
STATA November 1997

TECHNICAL STB-40

BULLETIN
A publication to promote communication among Stata users

Editor Associate Editors

H. Joseph Newton Francis X. Diebold, University of Pennsylvania
Department of Statistics Joanne M. Garrett, University of North Carolina
Texas A & M University Marcello Pagano, Harvard School of Public Health
College Station, Texas 77843 James L. Powell, UC Berkeley and Princeton University
409-845-3142 J. Patrick Royston, Imperial College School of Medicine
409-845-3144 FAX
stb@stata.com EMAIL

Subscriptions are available from Stata Corporation, email stata@stata.com, telephone 979-696-4600 or 800-STATAPC,
fax 979-696-4601. Current subscription prices are posted at www.stata.com/bookstore/stb.html.

Previous Issues are available individually from StataCorp. See www.stata.com/bookstore/stbj.html for details.

Submissions to the STB, including submissions to the supporting files (programs, datasets, and help files), are on a nonex-
clusive, free-use basis. In particular, the author grants to StataCorp the nonexclusive right to copyright and distribute the
material in accordance with the Copyright Statement below. The author also grants to StataCorp the right to freely use the
ideas, including communication of the ideas to other parties, even if the material is never published in the STB. Submissions
should be addressed to the Editor. Submission guidelines can be obtained from either the editor or StataCorp.

Copyright Statement. The Stata Technical Bulletin (STB) and the contents of the supporting files (programs, datasets,
and help files) are copyright c by StataCorp. The contents of the supporting files (programs, datasets, and help files), may be
copied or reproduced by any means whatsoever, in whole or in part, as long as any copy or reproduction includes attribution
to both (1) the author and (2) the STB.

The insertions appearing in the STB may be copied or reproduced as printed copies, in whole or in part, as long as any copy
or reproduction includes attribution to both (1) the author and (2) the STB. Written permission must be obtained from Stata
Corporation if you wish to make electronic copies of the insertions.

Users of any of the software, ideas, data, or other materials published in the STB or the supporting files understand that such use
is made without warranty of any kind, either by the STB, the author, or Stata Corporation. In particular, there is no warranty of
fitness of purpose or merchantability, nor for special, incidental, or consequential damages such as loss of profits. The purpose
of the STB is to promote free communication among Stata users.

The Stata Technical Bulletin (ISSN 1097-8879) is published six times per year by Stata Corporation. Stata is a registered
trademark of Stata Corporation.

Contents of this issue page

stata49. Interrater agreement 2
stata50. Changes to ttest and sdtest 8

dm50. Defining variables and recording their definitions 9
dm51. Defining and recording variable orderings 10
dm52. Executing a command on a subset of the data 12

gr24.1. Easier bar charts: correction 12
gr25.1. Spike plots for histograms, rootograms, and time series plots: update 12

ip20. Checking for sufficient memory to add variables 13
ip21. Storing commands in the keyboard buffer (Windows and Macintosh only) 13
ip22. Parsing options with embedded parentheses 13

sbe13.3. Correction to age-specific reference intervals (“normal ranges”) 16
sbe18. Sample size calculations for clinical trials with repeated measures data 16
sg73. Table making programs 18
sg74. Symmetry and marginal homogeneity test / Transmission-Disequilibrium Test (TDT) 23

ssa10. Analysis of follow–up studies with Stata 5.0 27
svy6. Versions of mlogit, ologit, and oprobit for survey data 39

2 Stata Technical Bulletin STB-40

stata49 Interrater agreement

William Gould, Stata Corporation, wgould@stata.com

kap has been updated in three ways:

1. In the two-identified rater case, when one rater or the other does not use certain ratings, the output now looks better. This is
a purely cosmetic improvement; statistics were always correct but the previous output might have led you to think otherwise.

2. In the two-identified rater case, when both raters do not use certain ratings, a new absolute option makes producing
weighted kappas easier. As things were before, you could not use the predefined wgt(w) or wgt(w2) options and, if you
wanted to specify a weighting scheme for yourself, you had to make a unique matrix according to the pattern of the data
that did exist.

3. kap can now be used with three or more raters and with a varying number of raters. The alternative kappa command
could always handle such cases but kap and kappa assume the data are organized differently. kap assumes the variables
record individual ratings. kappa assumes variables record the frequencies with which each rating occurred. Converting a
kap-format dataset into the form required by kappa was tedious at best; now that is not necessary.

Syntax

kap varname1 varname2
�
weight

� �
if exp

� �
in range

� �
, absolute tab wgt(wgtid)

�
kapwgt wgtid 1 \ # 1

�
\ # # 1 : : :

�
kap varname1 varname2 varname3

�
: : :

� �
weight

� �
if exp

� �
in range

�
kappa varlist

�
if exp

� �
in range

�

fweights are allowed; see [U] 18.1.6 weight.

Description

kap (first syntax) calculates the kappa-statistic measure of interrater agreement when there are two unique raters and two
or more ratings. kapwgt defines weights for use by kap in measuring the importance of disagreements.

kap (second syntax) and kappa calculate the kappa-statistic measure in the case of two or more (nonunique) raters and
two outcomes, more than two outcomes when the number of raters is fixed, and more than two outcomes when the number of
raters varies. kap (second syntax) and kappa produce the same results; they merely assume the data are organized differently.

kap assumes each observation is a subject. varname1 contains the ratings by the first rater, varname2 the ratings by the
second rater, and so on.

kappa also assumes each observation is a subject. The variables, however, record the frequencies with which ratings were
assigned. The first variable in varlist records the number of times the first rating was assigned, the second variable the number
of times the second rating was assigned, and so on.

Options

absolute is relevant only if wgt() is also specified; see wgt() below. Option absolute modifies how i, j, and k in the
formulas below are defined and how corresponding entries are found in a user-defined weighting matrix. When absolute

is not specified, i and j refer to the row and column index, not the ratings themselves. Say the ratings are recorded as
f0; 1; 1.5; 2g. There are 4 ratings; k = 4 and i and j are still 1, 2, 3, and 4 in the formulas below. Index 3, for instance,
corresponds to rating = 1.5. This is convenient but can, with some data, lead to difficulties.

tab displays a tabulation of the assessments by the two raters.

wgt(wgtid) specifies that wgtid is to be used to weight disagreements. User-defined weights can be created using kapwgt; in
that case, wgt() specifies the name of the user-defined matrix. For instance, you might define

. kapwgt mine 1 \ .8 1 \ 0 .8 1 \ 0 0 .8 1

and then

. kap rata ratb, wgt(mine)

In addition, two prerecorded weights are available.

Stata Technical Bulletin 3

wgt(w) specifies weights 1 � ji� jj=(k � 1), where i and j index the rows and columns of the ratings by the two raters
and k is the maximum number of possible ratings.

wgt(w2) specifies weights 1 � ((i� j)=(k � 1))2.

Let’s consider another example: The recorded ratings are f1; 2; 3; 4g but rating = 3 was never assigned by either rater.
Then kap would determine the ratings are from the set f1; 2; 4g because those were the only values observed. kap would
expect a user-defined weighting matrix to be 3�3 and, were it not, kap would issue an error message. In the formula-based
weights, the calculation would be based on i; j = 1; 2; 3 corresponding to the three observed ratings f1; 2; 4g.

Specifying absolute would make it clear that the ratings are 1, 2, 3, and 4; it just so happens that rating = 3 was never
assigned. Were a user-defined weighting matrix also specified, kap would expect it to be 4 � 4 or larger (larger because
one can think of the ratings being 1, 2, 3, 4, 5, : : : and it just so happens that rating 5, 6, : : : , were never observed just as
rating = 3 was not observed.) In the formula-based weights, the calculation would be based on i; j = 1; 2; 4.

When absolute is specified, all ratings must be integers and they must be coded from the set f1; 2; 3; : : :g. Not all values
need be used; integer values that do not occur are simply assumed to be unobserved.

If all conceivable ratings are observed in the data, then whether absolute is specified makes no difference. For instance,
if rater A assigns ratings f1; 2; 4g and rater B assigns f1; 2; 3; 4g, then the complete set of assigned ratings is f1; 2; 3; 4g,
the same as absolute would specify. And without absolute, it makes no difference whether the ratings are f1; 2; 3; 4g,
f0; 1; 2; 3g, f1; 7; 9; 100g, f0; 1; 1.5; 2.0g, or coded any other way.

Example 1: Two raters

. kap rata ratb

. kap rata ratb, tabulate

. kap rata ratb, wgt(w)

. kap rata ratb, wgt(w2)

In the above examples, each observation in the dataset records the outcome for a single patient. A little bit of the data might be

. list patid rata ratb in 1/5

patid rat1 rat2

1. 1046 1 1

2. 421 3 4

3. 1107 3 2

4. 1818 3 2

5. 554 3 3

Example 2: Two raters, data from a table

The following data are given to you on paper:

| Rater B:

| 1 2 3

------------+------------

Rater A: 1 | 6 4 3

2 | 5 3 3

3 | 0 0 26

The corresponding dataset would be

. list

rata ratb pop

1. 1 1 6

2. 1 2 4

3. 1 3 3

4. 2 1 5

5. 2 2 3

6. 2 3 3

7. 3 1 0

8. 3 2 0

9. 3 3 26

and the command to produce the kappa statistic is

. kap rata ratb [freq=pop]

4 Stata Technical Bulletin STB-40

Expected

Agreement Agreement Kappa Z Pr>Z

--

70.00% 42.08% 0.4820 4.74 0.0000

Also see help tabi; the easy way to enter this data would be

. tabi 6 4 3 \ 5 3 3 \ 0 0 26, replace

Example 3: Two raters, weighted kappa

Two raters rate patients into four categories. You want to use the weighting matrix:

Rater A | normal benign suspect cancer

--------+---------------------------------

normal | 1 .8 0 0

benign | .8 1 0 0

suspect | 0 0 1 .8

cancer | 0 0 .8 1

You type

. kapwgt xm 1 \ .8 1 \ 0 0 1 \ 0 0 .8 1

to define the weighting matrix. You can type kapwgt xm to verify that you have entered the matrix correctly:

. kapwgt xm

1.0000

0.8000 1.0000

0.0000 0.0000 1.0000

0.0000 0.0000 0.8000 1.0000

You then type

. kap rata ratb, wgt(xm)

to produce the weighted kappa.

Example 4: Two raters, some ratings unobserved

You have data on individual patients. A summary of the observed ratings is

. tabulate rata ratb

| ratb

rata | 1 2 4 | Total

-----------+---------------------------------+----------

1 | 6 4 3 | 13

2 | 5 3 3 | 11

4 | 1 1 26 | 28

-----------+---------------------------------+----------

Total | 12 8 32 | 52

Note that neither rater ever used the rating 3. Whether you type

. kap rata ratb

or

. kap rata ratb, absolute

makes no difference, but the absolute option does affect the output of

. kap rata ratb, wgt(w)

and

. kap rata ratb, wgt(w) absolute

Stata Technical Bulletin 5

Similarly, were you to type

. kap rata ratb, wgt(mywgt)

or

. kap rata ratb, wgt(mywgt) absolute

the weighting matrix would be required to be 3 � 3 in the first case and 4 � 4 or larger in the second.

Example 5: More than two raters, more than two ratings, fixed number of raters

You have data on patients. Variable cat1 records the number of raters assessing category 1, cat2 the number assessing
category 2, and cat3 the number assessing category 3. Note the very different structure of this data from that in the previous
examples. Variables contain not ratings but frequencies of ratings. A small part of the data is

. list in 1/5

patid cat1 cat2 cat3

1. 1039 3 1 0

2. 1045 1 2 1

3. 1047 2 1 1

4. 1048 0 1 3

5. 1049 1 2 1

These data record three ratings because there are three variables: cat1, cat2, and cat3 and four raters because cat1+

cat2+ cat3 = 4 in all observations. To obtain the kappa statistic, you type

. kappa cat1 cat2 cat3

In this case you use kappa, not kap.

Example 50: More than two raters, more than two ratings, fixed number of raters

This example is the same as the previous example except that the data are recorded differently. Observations are patients
but this time rat1 records the first rater’s rating, rat2 the second’s, and so on. A small piece of this data is

. list in 1/5

patid rat1 rat2 rat3 rat4

1. 1039 3 3 3 2

2. 1045 2 1 2 3

3. 1047 1 2 3 1

4. 1048 2 3 3 3

5. 1049 3 1 2 2

These data record four raters because there are four variables: rat1, rat2, rat3, and rat4 and three ratings because the
set of values recorded in rat1, rat2, rat3, and rat4 is f1; 2; 3g. To obtain the kappa statistic, you type

. kap rat1 rat2 rat3 rat4

The results will be the same as in Example 5. Again, the information of which rater is which is not exploited when there are
more than two raters.

Example 6: More than two raters, two ratings

You have data recording, for each patient, the number of positive and number of negative ratings; a small part of the data is

. list in 1/5

patid pos neg

1. 1039 3 0

2. 1045 1 2

3. 1047 2 1

4. 1048 2 0

5. 1049 0 2

pos records the number of positive ratings, neg the number negative. These data record two ratings because there are two
variables: pos and neg and more than two raters because pos + neg > 2 in some observations. pos + neg is the number of
raters which are 3 + 0 = 3, 1 + 2 = 3, 2 + 1 = 3, 2 + 0 = 2, and 0 + 2 = 2. Thus, the number of raters vary.

To obtain the kappa statistic, you type

. kappa pos neg

6 Stata Technical Bulletin STB-40

Example 60: More than two raters, two ratings

This is the same as Example 6 except the data are recorded differently. This time the first five observations contain

. list in 1/5

patid rat1 rat2 rat3

1. 1039 2 2 2

2. 1045 2 1 1

3. 1047 1 2 2

4. 1048 2 . 2

5. 1049 2 2 .

rat1 records the ratings by rater 1, rat2 the ratings by rater 2, and rat3 the ratings by rater 3.

The number of raters varies from observation to observation because rat1, rat2, and rat3 sometimes each contain missing
values. The number of ratings is 2 because the set of values for the recorded rat1, rat2, and rat3 is f1; 2g. To obtain the
kappa statistic, you type

. kap rat1 rat2 rat3

The results will be the same as in Example 6. Again, the information of which rater is which is not exploited when there are
more than two raters.

Example 7: More than two raters, more than two ratings, varying number of raters

This is similar to Example 5, the difference being that the number of raters varies:

. list in 1/5

patid cat1 cat2 cat3

1. 1039 2 1 0

2. 1045 1 2 1

3. 1047 2 2 1

4. 1048 0 1 3

5. 1049 3 2 1

cat1 records the number of raters assessing category 1, cat2 the number assessing category 2, and cat3 the number assessing
category 3.

These data record three ratings because there are three variables: cat1, cat2, and cat3 and a varying number of raters
because cat1+ cat2+ cat3 is not constant. To obtain the kappa statistic, you type

. kappa cat1 cat2 cat3

Kappa will be calculated, but there is no statistic for testing kappa > 0 in this case and so none will be reported.

Example 70: More than two raters, more than two ratings, varying number of raters

This is the same as Example 7 except that the variables record ratings rather than frequencies of ratings. A portion of the
data is

. list in 1/5

patid rat1 rat2 rat3 rat4 rat5 rat6

1. 1039 1 1 . 2 . .

2. 1045 1 2 2 . 1 .

3. 1047 1 1 2 3 2 .

4. 1048 3 2 . 3 . 3

5. 1049 1 2 1 1 3 2

rat1 records the first rater’s rating, rat2 the second’s, and so on.

These data record a varying number of raters because the rat1, rat2, : : : , rat6 variables sometimes contain missing
values. These data record three ratings because the set of values recorded in rat1, rat2, rat3, rat4, rat5, and rat6 is
f1; 2; 3g. To obtain the kappa statistic, you type

. kap rat1 rat2 rat3 rat4 rat5 rat6

The results will be the same as in Example 7. Kappa will be calculated, but there is no statistic for testing kappa > 0 in
this case and so none is reported.

Stata Technical Bulletin 7

Example 8: The absolute option

Two raters evaluate the same set of x-rays which they rate as normal, benign, suspect, or cancerous and which are coded
1, 2, 3, and 4 in our data. A piece of the data is

. list in 1/5

patid rat1 rat2 group

1. 106 1 1 1

2. 112 3 2 1

3. 113 3 2 1

4. 114 3 4 1

5. 122 3 4 1

We wish to weight disagreement by

Rater A | normal benign suspect cancer

--------+---------------------------------

normal | 1 .8 0 0

benign | .8 1 0 0

suspect | 0 0 1 .8

cancer | 0 0 .8 1

so first we define our weighting matrix and then use kap to calculate the weighted kappa:

. kapwgt xm 1 \ .8 1 \ 0 0 1 \ 0 0 .8 1

. kap rat1 rat2, wgt(xm) tab

| rat2

rat1 | 1 2 3 4 | Total

-----------+--+----------

1 | 9 4 0 0 | 13

2 | 4 7 0 0 | 11

3 | 0 5 0 10 | 15

4 | 0 3 0 8 | 11

-----------+--+----------

Total | 13 19 0 18 | 50

Ratings weighted by:

1.0000 0.8000 0.0000 0.0000

0.8000 1.0000 0.0000 0.0000

0.0000 0.0000 1.0000 0.8000

0.0000 0.0000 0.8000 1.0000

Expected

Agreement Agreement Kappa Z Pr>Z

--

76.80% 44.16% 0.5845 5.34 0.0000

Note that rater 2 never used rating = 3. That, however, does not matter since rater 1 did use that rating. We would obtain the
same output were we to specify the absolute option.

The x-rays occur in two groups, 1 and 2. We wish to also examine the agreement for group 2:

. kap rat1 rat2 if group==2, wgt(xm) tab

| rat2

rat1 | 1 2 4 | Total

-----------+---------------------------------+----------

1 | 3 0 0 | 3

2 | 0 3 0 | 3

4 | 0 3 8 | 11

-----------+---------------------------------+----------

Total | 3 6 8 | 17

kapwgt not 3 x 3

r(198);

In this subgroup of the x-rays, rater 1 also never used rating = 3. Thus, the table is 3 � 3 and our weighting matrix is 4 � 4.
This is a case when specifying the absolute option is necessary:

. kap rat1 rat2 if group==2, wgt(xm) tab absolute

8 Stata Technical Bulletin STB-40

| rat2

rat1 | 1 2 4 | Total

-----------+---------------------------------+----------

1 | 3 0 0 | 3

2 | 0 3 0 | 3

4 | 0 3 8 | 11

-----------+---------------------------------+----------

Total | 3 6 8 | 17

Ratings weighted by:

1.0000 0.8000 0.0000

0.8000 1.0000 0.0000

0.0000 0.0000 1.0000

Expected

Agreement Agreement Kappa Z Pr>Z

--

82.35% 47.27% 0.6654 3.18 0.0007

Note that the table is still presented as being 3 � 3 but, if you look carefully, you will also note that the appropriate 3 � 3
submatrix has been extracted to be used as the weighting matrix.

stata50 Changes to ttest and sdtest

William M. Sribney, Stata Corporation, FAX 409-696-4601, tech support@stata.com

The output of the ttest and sdtest commands has been changed to display standard deviations. The output for a
two-sample t test now looks like

. ttest mpg, by(foreign)

Two-sample t test with equal variances

--

Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

---------+--

Domestic | 52 19.82692 .657777 4.743297 18.50638 21.14747

Foreign | 22 24.77273 1.40951 6.611187 21.84149 27.70396

---------+--

combined | 74 21.2973 .6725511 5.785503 19.9569 22.63769

---------+--

diff | -4.945804 1.362162 -7.661225 -2.230384

--

Degrees of freedom: 72

Ho: mean(Domestic) - mean(Foreign) = diff = 0

Ha: diff < 0 Ha: diff ~= 0 Ha: diff > 0

t = -3.6308 t = -3.6308 t = -3.6308

P < t = 0.0003 P > |t| = 0.0005 P > t = 0.9997

The display of the standard deviations allows one to informally assess how close to equality they are. Of course, a formal
test can be done using sdtest:

. sdtest mpg, by(foreign)

Variance ratio test

--

Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

---------+--

Domestic | 52 19.82692 .657777 4.743297 18.50638 21.14747

Foreign | 22 24.77273 1.40951 6.611187 21.84149 27.70396

---------+--

combined | 74 21.2973 .6725511 5.785503 19.9569 22.63769

--

Ho: sd(Domestic) = sd(Foreign)

F(51,21) observed = F_obs = 0.515

F(51,21) lower tail = F_L = F_obs = 0.515

F(51,21) upper tail = F_U = 1/F_obs = 1.943

Ha: sd(1) < sd(2) Ha: sd(1) ~= sd(2) Ha: sd(1) > sd(2)

P < F_obs = 0.0275 P < F_L + P > F_U = 0.0763 P > F_obs = 0.9725

This update to sdtest also fixes a bug that appeared in Stata 5.0 when the output was reformatted. The degrees of freedom
for the F statistic were interchanged, causing the one-sided p values to be incorrect. Because of the symmetry of the test, the
two-sided p values were, however, correct.

Stata Technical Bulletin 9

These new versions also include the immediate forms of the commands: ttesti and sdtesti. More results are also saved
in the S # macros, including the p values and standard deviations. These saved results can be viewed with the disp s command;
see [U] 20.6 Accessing results from Stata commands in the Stata User’s Guide for more information.

dm50 Defining variables and recording their definitions

John R. Gleason, Syracuse University, loesljrg@ican.net

It is a common experience to find that the exact definition of some useful variable is uncertain; the experience is
especially unpleasant if the variable was the result of a long series of attempts and missteps. Stata’s characteristics (see
[U] 19.8 Characteristics) provide a way to record a variable’s definition so that it is saved as part of the dataset in which
the variable resides. Jeroen Weesie’s (1997) excellent suite of commands takes just this approach: genl issues a generate

command, attaches a label to the variable, and records the defining operation in a characteristic associated with the variable;
repl works in a similar way by applying the replace command to an existing variable. This insert offers a command defv

that takes a different approach to supplying such services.

defv defines a variable and documents the operation it performs. In a typical usage, if you type

. defv x = invnorm(uniform())

defv will issue the command

. generate x = invnorm(uniform())

if the variable x does not exist, and the command

. replace x = invnorm(uniform())

if it does. In either case, defv records the command issued in a characteristic associated with the variable x. At any later point,
you can review the definition of variable x with

. defv x ?

x:

1. generate x = invnorm(uniform())

2. replace x = invnorm(uniform())

Unlike Weesie’s genl and repl commands, defv does not assign a label to the variable. On the other hand, defv records
every command it applies to a variable, whereas genl and repl leave only the most recent definition attached to the variable.
defv also consumes about one-third less memory than the combination of genl and repl.

In effect, defv is an almost complete substitute for Stata’s generate and replace commands. In the case of a new
variable, the syntax is

defv
�
by varlist :

� �
type

�
newvar

�
:lblname

�
= exp

�
if exp

� �
in range

�
while in the case of an existing variable the syntax is

defv
�
by varlist :

�
oldvar = exp

�
if exp

� �
in range

� �
, nopromote

�
Thus, the syntax of defv differs (unavoidably) from that of generate and replace at just one point: a by clause follows the
command defv rather than appearing as a prefix, as with generate and replace. (See [R] generate for details of the remainder
of the syntax.) Functionally, defv differs (unavoidably) from generate and replace only because the text that follows defv

cannot contain the character ‘"’. Thus,

. replace x = 1 if city=="Houston"

is acceptable, but you cannot use

. defv x = 1 if city=="Houston"

This is a limitation imposed by Stata’s macros, one suffered by genl and repl as well.

Finally, consider the names of the characteristics used to store definitions of variables, a matter where there may be different
preferences. By default, defv uses the same naming system as Stata’s note command, so that the definitions it stores appear to
have been created with note. (see [R] notes.) An advantage of this style is that variable definitions will be treated in the same
way as other notes; for example, they will be recognized by the describe command. In addition, the review feature of defv,
which has syntax

10 Stata Technical Bulletin STB-40

defv oldvar ?

will display all of the notes associated with oldvar, whether created by note or defv. In particular, ‘defv x ?’ produces the
same display as ‘note x’ but without loading the 3584 bytes of code required by the note command.

On the other hand, some users may prefer to keep variable definitions separate from other notes they record about a variable.
But it is unwise to provide this ability through an option because it is too easy to neglect to supply the option. For this reason,
characteristic naming for definitions is set ‘permanently’ by a local macro in defv. To switch from the default characteristic
naming to an alternative, a user need only alter a comment near the top of the defv.ado file.

Remark

defv is merely a wrapper for generate and replace, but from a user’s perspective it tends to blur the distinction between
generate and replace. This seems somewhat of a shift away from Stata’s traditional style of “prove to me that you mean
it” toward one of “don’t say it unless you mean it.” I confess that this shift troubles me, a little, but I find the result to be
convenient.

Acknowledgment

This project was supported by a grant R01-MH54929 from the National Institute on Mental Health to Michael P. Carey.

Reference
Weesie, J. 1997. dm43: Automatic recording of definitions. Stata Technical Bulletin 35: 6–7.

dm51 Defining and recording variable orderings

John R. Gleason, Syracuse University, loesljrg@ican.net

Stata’s order and move commands make it possible to order the variables in a dataset to suit one’s purposes. But it may be
desirable to enforce a specific ordering of variables in one situation (say, during data entry or editing with the spreadsheet-style
data editor), but switch to a different ordering in another situation (perhaps so that a varlist such as var1-var2 refers to a
particular set of variables). Similarly, if several users need to work with the same dataset at various times, an ordering that suits
one user’s purposes may be inconvenient for another user.

Stata’s characteristics (see [U] 19.8 Characteristics) provide a way to save arbitrary orderings of variables along with a
dataset; once saved, an ordering can be re-established with only a few keystrokes. This insert presents a command vorder that
makes it easy to define and establish favored variable orderings, as well as to review and erase defined orderings. vorder has
four modes, selected by its first argument; its syntax has four variations.

To begin, one syntax is

vorder save ordername
�
varlist

�
which saves the list of variables referenced by varlist under the name ordername. Note that this command merely records a list
of variable names in a particular order; it does not rearrange the current variable order. ordername is any sequence of characters
permitted in a Stata name; only the first 6 characters are significant. varlist is any list of variables in the current dataset; if
varlist is absent, its place is taken by the keyword all so that vorder save ordername records the current ordering of all
variables (see [U] 18.1.1 varlist; [U] 18.4 varlists).

To illustrate, consider the familiar automobile data:

. use auto, replace

(1978 Automobile Data)

. ds

make price mpg rep78 hdroom trunk weight length

turn displ gratio foreign

Imagine that you wish to re-arrange the order of these 12 variables, but that you also want to be able to return (quickly) to the
ordering shown above by the ds command.

. vorder save base

captures the current ordering and saves it under the name base. More precisely, this command saves the expansion of all in
a characteristic named dta[VObase]. That is, an order name actually consists of the letters VO followed by up to 6 additional
letters, digits, or underscores. But vorder strips away the letters VO if you supply them, so that you can refer to a named

Stata Technical Bulletin 11

ordering as either VOx or just x. Hence, the commands vorder save base and vorder save VObase have exactly the same
effect.

You might now reorder the variables using the order or the move command. For example:

. order length weight turn mpg

. ds

length weight turn mpg make price rep78 hdroom

trunk displ gratio foreign

moves the four named variables into the first four positions, and pushes the remaining variables downward in the ordering. To
re-order the variables according to the order VObase, use

. vorder order base

Thus, the second mode switches to a named ordering; its syntax is

vorder order ordername

where ordername is the name of a previously defined ordering, specified with or without the initial letters VO.

More generally, if it is useful to repeatedly move the variables length, weight, turn, and mpg to the top of the ordering
and then return to the original order, you can define a second ordering. For example,

. vorder save 1 length weight turn mpg

stores under the name 1 (actually, VO1) the varlist length weight turn mpg. You can then toggle back and forth between the
two orderings:

. vorder order 1

. ds

length weight turn mpg make price rep78 hdroom

trunk displ gratio foreign

. vorder order VObase

. ds

make price mpg rep78 hdroom trunk weight length

turn displ gratio foreign

vorder can also display a directory of defined variable orderings; the syntax is

vorder list
�
ordername

�
where ordername is the name of any defined ordering, specified with or without the initial characters VO. If ordername is absent,
its place is filled with all, meaning ‘all currently defined variable orderings’. So,

. vorder list

Order VObase: make price mpg rep78 hdroom trunk weight length turn displ gratio foreign

Order VO1: length weight turn mpg

displays the orderings currently defined in our running example.

Finally, vorder can erase defined orderings; the syntax is

vorder drop ordername

where ordername is either the name of a defined ordering, specified with or without the initial characters VO, or the keyword
all, meaning ‘all currently defined variable orderings’. In our running example,

. vorder drop 1

erases the ordering named VO1 but leaves the ordering VObase intact,

. vorder list

Order VObase: make price mpg rep78 hdroom trunk weight length turn displ gratio foreign

whereas the command vorder drop all removes all orderings that have been defined by vorder.

Remark

vorder is just a tool for managing varlists to be processed by the order command. In the example above,

. vorder save 1 length weight turn mpg

12 Stata Technical Bulletin STB-40

merely records a varlist with four elements so that it can easily be passed to order at some later point. The expression vorder

order 1 in fact issues the command

. order length weight turn mpg

Note that these varlists are parsed before they are saved. So, vorder save 2 trunk-turn saves the variable names in the
range trunk-turn of the current ordering, and that is the varlist that order receives from vorder order 2; this may differ
from the meaning of trunk-turn when vorder order 2 is given.

Acknowledgment

This project was supported by a grant R01-MH54929 from the National Institute on Mental Health to Michael P. Carey.

dm52 Executing a command on a subset of the data

Peter Sasieni, Imperial Cancer Research Fund, London, p.sasieni@icrf.icnet.uk

Syntax
with

�
varlist

� �
if exp

� �
in range

� �
, nosave

�
: stata cmd

Description

with temporarily drops all but a subset of the data and carries out the stata cmd on the kept data. Any new variables or
changes to the subset of the data resulting from the stata cmd will be saved together with the original data. Essentially with

does ‘keep if exp in range’ followed by ‘keep varlist’.

with is useful when one has a very large dataset and the stata cmd creates many temporary variables. It can also be used
with “home-made” programs that do not handle if and in properly.

The option nosave does not attempt to save any variables or changes to the data that might be made by stata cmd. The
default is to combine the data after execution of stata cmd with the original data using merge.

Note that with does not work with by.

Examples

. with y x if group==3: running y x, gen(yfit)

. with meas* in 14001/15000: for meas*: replace @=@+1

gr24.1 Easier bar charts: correction

Nicholas J. Cox, University of Durham, UK, FAX (011)-44-91-374 2456, n.j.cox@durham.ac.uk

The command vbar (Cox 1997) has been corrected to improve treatment of missing values, so that missing values are now
automatically ignored, and to allow sorting the bars in the order defined by a string variable.

References
Cox, N. J. 1997. gr24: Easier bar charts. Stata Technical Bulletin 36: 4–8. Reprinted in Stata Technical Bulletin Reprints, vol. 6, pp. 44–50.

gr25.1 Spike plots for histograms, rootograms, and time series plots: update

Nicholas J. Cox, University of Durham, UK, FAX (011)-44-91-374 2456, n.j.cox@durham.ac.uk
Anthony R. Brady, Public Health Laboratory Service Statistics Unit, UK, tbrady@phls.co.uk

The spikeplt command (Cox and Brady 1997) has been revised so that graphs plot more quickly and store more compactly.
In the previous version, each spike was plotted for each observation in each bin, and not just once for each distinct spike. The
redundancy led to unnecessarily slow plotting and to painfully large .gph files for large datasets. This has now been fixed.

References
Cox, N. J. and A. R. Brady. 1997. gr25: Spike plots for histograms, rootograms, and time series plots. Stata Technical Bulletin 36: 8–11. Reprinted

in Stata Technical Bulletin Reprints, vol. 6, pp. 50–54.

Stata Technical Bulletin 13

ip20 Checking for sufficient memory to add variables

Peter Sasieni, Imperial Cancer Research Fund, London, p.sasieni@icrf.icnet.uk

memchk is a modification of the defunct memsize. It is designed to be used by programmers at the beginning of a program
that creates many temporary variables. The programmer states how many new variables of various types (e.g., integers, floats,
etc.) will be created and memchk checks that there is sufficient memory. If there is sufficient, memchk is silent. If not, memchk
issues an error message and return code 900.

memchk is most useful when one has a large dataset and a computer intensive program that generates several temporary
variables. If the program includes memchk early on, then it will exit early rather than producing the message no room to add

more variables after running for several seconds or even minutes.

Syntax
memchk

�
int #

� �
byte #

� �
long #

� �
double #

� �
str# #

�

ip21 Storing commands in the keyboard buffer (Windows and Macintosh only)

Jeroen Weesie, Utrecht University, Netherlands, weesie@weesie.fsw.ruu.nl

In my working style for doing statistical analysis, I am used to writing and adding to increasingly elaborate .do files. At
the end of such .do files, I frequently want to probe around with variations of the last commands that were issued in the .do
file. Stata sensibly does not store all commands from .do files in its keyboard-buffer for review or replay. So how can we avoid
having to key-enter possibly long arcane commands issued via a .do file? The command buffer comes in handy here. It uses
the undocumented Stata command push that “stores” a string in the keyboard buffer for replay. Thus,

. push reg y x1-x4

stores the command reg y x1-x4 in the keyboard buffer to be restored via the standard “arrow keys”. (The push command is
used heavily in the Stata tutorial system.) The command keyb stores a command in the keyboard buffer and executes it as well.
Thus, if the command

. keyb reg y x1-x4

is contained in a .do file, the command reg y x1-x4 is executed, and, after termination of the .do file, pressing PgUp restores
the full reg command. This command can be edited with the normal edit keys and re-executed.

ip22 Parsing options with embedded parentheses

Jeroen Weesie, Utrecht University, Netherlands, weesie@weesie.fsw.ruu.nl

This insert describes a utility that may be of interest to those users of Stata who are involved in more advanced Stata
programming. This utility provides a work-around for an unfortunate property of Stata’s high-level parsing command: It does
not carefully match parentheses. Thus, for instance

. graph x yhat, title(Predicted values (N=40)) border

will result in the error message “) invalid”. The reason is that Stata’s parser terminates an argument of an option at the first
closing parenthesis. In the example above, the argument of title would be

Predicted values (N=40

the first closing parenthesis after 40 is seen as a token that ends the argument of title, leaving one more closing parenthesis for
additional processing. This clearly leads to a syntax error, just like in case you issued a command with an extra parenthesis like

. graph x yhat, title(Predicted values)) border

The place to solve this problem is of course in the Stata-code of the parser. I hope that in the next Stata release it will
indeed have been remedied. [Editors note: StataCorp has informed me that this is going to be fixed in the next release.] For
the time being I needed a work around, especially for commands in which I want to have options that allow expressions and
commands.

14 Stata Technical Bulletin STB-40

Syntax

parsoptp optname pstring

The command parsoptp (PARSing OPTions with Parentheses) should be called with some option name optname as its
first argument, followed by the command line (note that I didn’t include double quotes). parsoptp will scan the command line
searching for a string optname(string), taking care to match parentheses. We also check that the string occurs in the options part
of input, i.e., the part after a comma that does not belong to an expression. To decide whether we are dealing with options or
not, however, we have, again, to be careful about parentheses. parsopt is also aware of brackets; in fact it matches on brackets
as well, and ensures that they are properly closed and properly nested with parentheses. Also, we have to be careful to remember
that a comma is not a switch from non-options to options, but rather a toggle. parsoptp obeys these rules. Parentheses (and
brackets) may be nested to an arbitrary level. Also, if optname occurs as an argument of another option, it is not counted as a
match. parsoptp also has another feature not supported by the standard Stata high-level parser: options that may be specified
both with and without arguments. Thus, parsoptp will trigger on optname even if it is not followed by an opening parenthesis,
provided, again, that it is not embedded in the argument of another option.

parsoptp returns its results via 5 global variables:

S 1 optname or nothing

S 2 argument for optname, or nothing

S 3 rest of command line, with optname and its argument removed (== “S 4, S 5”)

S 4 non-options part of input

S 5 rest of options-part of input

I will illustrate the command parsoptp with an example. We want to write a command hlite that produces two-way
scatterplots, while highlighting some points using an expression. For instance,

. hlite ll df, hi(chiprob(df,ll)<.05)

Normally, one would program this roughly like this:

program define hlite

version 5.0

local varlist "ex min(2) max(2)"

local options "hi(str) *"

parse "`*'"

tempvar hiy

local y: word 1 of `varlist'

gen `hiy' = `y' if `hi'

graph `hiy' `varlist', `options'

end

This rough code would break on the earlier example. Using parsoptp, we would code this as follows:

program define hlite

version 5.0

* parse off the option hi()

parsoptp hi `*' /* note: no double quotes around `*' */

if "$S_2" == "" { /* hi() not found or without argument */

di in re "option hi() required"

exit 198

}

local hi "$S_2" /* argument */

local rest "$S_3" /* `*', with hi() removed */

* parse the rest

local varlist "ex min(2) max(2)"

local options "*"

parse "`rest'"

tempvar hiy

local y: word 1 of `varlist'

gen `hiy' = `y' if `hi'

graph `hiy' `varlist', `options'

end

In some of my programs I want to use parsoptp only if users have installed it—Stata currently doesn’t provide an elegant
mechanism by which a command can specify the non-Stata commands that are invoked. The following code fragment illustrates
how this may be accomplished.

Stata Technical Bulletin 15

program define xyopt

version 5.0

local cmd "`*'"

local varlist " specs"
local if " specs"
local in " specs"
local options " options that never need expressions"
capt parsoptp

if _rc ~= 199 {

parsoptp xy `cmd'

local xy "$S_2" /* xy(str) matched on parentheses */

local cmd "$S_3" /* cmd, with xy(str) removed */

}

else {

di in bl "Install -parsoptp- (STB-40) if you need real expressions in xy()"

local options "`options' xy(str)"

}

parse "`cmd'"

rest-of-command
end

Examples

Above we noted that parsoptp returns output via the global macros S 1, S 2, and S 3. In the examples below, we give
the contents of the macros as if we typed di "$S 1/$S 2/$S 3" after each invocation to parsoptp.

. * -exec- does not occur

. parsoptp exec this is nothing, k(2) x(3)

//this is nothing, k(2) x(3)

. * -exec- without argument

. parsoptp exec this isn't nothing, exec k(2) x(3)

exec//this isn't nothing, k(2) x(3)

. * -exec- with argument

. parsoptp exec this is nothing, k(2) exec(this is the option text) x(3)

exec/this is the option text/this is nothing, k(2) x(3)

. * -exec- with argument with embedded parentheses

. parsoptp exec nothing, exec(option text (k=2) with embedded parentheses) xy(3)

exec/option text (k=2) with embedded parentheses/nothing, xy(3)

. * -exec- with argument with more embedded parentheses

. parsoptp exec nothing, exec(text (k=(2/3)) with more embedded parenthesis) x(3)

exec/text (k=(2/3)) with more embedded parenthesis/nothing, x(3)

. * -xy- with argument containing xy()

. parsoptp xy nothing, xy(text xy(k=(2/3)) with more embedded parenthesis) x(3)

xy/text xy(k=(2/3)) with more embedded parenthesis/nothing, x(3)

. * -xyz- embedded in argument other option

. parsoptp xyz nothing, s(xyz in other option) x(3)

//nothing, s(xyz in other option) x(3)

. * -xyz- as regular option, and embedded in argument of other option

. parsoptp xyz nothing, s(xyz in other option) xyz(option text) x(3)

xyz/option text/nothing, s(xyz in other option) x(3)

. * -xyz- as regular option, and embedded with argument in argument of other option

. parsoptp xyz nothing, s(even xyz(s-xyz) n other option) xyz(option text) x(3)

xyz/option text/nothing, s(even xyz(s-xyz) n other option) x(3)

. * unmatched parentheses

. parsoptp xyz nothing, xyz(unmatched parentheses in option text (k=) x(3)

too few ')' or ']'

r(132);

. * parentheses and brackets are not properly nested

. parsoptp xyz nothing if m[1,1(~=1 xyz(opttext] x(3))

too many or mismatching ')' or ']'

r(132);

Acknowledgment

I appreciate suggestions by James Hardin (Stata Corporation) in a discussion on options with embedded parentheses.

16 Stata Technical Bulletin STB-40

sbe13.3 Correction to age-specific reference intervals (“normal ranges”)

Eileen Wright, Royal Postgraduate Medical School, UK, ewright@rpms.ac.uk
Patrick Royston, Imperial College School of Medicine, UK, proyston@rpms.ac.uk

The code of xriml.ado distributed on the STB-36 diskette contained no carriage return after the final line of the file. This
causes Stata to issue the unexpected end of file error message.

[Editors note: Our apologies to Professors Wright and Royston for this oversight on our part.]

sbe18 Sample size calculations for clinical trials with repeated measures data

Paul Seed, United Medical & Dental Schools, Guy’s & St. Thomas’s Hospitals, UK

Introduction

Stata’s sampsi command calculates sample sizes and power for trials comparing single measurements of an outcome
between two treatment groups. Various options allow for different levels of alpha and beta, for continuous or binary outcomes,
for one-sided or two-sided tests, for unequal sized groups, and for comparing one group with an assumed estimate.

The syntax of sampsi is

sampsi #
1
#

2

�
, alpha(#) power(#) n1(#) n2(#) ratio(#) sd1(#) sd2(#) onesample onesided

�
#

1
and #

2
set the means or proportions, where used, sd1 and sd2 set the standard deviations, ratio is the ratio of subjects

per group.

A typical use might be

. sampsi 132 127, sd1(15.)

Estimated sample size for two-sample comparison of means

Test Ho: m1 = m2, where m1 is the mean in population 1

and m2 is the mean in population 2

Assumptions:

alpha = 0.0500 (two-sided)

power = 0.9000

m1 = 132

m2 = 127

sd1 = 15

sd2 = 15

n2/n1 = 1.00

Estimated required sample sizes:

n1 = 190

n2 = 190

This shows that to detect a difference of 5 units (132 � 127), with a standard deviation of 15, 190 subjects are needed in each
group. The various settings: power, significance level, assumed mean and sd, are all given.

Power calculations are always based on beliefs about what the study might find. Even where there is good data available
from past studies, they can only be approximate. As a study can actually have only one sample size, power calculations usually
focus on a single endpoint, and a single hoped-for difference between the groups.

In medical statistics, the main application of sampsi is for planning randomized controlled trials (RCTs) comparing a
standard treatment with an experimental therapy. For simple studies, where only one measurement of the outcome is planned,
sampsi is very useful.

However, many study designs allow for repeated measurements, typically once or more at baseline (immediately before
randomization); and at regular intervals during follow-up (after the start of the study). Depending on the analysis method used,
and the correlations between measurements at different time points, there can be a great increase in efficiency from such designs
over a simple study with one measurement.

Extensions

Frison & Pocock (1992) discuss three such methods for use in RCTs to compare two treatments using a continuous outcome
measured at different times on each patient. Each uses the average of baseline measurements �x0 and follow-up measurements
�x1:

POST outcome is �x1 where the analysis is by simple t test.

Stata Technical Bulletin 17

CHANGE outcome is �x1 � �x0 where the analysis is by simple t test.

ANCOVA outcome is �x1 � ��x0 where the � is estimated by analysis of covariance, correcting for the average at baseline.

They give formulas for the decrease in variance of the estimate of treatment effect, depending on the number of measurements
p at baseline, and r during follow-up; and on the correlations between measurements at different times. Power calculations are
based on estimates of a single variance at all time points, �2, and three correlations—between baseline measurements ��PRE ,
between follow-up measures ��POST , and between baseline and follow-up ��MIX . Each is taken as the average of all correlations
in the appropriate submatrix.

Often the three correlations are assumed equal. In data from a number of trials, Frison & Pocock found ��PRE and ��POST
typically had values around 0.7, while ��MIX was nearer 0.5. This is consistent with the common finding that measurements
closer in time are more strongly related.

The improvements in variance over a study with one measurement are:

POST
1 + (r � 1)��POST

r

CHANGE
1 + (r � 1)��POST

r

+
1 + (p� 1)��PRE

p

� 2��MIX

ANCOVA
1 + (r � 1)��POST

r

�
��2MIXp

1 + (p� 1)��PRE

ANCOVA will always be the most efficient of the three approaches. � is set so that ��x0 accounts for the largest possible
variation of �x1.

For a study with one measurement each at baseline and follow-up, CHANGE will be more efficient than POST provided
��MIX is more than 0.5.

POST ignores all baseline measurements, which tends to make it unpopular. CHANGE is the method most commonly used.
It has obvious advantages over POST, and is easier to understand than ANCOVA. With more than one baseline measurement,
there is little to chose between CHANGE and ANCOVA.

Figure 1 shows the numbers of patients required for different numbers of follow-up measurements in a study where the
possible treatment effect is 40% of the standard deviation, and all correlations are taken as 0.7. The five strategies are POST
(p = 0), CHANGE and ANCOVA with p = 1, and CHANGE and ANCOVA with p = 3.

Figure 1: Power calculations for a repeated measures design

sampsi2

I have implemented this in a new command: sampsi2

This works as sampsi, but with additional arguments to set the method of analysis, the numbers of repeated measurements,
and the correlations. These are given in Table 1.

18 Stata Technical Bulletin STB-40

Table 1: additional options for sampsi2

Option meaning default value

pre(#) No. of baseline measurements (pre-randomization) 0
post(#) No. of follow-up measurements (post-randomization) 1
method(postjchangejancovajall) method all
r1(#) correlation at follow-up none (r1 must be given)
r0(#) correlation at baseline r1
r01(#) correlation between baseline and follow-up r1

If any of these options are specified, both r1 and sd1 are needed. The output from sampsi2 includes the settings (including
those set by default), the sample sizes and power, the relative efficiency of the design, and the adjustment to the standard
deviation. These last two are the inverse and the square root of the values calculated from the variance formulas above.

Sample use

. sampsi2 132 127, pre(1) post(2) sd1(15.) r1(0.7)

Power calculations for repeated measures

(Frison & Pocock 1992)

2 follow-up measurements, correlation 0.700

1 baseline measurement

Correlation between baseline & follow-up 0.700

Raw Standard deviation: 15.000

Method: POST

Relative efficiency: 1.176 Adjustment: 0.922 Adjusted SD: 13.829

Sample sizes: n1 = 161, n2 = 161

significance = 0.050, power = 0.900

Method: CHANGE

Relative efficiency: 2.222 Adjustment: 0.671 Adjusted SD: 10.062

Sample sizes: n1 = 86, n2 = 86

significance = 0.050, power = 0.900

Method: ANCOVA

Relative efficiency: 2.778 Adjustment: 0.600 Adjusted SD: 9.000

Sample sizes: n1 = 69, n2 = 69

significance = 0.050, power = 0.900

Stored results

As with sampsi S 1 and S 2 contain the sample sizes for the two groups, S 3 the power of the study. In addition, S 4

contains the adjustment to the standard deviations. Results are stored for the last method used.

. disp_s

S_1: 69

S_2: 69

S_3: .9

S_4: .6

Reference
Frison L. and S. Pocock. 1992. Repeated measures in clinical trials: analysis using mean summary statistics and its implications for design.

Statistics in Medicine 11: 1685–1704.

sg73 Table making programs

John H. Tyler, Harvard Graduate School of Education, tylerjo@hugse1.harvard.edu

The set of (three) “table-maker” programs described in this article produce flexible, user-defined tables of estimation output.
Each table can display, in columnar form, the results of up to six (6) different models. When tables produced by these programs
are saved in a log file, they can either serve as stand-alone products (e.g., for use in research meetings or for distribution for
discussion and comments) or they can be reformatted very easily to generate publishable-quality tables (e.g., for inclusion in

Stata Technical Bulletin 19

papers). However, while these programs at least partially address a long-standing concern of Stata users regarding the ability to
generate estimation output tables, perhaps their greatest value lies in their use as an analytic tool. The programs described in
this article allow the data analyst to quickly and easily compare estimates associated with key variables across different models.

The programs are flexible along many dimensions, but a particular strength is that while the default is to display the
estimates from all independent variables in the table, the user can easily specify that only a subset of estimates be displayed
in the table. Thus, in models where there are some key variables of analytic interest and many control variables, the user can
display the results associated with the key analytic variables, suppress the estimates associated with the control variables, and
provide wording in the table to indicate that the control variables were included in the just-estimated model. Further options
allow the user to choose standard errors or t statistics for display, the number of decimals to be displayed, and whether or not
titles for the table and text descriptions of the models in the table are to be displayed.

Two commands, modl and modltbl, are required to produce an output table following the fitting of one or more models.
A third command, testres, includes the results of tests of linear constraints that have been conducted following estimation.
While detailed syntax and descriptions for each of the commands will follow the examples below, the reader should note that
the basic syntax requires following each estimation command with the modl command, and then invoking the table with the
modltbl command. For example,

. regress y x1 x2 ...

. modl 1

. regress y x1 x2 ...

. modl 2

. modltbl se 1 2

Example 1

A simple example of a table comparing two models is shown below. The example uses the dataset sg73.dta included with
this insert. It contains information on 37 variables for 4575 individuals, with the dependent variable of interest being lnearn,
the log of earnings, and the independent variables consisting of various education, work experience, family background, and
region of the country. In the baseline model, log wages are regressed on highest grade completed and mother’s education. The
second model includes dummy variables for race/ethnicity. In this example, t statistics are to be displayed in the table. (The
command quietly is used in the example, but is not required with the table-maker commands. The table, which would be
displayed interactively, begins at the Stata time-date stamp.)

. quietly regress lnearn grd10-grd12 momed

. modl a

. quietly regress lnearn grd10-grd12 momed hisp black other

. modl b

. modltbl ts a b

10:47:05 on 20 Oct 1997

(t-statistics in parentheses)

Model : a b

obs : 4575 4575

Depvar: lnearn lnearn

intcpt 9.358 9.419

(129.32) (129.34)

grd10 0.037 0.036

(0.55) (0.55)

grd11 0.134 0.149

(2.06) (2.31)

grd12 0.521 0.523

(9.27) (9.39)

momed 0.029 0.028

(7.21) (6.90)

hisp -0.107

(-5.00)

black -0.208

(-7.36)

other -0.061

(-1.55)

R-sq 0.086 0.099

===============================

20 Stata Technical Bulletin STB-40

In the example above, there is little advantage, from an analytic standpoint, to using the table-maker commands. The results
from both models will likely fit on one screen, and so, comparisons between the models can be easily made from the standard
Stata output. Often, however, the analyst will want to compare several models of increasing complexity or models that have
many control variables in addition to the variables of analytic interest. With standard Stata output there are no convenient ways
to quickly compare results across models in such cases. The value of the table-maker commands in the face of these situations
is evident in the next example.

Example 2

In this example, the interest is in the relationship between log earnings and some key education variables — e10, e11,
e12, ged, yrpse, and testsc. The first model in the sequence is the baseline model and contains only the variables of analytic
interest. In this case, the default of not specifying any variables in the modl statement will result in display of the estimates
associated with all of the independent variables. Hence, the command line

. modl 1

is entered.

The second model uses global macros to add 27 family background control variables to the baseline model for the estimation.
However, in the output table the user wants only the results from the key analytic variables to be displayed. These key variables
are the first six independent variables in the regress command. The user also wants it noted in the table that family background
controls are used in model number 2, and so the descriptor Fambg is chosen to denote this. The desired output for the second
model is accomplished by entering the command line

. modl 2 1-6 Fambg

The third model adds two work experience controls with a global macro and to indicate this the command line for the third
model reads

. modl 3 1-6 Fambg Wrkexp

The researcher is also interested in displaying the results of two different hypothesis tests. This is done with the testres

command.

Models 4, 5, and 6 are simply refits of models 1–3 using robust standard errors.

The modltbl line specifies that t statistics (instead of standard errors) are to be displayed, results are to be displayed to
four (4) decimals, models 1 through 6 are to be displayed, and a title is to be added to the table. These results are obtained with
the command line

. modltbl ts (4) 1 2 3 4 5 6,Table 1. Log earnings regressions with robust SEs in models 4-6

Here are the Stata estimation and test commands, the table-maker commands, and the resulting output table:

. quietly regress lnearn grd10-grd12 gotged yrcoll testsc

. modl 1

. quietly regress lnearn grd10-grd12 gotged yrcoll testsc $race $region

> momed $dadocc $famin $famstr sibs

. modl 2 1-6 Fambg

. quietly test grd10+gotged=grd12

. testres 2 1, grd10+gotged=grd12

. quietly regress lnearn grd10-grd12 gotged yrcoll testsc $race $region

> momed $dadocc $famin $famstr sibs $work92

. modl 3 1-6 Fambg WrkExp

. quietly test grd10+gotged=grd12

. testres 3 1, grd10+gotged=grd12

. quietly test grd11+gotged=grd12

. testres 3 2, grd11+gotged=grd12

. quietly regress lnearn grd10-grd12 gotged yrcoll testsc,robust

. modl 4

. quietly regress lnearn grd10-grd12 gotged yrcoll testsc $race $region

> momed $dadocc $famin $famstr sibs,robust

. modl 5 1-6 Fambg

. quietly test grd10+gotged=grd12

. testres 5 1, grd10+gotged=grd12

Stata Technical Bulletin 21

. quietly regress lnearn grd10-grd12 gotged yrcoll testsc $race $region

> momed $dadocc $famin $famstr sibs $work92,robust

. modl 6 1-6 Fambg WrkExp

. quietly test grd10+gotged=grd12

. testres 6 1, grd10+gotged=grd12

. quietly test grd11+gotged=grd12

. testres 6 2, grd11+gotged=grd12

. modltbl ts (4) 1 2 3 4 5 6, Table 1. Log earnings regressions

> using robust SE's in models 4-6.

10:47:14 on 20 Oct 1997

Table 1. Log earnings regressions using robust SE's in models 4-6.

(t-statistics in parentheses)

Model : 1 2 3 4 5 6

obs : 3928 3928 3928 3928 3928 3928

Depvar: lnearn lnearn lnearn lnearn lnearn lnearn

intcpt 9.6210 9.7271 8.4319 9.6210 9.7271 8.4319

(146.85) (99.61) (53.98) (139.05) (94.76) (43.54)

grd10 0.0071 -0.0099 -0.0084 0.0071 -0.0099 -0.0084

(0.10) (-0.13) (-0.12) (0.09) (-0.13) (-0.11)

grd11 0.0538 0.0583 0.0633 0.0538 0.0583 0.0633

(0.75) (0.82) (0.92) (0.71) (0.76) (0.85)

grd12 0.3396 0.3134 0.2536 0.3396 0.3134 0.2536

(5.07) (4.68) (3.90) (4.80) (4.34) (3.65)

gotged 0.1151 0.0964 0.0768 0.1151 0.0964 0.0768

(2.35) (1.98) (1.62) (2.04) (1.71) (1.45)

yrcoll 0.0479 0.0462 0.0621 0.0479 0.0462 0.0621

(13.27) (12.42) (16.42) (12.49) (11.60) (14.67)

testsc 0.0097 0.0076 0.0070 0.0097 0.0076 0.0070

(9.43) (7.12) (6.70) (9.44) (7.03) (6.56)

Fambg Yes Yes Yes Yes

--- --- --- ---

WrkExp Yes Yes

--- ---

R-sq 0.175 0.197 0.245 0.175 0.197 0.245

Ho_1:,

Pr>F 0.000 0.000 0.000 0.000

Ho_2:,

Pr>F 0.009 0.025

===

Ho_1, F: grd10+gotged=grd12

Ho_2, F: grd11+gotged=grd12

===

Note that most commercial spreadsheet programs can easily change the text-based table above into a tab-delimited table,
which can be exported into virtually all word processing programs for publishable-quality formatting. The rest of this article
presents the syntax, descriptions and remarks, and an explanation of options for each of the three table-maker commands modl,
modltbl, and testres.

Syntax

modl model label
�
nocon

� �
varlist

� �
, specification

�
where model label is the number or alphanumeric character (of length 1) which labels the model just estimated.

modltbl
�

ts j se
	 �

(#decimals noR2)
�

model label1
�
model label2 : : : model label6

� �
, title

�
where ts specifies that t statistics are to be displayed and model label corresponds to some earlier model label specified in a
modl command.

testres model label test number
�
, text describing the null hypothesis

�
where model label is the label of the model specified in the immediately preceding modl command and test number is a user
specified identifier for the just issued test or testparm command.

22 Stata Technical Bulletin STB-40

Description

modl follows any estimation command, and is used in conjunction with modltbl to display the estimated coefficients and
t statistics (or standard errors) for selected variables from the just estimated model. modl saves coefficient estimates, standard
errors, and t statistics for either all of the independent variables (the default) or for selected variables specified by the arguments
following model label. These estimates are saved as global macros which are then available for use by modltbl.

modltbl will compare the estimates on selected variables for up to 6 models. You may, however, have the results from
any number of models you have specified with modl stored and available for use by modltbl in any combination. modltbl
generates a table of the coefficient estimates and t statistics (or standard errors) for each of the models requested in the command
line. Also displayed are a title for the table (optional), the specification of each model (optional), the number of observations
used in the estimate, the dependent variable, the R-squared, and the p values on any tests of linear constraints (if a testres

command followed any test or testparm command).

testres is used in conjunction with the modl, test (or testparm), and modltbl commands to display in output tables
the results (p values) of tests of linear restrictions from estimated models.

Remarks and restrictions for modl

The modl command is the second of three required steps in producing a table which will display the estimates of selected
variables from selected models. The steps are (1) estimate a model, (2) immediately follow the estimation command with a modl

command, and (3) at any later time in that Stata session invoke display of the desired estimates with a modltbl command.
There are certain restrictions which must be kept in mind when using modl. These restrictions are

1. Any model label used in modl must be an alphanumeric character of length 1. That is model label must be of the form 1,
2, 3,: : : , a, b, c,: : : , or A, B, C,: : : , and not 10 or 11 or 1A.

2. modl must immediately follow the estimation command for the model you specify.

3. The variable names used in modl must not be longer than 6 characters. If a variable with a 7 or 8 character name is
included as an independent variable in the model the user can rename that “too-long” variable in the modl statement using
the newname=oldname option. See the example below under the varlist option.

4. One of the values of modl and modltbl is the ability to limit output in the table to the estimates on user-selected coefficients,
while suppressing the output associated with the remaining “control” variables. Indication in the table of the presence of
sets of controls can be accomplished through the Capital-control varlist option. The restriction is that any Capital-control
indicator must begin with a capital letter and be no longer than 6 characters. See the example below under the varlist option.

5. Note that estimates saved by modl are stored as global macros so that they may be used at any time during a Stata session
by modltbl. However, this may cause confusion if you label a model as 1 at one point in the session and then sometime
later you estimate another model and also label it as model 1. Note that you can purge all of the saved macros created by
various modl commands with the command macro drop all. Beware, however, that this command will also drop any
other global macros you may have created for your own use.

Options for modl

nocon indicates that either (1) the model was fit without a constant or (2) the model may have been fit with a constant, but the
user does not wish for the estimates associated with the constant to be displayed in the modltbl table.

varlist can be:

1. a blank space. This is the default setting, and in this case the estimates associated with all of the independent variables in
the model are included in the modltbl;

2. all. This is a second way to capture the estimates of all of the independent variables for display in a table.

3. identification of estimates to be included by number. For example, in a model (say model #1) with many independent
variables, the estimates from the 1st–6th, the 8th, and the 10th–12th independent variables could be included in the table
by issuing the command:

. modl 1 1-6 8 10-12

4. identification of estimates to be included by name. For example,

. modl 1 age gender black

Stata Technical Bulletin 23

would present the estimates associated with the variables age, gender, and black for model #1 in the table. Note that
identification by number and by name can be combined as in:

. modl 1 1-6 black

5. replacement of a current variable name with a new variable name via the newname=oldname option. For example, if a
current variable name is more than 6 characters (e.g., hispanic), the user can rename this variable in the modl statement.
This option can be used in combination with any of the other varlist options as in:

. modl 1 _all hisp=hispanic

. modl 1 1-3 hisp=hispanic

. modl 1 age gender black hisp=hispanic

Note that use of this option does not change the actual name of the variable, but simply uses newvarname in place of
oldvarname in the table.

6. Capital-control variable sets. In this case the user does not want to display the estimates associated with all of the indepen-
dent variables included in the just estimated model. The user would, however, like to indicate that a set or sets of controls
were included in the model. To do this, append a Capital-control indicator at the end of the varlist. The restrictions are that
the indicator must begin with a capital letter and that as with other variable names, the indicator must be no longer than 6
characters. For example, to indicate that a (potentially long) list of family background and work experience variables were
included in the fitting of model #1 issue:

. modl 1 1-6 Fambg WrkExp

specification allows for the display of a text description of the specification of the model. The text will appear at the top of the
output table.

Remarks and restrictions for modltbl

model label1 model label2 : : : etc., index models identified by various modl commands which must have preceded the
modltbl command. Note that up to six models may be specified for any single modltbl command, and that the models need
not be specified sequentially. The user may order the models to be displayed in any order in the modltbl table.

The following is a list of requirements concerning the use of modltbl:

1. modltbl works in conjunction with modl statements, and the models specified for output in modltbl must correspond
to model labels from previously executed modl statements, each of which must immediately follow a Stata estimation
command.

2. If you specify a title, it must be 80 or fewer characters, counting spaces.

Options for modltbl

ts or se specify whether t statistics or standard errors are to be displayed below each coefficient estimate in the table. Either
ts or se is required as the first argument in modltbl.

#decimals is either 2, 3, or 4 and indicates the number of decimal places to display with the coefficient estimates and standard
errors. The default is 3, and t statistics are always displayed to two decimal places regardless of the option chosen here.

noR2 suppresses display of the R-squared statistic in the output. This might be desired, for example, in two-stage least squares
regressions.

model label2 model label3 : : : model label6 are the labels attached to each of the additional models the user wishes to display.
These model labels are established with the modl command.

title is a text description of the table which can be up to 80 characters in length, including spaces.

sg74 Symmetry and marginal homogeneity test / Transmission-Disequilibrium Test (TDT)

Mario Cleves, Stata Corporation, mcleves@stata.com

Syntax

symmetry has syntax

symmetry varcases varcontrols
�
weight

� �
if exp

� �
in range

� �
, notable contrib exact mh

�
symmi #

11
#

12
[:::] n #

21
#

22
[:::] [n:::]

�
if exp

� �
in range

� �
, notable contrib exact mh

�

24 Stata Technical Bulletin STB-40

fweights are allowed, see [U] 18.1.6 weight.

Description

symmetry performs asymptotic symmetry and marginal homogeneity tests and an exact symmetry test on K �K tables
where there is a 1-to-1 matching of cases and controls (non-independence). This test is used to analyze matched-pair case-control
data with multiple discrete levels of the outcome variable. In genetics, the test is known as the Transmission/Disequilibrium test
(TDT) and is used to test the association between transmitted and non-transmitted parental marker alleles to an affected child
(Spieldman and Ewens 1993). In the case of 2� 2 tables the asymptotic test statistics reduce to the McNemar test statistic and
the exact symmetry test produces an exact McNemar test.

symmetry expects the data to be in the wide format, that is, each observation contains the two matched case and control
values in variables varcases and varcontrols. Variables can be numeric or string.

symmi performs the symmetry and marginal homogeneity tests using the values specified on the command line; rows are
separated by ‘n’. The same options as for the symmetry command are available for the immediate form. See [U] 25 Immediate
commands for a general description of immediate commands.

Options

notable suppresses the output of the contingency table.

contrib reports the contribution of each off-diagonal cell-pair to the overall symmetry chi-squared.

exact performs an exact test of table symmetry. This option is recommended for sparse tables. CAUTION: the exact test requires
substantial amounts of time and computer memory for large tables.

mh performs two marginal homogeneity tests that do not require the inversion of the variance–covariance matrix. See Asymptotic
tests below for a description of these tests.

Asymptotic tests

Consider a square table with K exposure categories, that is, K rows and K columns. Let nij be the count corresponding
to row i and column j of the table, Nij = nij + nji, for i; j = 1; 2; : : : ;K and ni: and n:j the marginal totals for row i and
column j respectively. Asymptotic tests for symmetry and marginal homogeneity for this K �K table are calculated as follows.

The null hypothesis of complete symmetry pij = pji is tested by calculating the test statistic (Bowker 1948):

Tcs =
X
i<j

(nij � nji)
2

nij + nji

which is asymptotically distributed as �2 with K(K � 1)=2 � R degrees of freedom, where R is the number of off-diagonal
cells with Nij = 0.

The null hypothesis of marginal homogeneity, H0 : pi: = p:i, is tested by calculating the Stuart–Maxwell test statistic
(Stuart 1995, Maxwell 1970):

Tsm = d
0
V

�1
d

where d is a column vector with elements equal to the differences di = ni: � n:i for i = 1; 2; : : : ;K and V is the
variance-covariance matrix with elements:

vii = ni: + n:i � 2nii

vij = �(nij + nji); i 6= j

Tsm is asymptotically �
2 with (K � 1) degrees of freedom.

The Stuart–Maxwell test statistic properly accounts for the dependence between the table’s rows and columns, however,
it requires the inversion of the non-diagonal matrix, V. When the table is sparse the matrix may not be of full rank and, in
that case, the commands substitute a generalized inverse V� for V�1. An optional marginal homogeneity statistic that does not
require the inversion of the variance–covariance matrix was suggested by Bickenböller and Clerget-Darpoux (1995) This test is
available as an option to the symmetry command.

Tmh =
X
i

(ni: � n:i)
2

ni: + n:i

Stata Technical Bulletin 25

This statistic is asymptotically distributed, under the assumption of marginal independence, as �
2 with (K � 1) degrees of

freedom.

This test statistic is reported when option mh is specified. This statistic, T omh, is calculated in the same way as Tmh however
the diagonal elements do not enter into the calculation of the marginal totals. Unlike the previous test statistic, this one reduces
to a McNemar for 2� 2 tables. The test statistic [(K � 1)=2]T omh is asymptotically distributed as �2 with (K � 1) degrees of
freedom (Cleves et al. 1997, Spieldman and Ewens 1996).

Exact symmetry test

An exact test of symmetry is provided for use on sparse tables. This test is computationally intensive and thus should not
be used on large tables. The test is based on a permutation algorithm applied to the null distribution. The distribution of the off
diagonal elements nij , i 6= j conditional on the sum of the complementary off-diagonal cells, Nij = nij + nji, can be written
as the product of K(K � 1)=2 binomial random variables:

P (n) =
Y
i<j

�
Nij

nij

�
�ij

nij (1� �ij)
nij

where n is a vector with elements nij and �ij = E(nij=Nij jNij). Under the null hypothesis of complete symmetry, �ij =

�ji = 1=2, and thus the permutation distribution is given by:

P (n) =
Y
i<j

�
Nij

nij

��
1

2

�Nij

The exact significance test is performed by evaluating:

Pcs =
X
n2p

P0(n)

where p = fn : P0(n) < P0(n
�)g and n� is the observed contingency table data vector. The algorithm evaluates pcs exactly.

Example

Consider a survey of 344 individuals (BMDP 1990, 267–270). Each person was asked in October 1986 whether they agreed
or disagreed with then President Reagan’s handling of foreign affairs. In January 1987, after the “Iran-Contra” affair became
public these same individuals were surveyed again and asked the same question. We would like to know if public opinion
changed over this time period.

Lets first describe the data and list a few observations.

. describe

Contains data from iran.dta

obs: 344

vars: 2

size: 2,064 (98.6% of memory free)

1. before byte %8.0g

2. after byte %8.0g

Sorted by:

. list in 1/5

before after

1. agree agree

2. agree disagree

3. agree unsure

4. disagree agree

5. disagree disagree

Each observation corresponds to one of the 344 individuals. The data is in wide form thus each observation has a before
and an after measurement. We first perform the test for symmetry without options.

26 Stata Technical Bulletin STB-40

. symmetry before after

----------+---------------------------------------

| after

before | agree disagree unsure Total

----------+---------------------------------------

agree | 47 56 38 141

disagree | 28 61 31 120

unsure | 26 47 10 83

|

Total | 101 164 79 344

----------+---------------------------------------

Chi-Squared df Prob>chi2

--------------------------+---------------------------------

Symmetry | 14.8654 3 0.0019

Marginal homogeneity (MH) | 14.7783 2 0.0006

--------------------------+---------------------------------

The test first tabulates the data in a K � K table and then performs Bowker’s test for table symmetry, and Stuart–
Maxwell’s test for marginal homogeneity. The same results would be generated if the option notable was specified, however
the cross-tabulation table would not be produced.

Both the symmetry test and marginal homogeneity test are highly significant indicating a shift in the responders’ perception.
We can further examine the cells responsible for this significant result by specifying the contrib option. We will also specify
the exact option because we are working on a fast computer and have sufficient memory to handle this size table.

. symmetry before after, contrib exact mh

----------+---------------------------------------

| after

before | agree disagree unsure Total

----------+---------------------------------------

agree | 47 56 38 141

disagree | 28 61 31 120

unsure | 26 47 10 83

|

Total | 101 164 79 344

----------+---------------------------------------

Contribution

to Symmetry

Cells Chi-Square

______________ ______________

n1_2 & n2_1 9.3333

n1_3 & n3_1 2.2500

n2_3 & n3_2 3.2821

Chi-Squared df Prob>chi2

--------------------------+---------------------------------

Symmetry | 14.8654 3 0.0019

Marginal homogeneity (MH) | 14.7783 2 0.0006

MH (Bickenboller) | 13.5272 2 0.0012

MH (no diagonals) | 15.2494 2 0.0005

--------------------------+---------------------------------

Symmetry (exact significance probability) 0.0018

The largest contribution to the symmetry �
2 is due to cells n12 and n21. These correspond to changes between the agree

and disagree categories. Of the 344 individuals 58 (16.3%) changed from the agree to the disagree response while only 28 (8.1%)
changed in the opposite direction.

For these data, the result from the exact test is similar to that obtained from the asymptotic test.

Saved Results

symmetry saves results in S # macros.

Stata Technical Bulletin 27

S 1 number of pairs
S 2 symmetry �2

S 3 symmetry df
S 4 symmetry p value
S 5 MH (Stuart-Maxwell) �2

S 6 MH (Stuart-Maxwell) df
S 7 MH (Stuart-Maxwell) p value
S 8 MH (Bickenböller) �2

S 9 MH (Bickenböller) df
S 10 MH (Bickenböller) p value
S 11 MH (no diagonals) �2

S 12 MH (no diagonals) df
S 13 MH (no diagonals) p value
S 14 Exact symmetry p value

References
Bickenböller, H. and F. Clerget-Darpoux. 1995. Statistical properties of the allelic and genotypic transmission/disequilibrium test for multiallelic markers.

Genetic Epidemiology 12: 865–870.

BMDP. 1990. BMDP statistical software manual. Example 4F2.9. Los Angeles; BMDP Statistical Software, Inc.

Bowker A. H. 1948. A test for symmetry in contingency tables. Journal of the American Statistical Association 43: 572–574.

Cleves M. A. , J. M. Olson, and K. B. Jacobs. 1997. Exact transmission–disequilibrium tests with multiallelic markers. Genetic Epidemiology 14:
337–347.

Maxwell A. E. 1970. Comparing the classification of subjects by two independent judges. British Journal of Psychiatry 116: 651–655.

Spieldman R. S. and W. J. Ewens. 1996. The TDT and other family-based tests for linkage disequilibrium and association. American Journal of Human
Genetics 59: 983–989.

Spieldman R. S. , R. E. McGinnis, and W. J. Ewens. 1993. Transmission test for linkage disequilibrium: The insulin gene region and insulin-dependents
diabetes mellitus. American Journal of Human Genetics 52: 506–516.

Stuart A. 1995. A test for homogeneity of the marginal distribution in a two way classification. Biometrika 32: 412–416.

ssa10 Analysis of follow–up studies with Stata 5.0

David Clayton, MRC Biostatistical Research Unit, Cambridge, david.clayton@mrc-bsu.cam.ac.uk
Michael Hills, London School of Hygiene and Tropical Medicine (retired), mhills@regress.demon.co.uk

In epidemiology and demography, survival analysis methods are important for the analysis of event history data. However,
these disciplines have special requirements which differ from those of clinical trial analysts, whose needs have dominated the
design of software over the last 25 years. Principal amongst these are

� long follow-up times with time-varying covariates,

� late entry, or left truncation,

� possible involvement of more than one time scale (for example age and calendar time), and

� interest in more than one type of “failure” event.

In rationalizing its approach to survival time (st) data, Stata 5.0 went a long way to addressing some of these needs. This
submission adds some further tools and suggestions.

In STB-27 we introduced three commands for analyzing follow-up studies using the simple tabulation and stratification
methods described in Part I of Clayton and Hills (1993). These were called lexis, tabrate, and mhrate. We have converted
our commands into the st form and added some new features. The new versions are called stlexis, strate and stmh. We
have also added some new commands. A brief description of these commands follows:

stlexis expands a set of records for subjects in a follow-up study into a larger number of records. Each new record concerns
the follow-up of one subject through one band of a time scale.

strate tabulates rates by one or more categorical variables. The summary dataset, including event counts and rate denominators,
can be saved for further analysis or display. The combination of the commands stlexis and strate implements all the
functions of the special purpose “person-years” programs in widespread use in epidemiology.

stmh calculates stratified rate ratios and significance tests using a Mantel–Haenszel-type method.

staalen plots the cumulative rate (integrated hazard) against time. It can also be used after Cox regression to plot the cumulative
baseline rate.

28 Stata Technical Bulletin STB-40

stmc calculates rate ratios stratified finely by time, using the Mantel–Cox method. The corresponding significance test (the
log-rank test) is also calculated.

sttocc creates a nested case-control study from a follow-up study by sampling risk sets.

sttody converts st data to dy (event-count and person-time) data to allow, for example, analysis by Poisson regression.

dyrate is an extended and renamed version of the old tabrate.

dymh is an extended and renamed version of the old mhrate.

In a follow-up study the date of entry and the date of exit are usually recorded as calendar dates, which are converted to
days since 1/1/1960 in Stata. When several time scales are relevant during the course of an analysis, it is natural to keep this as
the basic time scale and to map onto other scales with origin and scale options (see below). This often leads to negative times.
Negative times are also involved when time is measured from some important event such as heart transplantation; follow-up
before transplantation then takes place in negative time. The current version of stset does not allow negative times, so if you
have dates before 1/1/1960 one easy solution is to add 36525 days to all your dates, and carry out the analysis in the 21st
Century. Stata Corporation is aware of this problem and plans to change all st commands to accept negative times in the next
release.

Many of our new st commands share the options origin and scale which control the mapping from the time scale
declared in stset (which we shall call the basic scale) onto the time scale on which the analysis is to be performed (the
analysis scale). These options avoid the need to constantly recall stset to redefine the date on a different scale. Time scales
differ only in their origin; to switch to age as the time scale the origin must be set at the date of birth for each subject; to
switch to time-since-entry as the time scale the origin is set to date of entry, and so on. The origin option declares a variable
(or constant) which specifies the time origin for each record. The scale option makes it possible to specify new units for time;
if the basic units are days declaring the scale to be 365.25 will specify the analytical units to be years. The origin and units of
the basic time variables in stset do not change.

The Stata command stset requires a failure variable which indicates the outcome at the end of follow-up. This must be 0
for follow-up which is censored, but if the follow-up ends with an event, then the failure variable can be coded to indicate the
type of event. The convention in Stata 5.0 is to treat all non-zero codes as failures, which means that when analyzing a number
of different outcomes it is necessary to re-define the outcome variable using stset for each. We have avoided the need for this
in our st commands by introducing an fcodes (failure codes) option which specifies those codes which are to be regarded as
failures, all others to be treated as censored. The default is to include all non-zero codes as failures. Again our motivation has
been to avoid the need for repeated calls to stset. We hope that this submission will provide a convincing case for routinely
incorporating fcodes, origin, and scale options in st commands as appropriate.

Each individual record in st data refers to a period of follow-up (its start and end) and the failure code indicating the nature
of the terminating event. Other commands, also useful in the analysis of event history data, allow for records describing the
occurrence of more than one event and expect the data in a somewhat different form, each record containing an event count and
a corresponding rate denominator. Examples of such commands are poisson, nbreg, and xtpois. We call such data dy data,
deriving from the way we name the event count and rate denominator variables in our book, and provide a conversion program,
sttody, which converts st data to dy data. Similar data arises in the person-years method of analysis of epidemiological cohort
studies in which counts of incident events and corresponding person-years observations are counted in cells of a multiway table
and subsequently analyzed using Poisson regression. To facilitate such analyses we have included in strate the facility to save
such multiway tables as Stata .dta files.

Subdivision of follow-up time by bands using stlexis

The command stlexis expands a set of records for subjects in a follow-up study into a larger number of records. Each
record in the new dataset concerns the follow-up of one subject through one band of a time scale. Expansion by several time
scales can be achieved by repeated calls to stlexis. The id variable must be defined using stset in order to relate the new
records back to the subject to whom they refer. Since the current dataset will be altered by this command, any if and in options
are best implemented using keep or drop.

The syntax of stlexis is

stlexis
�
varlist

�
, breaks(x1; x2; : : : ; xk)

�
origin(varname j #) scale(varname j #)

generate(
�
type

�
varname) label invert

�

Stata Technical Bulletin 29

The varlist specifies which variables (in addition to the st data) should be kept in the expanded dataset. If it is absent,
all variables are kept. The st data definition remains in force after the expansion and the st variables are correctly recoded to
refer to the new records.

Options

breaks(x1; x2; : : : ; xk) is not optional. It supplies the breaks for the bands, in ascending order, in the units of (time�origin)/scale
where time has the units specified in stset. The list of break points may be simply a list of numbers separated by commas,
but may also include the syntax a[b]c, meaning from a to c in steps of size b. Thus

40, 45, 50, 55, 60, 70, 80, 90

40[5]60,70[10]90

40[5]60[10]90

are all valid and describe the same list.

origin(varname j #) specifies the origin of the analysis time scale. The default is 0.

scale(varname j #) specifies the units for the analysis time scale. The default is 1.

generate([type] varname) supplies the name of a new variable to hold the time band indicators, coded using the left-hand
ends of the bands defined by breaks. If it is not defined, the default variable t band is used.

label controls the coding and labeling of the generated time band variable. By default the variable is coded to the lower break
point for the time band and is unlabeled. If label is set, bands are coded 0, 1, 2 : : : , and appropriate labels are computed.

invert reverses the roles of the basic and analysis scales in defining the mapping by origin and scale.

Comments

The first and last break points define the span of the study, according to the following rules. Records for which the time of
exit from the study is less than the first break point, and records for which the time of entry is greater than the last break point,
are dropped. Otherwise, the time of entry is redefined as the larger of time at entry and the first break point, and the time of
exit is redefined as the smaller of time at exit and the largest break. For records in which the time of exit is greater than the
largest break point the failure indicator is set to zero (censored), no matter what its original value was.

The command may be repeated with different time scales, thus partitioning observations between cells in the Lexis diagram.
This explains its name.

For advanced users, scale can be a variable, allowing different units for different records. This is useful for computations
based on cumulative dose of environmental exposure.

We shall illustrate the use of stlexis with the same data as in STB-27 but the time variables are now given as dates, and
the outcome variable has been left fully coded, with codes 1, 3, and 13 referring to different types of coronary heart disease
(CHD) event. Other events, such as cancer incidence, are coded with different positive integers and censored follow-up (no event
at end of study) is coded 0.

1. id float %9.0g Subject identity number

2. doe long %dDmCY Date of entry

3. dox long %dDmCY Date of exit

4. dob long %dDmCY Date of birth

5. fail int %8.0g Outcome (CHD = 1 3 13)

6. job int %8.0g Occupation

7. month byte %8.0g month of survey

8. energy float %9.0g Total energy (Mcals/day)

9. hieng byte %8.0g Indicator for high energy

The variable hieng is coded 1 if the total energy consumption is > 2.75 Mcals and 0 otherwise.

Example 1: Age-specific rates

We shall first expand the data using age as the time scale with 10-year age bands. Note that the origin is set to date of
birth, making age the time scale, and the scale is set to 365.25, so that the breaks can be specified in years of age.

. use diet

. stset dox fail, t0(doe) id(id)

30 Stata Technical Bulletin STB-40

. stlexis, gen(ageband) br(40,50,60,70) origin(dob) scale(365.25)

Lexis: expansion of survival time data by time bands

failure time: dox

entry time: doe

failure/censor: fail

id: id

origin: dob

scaling: 365.25

Time band will be coded in the variable: ageband

26 records start before 40 - left truncated

392 extra records are being created

The effect of the stlexis command on the data is shown by

. list id doe dox ageband fail if id==1

id doe dox ageband fail

1. 1 16Aug2064 03Jan2065 40 0

2. 1 03Jan2065 04Jan2075 50 0

3. 1 04Jan2075 01Dec2076 60 0

. list id doe dox ageband fail if id==34

id doe dox ageband fail

61. 34 16Apr2059 12Jun2059 50 0

62. 34 12Jun2059 31Dec2066 60 3

This shows how the single record for subject with id = 1 has expanded to three records. The first refers to the age band
40–49, coded 40, and the subject spends from 16Aug2064 to 03Jan2065 in this band. The second refers to the age band 50–59,
coded 50, and the subject spends from 03Jan2065 to 04Jan2075 in this band, and so on. The follow-up in each of the three
bands is censored (fail = 0). The single record for the subject with id = 34 is expanded to two age bands; the follow-up for
the first band was censored (fail = 0) and the follow-up for the second band ended in CHD (fail = 3).

The values for variables which do not change with time, such as height, are simply repeated in the new records. This can
lead to much larger datasets after expansion, and it may be necessary to specify which variables are to be kept after expansion,
using the option to do this in stlexis.

Example 2: Age and time-in-study

To use stlexis to expand the records on two time scales, such as age and time-in-study, first expand on the age scale and
then on the time-in-study scale.

. use diet,clear

. stset dox fail, t0(doe) id(id)

. stlexis, gen(ageband) br(40[10]70) origin(dob) scale(365.25)

. stlexis, gen(timeband) br(0[5]25) origin(doe) scale(365.25)

. list id doe dox ageband timeband fail if id==1

id doe dox ageband timeband fail

1. 1 16Aug2064 03Jan2065 40 0 0

2. 1 03Jan2065 03Jan2070 50 0 0

3. 1 03Jan2070 04Jan2075 50 5 0

4. 1 04Jan2075 01Dec2076 60 0 0

. list id doe dox ageband timeband fail if id==34

id doe dox ageband timeband fail

90. 34 16Apr2059 12Jun2059 50 0 0

91. 34 12Jun2059 11Jun2064 60 0 0

92. 34 11Jun2064 31Dec2066 60 5 3

Example 3: Explanatory variables which change with time

In the previous examples time itself, in the shape of age or time in study, is the explanatory variable which is to be studied
or controlled for, but in some studies there are other explanatory variables which vary with time. The stlexis command can
sometimes be used to expand the records so that in each new record such an explanatory variable is constant over time. For
example, in the Stanford heart data (see [R] st stset) the explanatory variable is posttran which takes the value 0 before
transplantation and 1 after. The follow-up must therefore be divided into time before transplantation and time after. This can be
achieved with

Stata Technical Bulletin 31

. stlexis, gen(posttran) br(-10000,0,10000) origin(dtrans) label

. label drop posttran

where dtrans contains the date of transplant, set equal to (say) 1/1/2000 for subjects still waiting for a transplant. The command
breaks the follow-up into the interval from �10000 to 0 and from 0 to 10000. Because the label option is in force, the bands
are coded 0 and 1 respectively in posttran. These bands correspond to time before and after the transplant. The actual labels
for the codes 0, 1 are not very helpful here, and have been dropped.

Example 4: Breaking down follow-up by cumulative exposure

Cumulative exposure to environmental pollutants can behave in very much the same way as another time scale. Here,
however, the rate of passage of “time” varies from one record to another as a result of different levels of exposure. For example,
in radiation studies in which measurements of cumulative exposure to ionizing radiation are available, the rates are worked out
using follow-up time during which the cumulative exposure is [0; 100), follow-up time during which the cumulative exposure
[100; 200), etc. This can be done using stlexis by defining cumulative exposure as the analysis “time” scale and specifying the
breaks in terms of the cumulative exposure. As an example, consider the following made-up data which are in the file cumdose.

id timein timeout xin xout fail

1 0 5 0 40 0

1 5 10 40 180 0

1 10 15 180 220 1

The three records all refer to subject 1, the basic time scale is time since entry to the study (years), and x refers to cumulative
exposure. Thus the subject enters at time 0 with zero exposure; after 5 years this has gone up to 40; after 10 years to 180, and
after 15 years to 220 at which time the subject fails. The idea is to break the follow-up time into parts which correspond to the
cumulative exposure groups defined by the cut points (0, 100, 200, 300).

The rate at which exposure is accumulated is

Follow-up in years Exposure per year

0–5 (40� 0)=(5� 0) = 8

5–10 (180� 40)=(10� 5) = 28

10–15 (220� 180)=(15� 10) = 8

The first 5 years of follow-up belong entirely to the exposure group [0; 100). Assuming a linear increase in exposure
between readings it would take 2.143 years at a rate of 28/year to get the exposure from 40 to 100, and a further 2.857 years
would bring the exposure to 180, so the second record should be broken into a piece lasting 2.143 years which belongs to
[0; 100), and a piece lasting 2.857 years which belongs to [100; 200). In the final record it would take 2.5 years at 8/year to
bring the exposure to 200, and a further 2.5 years brings it to 220 so the final record should be split into a piece lasting 2.5
years which belongs to [100; 200) and a piece lasting 2.5 years which belongs to [200; 300).

If we used stlexis in the same way as before, we would need to set the scale to be a variable equal to the reciprocals
of the values shown in the last column of the above table—that is, as years per unit of exposure. Unfortunately this does not
allow for periods in which a subject is unexposed and we have had to create an invert option which reverses the roles of
basic and analytical time scales in the definition of origin and scale. With invert in force, scale sets the number of units of
the analytical time scale corresponding to one unit of the basic time scale, and origin declares the point on the analysis time
scale corresponding to zero on the basic time scale. These calculations are illustrated below.

. use cumdose, clear

. stset timeout fail, t0(timein) id(id)

. gen scale = (xout-xin)/(timeout-timein)

. gen origin = xin - timein*scale

. stlexis, origin(origin) scale(scale) invert br(0[100]300) gen(egrp)

32 Stata Technical Bulletin STB-40

Lexis: expansion of survival time data by time bands

failure time: timeout

entry time: timein

failure/censor: fail

id: id

origin: origin

(value, on break-scale, when t=0 on st-scale)

scaling: scale

(units on break-scale per unit on st-scale)

Time band will be coded in the variable: egrp

2 extra records are being created

To check that the records have been expanded correctly:

. list id timein timeout xin xout egrp

id timein timeout xin xout egrp

1. 1 0 5 0 40 0

2. 1 5 7.142857 40 180 0

3. 1 7.142857 10 40 180 100

4. 1 10 12.5 180 220 100

5. 1 12.5 15 180 220 200

Tabulating the rate

The st version of tabrate is called strate and has syntax

strate
�
varlist

� �
in range

� �
if exp

� �
using filename

� �
, scale(#) fcodes(codes) jack

cluster(varname) smr(varname) nolist nomiss replace nowhisker level(#) graph graph options
�

strate calls dyrate and tabulates the rate, formed from the number of failures divided by the person-time, by different levels
of one or more categorical explanatory variables declared in the varlist of the command. Confidence intervals for the rate are also
given. By default, confidence intervals for rates are calculated using the quadratic approximation to the Poisson log-likelihood for
the log rate parameter. However, for situations in which the Poisson assumption is questionable, jackknife confidence intervals
can also be calculated. The jackknife option also allows for the case where there are multiple records for the same cluster (usually
subject).

The command also implements computation of SMR’s, after merging the data with a suitable file of reference rates.

The summary dataset can be saved to a file (specified with the using clause), thus enabling further analysis or more
elaborate graphical display.

Weights may be specified with the stset command. If they are used, the program calculates jackknife confidence intervals
by default.

Options

scale(#) specifies the units for the analysis time scale.

fcodes(codes) specifies the codes for the failure indicator to be treated as failures in the analysis. All other codes are treated
as censoring. Abbreviations such as fcodes(1/3 5/7 9) are allowed (as in recode).

jack specifies that jackknife confidence intervals are required.

cluster(varname) defines a categorical variable which indicates clusters of data to be used by the jackknife. If the jackknife
option is selected and this variable is not declared, it is taken as the id variable defined in the st data.

smr(varname) specifies a variable which holds, for each record, an appropriate reference rate. The program then calculates
SMR’s rather than rates. This option will usually be used after using stlexis to split the follow-up records by age bands
(and possibly calendar periods).

nolist suppresses the output. This is only useful when saving the results to a file with using.

nomiss restricts analysis to records with no missing values in any of the explanatory variables. Otherwise missing values are
simply treated as extra categories.

replace allows overwriting of the file specified with using

nowhisker omits the confidence intervals from the graph.

Stata Technical Bulletin 33

level(#) resets the level for the confidence intervals from the usual default.

graph produces a graph of the rate against the numerical code used for the categories of varname. Graph options are allowed.

Example 5: Tabulating the age-specific CHD rates

After expanding on the age scale using breaks 40[10]70 (Example 1), the dataset consists of 729 records. The CHD rate per
1000 person-years can now be tabulated against ageband using the command

. strate ageband, fc(1 3 13) scale(365250)

ageband _D _Y _Rate _Lower _Upper

40 6 0.90701 6.615 2.972 14.725

50 18 2.10703 8.543 5.382 13.559

60 22 1.49330 14.732 9.701 22.374

A note on standardized mortality ratios (SMRs)

The SMR for a cohort is the ratio of the total number of observed deaths to the number expected from age-specific reference
rates. This expected number can be found by first expanding on age, using stlexis, and then multiplying the person years in
each age band by the reference rate for that band. The Stata command merge can be used after expansion by stlexis to add
the reference rates to the dataset and, using the smr option to define the variable containing the reference rates, strate can be
used to calculate SMR’s and confidence intervals. Note that the scale must still be set—if reference rates are per 100,000 then
the scale should be 36525000. When reference rates are available by age and calendar period, stlexis must be called twice to
expand on both time scales before merging the data with the reference rate file.

Plotting cumulative rates

We have seen above how the variation of rates along a time scale can be studied by first breaking up each subject’s
follow-up into parts and then calculating time-band-specific rates. A disadvantage of this in practice is that the break points may
be arbitrary and dividing into too narrow bands results in unstable estimates of rates. An alternative procedure is to divide time
into very short bands (referred to as “clicks” in Clayton and Hills), and plotting the cumulative rate against time. In survival
analysis the cumulative rate is often referred to as the integrated hazard. Since several such plots can be superimposed, this
technique is very useful for making informal comparisons between time-specific rates in different groups. Such plots can be
produced using staalen, which has syntax:

staalen
�
in range

� �
if exp

� �
, origin(varname j #) scale(#) fcodes(codes) by(varname)

rmult(varname) from(#) to(#) risk graph options
�

The cumulative rate is obtained by cumulating 1=N , where N is the number at risk just before each event. This estimate
is usually known as the Aalen–Nelson estimate of cumulative rate. A plot of the cumulative rate against time has a positive
step at the time of each event.

The command staalen plots the Nelson–Aalen estimate of the cumulative rate or intensity. When the rmult() option
contains the rate multipliers for each record, predicted by a Poisson or Cox regression, the estimate becomes the Breslow–Aalen
estimate of the cumulative baseline rate in the proportional hazards model.

The cumulative risk can be plotted instead of the cumulative rate, using the identity

Cumulative risk = 1� exp(�Cumulative rate)

Note that there are difficulties in interpreting the cumulative risk when there are competing causes of failure.

Options

origin(varname j #) specifies the origin for the time scale. The default is 0.

scale(#) specifies the units for time scale. The default is 1.

fcodes(codes) specifies those codes to be included as failures.

by(varname) specifies a categorical variable by which the cumulative rate will be plotted.

rmult(varname) contains the rate multipliers for each record obtained from fitting a proportional hazards model, for example,
using stcox.

34 Stata Technical Bulletin STB-40

from(#) provides left truncation of all observations at a fixed lower time limit. The from and to options provide the ability to
“zoom in” on one part of the time scale.

to(#) provides right censoring of all observations at a fixed upper time limit.

risk causes the cumulative risk rather than the cumulative rate to be estimated

graph options are allowed. Default labeling is supplied when graph options are absent, but the x-axis may be relabeled using
the b2 graphics option and the y-axis may be relabeled using the l1 option.

Example 6: Plotting the cumulative rate

To plot the cumulative rate for the diet data, using age as the time scale, separately by hieng, use

. use diet

. stset dox fail, t0(doe) id(id)

. staalen, origin(dob) scale(365.25) fc(1 3 13) by(hieng)

The graphs are shown in Figure 1. In both groups the rate is roughly constant with age after about 45 (the plots are linear)
but the rate for the high energy group is lower than for the other group. Note how the time scale is labeled; this could be
relabeled by adding l1(Cumulative rate by hieng) b2(Age) to the command.

Figure 1

Rate ratios and log-linear trend

The command stmh is used for estimating rate ratios, controlled for confounding using stratification, and has syntax

stmh varname
�
varlist

� �
in range

� �
if exp

� �
, fcodes(codes) compare(codes1,codes2)

by(varlist) level(#) nomiss
�

The command stmh calls dymh, and in its simplest use, estimates the ratio of the rates of failure for two categories of the
explanatory variable (the first argument). Categories to be compared may be defined by specifying the codes of the levels to
be compared, for example as c(1/3 8, 5/7 9). Alternatively the command may be used to carry out trend tests for a metric
explanatory variable. In this latter case a one-step Newton approximation to the log-linear Poisson regression coefficient is also
computed.

The remaining variables before the comma are categorical variables which are to be controlled for using stratification.
Strata are defined by cross-classification by all of these variables and the rate ratio estimate is combined over strata using
the Mantel–Haenszel method. Using the by option, the variation of the rate ratio with further categorical variables may be
explored. By default, missing values of these variables define new strata, but there are arguments against this and an alternative
behavior—omitting any records with missing values for these variables—may be selected using the nomiss option.

On completion, the macro S 1 contains the overall Mantel–Haenszel estimate of the rate ratio, thus enabling bootstrap
evaluation of confidence intervals.

Stata Technical Bulletin 35

Options

fcodes(codes) specifies a recode rule for the failure indicator in the st data. All codes matching the rule are treated as failures
and all others as censoring.

compare(codes1,codes2) specifies recode rules which define the categories of the exposure variable to be compared. The
first rule defines the numerator categories and the second the denominator categories. When compare is absent and there
are only two categories, the larger is compared to the smaller; when there are more than two categories an analysis for
(log-linear) trend is carried out.

by(varlist) specifies categorical variables by which the rate ratio is to be tabulated. A separate rate ratio produced for each
category or combination of categories, and a test for unequal rate ratios (effect modification) is given. In an analysis for
log-linear trend, this test is very approximate since the estimates are themselves based on a quadratic approximation to the
log-likelihood.

level(#) gives the level for the confidence intervals (default 95).

nomiss specifies that only cases that have no missing values for any stratifying variables should be included. By default missing
values will define new strata.

Example 7: Stratified rate ratios

After expanding the records using stlexis on the age scale, the rate ratio for hieng, level 1 compared to level 0, controlled
for ageband, can be found using

. stmh hieng, c(1,0) fc(1 3 13) by(ageband)

Maximum likelihood estimate of the rate ratio

comparing: hieng==1 vs hieng==0

by: ageband

RR estimate, and lower and upper 95% confidence limits

ageband RR Lower Upper

40 1.239 0.227 6.762

50 0.434 0.163 1.157

60 0.503 0.211 1.199

Overall estimate controlling for: ageband

RR Lower Upper Chisq p_value

0.534 0.293 0.972 4.357 0.03686

Approx chisq for unequal RRs (effect modification) 1.19 (1 df, p = 0.27520)

Note that since the RR estimates are approximate, the test for unequal rate ratios is also approximate.

Example 8: Effect modification

The effect of hieng, controlled for ageband, can be compared between jobs with

. stmh hieng ageband, fc(1 3 13) c(1,0) by(job)

Mantel--Haenszel estimate of the rate ratio

comparing: hieng==1 vs hieng==0

controlling for: ageband

by: job

RR estimate, and lower and upper 95% confidence limits

job RR Lower Upper

0 0.418 0.131 1.334

1 0.639 0.218 1.873

2 0.514 0.210 1.256

Overall estimate controlling for: ageband job

RR Lower Upper Chisq p_value

0.521 0.289 0.939 4.883 0.02713

Approx chisq for unequal RRs (effect modification) 0.28 (1 df, p = 0.59685)

Example 9: Metric explanatory variables

This example illustrates what happens when varname refers to a metric variable, in this case height. The first command
tests for a trend of heart disease rates with height within age bands, and also provides a rough estimate of the rate ratio for
a 1 cm increase in height—this estimate is a one-step Newton approximation to the maximum-likelihood estimate, and is not
consistent, but it does provide a useful indication of the size of the effect.

36 Stata Technical Bulletin STB-40

. stmh height, fc(1 3 13)

Score test for trend of rates with: height

with an approximate estimate of the

rate ratio for one unit increase in height

RR estimate, and lower and upper 95% confidence limits

RR Lower Upper Chisq p_value

0.907 0.868 0.949 18.247 0.00002

There is clear evidence for a decreasing rate with increasing height (about 9% decrease in rate per cm of height).

Rate ratios stratified finely by time

To use stmh to control for variation of rates along a time scale, it is first necessary to use stlexis to break the follow-up
into parts corresponding to different bands of time. Our next command combines these steps, breaking up time into very short
intervals, or clicks. Usually this approach is only used to calculate significance tests and the resultant test has been christened
the Mantel–Cox or log-rank test. However, the rate ratio estimates remain just as useful as in the coarsely stratified analysis
described above. The method may be viewed as an approximate form of Cox regression. The name of the command is stmc,
from Mantel–Cox, and it has syntax

stmc varname
�
varlist

� �
if exp

� �
in range

� �
, origin(varname) fcodes(codes) compare(codes1,codes2)

by(varlist) nomiss level(#)
�

The rate ratio produced will be controlled for time, with origin as specified in origin(), separately for the different levels of
the variables in the by(), and finally combined to give a rate ratio controlled for both time and the variables in the by().

Options

The meaning and use of the various options should be clear from their use in stlexis and stmh. As with stmh the macro
S 1 contains the overall estimate of the rate ratio.

Example 10: Controlling for age with fine strata

To obtain the effect of high energy controlled for age by stratifying very finely, use

. use diet, clear

. stset dox fail, t0(doe)

. stmc hieng, origin(dob) fc(1 3 13)

Mantel-Cox comparisons

failure time: dox

entry time: doe

failure/censor: fail

time origin: dob

failure codes: 1 3 13

Mantel-Cox estimates of the rate ratio

comparing: hieng==1 vs hieng==0

controlling for: time (by clicks)

Overall Mantel-Cox estimate, controlling for: time-from-dob

_RR _Lower _Upper _Chisq _p_value

0.537 0.293 0.982 4.203 0.04035

The rate ratio of 0.537 is quite close to that obtained when controlling for age using 10-year age bands, namely

RR Lower Upper Chisq p_value

0.521 0.289 0.939 4.883 0.02713

Converting from st data to count data

In all st commands the failure variable indicates which periods of follow-up end in failure and which are censored, but
each record can only refer to a period of follow-up and a single terminating event. Event histories with multiple events must be
represented by multiple records sharing the same id—one record for each event, including the final end of follow-up.

However, for techniques such as Poisson regression (poisson), negative binomial regression (nbreg), and GEE for count
data (xtpois), each record must describe an event count, together with an appropriate rate denominator. In our terminology,
they require dy data. Such data are also required for our STB-27 commands tabrate and mhrate and we provide updated

Stata Technical Bulletin 37

versions of these, now renamed dyrate and dymh which implement all the new features of the corresponding st commands.
They are not documented separately; the d variable is passed as an additional (first) argument and the y variable is specified, as
in poisson, with an e() option. Further options are as for the equivalent st command although, of course, fcodes, origin,
and scale options are no longer necessary.

To convert from st to dy form, we provide the command sttody. Its syntax is

sttody varname varname
�
, scale(#) fcodes(codes) by(varlist)

�
The arguments are new variables to contain, respectively, the event count, d, and the rate denominator, y. If there is no

by option, one record is created for each unique value of the id variable declared in stset. Thus, when there are multiple
records with the same id, the size of the dataset is reduced. Any time-varying variables will take on their first recorded value in
the reduced dataset. The by option limits this collapsing down of multiple records into groups specified by a list of categorical
variables. Thus, for example, all records for the same subject and which refer to the same age band could be grouped together
and form the new record, by using a by(ageband) option. Thus, we can use stlexis followed by sttody to prepare recurrent
event data for analysis using xtgee.

If no id variable is set, each record is taken as referring to a unique subject.

Options

scale(#) specifies the units for the analysis time scale, that is, units for y, the rate denominator.

fcodes(codes) specifies a recode rule for the failure indicator. All codes matching the rule are treated as failures and all others
as censoring.

by(varlist) specifies the variables by which the data will be disaggregated within subject id.

Example 11: Using poisson regression with st data

After expanding the diet data on the age scale we used stmh to find the effect of high energy controlled for age. An
alternative is to use Poisson regression. This is useful with metric variables and for controlling for a number of different variables.
Poisson regression requires each record to contain a number of events (which can be zero) and a follow-up time, and sttody

can be used to convert the diet data to this form.

. use diet, clear

. stset dox fail, t0(doe) id(id)

. stlexis , origin(dob) scale(365.25) breaks(40[10]70) gen(ageband)

. sttody d y, fcodes(1 3 13) scale(365.25) by(ageband)

The command

. poisson d hieng, e(y)

can now be used to obtain the effect of high energy.

Nested case-control studies

Any cohort study can be used to generate a case-control study by sampling the cohort for controls. The resultant case-control
study is then said to be nested in the cohort study. For each case the controls are chosen from those members of the cohort who
are at risk at the failure time of the case, that is from the risk set corresponding to the case. The case-control study so formed
is matched with respect to the time scale used to compute risk sets, and when analyzing as a matched case-control study, odds
ratios in the case-control study will estimate corresponding rate ratio parameters in the proportional hazards model for the cohort
study.

Nested case-control studies are an attractive alternative to full Cox regression analysis, particularly when time-varying
explanatory variables are involved. They are also attractive when some explanatory variables involve laborious coding; we create
a file with a subset of variables for all subjects in the cohort, generate a nested case-control study, and go on to code the
remaining data only for those subjects selected for the nested study.

In the same way as for Cox regression, the results of the analysis are critically dependent on the choice of time scale. The
choice of time scale may be calendar time, so that controls would be chosen from subjects still being followed on the date that
the case fails but other time scales, such as age or time-in-study, may be more appropriate in some studies. Remember that the
scale used in selecting controls is implicitly included in the model in subsequent analysis. When drawing controls, they may also
be matched to the case in respect to additional (categorical) variables such as sex. This produces an analysis closely mirroring
a stratified Cox regression analysis. Note that we can carry out control selection after a call to stlexis so as to create, for

38 Stata Technical Bulletin STB-40

example, a case-control study by sampling from risk sets created in calendar time but also matched by 5- or 10-year age bands.
Analysis as a matched case-control study estimates rate ratios in the underlying cohort which are controlled for calendar time
(very finely) and age (less finely). Such analysis can be carried out by Mantel–Haenszel (odds ratio) calculations, for example
using mhodds (STB-27), or by conditional logistic regression using clogit.

The command sttocc (survival time to case-control) can be used to generate a case-control study from the data from a
cohort study. It has the syntax

sttocc
�
varlist

� �
, origin(varname) scale(#) fcodes(codes) match(varlist) number(#) generate(varlist)

�
varlist defines variables which, in addition to those used in the creation of the case-control study, will be carried over. The
default is that all variables are carried over into the case-control study.

Options

origin(varname) specifies the origin for the time scale.

scale(#) specifies the units for time scale.

fcodes(codes) specifies those codes to be included as failures.

match(varlist) specifies additional categorical variables for matching controls to cases.

number(#) specifies the number of controls to draw for each case. The default is 1, even though this is not a very sensible
choice!

generate(varlist) specifies variable names for three generated variables. These are (with their default names) (i) a case-control
indicator coded 0 for controls and 1 for cases (case), (ii) a case-control set identifier (set), and (iii) the time, on the
analysis scale at which the set was constructed, that is the failure time of the case (time).

Remark: treatment of ties

In the event of ties between entry times, censoring times, and failure times, the following convention is adopted:

Entry time < Failure time < Censoring time

Tied failure times are broken at random.

Example 12: Creating a nested case-control study

We shall illustrate the use of sttocc with the diet data, choosing age as the time scale, so that controls are chosen from
subjects still being followed at the age at which the case fails. The commands

. use diet, clear

. stset dox fail, t0(doe) id(id)

. sttocc, origin(dob) scale(365.25) match(job) n(5)

create a new dataset in which there are 5 controls per case, matched on job, with the age of the subjects when the case failed
recorded in the variable time. The case indicator is given in case and the matched set number in set. All variables are
carried over into the new dataset.

The commands

. gen ageentry=(doe-dob)/365.25

. gen ageexit=(dox-dob)/365.25

. list id _* age* in 1/12

id _case _set _time ageentry ageexit

1. 93 0 1 42.57358 36.43258 51.32101

2. 73 0 1 42.57358 36.58043 52.70636

3. 75 0 1 42.57358 31.13484 47.26078

4. 101 0 1 42.57358 38.29706 49.1718

5. 65 0 1 42.57358 40.11225 56.82409

6. 90 1 1 42.57358 31.4141 42.57358

7. 190 0 2 47.8987 44.4846 64.52567

8. 292 0 2 47.8987 46.24504 62.28611

9. 285 0 2 47.8987 40.59138 57.30322

10. 213 0 2 47.8987 47.23614 67.02532

11. 305 0 2 47.8987 46.5462 48.04107

12. 196 1 2 47.8987 45.46475 47.8987

Stata Technical Bulletin 39

demonstrate that controls did indeed belong to the appropriate risk set. Note that the controls in each set enter at an age which
is less than that of the case at failure, and exit at an age which is greater than the age of the case at failure. To estimate the
effect of high energy use clogit, just as you would for any matched case-control study:

. clogit _case hieng, group(_set) or

Iteration 0: Log Likelihood =-143.26306

Iteration 1: Log Likelihood =-143.04668

Iteration 2: Log Likelihood =-143.04668

Conditional (fixed-effects) logistic regression Number of obs = 480

chi2(1) = 0.59

Prob > chi2 = 0.4431

Log Likelihood = -143.04668 Pseudo R2 = 0.0021

--

_case | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--

hieng | .8305188 .2011803 -0.767 0.443 .5166055 1.33518

--

References
Clayton, D. G. and M. Hills. 1993. Statistical Models in Epidemiology. Oxford: Oxford University Press.

——. 1995. ssa7: Analysis of follow-up studies. Stata Technical Bulletin 27: 19–26. Reprinted in Stata Technical Bulletin Reprints, vol. 5, pp. 219–227.

svy6 Versions of mlogit, ologit, and oprobit for survey data

John L. Eltinge, Texas A&M University, FAX 409-845-3144, jeltinge@stat.tamu.edu
William M. Sribney, Stata Corporation, FAX 409-696-4601, tech support@stata.com

The syntax for the svymlog, svyolog, and svyoprob commands is

svymlog varlist
�
weight

� �
if exp

� �
in range

� �
, rrr basecategory(#) noconstant

maximize options svy options
�

svyolog varlist
�
weight

� �
if exp

� �
in range

� �
, maximize options svy options

�
svyoprob varlist

�
weight

� �
if exp

� �
in range

� �
, maximize options svy options

�

where the svy options are

strata(varname) psu(varname) fpc(varname) subpop(varname) srssubpop noadjust

level(#) prob ci deff deft meff meft

These commands share the features of all estimation commands. The commands typed without arguments redisplay previous
results. The following options can be given when redisplaying results:

rrr level(#) prob ci deff deft meff meft

pweights are allowed. See [U] 18.1.6 weight in the Stata User’s Guide.

Warning: Use of if or in restrictions will not produce correct variance estimates for subpopulations in many cases. To compute
estimates for a subpopulation, use the subpop() option.

[Editor’s note: The ado-files for these commands can be found in the stata directory.]

Description

These commands are the equivalent of mlogit, ologit, and oprobit for complex survey data. The svymlog command
estimates multinomial logistic regression; svyolog estimates ordered logistic regression; and svyoprob estimates an ordered
probit model. Before using these commands, users should first familiarize themselves with the mlogit, ologit, oprobit, and
svyreg commands.

The commands allow any or all of the following: probability sampling weights, stratification, and clustering. Associated
variance estimates, design effects (deff and deft), and misspecification effects (meff and meft) are computed. The subpop()

40 Stata Technical Bulletin STB-40

option will give estimates for a single subpopulation defined by an expression; see [R] svymean and [R] svyreg in the Stata
Reference Manual for a discussion of its properties.

To account for unequal selection probabilities, the customary maximum-likelihood estimating equations are weighted, with
the specified pweights assumed to be proportional to the inverses of selection probabilities. Hence, these commands produce
the same point estimates as those computed by mlogit, ologit, and oprobit when aweights are specified, but the variance
estimator produced by svymlog, svyolog, and svyoprob is one that is appropriate for the survey design.

When these commands are used with nonsurvey data (i.e., no sampling weights, stratification, or clustering), they produce
“robust” variance estimates—what nonsurvey statisticians term the Huber/White/sandwich estimator and what other commands
in Stata give when the robust option is specified.

Options

The svy options shown in the syntax diagram are the same options as those for the svyreg command; see [R] svyreg in
the Stata Reference Manual for a description of those options.

rrr (svymlog only) reports the estimated coefficients transformed to relative risk ratios, i.e., exp(b) rather than b. Standard
errors are also transformed to this metric. See [R] mlogit in the Stata Reference Manual for a description of relative risk
ratios.

basecategory(#) (svymlog only) specifies the value of depvar that is to be treated as the base category. The default is to
choose the most frequent category.

noconstant (svymlog only) estimates a model without the constant term (intercept).

maximize options control the maximization process; see [R] maximize in the reference manual. You may want to specify the
log option when estimating models on large datasets to view the progress of the maximum likelihood estimation steps.
You should never have to specify the other maximize options.

Examples

We use data from the Second National Health and Nutrition Examination Survey (NHANES II) (McDowell et al. 1981). We
first set the strata, psu, and pweight variables:

. svyset pweight finalwgt

. svyset strata strata

. svyset psu psu

Once the strata, psu, and pweight variables are set, we can use svymlog, svyolog, or svyoprob just as we would use
mlogit, ologit, or oprobit with nonsurvey data.

In our dataset, we have a variable health containing self-reported health status, which takes on the values 1–5, with 1
being “poor” and 5 being “excellent”. Since this is an ordered categorical variable, it makes sense to model it using svyolog or
svyoprob. As predictors, we use basic demographic variables: female (1 if female, 0 if male), black (1 if black, 0 otherwise),
age, and age2 (= age

2):

. svyolog health female black age age2

Survey ordered logistic regression

pweight: finalwgt Number of obs = 10335

Strata: strata Number of strata = 31

PSU: psu Number of PSUs = 62

Population size = 1.170e+08

F(4, 28) = 223.27

Prob > F = 0.0000

--

health | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

female | -.1615219 .0523678 -3.084 0.004 -.2683266 -.0547171

black | -.986568 .0790276 -12.484 0.000 -1.147746 -.8253901

age | -.0119491 .0082974 -1.440 0.160 -.0288717 .0049736

age2 | -.0003234 .000091 -3.552 0.001 -.000509 -.0001377

---------+--

_cut1 | -4.566229 .1632559 -27.970 0.000 -4.899192 -4.233266

_cut2 | -3.057415 .1699943 -17.985 0.000 -3.404121 -2.710709

_cut3 | -1.520596 .1714341 -8.870 0.000 -1.870238 -1.170954

_cut4 | -.242785 .1703964 -1.425 0.164 -.5903107 .1047407

--

Stata Technical Bulletin 41

According to our model, females give self-reports of poorer health status than males, blacks report much poorer health
status than nonblacks, and older people report worse health than younger.

If we model the categories of self-reported health status as unordered categories using svymlog, we get the following
results:

. svymlog health female black age age2

Survey multinomial logistic regression

pweight: finalwgt Number of obs = 10335

Strata: strata Number of strata = 31

PSU: psu Number of PSUs = 62

Population size = 1.170e+08

F(16, 16) = 36.41

Prob > F = 0.0000

--

health | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

poor |

female | -.1983735 .1072747 -1.849 0.074 -.4171617 .0204147

black | .8964694 .1797728 4.987 0.000 .5298203 1.263119

age | .0990246 .032111 3.084 0.004 .0335338 .1645155

age2 | -.0004749 .0003209 -1.480 0.149 -.0011294 .0001796

_cons | -5.475074 .7468576 -7.331 0.000 -6.9983 -3.951848

---------+--

fair |

female | .1782371 .0726556 2.453 0.020 .030055 .3264193

black | .4429445 .122667 3.611 0.001 .1927635 .6931256

age | .0024576 .0172236 0.143 0.887 -.0326702 .0375853

age2 | .0002875 .0001684 1.707 0.098 -.0000559 .000631

_cons | -1.819561 .4018153 -4.528 0.000 -2.639069 -1.000053

---------+--

good |

female | -.0458251 .074169 -0.618 0.541 -.1970938 .1054437

black | -.7532011 .1105444 -6.814 0.000 -.9786579 -.5277443

age | -.061369 .009794 -6.266 0.000 -.081344 -.0413939

age2 | .0004166 .0001077 3.869 0.001 .000197 .0006363

_cons | 1.815323 .1996917 9.091 0.000 1.408049 2.222597

---------+--

excell |

female | -.222799 .0754205 -2.954 0.006 -.3766202 -.0689778

black | -.991647 .1238806 -8.005 0.000 -1.244303 -.7389909

age | -.0293573 .0137789 -2.131 0.041 -.0574595 -.001255

age2 | -.0000674 .0001505 -0.448 0.657 -.0003744 .0002396

_cons | 1.499683 .286143 5.241 0.000 .9160909 2.083276

--

(Outcome health==average is the comparison group)

We see an interesting pattern here. It suggests that females are less likely to report the extremes of health than males:
females are less likely to report poor health and less likely to report excellent health. The results for blacks, on the other hand,
are monotonic: the better the health rating, the less likely they are to report it, relative to nonblacks.

Just like mlogit, svymlog can display results as relative risk ratios, either at the time of estimation or when redisplaying
results:

. svymlog, rrr

(output omitted)

At the time of estimation, one can also specify the base category for the comparison:

. svymlog health female black age age2, base(1)

(output omitted)

Estimating linear combinations of coefficients with the svylc command

In addition to these new commands, this insert contains an updated version of the svylc command, which estimates linear
combinations of coefficients. For example, after the first svymlog command shown above,

42 Stata Technical Bulletin STB-40

. svymlog health female black age age2

one might want to estimate the relative risk ratio for nonblack males to black females for the “excellent” category relative to
the base “fair” category. This can be done using svylc:

. svylc -[excell]female - [excell]black, rrr

(1) - [excell]female - [excell]black = 0.0

--

health | RRR Std. Err. t P>|t| [95% Conf. Interval]

---------+--

(1) | 3.368427 .4810747 8.503 0.000 2.517245 4.507429

--

See the [R] svylc entry of the Stata Reference Manual for details on using the svylc command. Note that svyolog and
svyoprob, as well as svymlog, require that svylc be used with multiple-equation syntax. This is not at all obvious in the
case of svyolog and svyoprob. Indeed, the equation names for svyolog and svyoprob were purposefully hidden so that their
output looks like that of ologit and oprobit. However, their true equation labeling can be seen by typing svylc, show. The
syntax to use with svylc and svytest will then be immediately apparent.

If there are value labels on the dependent variable, svymlog will use these labels for the equation names, just as mlogit

does. If any of the value labels contain blanks (e.g., a label “age 70+”), then this will create problems for svylc and svytest,
just as it does for the test command. The obvious workaround is not to use value labels with blanks. Note that blanks in value
labels cause absolutely no problems for the svymlog command itself.

Methods, formulas, and saved results

The svymlog, svyolog, and svyoprob commands use “linearization”-based variance estimators that are natural extensions
of the variance estimator used in svytotal. The point estimates are those given by the “pseudo-maximum-likelihood” estimator;
i.e., they are the same point estimates produced by mlogit, ologit, and oprobit when aweights are specified. See [R] svyreg
and the references therein for details.

The svymlog, svyolog, and svyoprob commands store the same saved results as svylogit and svyprobt (see [R] svyreg).
In addition, all three commands store in the global macro S E ncat the number of categories of the dependent variable. The
svymlog command stores in the global macro S E base the value of the base category.

Reference
McDowell, A., A. Engel, J. T. Massey, and K. Maurer. 1981. Plan and operation of the Second National Health and Nutrition Examination Survey,

1976–1980. Vital and Health Statistics 15(1). National Center for Health Statistics, Hyattsville, MD.

Stata Technical Bulletin 43

STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt datasets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology ssa survival analysis
sed exploratory data analysis ssi simulation & random numbers
sg general statistics sss social science & psychometrics
smv multivariate analysis sts time-series, econometrics
snp nonparametric methods svy survey sampling
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified
srd robust methods & statistical diagnostics

In addition, we have granted one other prefix, stata, to the manufacturers of Stata for their exclusive use.

Guidelines for authors

The Stata Technical Bulletin (STB) is a journal that is intended to provide a forum for Stata users of all disciplines and
levels of sophistication. The STB contains articles written by StataCorp, Stata users, and others.

Articles include new Stata commands (ado-files), programming tutorials, illustrations of data analysis techniques, discus-
sions on teaching statistics, debates on appropriate statistical techniques, reports on other programs, and interesting datasets,
announcements, questions, and suggestions.

A submission to the STB consists of

1. An insert (article) describing the purpose of the submission. The STB is produced using plain TEX so submissions using
TEX (or LATEX) are the easiest for the editor to handle, but any word processor is appropriate. If you are not using TEX and
your insert contains a significant amount of mathematics, please FAX (409–845–3144) a copy of the insert so we can see
the intended appearance of the text.

2. Any ado-files, .exe files, or other software that accompanies the submission.

3. A help file for each ado-file included in the submission. See any recent STB diskette for the structure a help file. If you
have questions, fill in as much of the information as possible and we will take care of the details.

4. A do-file that replicates the examples in your text. Also include the datasets used in the example. This allows us to verify
that the software works as described and allows users to replicate the examples as a way of learning how to use the software.

5. Files containing the graphs to be included in the insert. If you have used STAGE to edit the graphs in your submission, be
sure to include the .gph files. Do not add titles (e.g., “Figure 1: ...”) to your graphs as we will have to strip them off.

The easiest way to submit an insert to the STB is to first create a single “archive file” (either a .zip file or a compressed
.tar file) containing all of the files associated with the submission, and then email it to the editor at stb@stata.com either
by first using uuencode if you are working on a Unix platform or by attaching it to an email message if your mailer allows
the sending of attachments. In Unix, for example, to email the current directory and all of its subdirectories:

tar -cf - . | compress | uuencode xyzz.tar.Z > whatever

mail stb@stata.com < whatever

44 Stata Technical Bulletin STB-40

International Stata Distributors

International Stata users may also order subscriptions to the Stata Technical Bulletin from our International Stata Distributors.

Company: Applied Statistics & Company: Survey Design & Analysis Services P/L
Systems Consultants Address: 249 Eramosa Road West

Address: P.O. Box 1169 Moorooduc VIC 3933
Nazerath-Ellit 17100, Israel Australia

Phone: +972 66554254 Phone: +61 3 5978 8329
Fax: +972 66554254 Fax: +61 3 5978 8623

Email: sasconsl@actcom.co.il Email: sales@survey-design.com.au
Countries served: Israel URL: http://survey-design.com.au

Countries served: Australia, New Zealand

Company: Dittrich & Partner Consulting Company: Timberlake Consultants
Address: Prinzenstrasse 2 Address: 47 Hartfield Crescent

D-42697 Solingen West Wickham
Germany Kent BR4 9DW U.K.

Phone: +49 212-3390 200 Phone: +44 181 462 0495
Fax: +49 212-3390 295 Fax: +44 181 462 0493

Email: evhall@dpc.de Email: info@timberlake.co.uk
Countries served: Austria, Germany, Italy URL: http://www.timberlake.co.uk

Countries served: United Kingdom, Eire

Company: Metrika Consulting Company: Timberlake Consulting S.L.
Address: Mosstorpsvagen 48 Address: C/ Montecarmelo No 36 Bajo

183 30 Taby Stockholm 41011 Seville
Sweden Spain

Phone: +46-708-163128 Phone: +34.5.428.40.94
Fax: +46-8-7924747 Fax: +34.5.428.40.94

Email: hedstrom@metrika.se Teléfono móvil: +34.39.78.64.31
Countries served: Baltic States, Denmark, Finland, Countries served: timberlake@zoom.es

Iceland, Norway, Sweden Spain

Company: Ritme Informatique Company: Timberlake Consultores
Address: 34 boulevard Haussmann Address: Praceta do Comércio,

75009 Paris N�13–9� Dto. Quinta Grande
France 2720 Alfragide Portugal

Phone: +33 1 42 46 00 42 Phone: +351 (01) 4719337
Fax: +33 1 42 46 00 33 Telemóvel: 0931 62 7255

Email: info@ritme.com Email: timberlake.co@mail.telepac.pt
URL: http://www.ritme.com Countries served: Portugal

Countries served: Belgium, France,
Luxembourg, Switzerland

Company: Smit Consult
Address: Doormanstraat 19

5151 MG Drunen
Netherlands

Phone: +31 416-378 125
Fax: +31 416-378 385

Email: j.a.c.m.smit@smitcon.nl
URL: http://www.smitconsult.nl

Countries served: Netherlands

