has changed over time or
differs over regions. Mills and Zandvakili (1997) provide an interesting example of the importance of testing for the significance
of differences in estimated inequality indices. Using data from the Panel Study of Income Dynamics, they show the somewhat
troublesome result that the Gini and Theil indices are greater for post-tax income than for pre-tax income. Upon constructing
bootstrap standard errors for the indices, they determine that none of the observed differences are statistically significant. In their
paper they also show that the bootstrap estimated standard errors for the Gini are similar to the asymptotic estimates.

An advantage of the two-stage bootstrap estimates available in ineqerr is that if the sample was collected using a two-stage
process, then the estimated standard errors will be robust to this design effect. Kish (1995) and Cochran (1996) show the
importance of correcting mean values for design effects. Scott and Holt (1982) show that the magnitude of the bias for the
estimated variance-covariance matrix for ordinary least squares estimates can be quite large when it is erroneously assumed that
the data were collected using a simple random sample if in fact a two-stage design had been used. While there is no literature
we are aware of which directly discusses the assumption of design effects in estimating standard errors for inequality indices, our
empirical work suggests that correcting inequality estimates for design effects is also important. (See for example, Datt, Jolliffe
and Sharma, 1998.)

Syntax

ineqerr varlist
�
weight

� �
if exp

� �
in range

� �
, reps(#) psu(varname) psuwt(varname j expression)

�
fweights and aweights are allowed.

Stata Technical Bulletin 29

Options

reps(#) specifies the number of bootstrap replications to be performed. The default value is 100.

psu(varname) specifies the variable identifying the primary sampling unit. If no variable is specified, then the bootstrap replication
is a single-stage, simple random draw on the sample.

psuwt(varname j expression) specifies the weight to be used for the first-stage selection process. If, for example, the population
of the primary sampling unit is specified, then the bootstrap replicates a random draw with probability proportional to
population. Both psuwt and the weight options accept either a variable name or an expression, where for example an
expression might be the product of two variables. The psuwt option can only be used if the primary sampling unit is
specified. If no weighting variable is specified for the first stage but the psu is specified, the bootstrap replication is two
stages of a simple random draw on the sample.

Examples

To illustrate the use of ineqerr, we use data from the 1997 Egypt Integrated Household Survey (EIHS). The variable
pcexp r is a household-level measure of per capita consumption, which is adjusted to control for spatial price variation. wt96ind
is a weighting variable which is the product of household size and strata weights. When we issue the ineqerr command, the
following results:

. ineqerr pcexp_r [w=wt96ind]

pcexp_r --- Real Per Capita Expenditure

(obs=2449)

Bootstrap statistics

Variable | Reps Observed Bias Std. Err. [95% Conf. Interval]

---------+---

Gini | 100 .3464858 .0006895 .0071348 .3323289 .3606428 (N)

| .3345012 .361028 (P)

| .3327775 .3595716 (BC)

---------+---

Theil | 100 .2232024 .0011754 .0134943 .1964268 .2499781 (N)

| .2036364 .2518677 (P)

| .1975445 .2516475 (BC)

---------+---

Varlogs | 100 .3603729 .0019088 .0128569 .334862 .3858838 (N)

| .3408104 .3913696 (P)

| .3341884 .3833428 (BC)

N = normal, P = percentile, BC = bias corrected

In this case, no sample design information is passed to ineqerr and the program calls Stata’s bsample utility to resample
the data. In order to maintain the same sample size in each bootstrap resample, ineqerr ignores observations where pcexp r

or wt96ind is missing. Since the number of replications is not specified, the default value of 100 is used. The results from
bsample are then passed to the bstat command to generate the standard Stata bootstrap output. For more information about the
normal, percentile, and bias-corrected percentile confidence intervals, see [R] bstrap in the Stata manuals. For an introduction
to the bootstrap principle, see Efron and Tibshirani (1993). In order to reproduce results from ineqerr it is necessary to set the
random number seed first; see [R] generate.

The reported standard errors above will be correct if the sample comes from a simple random draw. This is not the case
with the EIHS data, which was collected using a stratified, two-stage design. ineqerr can generate bootstrap estimates of the
standard errors which are robust to the two-stage design by passing the information about the primary sampling unit to ineqerr.
So, for example, we correct the standard errors above for this aspect of the sample design by issuing the following command.
(We now also specify the number of replications to be 50.)

. ineqerr pcexp_r [w=wt96ind], reps(50) psu(psu)

pcexp_r --- Real Per Capita Expenditure

(obs=2449)

Bootstrap statistics

Variable | Reps Observed Bias Std. Err. [95% Conf. Interval]

---------+---

Gini | 50 .3464858 .0005401 .0123159 .3217361 .3712356 (N)

| .3233636 .3683307 (P)

| .3233636 .3732372 (BC)

---------+---

Theil | 50 .2232024 .0017971 .0211976 .1806042 .2658007 (N)

| .1872635 .2664682 (P)

| .1872635 .2664682 (BC)

30 Stata Technical Bulletin STB-51

---------+---

Varlogs | 50 .3603729 .0000892 .0238775 .3123893 .4083565 (N)

| .32027 .4053129 (P)

| .32027 .4121322 (BC)

N = normal, P = percentile, BC = bias corrected

Note that the point estimates for the inequality indices are unchanged but the estimated standard errors have all increased.
If we consider the case of the Gini coefficient, the standard error increases by 73 percent when we correct for the two-stage
nature of the sample design. It is worth noting that this program does not correct for stratification, and the reported standard
errors are likely to be somewhat too large as the typical effect of stratification is to slightly improve the precision of the sample
estimates.

As a final example, we consider a case which is not completely appropriate for the EIHS data, but may be of use when there
is more complete information on the sample design. An important intuition behind the bootstrap is that the resampling of the
data should replicate the way in which the data were originally collected. A fairly standard design for many household surveys
is to select PSUs with probability proportional to population, and then select the USUs with a simple random draw. ineqerr with
the psuwt (PSU weight) option can replicate this design if the user specifies the population estimates that were used to select the
PSUs. In the case of the EIHS data, this information is not available. The EIHS data do provide PSU population estimates from
the rural questionnaire, and to illustrate this feature, we treat this information as a proxy for the weights used in selecting the
PSUs. The procedure used to do this is described in the section on methods and formulas. The syntax used to implement this
feature follows.

. ineqerr pcexp_r [w=wt96ind] if rural==1, reps(50) psu(psu) psuwt(psupop)

pcexp_r --- Real Per Capita Expenditure

(obs=1326)

Bootstrap statistics

Variable | Reps Observed Bias Std. Err. [95% Conf. Interval]

---------+---

Gini | 50 .316077 -.0081707 .0136645 .2886171 .3435368 (N)

| .2858742 .3353139 (P)

| .3005531 .3383057 (BC)

---------+---

Theil | 50 .1836162 -.0053397 .0272215 .1289126 .2383198 (N)

| .1397549 .238112 (P)

| .1469196 .252798 (BC)

---------+---

Varlogs | 50 .3101612 -.0142084 .021793 .2663666 .3539558 (N)

| .2552118 .3348132 (P)

| .2766019 .3368765 (BC)

N = normal, P = percentile, BC = bias corrected

Methods and Formulas

The Gini is perhaps one of the most widely used indicators of inequality, and can be written as

G = 1 +
1

H
� 2

H2�

HX
h=1

�hMh

where H is the sample size, the �’s are the ranks of the observations ranging from 1 to H with the richest observation having
the rank of one (�1 = 1), � is the average value of M , and M is the measure of welfare which is sorted in descending order
so that M1 is the richest individual and MH is the poorest individual.

When weights are introduced, we follow Deaton (1997) who shows that (nonnegative) analytical weights can be treated
just as frequency weights. For the purposes of exposition, we consider the case where the weights are household size so that
we are adjusting our measure to reflect inequality of individuals and not households. In this case we convert the ranks to reflect
household size. We set �1 = 1 and then �2 = 1 +w1, where w1 is the size of the first household or the weight assigned to the
first household. More generally:

�h+1 = �h + wh

and the average rank of all the individuals in household h can be written as

��h = �h + 0:5(wh � 1)

Stata Technical Bulletin 31

The weighted Gini coefficient is then

G = 1 +
1

N
� 2

N2�w

HX
h=1

wh��hMh

where N is the weighted sample size (or the number of individuals in the sample when the weight is household size), M is
sorted as above, and �w is the weighted average value of M .

The Gini index satisfies the Pigou–Dalton principle of transfers, that is, a transfer from a richer person to a poorer person
decreases the index. The magnitude of the decline, though, is determined by the difference in income rank between the two
individuals and not the difference in incomes. Another characteristic of the Gini is that it is not generally decomposable.

The Theil index of income inequality is defined as follows:

T = (1=H)
X
h

(Mh=
�M) log(Mh=

�M)

where H is again sample size and �M is mean income. Foster (1983) shows that the Theil index satisfies several properties,
including decomposability, principle of transfers, symmetry, and income scale independence. The Theil index also has the
somewhat more attractive characteristic (relative to the Gini) that the magnitude of the decline in the index resulting from a
transfer from a richer person to a poorer person is determined by the difference in the log of incomes.

The variance of logs index is defined as

V =
1

H

X
h

�
lnMh � lnM

�2

where terms are defined as above, except the mean is now of the log of income. It is perhaps worth noting that the variance of
logs index does not satisfy the transfer principle, when the transfer is between two particularly rich observations.

The three bootstraps are implemented as follows. For the simple random sample (srs) we simply use Stata’s bsample utility
to bootstrap the three inequality indices. The srs, two-stage bootstrap proceeds as follows. In the first stage it counts the number
of unique PSUs, say k, and then using Stata’s uniform function, randomly selects with replacement k (not necessarily unique)
PSUs. At this point it counts the number of times each PSU has been selected and this is stored for later use. To implement the
second stage, the program first counts the number of USUs, say m, in each selected PSU, and then randomly selects m USUs
from each selected PSU. If a PSU is selected more than once, say � times, then in the second stage the program randomly selects
�m USUs from the selected PSU.

The third variant of the bootstrap is the procedure in which PSUs are first selected with probability proportional to population
(or whatever weight is specified in the psuwt option) and then the second stage is the same as above. The first-stage selection
is then a weighted, random draw. This selection is implemented by creating a new variable which is the running sum of the PSU

population or weight. For the last listed PSU this variable takes the value of total population (or sum of weights) of the USUs,
say N . Again assuming there are k PSUs, the first stage begins by randomly selecting k numbers using the uniform function
ranging from 1 to N . Each of these numbers is then associated with the PSU it represents and this is then the population-weighted,
randomly selected PSU. To illustrate this, consider the following table with 4 PSUs.

PSU Population Cumulative Population Random Number [1; N] Selected PSU

1 100 100 633 4
2 200 300 305 2
3 300 600 585 2
4 100 700 22 1

Assume the first randomly selected number is 633. The fourth PSU contains USUs ranging from 601 to 700, and so USU number
633 comes from this PSU. In the next case, suppose the randomly selected number is 305. Again note that the 305th population
USU resides in the second PSU, and so this PSU is selected. Following this methodology, the resulting selected PSUs are randomly
selected with probability proportional to population. (For more details on this see, for example, Cochran 1996, 250–251.)

References
Cochran, W. G. 1996. Sampling Techniques, 3d. ed. New York: John Wiley & Sons.

Datt, G., D. Jolliffe, and M. Sharma. 1998 A profile of poverty in Egypt–1997. Food Consumption and Nutrition Division Discussion Paper No. 49.
Washington DC: International Food Policy Research Institute.

Deaton, A. 1997. Welfare, poverty, and distribution. In The Analysis of Household Surveys, Baltimore: Johns Hopkins University Press.

32 Stata Technical Bulletin STB-51

Efron, B. and R. Tibshirani. 1993. An Introduction to the Bootstrap. New York: Chapman & Hall.

Foster, J. 1983. An axiomatic characterization of the Theil measure of income inequality. Journal of Economic Theory 31: 105–121.

International Food Policy Research Institute. 1998. Egypt Integrated Household Survey (EIHS) 1997: Data and Documentation, IFPRI, Washington,
DC.

Jenkins, S. 1999. sg104: Analysis of income distributions. Stata Technical Bulletin 48: 4–18. Reprinted in Stata Technical Bulletin Reprints, vol. 8,
pp. 243–260.

Kish, L. 1995. Survey Sampling New York: Wiley Classics Library Edition.

Mills, J. and S. Zandvakili. 1997. Statistical inference via bootstrapping for measures of inequality. Journal of Applied Econometrics 12: 133–150.

Scott, A. J. and D. Holt. 1982. The effect of two-stage sampling on ordinary least squares methods. Journal of American Statistical Association 77:
848–854.

sg116 Hotdeck imputation

Adrian Mander, MRC Biostatistics Unit, Cambridge, adrian.mander@mrc-bsu.cam.ac.uk
David Clayton, MRC Biostatistics Unit, Cambridge, david.clayton@mrc-bsu.cam.ac.uk

Syntax

hotdeck varlist
�
if exp

� �
in range

� �
using filenameroot

� �
, by(varlist) store impute(#)

noise keep(varlist) command(command) parms(varlist)
�

Options

using specifies the root of the imputed datasets filenames. The default is imp and hence the datasets will be saved as imp1.dta,
imp2.dta, and so on.

by(varlist) specifies categorical variables defining strata within which the imputation is to be carried out.

store specifies whether the imputed datasets are saved to disk.

impute(#) specifies the number of imputed datasets to generate. The number needed varies according to the percentage missing
and the type of data. Often as few as 5 are sufficient, for more details see Schafer (1995).

noise specifies whether the individual analyses, from the command option, are displayed.

keep(varlist) specifies the variables saved in the imputed datasets in addition to the imputed variables and the by list. By default
the imputed variables and the by list are always saved.

command(command) specifies the analysis performed on every imputed dataset.

parms(varlist) specifies the parameters of interest from the analysis. If the command is a regression command then the parameter
list can include a subset of the variables specified in the regression command. The final output consists of the combined
estimates of these parameters.

Description

hotdeck will tabulate the missing data patterns within the varlist. A row of data with missing values in any of the variables
in the varlist is defined as a “missing line” of data, similarly a “complete line” is one where all the variables in the varlist
contain data. The hotdeck procedure replaces the varlist variables in the “missing lines” with the corresponding values in the
“complete lines.” hotdeck should be used several times within a multiple imputation sequence since missing data are imputed
stochastically rather than deterministically. The nmiss missing lines in each stratum of the data described by the by option are
replaced by lines sampled from the nobs complete lines in the same stratum. The approximate Bayesian bootstrap method of
Rubin and Schenker (1986) is used; first a bootstrap sample of nobs lines are sampled with replacement from the complete lines,
and the nmiss missing lines are sampled at random (again with replacement) from this bootstrap sample.

A major assumption with the hotdeck procedure is that the missing data are either missing completely at random (MCAR)
or is missing at random (MAR) Rubin (1987), the probability that a line is missing varying only with respect to the categorical
variables specified in the by option.

If a dataset contains many variables with missing values then it is possible that many of the rows of data will contain
at least one missing value. The hotdeck procedure will not work very well in such circumstances. There are more elaborate
methods that only replace missing values, rather than the whole row, for imputed values. These multivariate multiple imputation
methods are discussed by Schafer (1995).

Stata Technical Bulletin 33

Example

The example comes from a simulation study of a two-phase sampling design. The outcome variable Y is binary and
indicates whether a subject is a case or control. The aim is to estimate the effect of the true exposure (X , binary exposure) on
the outcome. If the probability of being exposed is low a large sample size is needed to investigate this effect. A more efficient
design might be to collect data on is a surrogate measure Z of the true exposure X , and based on this information collect a
subsample of true exposure data. This is particularly useful if the cost of obtaining X is large relative to Z.

The simulation model used to generate Y and Z conditional on X are detailed below:

P (Y = 1jX) =
exp (1 +X)

1 + exp (1 +X)

P (Z = 1jX = 1) = P (Z = 0jX = 0) = 0:99

For the example it is assumed that the true exposure is observed only in the subsample, although the surrogate is fully
observed. The table of the surrogate against outcome is below

| surr

y | 0 1 | Total

-----------+----------------------+----------

Control | 2564 71 | 2635

Case | 6916 449 | 7365

-----------+----------------------+----------

Total | 9480 520 | 10000

The sampling scheme to determine the true exposure takes proportionally more subjects from “rarer” cells than “common”
cells. The rarest cell being the exposed controls and the most common the unexposed case. In this example, 80 subjects from
the 10,000 are selected to measure the true exposure. Here is the resulting table:

| xmiss

y | Unexp Exp | Total

-----------+----------------------+----------

Control | 29 11 | 40

Case | 26 14 | 40

-----------+----------------------+----------

Total | 55 25 | 80

Since this is a simulation study, the true exposure is known for everyone, but in practice the analyst will only have the
information contained in the last two tables. Using logistic regression to analyze the last table gives the following model:

Logit estimates Number of obs = 80

LR chi2(1) = 0.52

Prob > chi2 = 0.4689

Log likelihood = -55.189481 Pseudo R2 = 0.0047

--

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

xmiss | .3503613 .4850587 0.722 0.470 -.6003363 1.301059

_cons | -.1091993 .270082 -0.404 0.686 -.6385503 .4201517

--

An important point is that the number of observations is 80 out of the 10,000 possible lines of data. Analyzing complete lines
of data is called case deletion. The estimates from the case deletion analysis are inaccurate and the constant term’s confidence
interval does not contain 1. As stated previously, the logistic model’s linear predictor is 1 +X , hence both confidence intervals
should contain 1. As the sampling was conditional on the surrogate and the outcome the missing data is not MCAR but rather
MAR. This explains the biased estimates.

The hotdeck imputation can be used to impute the true exposure conditional on the surrogate measure of exposure. This
should lead to unbiased results and improvements in the standard errors. Since XjZ is imputed and Z is categorical a by(z)

option is used. The variable with missing data is put first in the variable list and analysis is carried out by the command(logit

y xmiss) statement. When the analysis is performed the variable xmiss has imputed values for each missing datum. The
parameters of interest are b[xmiss] and b[cons] and these are accessed via the parms(xmiss cons) option.

. hotdeck xmiss, command(logit y xmiss) parms(xmiss _cons) by(surr) impute(10)

DELETING all matrices....

Table of the Missing data patterns

34 Stata Technical Bulletin STB-51

* signifies missing and - is not missing

Varlist order: xmiss

pattern | Freq. Percent Cum.

------------+-----------------------------------

* | 9920 99.20 99.20

- | 80 0.80 100.00

------------+-----------------------------------

Total | 10000 100.00

Number of Obs. = 10000

No. of Imputations = 10

% Lines of Missing Data = 99.2 %

F(73.596 ,2) = 1384.8739

Prob > F = 0.0000

--

Variable | Average Between Within Total df t p-value

| Coef. Imp. SE Imp. SE SE

---------+--

xmiss | 0.9002 0.116 0.168 0.207 75.833 4.346 0.000

_cons | 1.0045 0.005 0.023 0.024 3465.545 42.628 0.000

---------+--

Variable | [95% Conf. Interval]

---------+--

xmiss | 0.4266 1.3739

_cons | 0.9517 1.0573

--

The output from hotdeck is similar to most regression commands. However, the between and within standard errors are
also included. There is a global test of whether all the coefficients are 0, the assumptions of this test may be wrong when the
number of imputations are small and/or the between imputation standard errors are larger than the within standard errors. One
remedy for this is to increase the number of imputations, however, this may not solve the problem. The Wald tests do not have
these limitations.

Saving imputed datasets

It may be preferable to use the hotdeck routine to just impute datasets and do the analysis from the saved data files.

. hotdeck xmiss using myfile, store keep(y) by(surr) impute(10)

The imputed datasets saved to disk, in the example above, will be myfile1.dta through myfile10.dta. Each file will
contain the three variables xmiss, y, and surr. By default, the files contain the varlist and the variables in the by() option,
hence the need to specify the keep(y) option.

References
Rubin, D. B. 1987. Multiple Imputation for Nonresponse in Surveys. New York: John Wiley & Sons.

Rubin, D. B. and N. Schenker. 1986. Multiple imputation for interval estimation from simple random samples with ignorable nonresponse. Journal of
the American Statistical Association 81: 366–374.

Schafer, J. L. 1995. Analysis of Incomplete Multivariate Data by Simulation. London: Chapman and Hall.

sg117 Robust standard errors for the Foster–Greer–Thorbecke class of poverty indices

Dean Jolliffe, Center for Economic Research and Graduate Education, Czech Republic, dean.jolliffe@cerge.cuni.cz
Anastassia Semykina, Center for Economic Research and Graduate Education,

Czech Republic, anastassia.semykina@cerge.cuni.cz

Description

Several inserts to the Stata Technical Bulletin provide programs to estimate a wide array of poverty indices (see for example,
Jenkins 1999, and van Kerm 1999), but we are aware of no programs which provide estimates of standard errors for these
indices. Yet, in order to answer questions of whether poverty has increased or decreased over time, or whether poverty is worse
in certain regions, estimates of the sampling variance for the indices are required. Indeed it is hard to think of a poverty-related
question which a policy maker might have, that doesn’t require an estimate of whether some difference in indices is statistically
significant. This insert describes the command sepov which provides estimates of standard errors for the Foster–Greer–Thorbecke
(1984; hereafter referred to as FGT) class of poverty indices. By default, sepov reports the headcount, poverty-gap, and squared
poverty-gap indices, but the user may request any variant of the FGT indices.

Stata Technical Bulletin 35

Kakwani (1993) presents a simple method for calculating standard errors for the FGT indices, which this program implements
as one option. The Kakwani formula for the variance of P0, the headcount index, is P0(1�P0)=(n� 1), where n is the sample
size. The formula for all other variance estimates of the FGT indices is (P2� � P

2
�
)=(n� 1) where P� is defined below. While

the Kakwani standard errors are tremendously useful when one doesn’t have access to the unit-record data, an unfortunate aspect
of the estimated standard errors is that they assume the sample was collected using a simple random design. Poverty estimates,
though, are quite often constructed from nationally representative household survey data, and this type of data almost always
comes from a complex sample design.

Howes and Lanjouw (1998) present compelling evidence that estimated standard errors for the FGT poverty indices can
have large biases when erroneous assumptions are made on the nature of the sample design. In particular they show that the
Kakwani standard errors significantly underestimate the correct standard errors when the data come from a multistage sample
design. By using Stata’s svymean command, sepov provides estimated standard errors which are robust to complex survey
design, including stratification and multi-stages.

Syntax

sepov varlist
�
weight

� �
if exp

� �
in range

�
, povline(varname)

�
alpha(#) strata(varname)

psu(varname) fpc(varname) by(varlist)
�
complete j available	 subpop(varname)

srssubpop nolabel level(#) ci deff deft meff meft obs size
�

pweights are allowed.

Options

povline(varname) specifies the poverty line, which can be either a scalar or a variable. By accepting the poverty line as a
variable, we allow for the possibility that the poverty line may vary over the sample. A variable poverty line is one way
to incorporate information about spatial price variation in obtaining the bundle of goods described by the poverty line.

alpha(#) specifies the type of poverty index. By default sepov reports the headcount, poverty-gap and squared poverty-gap
indices, which correspond to alpha taking the values of 0, 1, and 2, respectively. In addition to these, the user may specify
any nonnegative value of alpha. As alpha increases, the measure becomes more sensitive to inequality among the poor.

All other options are as specified in Stata’s svymean command. If the user does not specify the strata or primary sampling
unit, the resulting standard errors will be the Kakwani standard errors. It is important to note that using the if or in conditions
may result in incorrect variance estimates, just as with using these conditions with svymean. To obtain correct estimates of the
standard errors for poverty decomposed into subgroups, it is recommended to use the by or subpop options.

Examples

To illustrate the use of sepov, we use data from the 1997 Egypt Integrated Household Survey (EIHS). The variable pcexp r

is a household-level measure of per capita consumption, which is adjusted to control for spatial price variation, and z r is the
poverty line. wt96ind is a weighting variable which is the product of sample weights resulting from stratification and household
size, since we are interested in the welfare of individuals and not households. When we issue the sepov command, the following
results:

. sepov pcexp_r [w=wt96ind], p(z_r)

(sampling weights assumed)

Poverty measures for the variable pcexp_r: Real Per Capita Expenditure

Survey mean estimation

pweight: wt96ind Number of obs = 2449

Strata: <one> Number of strata = 1

PSU: <observations> Number of PSUs = 2449

Population size = 14532.16

--

Mean | Estimate Std. Err. [95% Conf. Interval] Deff

---------+--

p0 | .2651925 .0106545 .2442997 .2860852 1.426075

p1 | .0669121 .0035529 .0599451 .0738791 1.465418

p2 | .0255641 .0018219 .0219914 .0291368 1.458858

--

We learn from the output that, for example, the headcount index is 0.265 and the Kakwani standard error for this index
is 0.01. The next example illustrates two additional features. We note again that the Kakwani standard errors listed above are
correct only if the data result from a simple random sample. The EIHS data, as with most household survey data, were collected

36 Stata Technical Bulletin STB-51

using a complex design (stratified, two-stage design). By specifying the psu and strata options, the reported standard errors
will be corrected for the design effects. We will also specify alpha equal to three, to examine what happens to poverty when
gaps between the poverty line are “penalized” more heavily.

. sepov pcexp_r [w=wt96ind], p(z_r) psu(psu) strata(strata) a(3)

Poverty measures for the variable pcexp_r: Real Per Capita Expenditure

Survey mean estimation

pweight: wt96ind Number of obs = 2449

Strata: strata Number of strata = 5

PSU: psu Number of PSUs = 126

Population size = 14532.16

--

Mean | Estimate Std. Err. [95% Conf. Interval] Deff

---------+--

p0 | .2651925 .0167525 .2320265 .2983584 3.525606

p1 | .0669121 .0060812 .0548727 .0789515 4.293216

p2 | .0255641 .003091 .0194447 .0316835 4.198881

p3 | .01187 .0017642 .0083774 .0153626 3.68886

--

Note that the point estimates for P0, P1, P2 did not change, but that the standard errors all increased. If we consider the
headcount index (P0), the estimated standard error increases by 57 percent when we correct for the stratification and two-stage
aspects of the sample design.

Methods and Formulas

The FGT poverty index, also referred to as P� is given by

P� = 1=n
X
i

I(yi < z)[(z � yi)=z]
�

where n is the sample size, i subscripts the household or individual, y is the relevant measure of welfare, z is the poverty line,
and I is an indicator function which takes the value of one if the statement is true and zero otherwise.

When � = 0, the resulting measure is the headcount index which provides an estimate of the proportion of the population
living in poverty. When � = 1, the FGT index results in the poverty-gap index which provides a measure of the depth of poverty.
The squared poverty-gap index, which is sensitive to the extent of inequality among the poor, results when � = 2. In addition
to these three measures, which are provided by default, the user may specify any nonnegative value of �.

Foster, et al. (1984) show that for any income vector y, broken down into m subgroup income vectors, y(1); : : : ; y(m), P�
is additively decomposable with population share weights:

P�(y; z) =

mX
j=1

(nj=n)P�(y
(j); z)

Exploiting this property is really the innovation of sepov. This property allows us to treat each observation as a subgroup,
which means that the average value resulting from Stata’s summarize or svymean command will be the sample estimate of P�.
sepov passes observation-specific estimates of P� to Stata’s svymean command, which then provides the user with estimates
of the poverty indices as well as their standard errors which are robust to design effects.

References
Foster, J., J. Greer, and E. Thorbecke. 1984. A class of decomposable poverty measures. Econometrica 52: 761–765.

Howes, S. and J. O. Lanjouw. 1998. Does sample design matter for poverty comparisons. Review of Income and Wealth 44(1): 99–109.

International Food Policy Research Institute. Egypt Integrated Household Survey (EIHS) 1997: Data and Documentation. IFPRI, Washington, DC 1998.

Jenkins, S. 1999. sg104: Analysis of income distributions. Stata Technical Bulletin 48: 4–18. Reprinted in Stata Technical Bulletin Reprints, vol. 8,
pp. 243–260.

Kakwani, N. 1993. Statistical inference in the measurement of poverty. Review of Economics and Statistics 75(4): 632–39.

van Kerm, P. 1999. sg108: Computing poverty indices. Stata Technical Bulletin 48: 29–33. Reprinted in Stata Technical Bulletin Reprints, vol. 8,
pp. 274–278.

Stata Technical Bulletin 37

sg118 Partitions of Pearson’s �
2 for analyzing two-way tables that have ordered columns

Rory Wolfe, Royal Children’s Hospital, Australia, wolfer@cryptic.rch.unimelb.edu.au

Introduction

This insert describes the command opartchi which is useful for exploratory analysis of data that can be summarized in a
two-way contingency table with ordered columns. The aim is to describe differences between the rows of the table in terms of
the distribution of the row totals across the ordered columns, i.e. where these are viewed as categories of an ordinal outcome
variable. The command provides test statistics that summarize the extent to which the rows distributions differ, firstly in their
location and secondly in their dispersion, across the ordinal scale.

Two types of test statistics are provided. By default, Pearson’s �2 statistic is partitioned into components that describe the
appropriate row differences (Best 1994, Best and Rayner, 1998). As an option, an analysis of the deviance statistics from fitting
log-linear models to the data (Agresti 1984) is produced. Both of these procedures require the attachment of scores to the ordered
columns and by default, increasing integer scores are used but user-defined scores can be optionally provided. If midrank scores
are used then the location and dispersion components of Pearson’s �2 test are equivalent to statistics given by Nair (1986).

If, in addition to the columns, the rows of the contingency table have a natural ordering, then an optional test can be
performed to assess the extent to which differences between the location of row distributions can be explained by an increasing
effect with row order. This “test of trend” requires the attachment of scores to the rows and by default increasing integer scores
are used, although an option is provided that allows for user-defined scores. With default row scores and midrank column scores
this “test of trend” component of Pearson’s �2 is equivalent to the test statistic provided by nptrend; see the Stata FAQ at
http://www.stata.com/support/faqs/stat/trend.html for a further discussion of this issue.

The data can be provided either at an individual level (one ordinal outcome value per observation) or at a contingency
table level in which case there is a variable in the dataset that contains the observed counts for each cell of the table. The latter
requires the use of the optional frequency weighting.

Method

In general the R � C contingency table has rows i = 1; : : : ; R (possibly ordered in which case there are corresponding
scores xi that increase with i) and ordered columns j = 1; : : : ; C with attached scores yj that increase with j. The table has
observed cell counts nij , fixed row totals ni: (where : as a subscript indicates summation over the corresponding subscript of
nij) and underlying cell probabilities �ij .

Pearson’s �2 statistic, X2, on (R� 1)(C � 1) degrees of freedom is given by

X
2 =

X
ij

(nij � pjni:)
2

pjni:

where a null hypothesis of no association provides expected cell probabilities pj = n:j=n::. Best and Rayner (1998) partition X2

into C� 1 individual �2 statistics, each on R� 1 degrees of freedom, and each describing a different aspect of the between-row
differences in the distribution of observations across the ordered columns. In particular, the first two components, V1 =

P
i
v
2
1i

and V2 =
P

i
v
2
2i, where

v1i =
X
j

nij

ni:

yj � �p
�2

v2i =
X
j

nij

ni:

(yj � �)2 � �3(yj � �)

�2
� �2p

�4 � �23=�2 � �22

and
� =

X
j

yjpj

�r =
X
j

(yj � �)rpj

summarize row differences in terms of the location and dispersion, respectively, of the distribution of the row totals. The test
of trend is obtained by regressing the individual row contributions to the location component, v1i, on the row scores, xi, as
described by Best and Rayner (1998).

38 Stata Technical Bulletin STB-51

The deviance statistics from log-linear modeling arise as follows. The independence model (Agresti 1984)

log(�ij) = �0 + �Xi + �Y j

is initially fitted to obtain the independence deviance statistic (where the corner constraints �Y 1 = �X1 = 0 are employed). The
change in deviance between this model and the row effects model,

log(�ij) = �0 + �Xi + �Y j + �Li(yj � �y) �L1 = 0

gives the location-component deviance statistic. The change in deviance between this second model and the dispersion model

log(�ij) = �0 + �Xi + �Y j + �Li(yj � �y) + �Di(yj � �y)
2

�L1 = �D1 = 0

gives the dispersion-component deviance statistic. If the rows have a natural order then the linear-trend-component deviance
statistic is given by the difference between the deviance for the independence model above and the uniform association model

log(�ij) = �0 + �Xi + �Y j + �XY (xj � �x)(yj � �y)

Syntax of the opartchi command

opartchi column var
�
weight

� �
if exp

� �
in range

�
, by(row var)

�
table loglinear

score(column score var) orows rscore(row score var)
�

fweights are allowed.

Options

by(row var) is required. The variable row var gives the rows of the contingency table.

table is optional and displays the two-way contingency table (with row percentages) that is to be analyzed.

loglinear is an option for displaying deviance statistics from log-linear models alongside the counterpart Pearson’s �2 partitions.

score(column score var) is an option to supply user-defined scores for the column values instead of using the default increasing
integer scores.

orows is optional and should only be used where row var is an ordinal variable. This option display the nested test for trend
within the location component of row differences.

rscore(row score var) is an option to supply user-defined scores for the row values instead of using the default increasing
integer scores.

Examples

Comparing two multinomial distributions: a 2� C table

The data reproduced in Table 1 on consumers’ subjective rating of the sweetness of chocolate products was analyzed by
Best (1994).

Table 1: A cross-cultural study of sweetness

Sweetness liking score

Consumer nationality 1 2 3 4 5 6 7

Australian 2 1 6 1 8 9 6
Japanese 0 1 3 4 15 7 1

Stata Technical Bulletin 39

Suppose these data are stored as a series of responses (in a variable called sweet sc) to the chocolate’s sweetness from
individuals identified by their country of residence (stored in the variable country). To obtain the midrank scores in Stata 6.0
the command

. egen midrank=rank(sweet_sc)

can be used, and these scores are then attached to the ordered categories of the response scale when analyzing the differences
between the two cultures with respect to their liking of the sweetness of the chocolate:

. opartchi sweet_sc, by(country) score(midrank)

The output

Chi-square tests

df Chi-square P-value

Independence 6 10.699812 0.0981

Components of independence test

Location 1 .60488714 0.4367

Dispersion 1 7.8406825 0.0051

agrees with the �2 results of Best (1994). The conclusion here is that while Australian and Japanese consumers have the same
average liking of chocolate’s sweetness, there is a strong difference between the cultures in the spread of responses across the
ordinal scale, with Australian consumers being more likely to give extreme responses.

Ordinal by ordinal 2-way tables

Reproduced in Table 2 are data presented by Agresti (1984, 12) on an undesirable side-effect outcome from different
operations for treating duodenal ulcer patients.

Cross-classification of Dumping Severity and Operation

Dumping severity

Operation None Slight Moderate Total

Drainage and vagotomy 61 28 7 96
25% resection and vagotomy 68 23 13 104
50% resection and vagotomy 58 40 12 110

75% resection 53 38 16 107

Total 240 129 48 417

When analyzing data that have been summarized in this way, it is most convenient to enter the information into Stata in
contingency table format whereby for each cell of the table indicated by the values of the variables op (numbered 1–4) and
severity (numbered 1–3), the number of observations is given by the variable count. Note that the operations and the outcome
are both ordered in terms of severity. Analysis of this table can be performed with the command

. opartchi severity [fweight=count], by(op) loglin orows

which produces the output

Chi-square tests Log-linear models

df Chi-square P-value Deviance P-value

Independence 6 10.54191 0.1036 10.878224 0.0922

Components of independence test (/ deviance)

Location 3 6.454436 0.0915 6.4748355 0.0907

Dispersion 3 4.087474 0.2522 4.4033885 0.2211

Ordinal X Ordinal 2-way table

Trend in location effect 1 6.1934378 0.0128 6.2884399 0.0122

The log-linear independence and trend model deviances are given by Agresti (1984, 81) and agree with the results above.
The Pearson’s �2 results are very similar as should be the case unless the data are sparse. The differences between operations

40 Stata Technical Bulletin STB-51

can not be explained succinctly by either differences in average dumping severity nor differences in the spread of dumping
severity experiences. However, there is a significant trend to more severe dumping with the increasing severity of the operation
(operation D corresponds to the greatest removal of stomach).

Saved results

r(df i) Degrees of freedom for Pearson’s �2

r(df) Degrees of freedom for components
r(chi2 i) Pearson’s �2 statistic
r(chi2 l) Location component �2 statistic
r(chi2 d) Dispersion component �2 statistic

Optionally

r(chi2 tr) Linear trend component �2 statistic
r(D i) Log-linear model: independence deviance statistic
r(D l) Log-linear model: location-component deviance statistic
r(D d) Log-linear model: dispersion-component deviance statistic
r(D tr) Log-linear model: linear-trend-component deviance statistic

Discussion

In the chocolate example, after consideration of the first two components of Pearson’s �
2 there is a “residual” �

2 of
(10.7 � 0.6 � 7.8) = 2.3 on (6 � 1 � 1) = 4 degrees of freedom. In this example there are no higher order components that
could describe a significant part of this residual. In general, I expect higher order components to be unhelpful in most practical
examples given the complexity of interpretation.

For analyzing sparse data the properties of the components of Pearson’s �2 are not well documented but presumably are
similar to those of the overall Pearson’s �

2 for association as alluded to by Armitage and Berry (1994, 404). Best (1994)
presents p values from Monte-Carlo simulations for sparse tables calculated for the chocolate example given above: Independence
p = 0.08, location p = 0.46, dispersion p = 0.005, and for the residual p = 0.69. There is no change to our conclusions in the
light of these more appropriate p values.

The two sets of statistics provided by this command are among a number of such sets that have been suggested for use in
this situation. Investigation of the power of some alternatives, in the specific situation of possible dispersion effects, are given
by Hilton (1996) and Best (1994).

Acknowledgments

While accepting full responsibility for the workings of the command, I thank Suzanna Vidmar and Patty Chondros for help
debugging the program and accompanying descriptions.

References
Agresti, A. 1984. Analysis of Ordinal Categorical Data. New York: John Wiley & Sons.

Armitage, P. and G. Berry. 1994. Statistical Methods in Medical Research. 3d ed. Oxford: Blackwell Scientific Publications.

Best, D. J. 1994. Nonparametric comparison of two histograms. Biometrics 50: 538–541.

Best, D. J. and J. C. W. Rayner. 1998. Nonparametric analysis of ordinal categorical response data with factorial structure. Applied Statistics 47:
439–446.

Hilton, J. F. 1996. The appropriateness of the Wilcoxon test in ordinal data. Statistics in Medicine 15: 631–645.

Nair, V. 1986. Testing in industrial experiments with ordered categorical data. Technometrics 28: 283–311.

sts14 Bivariate Granger causality test

J. Sky David, Texas A&M University, jsdavid@politics.tamu.edu

This insert describes the program granger which implements asymptotic and finite sample bivariate Granger causality
tests (Granger 1969) for time-series data, as presented in Hamilton (1994). To illustrate the use of granger, I test my research
hypothesis that the unemployment rate Granger-causes presidential approval. The time period for this analysis is from the first
quarter of 1950 to the fourth quarter of 1994.

Stata Technical Bulletin 41

Syntax

granger varname1 varname2
�
if exp

� �
in range

�
, lags(#)

Note that tsset is required before implementing the procedure.

Options

lags(#) specifies the number of lags to be included in the test. This is not an option. The maximum number of lags allowable
is 10.

Example

The presidential approval data (King and Ragsdale 1988, Edwards III and Gallup Opinion Index, Gallup Poll Monthly),
were placed into electronic format, and obtained from Burbach (1995). The economic data (unemployment rate) were gathered
by the United States Bureau of Labor Statistics (1999).

Since the data for the presidential approval series were gathered at different monthly intervals, I used the average percentage
of those respondents that approved of the president’s job for a given quarter in order to obtain the quarterly percentages. There
was a missing time point for the presidential approval series in the third quarter of 1952. Therefore, I used the average of the
presidential approval series from the second and fourth quarters of 1952 to impute the missing time point in the third quarter of
1952. The monthly unemployment rate data were averaged on a quarter-by-quarter basis for this analysis.

I modeled the hypothesized relationship using three lags. The findings indicate that the unemployment rate Granger-causes
presidential approval in both asymptotic and finite sample tests.

. describe

Contains data from granger.dta

obs: 172

vars: 3 14 Jun 1999 19:52

size: 2,408 (99.7% of memory free)

1. yrqtr int %8.0g Year and Quarter

2. unempqtr float %9.0g Quarterly Unemployment

3. yapqtr float %9.0g Presidential Approval

Sorted by: yrqtr

. tsset yrqtr

time variable: yrqtr, 5001 to 9204, but with gaps

. granger unempqtr yapqtr, lags(3)

Granger Causality test (asymptotic) unempqtr ---> yapqtr,

H0: unempqtr does not Granger-cause yapqtr,

F(3, 165) = 3.5155199

Prob > F = .017

Granger Causality test

H0: unempqtr does not Granger-cause yapqtr,

chi2(3) = 10.99399

Prob > chi2 = 0.0118

References
Burbach, D. T. 1995. http://web.mit.edu/afs/athena.mit.edu/user/d/b/dburbach/www/papers/presaprv

Edwards III, G. and A. Gallup. 1990. Presidential Approval. Baltimore: Johns Hopkins University Press.

Gallup Opinion Index. (various issues). American Institute of Public Opinion: Princeton, N.J.

Gallup Poll Monthly. (various issues). The Gallup Poll: Princeton, N.J.

Granger, C. 1969. Investigating causal relationships by econometric models and cross-spectral Methods. Econometrica 37: 424–438.

Hamilton, J. D. 1994. Time Series Analysis. Princeton University Press: Princeton, N.J.

King, G. and L. Ragsdale. 1988. The Elusive Executive: Discovering Statistical Patterns in the Presidency. Congressional Quarterly Press: Washington,
D.C.

United States Bureau of Labor Statistics. 1999. http://146.142.4.24/cgi-bin/surveymost?bls

42 Stata Technical Bulletin STB-51

STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt datasets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology ssa survival analysis
sed exploratory data analysis ssi simulation & random numbers
sg general statistics sss social science & psychometrics
smv multivariate analysis sts time-series, econometrics
snp nonparametric methods svy survey sampling
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified
srd robust methods & statistical diagnostics

In addition, we have granted one other prefix, stata, to the manufacturers of Stata for their exclusive use.

Guidelines for authors

The Stata Technical Bulletin (STB) is a journal that is intended to provide a forum for Stata users of all disciplines and
levels of sophistication. The STB contains articles written by StataCorp, Stata users, and others.

Articles include new Stata commands (ado-files), programming tutorials, illustrations of data analysis techniques, discus-
sions on teaching statistics, debates on appropriate statistical techniques, reports on other programs, and interesting datasets,
announcements, questions, and suggestions.

A submission to the STB consists of

1. An insert (article) describing the purpose of the submission. The STB is produced using plain TEX so submissions using
TEX (or LATEX) are the easiest for the editor to handle, but any word processor is appropriate. If you are not using TEX and
your insert contains a significant amount of mathematics, please FAX (409–845–3144) a copy of the insert so we can see
the intended appearance of the text.

2. Any ado-files, .exe files, or other software that accompanies the submission.

3. A help file for each ado-file included in the submission. See any recent STB diskette for the structure a help file. If you
have questions, fill in as much of the information as possible and we will take care of the details.

4. A do-file that replicates the examples in your text. Also include the datasets used in the example. This allows us to verify
that the software works as described and allows users to replicate the examples as a way of learning how to use the software.

5. Files containing the graphs to be included in the insert. If you have used STAGE to edit the graphs in your submission, be
sure to include the .gph files. Do not add titles (e.g., “Figure 1: ...”) to your graphs as we will have to strip them off.

The easiest way to submit an insert to the STB is to first create a single “archive file” (either a .zip file or a compressed
.tar file) containing all of the files associated with the submission, and then email it to the editor at stb@stata.com either
by first using uuencode if you are working on a Unix platform or by attaching it to an email message if your mailer allows
the sending of attachments. In Unix, for example, to email the current directory and all of its subdirectories:

tar -cf - . | compress | uuencode xyzz.tar.Z > whatever

mail stb@stata.com < whatever

Stata Technical Bulletin 43

International Stata Distributors

International Stata users may also order subscriptions to the Stata Technical Bulletin from our International Stata Distributors.

Company: Applied Statistics & Company: IEM
Systems Consultants Address: P.O. Box 2222

Address: P.O. Box 1169 PRIMROSE 1416
17100 NAZERATH-ELLIT South Africa
Israel

Phone: +972 (0)6 6100101 Phone: +27-11-8286169
Fax: +972 (0)6 6554254 Fax: +27-11-8221377

Email: assc@netvision.net.il Email: iem@hot.co.za
Countries served: Israel Countries served: South Africa, Botswana,

Lesotho, Namibia, Mozambique,
Swaziland, Zimbabwe

Company: Axon Technology Company Ltd Company: MercoStat Consultores
Address: 9F, No. 259, Sec. 2 Address: 9 de junio 1389

Ho-Ping East Road CP 11400 MONTEVIDEO
TAIPEI 106 Uruguay
Taiwan

Phone: +886-(0)2-27045535 Phone: 598-2-613-7905
Fax: +886-(0)2-27541785 Fax: Same

Email: hank@axon.axon.com.tw Email: mercost@adinet.com.uy
Countries served: Taiwan Countries served: Uruguay, Argentina, Brazil,

Paraguay

Company: Chips Electronics Company: Metrika Consulting
Address: Lokasari Plaza 1st Floor Room 82 Address: Mosstorpsvagen 48

Jalan Mangga Besar Raya No. 82 183 30 Taby STOCKHOLM
JAKARTA Sweden
Indonesia

Phone: 62 - 21 - 600 66 47 Phone: +46-708-163128
Fax: 62 - 21 - 600 66 47 Fax: +46-8-7924747

Email: puyuh23@indo.net.id Email: sales@metrika.se
Countries served: Indonesia Countries served: Sweden, Baltic States,

Denmark, Finland, Iceland,
Norway

Company: Dittrich & Partner Consulting Company: Ritme Informatique
Address: Kieler Strasse 17 Address: 34, boulevard Haussmann

5. floor 75009 Paris
D-42697 Solingen France
Germany

Phone: +49 2 12 / 26 066 - 0 Phone: +33 (0)1 42 46 00 42
Fax: +49 2 12 / 26 066 - 66 +33 (0)1 42 46 00 33

Email: sales@dpc.de Email: info@ritme.com
URL: http://www.dpc.de URL: http://www.ritme.com

Countries served: Germany, Austria, Italy Countries served: France, Belgium,
Luxembourg

(List continued on next page)

44 Stata Technical Bulletin STB-51

International Stata Distributors

(Continued from previous page)

Company: Scientific Solutions S.A. Company: Timberlake Consulting S.L.
Address: Avenue du Général Guisan, 5 Address: Calle Mendez Nunez, 1, 3

CH-1009 Pully/Lausanne 41011 Sevilla
Switzerland Spain

Phone: 41 (0)21 711 15 20 Phone: +34 (9) 5 422 0648
Fax: 41 (0)21 711 15 21 Fax: +34 (9) 5 422 0648

Email: info@scientific-solutions.ch Email: timberlake@zoom.es
Countries served: Switzerland Countries served: Spain

Company: Smit Consult Company: Timberlake Consultores, Lda.
Address: Doormanstraat 19 Address: Praceta Raúl Brandao, n�1, 1�E

5151 GM Drunen 2720 ALFRAGIDE
Netherlands Portugal

Phone: +31 416-378 125 Phone: +351 (0)1 471 73 47
Fax: +31 416-378 385 Fax: +351 (0)1 471 73 47

Email: J.A.C.M.Smit@smitcon.nl Email: timberlake.co@mail.telepac.pt
URL: http://www.smitconsult.nl

Countries served: Netherlands Countries served: Portugal

Company: Survey Design & Analysis Company: Unidost A.S.
Services P/L Rihtim Cad. Polat Han D:38

Address: 249 Eramosa Road West Kadikoy
Moorooduc VIC 3933 81320 ISTANBUL
Australia Turkey

Phone: +61 (0)3 5978 8329 Phone: +90 (216) 414 19 58
Fax: +61 (0)3 5978 8623 Fax: +30 (216) 336 89 23

Email: sales@survey-design.com.au Email: info@unidost.com
URL: http://survey-design.com.au URL: http://abone.turk.net/unidost

Countries served: Australia, New Zealand Countries served: Turkey

Company: Timberlake Consultants Company: Vishvas Marketing-Mix Services
Address: Unit B3 Broomsleigh Bus. Park Address: CnO S. D. Wamorkar

Worsley Bridge Road “Prashant” Vishnu Nagar, Naupada
LONDON SE26 5BN THANE - 400602
United Kingdom India

Phone: +44 (0)208 697 3377 Phone: +91-251-440087
Fax: +44 (0)208 697 3388 Fax: +91-22-5378552

Email: info@timberlake.co.uk Email: vishvas@vsnl.com
URL: http://www.timberlake.co.uk

Countries served: United Kingdom, Eire Countries served: India

