
STATA May 1997

TECHNICAL STB-37

BULLETIN
A publication to promote communication among Stata users

Editor Associate Editors
H. Joseph Newton Francis X. Diebold, University of Pennsylvania
Department of Statistics Joanne M. Garrett, University of North Carolina
Texas A & M University Marcello Pagano, Harvard School of Public Health
College Station, Texas 77843 James L. Powell, UC Berkeley and Princeton University
409-845-3142 J. Patrick Royston, Royal Postgraduate Medical School
409-845-3144 FAX
stb@stata.com EMAIL

Subscriptions are available from Stata Corporation, email stata@stata.com, telephone 979-696-4600 or 800-STATAPC,
fax 979-696-4601. Current subscription prices are posted at www.stata.com/bookstore/stb.html.

Previous Issues are available individually from StataCorp. See www.stata.com/bookstore/stbj.html for details.

Submissions to the STB, including submissions to the supporting files (programs, datasets, and help files), are on a nonex-
clusive, free-use basis. In particular, the author grants to StataCorp the nonexclusive right to copyright and distribute the ma-
terial in accordance with the Copyright Statement below. The author also grants to StataCorp the right to freely use the ideas,
including communication of the ideas to other parties, even if the material is never published in the STB. Submissions should
be addressed to the Editor. Submission guidelines can be obtained from either the editor or StataCorp.

Copyright Statement. The Stata Technical Bulletin (STB) and the contents of the supporting files (programs, datasets,
and help files) are copyright c by StataCorp. The contents of the supporting files (programs, datasets, and help files), may be
copied or reproduced by any means whatsoever, in whole or in part, as long as any copy or reproduction includes attribution
to both (1) the author and (2) the STB.

The insertions appearing in the STB may be copied or reproduced as printed copies, in whole or in part, as long as any copy
or reproduction includes attribution to both (1) the author and (2) the STB. Written permission must be obtained from Stata
Corporation if you wish to make electronic copies of the insertions.

Users of any of the software, ideas, data, or other materials published in the STB or the supporting files understand that such use
is made without warranty of any kind, either by the STB, the author, or Stata Corporation. In particular, there is no warranty of
fitness of purpose or merchantability, nor for special, incidental, or consequential damages such as loss of profits. The purpose
of the STB is to promote free communication among Stata users.

The Stata Technical Bulletin (ISSN 1097-8879) is published six times per year by Stata Corporation. Stata is a registered
trademark of Stata Corporation.

Contents of this issue page

an64. STB-31–STB-36 available in bound format 2
an65. Memorium for Stewart West 2

dm44. Sequences of integers 2
dm45. Changing string variables to numeric 4
dm46. Enhancement to the sample command 6
dm47. Verifying value label mappings 7
gr26. Bin smoothing and summary on scatter plots 9
ip17. While loops from the command line 12
ip18. A command for randomly resampling a dataset 17

smv7. Inference on principal components 22
ssa9. Cox proportional hazards model with the exact calculation for ties 24

ssa9.1. Survival analysis subroutine for programmers 26
zz7. Cumulative index for STB-31–STB-36 30



2 Stata Technical Bulletin [STB-37]

an64 STB-31–STB-36 available in bound format

Patricia Branton, Stata Corporation, stata@stata.com

The sixth year of the Stata Technical Bulletin (issues 31–36) has been reprinted in a bound book called The Stata Technical
Bulletin Reprints, Volume 6. The volume of reprints is available from StataCorp for $25, plus shipping. Or, you may purchase
all six reprint volumes for $115, plus shipping. Authors of inserts in STB-31–STB-36 will automatically receive the book at no
charge and need not order.

This book of reprints includes everything that appeared in issues 31–36 of the STB. As a consequence, you do not need
to purchase the reprints if you saved your STBs. However, many subscribers find the reprints useful since they are bound in a
convenient volume. Our primary reason for reprinting the STB, though, is to make it easier and cheaper for new users to obtain
back issues. For those not purchasing the Reprints, note that zz7 in this issue provides a cumulative index for the sixth year of
the original STBs.

an65 Memorium for Stewart West

Joseph Hilbe, Arizona State University, atjmh@asuvm.inre.asu.edu

Stewart West, a member of the first editorial board of the Stata Technical Bulletin, died May 3, 1997 at Methodist Hospital
in Houston, Texas. In addition to helping formulate the initial direction of the STB, Dr. West was instrumental in the creation of
the well-used epitab commands and reviewed many other commands of biostatistical import.

Stewart was born June 27, 1947. He attended Rice University and received his Ph.D. from the University of Texas School
of Public Health. While living in Chicago from 1978–1985, he was Assistant Director of the Coordinating Center for the Study
of Sickle Cell Disease, a multi-center epidemiologic study. He returned to Houston as an Associate Professor of Biostatistics at
the Baylor College of Medicine in 1985. Much of his subsequent research involved cardiovascular disease. He also consulted
to a number of pharmaceutical and software development firms. His favorite hobbies included baseball and traveling.

I, together with all others in the Stata community, will miss Stewart’s wit and statistical insight. Stewart made many positive
contributions to life and work. He will be missed. We give our best regards and heartfelt condolences to Leslie, his wife of
many years, and to the remainder of his family. A Memorial Scholarship Fund has been established in the name of M. Stewart
West. Contributions may be sent to: Dr. L. Whitehead, U. T. Houston, P.O. Box 20186, Houston, TX 77225.

dm44 Sequences of integers

Nicholas J. Cox, University of Durham, UK, FAX (011) 44-91-374-2456, n.j.cox@durham.ac.uk

Syntax

The syntax for the seq command is

seq newvar
�
if exp

� �
in range

� �
, by(byvar) block(#) from(#) to(#)

�

Options

by(byvar) specifies that seq is to generate the sequence within each group defined by the by variables.

block(#) specifies that each integer is repeated in a block of #. The default is 1.

from(#) specifies that integers start at #. The default is 1.

to(#) specifies that integers stop at #. The default is N, or the number of the last value reached as determined by whatever
combination of by, if, and in has been issued. If there are more values, numbering restarts at the value set by from.

Remarks

seq creates a new variable containing one or more sequences of integers. It is principally useful for quick creation of
observation identifiers or automatic numbering of levels of factors or categorical variables.

seq revisits territory covered by Jacobs (1992) and Lachenbruch (1992). They provided short programs for generating
sequences of integers that restart (e.g. 1; 2; 3; 1; 2; 3; 1; 2; 3; : : :) or are blocked (e.g. 1; 1; 1; 2; 2; 2; 3; 3; 3; : : :). seq generalizes
such ideas modestly to allow the use of initial integers other than 1 and the production of decreasing sequences, and to support
by, if, and in.

seq falls short of the full functionality offered by (e.g.) combinations of seq( ) and rep( ) in S and S-Plus, but includes
the features offered by %gl in GLIM.
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seq may be compared with range. See [R] range. Note that range allows direct creation of decreasing sequences, which
is not obvious from the manual. However, it cannot produce sequences of integers that restart or are blocked.

If the user specifies if or in, values of newvar are calculated only for those observations specified. If the user specifies
by, values of newvar are calculated separately for each value of byvar.

Naturally, it is the user’s responsibility to ensure that observations are in the appropriate order when seq is issued.

Examples

In the simplest case

. seq a

is just equivalent to the common idiom

. gen a = _n

The variable a may also be obtained from

. range a 1 _N

(the actual value of N may also be used).

In more complicated cases, seq with option calls is equivalent to nimble fingerwork with those versatile functions int and
mod.

. seq b, b(2)

produces integers in blocks of 2, while

. seq c, t(6)

restarts the sequence after 6 is reached.

The command

. seq d, f(10) t(12)

shows that sequences may start with integers other than 1, and

. seq e, f(3) t(1)

shows that they may decrease.

Suppose we have 12 observations in memory. The results of these commands are shown by

. list a b c d e

a b c d e

1. 1 1 1 10 3

2. 2 1 2 11 2

3. 3 2 3 12 1

4. 4 2 4 10 3

5. 5 3 5 11 2

6. 6 3 6 12 1

7. 7 4 1 10 3

8. 8 4 2 11 2

9. 9 5 3 12 1

10. 10 5 4 10 3

11. 11 6 5 11 2

12. 12 6 6 12 1

Each of these sequences could have been generated in one line with gen and use of the int and mod functions. The
variables b through e are obtainable by

. gen b = 1 + int((_n - 1)/2)

. gen c = 1 + mod(_n - 1, 6)

. gen d = 10 + mod(_n - 1, 3)

. gen e = 3 - mod(_n - 1, 3)

Nevertheless, seq may save users from puzzling out such solutions, or indeed from typing in the needed values.
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References
Jacobs, M. 1992. dm5: Creating a grouping variable for data sets. Stata Technical Bulletin 5: 3. Reprinted in Stata Technical Bulletin Reprints, vol. 1,
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dm45 Changing string variables to numeric

Nicholas J. Cox, University of Durham, UK, FAX (011) 44-91-374-2456, n.j.cox@durham.ac.uk
William Gould, Stata Corporation, wgould@stata.com

Syntax
destring [varlist] [, noconvert noencode float ]

destring changes string to numeric variables if such a change is possible:

1. It changes a string variable containing "1", "2", "3.14" to a numeric variable containing 1, 2, and 3.14, but would leave a
variable containing "1", "2", "3.14", and "fifty" unchanged because "fifty" is not a number. This is called changing
by conversion or retyping.

2. It changes a string variable containing "no" and "yes" to a numeric variable containing 1 and 2 but would leave a variable
containing "no", "yes", and "50" unchanged because "50" looks like a number. This is called changing by encoding. A
value label labeling 1 and 2 as no and yes is also created.

destring is designed to be a safer and more convenient alternative to

1. generate newvar = real(strvar)

2. encode strvar, gen(newvar)

Options

noconvert and noencode forbid destring from changing certain kinds of strings. You might specify one or the other option
but never should you specify both, because then destring would have nothing to do.

noconvert forbids conversion or retyping changes such as changing a variable containing "1", "2", and "3.14" to contain
1, 2, and 3.14.

noencode forbids encoding changes such as changing a variable containing "female" and "male" to contain 1 and 2.

Specifying either of these options does not affect how destring changes variables it does change: the options merely
prevent destring from changing certain kinds of variables.

float indicates that in converting or retyping, storing the result as float rather than double is adequate when results contain
digits to the right of the decimal point.

Remarks

The great divide among data types in Stata is between numeric data types (byte, int, float, long and double) and
string data types. Conversions between different numeric types and between different string data types are essentially a matter of
using data types large enough to hold values accurately, yet small enough to economize on storage. Quite often these changes
are carried out automatically by Stata or easily achieved using recast or compress.

Yet there are also problems needing more drastic changes of data types. This insert describes a utility, destring, for
changing string variables to numeric, whenever that can be achieved without loss of information. Suppose you have a string
variable strvar. You can always take whatever can be interpreted as numeric and put it into a numeric variable numvar by

. gen numvar = real( strvar)

but a side-effect of this is that whatever cannot be interpreted as numeric will be converted to numeric missing values. This is
also true of the conv2num utility written by Farmer (1996), except that conv2num is a shade more indulgent than the real()

function: it recognizes and handles suffixes such as those in 12.5% and in 72d, which are commonly attached to numbers by
some other programs, notably various spreadsheets.

Note incidentally that (for example)

. recast int strvar

is not allowed in Stata, even if strvar contains values that could all be interpreted as ints.
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The attitude underlying destring is rather different from that implicit in the use of real() or conv2num. It is assumed
that you want any changes to be safe, so that there is no loss of information in the change, and that no change is made otherwise.
However, we take it that whatever, when trimmed of any leading and trailing blanks, reduces either to an empty string "" or
to a single period "." can be treated as missing data.

Modes and moods

destring works in two modes and in two moods, depending on how it is invoked, so we need to explain the possibilities.
Let us enter a little dataset, also available as destring.dta.

. input n str1 (s1-s5)

n s1 s2 s3 s4 s5

1. 1 1 1 1 I a

2. 2 2 2 2 2 b

3. 3 3 3 3 3 c

4. 4 4 "" "." 4 d

5. end

n is a numeric variable. s1, s2, s3, s4, and s5 are all string variables. s1 allows the same numeric interpretation as n. s2 and
s3 may also be interpreted as numeric if the empty string value of s2 and the period of s3 in observation 4 may be interpreted
as numeric missing values. s4 contains one non-number, I in observation 1. s5 is in a sense opposite to n: none of its values
is a number. However, we can set up a mapping between the integers in n and the strings in s5, and in that sense they convey
precisely the same information.

The first mode of destring is conversion or retyping. In this mode, s1, s2 and s3 would all be converted to numeric
variables, but nothing would be done to s4 or s5.

In conversion mode, the original string variable is replaced by a numeric variable, and compressed to the most compact
numeric data type possible. In fact, it starts out in life as a variable of type double. If you are short on memory, and you are
confident that type float will be sufficient, you may use the float option.

The second mode of destring is encoding. In this mode, s5 would be replaced by a numeric variable with its original
string values as value labels, but nothing would be done to s1, s2, s3 or s4. Note that this differs from the existing encode

command (see [R] encode), in that encode creates new variables, while destring changes existing variables.

In encoding mode, the original string variable will also be replaced by a numeric variable of the most compact data type
possible.

By default, destring is allowed both to convert and to encode. It is a two-armed robot allowed to use both arms, unless
forbidden to use one arm or the other by the option noconvert or the option noencode. (If forbidden to use both, it can only
express puzzlement over why it has been invoked.)

Further, destring has two moods, one terse and one talkative. First, issuing just

. destring

without specifying a varlist puts destring in terse mood. destring assumes that you want to change whatever variables in
your dataset can be taken as numeric into numeric. Often you will know that many, if not virtually all, of your variables are
already numeric, and so require no action. destring behaves like compress (see [R] compress), and reports only on those
variables whose data types were changed. If even this terse mood is too loquacious for you, preface destring with quietly

(see [R] quietly).

Second, specifying a varlist puts destring in talkative mood. It assumes that you are interested specifically in those
variables named, and would welcome a report of any difficulty, just in case you have some misapprehension about the data.
Difficulties are of various kinds:

1. You try to convert a variable in the varlist that is not a string variable.

2. You try to convert a string variable in the varlist which contains one or more characters that can not be regarded as numeric
(for example, there remains a lurking I for 1 that escaped your scrutiny).

3. A string variable cannot be encoded properly, because it contains too many distinct string values, or it contains strings
longer than 8 characters.

4. A string variable cannot be encoded properly, because it contains one or more strings that have purely numeric meaning.
We do not want to encode a variable that in some observation has "2", and have that mapped, say, to 5. There is likely to
be some problem with the data in this case that should be fixed in some other way.
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Examples

We will use the data from destring.dta.

destring by itself allows both conversion and encoding and evokes terse mood:

. destring

s1 was str1 now converted to byte

s2 was str1 now converted to byte

s3 was str1 now converted to byte

s5 was str1 now encoded into byte

.

However, if you were to name n and/or s4 explicitly, destring would be more talkative and issue a warning:

. destring n

n not string

r(109);

. destring s4

s4 contains values that cannot be converted to numeric

s4 contains some numeric values

r(109);

The two messages in the last example arise because both conversion and encoding were unsuccessful.

In the case of s4, if I in observation 1 were an error for 1, you would need to fix it first.

. replace s4 = "1" in 1

. destring s4

s4 was str1 now converted to byte

Reasons for needing destring

There could be several reasons for needing destring. Most seem to arise from what were (in retrospect) simple mistakes
by users or those providing the data. We will mention a couple of oddities which we have encountered.

Suppose you are entering data for categorical variables into Stata’s editor. Given data for gender, you are going to code
males as 1 and females as 2, and then to label those codes with appropriate value labels. Now Stata’s editor attempts to be as
smart as possible and to divine your intentions from what you type. You need have only one lapse of absent-mindedness and
type male in the first cell of a column of the editor and it instantly thinks “Aha! This user wants this variable to be a string”,
and it promptly and silently makes that variable a string variable. This also arises if you type the letter I at first, even if you
overwrite it later and leave the editor with just 1s and 2s in that column: these are perfectly acceptable characters in a string
variable, and the editor has no reason to change its mind.

At some point you will notice that there is a problem. When you define labels, and attempt to link them to gender, Stata
will refuse, because gender is a string variable, so you will need to apply destring.

Another example arises if you record two-digit codes 01, 02, 03, : : : , 99 in a str2 variable. At some point, you will
find that you cannot label such a variable. In fact, the leading zeros are superfluous for analysis, and you would be better off
destringing the variable and working with a numeric variable, which you can label. If you really needed the codes for some
presentation purpose—say people in your field recognize these codes and would feel deprived in some way without them—just
keep a copy somewhere.

References
Farmer, R. M. 1996. dm40: Converting string variables to numeric variables. Stata Technical Bulletin 29: 8–9. Reprinted in Stata Technical Bulletin

Reprints, vol. 5, pp. 48–49.

dm46 Enhancement to the sample command

Jeroen Weesie, Utrecht University, Netherlands, weesie@weesie.fsw.ruu.nl

This insert briefly describes sample2, an extension of the standard command sample that adds the possibility to sample
clusters of observations (e.g., households, i.e., all individuals within the selected households) rather than individual observations
(e.g., individuals). Using the if restriction in combination with the new any or if options, it becomes possible to draw samples
from multi-record observations in which any or all of the record satisfy some logical condition.

sample2 is backward compatible with sample; if no cluster variable is specified, sample2 should behave the same as
sample.
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Syntax

sample2 #
�
if exp

� �
in range

� �
, by(groupvars) cluster(varname) any all keep(varname)

�

Description

sample2 draws a # percent pseudo-random sample of the data in memory, thus discarding 100�# percent of the observations.
Observations not meeting the optional if and in criteria are kept (sampled at 100%).

Sampling here is defined as drawing observations without replacement; see online help for bsample for sampling with
replacement.

If you are serious about drawing random samples, you must first set the random number seed; see online help for generate.

Options

by(groupvars) specifies a # percent sample is to be drawn within each set of values of groupvars, thus maintaining the proportion
of each group.

cluster(varname) specifies that an observation should be interpreted as a collection of records with the same value of the
cluster variable. The cluster variable should be nonmissing. If if or in clauses are defined without specifying any or all,
if/in should select all records associated with clusters. If by is combined with cluster, the groupvars should be constant
within clusters.

any specifies that the sampling frame is comprised of all clusters for which at least one record was selected via if/in.

all specifies that the sampling frame is comprised of all clusters for which all records were selected via if/in.

keep(varname) specifies the name of a variable that specifies which observations are to be kept (value 1) or dropped (value
0). If keep is not specified, all obs with keep==0 are dropped automatically.

Examples

. sample2 10 (draw 10 percent sample)

. sample2 10 if race==0 (keep all the race~=0, but sample 10 percent of race==0)

. sample2 10, by(race) (sample 10% within race)

Suppose you analyze a dataset of individuals in households. You want to subsample households rather than individuals.
Thus, in the subsample all individuals from the sampled households should be included. This can be obtained as

. sample2 20, c(hrespnr)

To sample 50% from all households in which at least one person has income higher than 100000,

. sample2 50 if inc>100000, c(hrespnr) any

If the sample frame should consist of all households in which all persons are at least 40 years of age, we would issue

. sample2 50 if age>40, c(hrespnr) all

Finally, cluster and by can be combined. To sample 50% of households while maintaining the regional distribution,

. sample2 50 if age>40, c(hrespnr) all by(region)

dm47 Verifying value label mappings

Jeroen Weesie, Utrecht University, Netherlands, weesie@weesie.fsw.ruu.nl

Value labels are attached to categorical data to improve readability of descriptive or statistical reports on data. In addition, I
find value labels useful to track unexpected values of variables—these will appear as unlabeled values in, e.g., tabulate output.
Unlabeled values may well indicate that something is wrong about the data. However, visual inspection of a large number of
tabulate tables is tiresome. The Stata command codebook produces similar output as unlabeld, but embedded in much other
summary output.
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Syntax

unlabeld

�
varlist

� �
if exp

� �
in range

� �
, any incompl

�

Options

any specifies that the names of variables without associated value labels are listed.

incompl specifies that only reports on variables with incomplete value label mappings are to be displayed.

Example

. unlabeld

Variable | Label | #val unlabeled values

---------+----------+----------------------------------------------------------

x1 | x1 | 5

x1m | x1m | 5

x2 | x2 | 5 2

x3 | x3 | 5 2 4

x4 | x4 | 5 0 1 2 3 4

According to this table, all values of the variables x1 and x1m are value labeled, while variable x2 has one unlabeled value (2)
and x3 has 2 unlabeled values (2 and 4). Note that x4 takes 5 distinct nonmissing values, while 5 values are unlabeled; this
suggests that the wrong value label was attached to variable x4. To find the variables with incomplete value labels, one can
specify the incompl option.

. unlabeld, incompl

Variable | Label | #val unlabeled values

---------+----------+----------------------------------------------------------

x2 | x2 | 5 2

x3 | x3 | 5 2 4

x4 | x4 | 5 0 1 2 3 4

unlabeld stores the number of variables with incomplete mappings in the global macro S 1. Thus, a data verification file may
contain the command

. unlabeld, incompl

. assert $S_1==0

I find it useful to include variables without value labels in the table. Variables that take a small number of distinct values “should”
often be value labeled.

. unlabeld, any

Variable | Label | #val unlabeled values

---------+----------+----------------------------------------------------------

x1 | x1 | 5

x1m | x1m | 5

x2 | x2 | 5 2

x3 | x3 | 5 2 4

x4 | x4 | 5 0 1 2 3 4

x5 | | 5

Remark

I would like to add in the table the value label values that are not actually used by any particular variable or any of the
variables using the value label. This may well indicate an error. For instance, when I recode a categorical variable to fewer
categories, I tend to forget that the value label may no longer be appropriate. (Actually, I would like Stata’s recode to be
enhanced so that value labels can be assigned in the recode statement.) Listing unused value labels may capture this common
mistake. Unfortunately, I can not think of an effective way to obtain the value labels mapping inside my program.
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gr26 Bin smoothing and summary on scatter plots

Nicholas J. Cox, University of Durham, UK, FAX (011) 44-91-374-2456, n.j.cox@durham.ac.uk

Syntax

binsm yvar xvar
�
if exp

� �
in range

� �
, width(#) bin(#) starts(string)

quantile(#) sf(string) sonly graph options
�

Options

width(#) means that xvar is to be rounded in bins of width # before calculating a summary for values that round to the same
value. The default is 1, which would mean that bins are centered on multiples of 1 plus 0.5.

bin(#) means that the range of xvar is to be divided into # bins of equal width. This overrides any setting of width.

starts(string) means that bins start at the values specified. If just one value is given, that is the first start and all bins have a
width as specified. If two or more values are given, they define the starts of all the bins and width is ignored. However,
if the lowest start is greater than the minimum value of xvar, that minimum will be used to start the lowest bin. starts
overrides any setting of bin. starts must be in increasing order, but may be separated by spaces or commas.

quantile(#) means that bins have as far as possible equal frequencies as determined by # quantiles of xvar. For example q(4)

uses the quartiles of xvar to define the bins. This overrides any setting of bin or width.

sf(string) defines the smoothing function. The default is the mean but count, iqr, max, median, min, p#, sd, and sum, and
any similar user-written function may be used.

sonly means that only summaries are to be plotted and that the data for yvar are to be suppressed. This may be useful if the
numerical range (and possibly the units) of the summaries differ markedly from that of yvar or if the dataset is very large.

graph options are options allowed with graph, twoway. The default values include xlabel ylabel c(.J) s(oi) sort gap(6)
where c(J) and s(i) are repeated for each summary; l1title describes yvar; b2title describes xvar.

Note especially that a sensible y-axis title is the responsibility of the user.

Remarks

binsm is a development of an idea long incorporated in graph, twoway, where

. graph yvar xvar , c(m) bands(#)

or

. graph yvar xvar , c(s) bands(#)

connects medians of yvar calculated for vertical bands of xvar. The medians are plotted as points. You can tune the number of
bands between 3 and 200.

The aim of binsm is to allow any reasonable summary of yvar to be plotted on a scatter or twoway plot for any reasonable
bins of xvar. The default is to make bin boundaries explicit and show summaries histogram-style.

More precisely, binsm produces a scatter plot of yvar against xvar with one or more summaries of yvar for bins of xvar.
The smoothing or summary function sf is by default just the mean, but in general may be any space-separated list of functions
acceptable to egen that have syntax of the form

. egen newvar = mean( yvar), by( binned-version-of-xvar)

count, iqr, max, median, min, p#, sd, and sum are all legitimate, as is any similar user-written function. Note that p#,
where # can be any integer from 1 to 99, is interpreted as a call to the pctile function of egen with option p(#). sf(pctile)
is equivalent to sf(median), just as in egen.

The term bin smoother appears in the monograph of Hastie and Tibshirani (1990), but the method is much older. Tukey
(1961) introduced the term regressogram to emphasize the similarity to histograms. The idea without such terminology goes
back at least as far as Pearson and Lee (1903).

The results of bin smoothing are smooth only in the weak sense that bin means or medians (say) are less variable than the
data from which they are computed. The results will typically be discontinuous at each bin boundary, and only exceptionally
could the summaries (or their first or second derivatives) be continuous across such boundaries. Hence the method is not very
attractive for smoothing if the aim is to show some gently-changing continuous curve as an estimate of the functional dependence
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of yvar upon xvar. Cubic smoothing splines, for example, possess many more desirable properties. Nevertheless, bin smoothing
is very easy to understand and to explain, especially to nonstatisticians or to beginning students, and it has some value as an
exploratory or informal tool in examining bivariate data. For its theoretical role as a nonparametric regression estimator, see
Schlee (1988) and the references there cited. Hastie and Tibshirani (1990) and Scott (1992) include examples of bin smoothing
(regressograms) in recent reviews of various smoothing techniques.

Any reasonable summary of yvar is defined technically as any single-number summary computable by an g*.ado that is
written to go with egen. In addition to the possibilities provided with Stata as distributed, programmers looking at such g*.ado

files will see that it is easy to take one as a template for programming the calculation of their own favorite summary. For anyone
mad enough to use it, a sample gmad.ado is included with this insert that calculates the median absolute deviation from the
median, named the MAD by Andrews et al. in 1972, but known already to K. F. Gauss in 1816, according to Hampel et al.
(1986). With binsm, this would be plotted by using sf(mad).

Any reasonable bins are those obtainable in one of the following ways:

1. A bin width (default 1) is specified and the bins start at multiples of that width. If width is 100, bins would start at 100,
200, 300, and so forth (or whatever such bins are needed to include the data).

2. If a single start is specified for the bins, that is used together with the width. If a start of 50 and a width of 100 were
specified, bins would start at 50, 150, 250, and so forth. This permits the user to override the default start as determined
under 1.

3. If several starts are specified for the bins, these define the bin boundaries, together with the maximum value and (if
necessary) the minimum value of xvar. This permits the user to use idiosyncratic bin intervals when so desired.

4. If a number of bins is specified, the range of xvar is divided into that number of bins. This resembles the default in graph,

histogram.

5. If the quantile option is specified, quantiles of xvar are used to define bins with, as far as possible, equal frequencies.
The pctile command is used to calculate the quantiles, which limits the number of quantiles to 20.

Examples

Here are some brief ideas on how binsm might be used:

1. The default is just to show the mean of yvar in bins. Plotting median as well as mean is a useful way of checking for
well-behaved variability in the response yvar given the predictor xvar.

2. By using min p25 median p75 max as smoothing function, users can hybridize the scatter plot and the box plot. By using
any desired percentiles (quantiles), they can customize scatter plots to show changes in conditional distribution.

3. Plotting measures of variability such as sd, iqr, and mad provides a handle on the amount of heteroscedasticity. In this
case it might be advisable to suppress the data on the scatter plot by using the sonly option.

A first example is with data on 158 glacial cirques from the English Lake District (Evans and Cox 1995), found in the
accompanying file cirques.dct. Glacial cirques are hollows excavated by glaciers that are open downstream, bounded upstream
by the crest of a steep slope, and arcuate in plan around a more gently sloping floor. (More informally, they are sometimes
described as “armchair-shaped”.) They are common in mountain areas that have or have had glaciers present.

A scatter plot of length against width reveals a wedge-shaped scatter with marked heteroscedasticity. This is confirmed by
a call to binsm with sf(sd):

(Graph on next page.)
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. binsm length width, q(6) sf(sd)
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Figure 1.

As shown in Figure 1, the heteroscedasticity is systematic, with a steady increasing trend. q(6) was used so that each
standard deviation is based on approximately the same number of values.

Logarithmic transformation seems an obvious possibility:

. gen logl = log10(length)

. gen logw = log10(width)

. label var logl "log 10 of length in m"

. label var logw "log 10 of width in m"

. binsm logl logw , q(6) sf(mean median) xlabel(2.4,2.6,2.8,3,3.2)

ylabel(2.4,2.6,2.8,3,3.2)
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Figure 2.

The second binsm graph is shown in Figure 2. The scatter is much more nearly homoscedastic, and the basic similarity of
bin means and medians reassuring. (On a color monitor, the lines can be distinguished more easily.)

A second example is with data on daily rainfall measured at Changshou, Sichuan, China, for 1957–1987. Rainfall was
recorded on 4439 out of 11322 days. Particular interest attaches to any trends towards higher daily rainfalls, which are most
problematic for erosion or flooding.

(Graph on next page.)
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. binsm r y if r , xlabel(1957,1962,1967,1972,1977,1982,1987) ylabel(3,10,30,100)

sf(median p75 p90 max) r2(median p75 p90 max) ylog sonly
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The resulting graph, shown in Figure 3, suggests approximate stability over time, although four high rainfalls can be
identified in the second half of the period.

Warning

As it stands, binsm has one notable limitation. It uses c(J) as the basic plotting style. This means that any empty bins
will be shown with values pertaining to the last bin occupied with lower values of xvar. This probably will not cause great
difficulties so long as the data that give rise to the plot are kept in mind. However, users trying some other kind of connect()
are warned that binsm creates pseudo-observations with values equal to the bin boundaries, so that each bin can be demarcated
graphically.
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ip17 While loops from the command line

John R. Gleason, Syracuse University, 73241.717@compuserve.com

It is often necessary to perform a series of calculations repeatedly, perhaps capturing results along the way; simple simulations
and the iterative solution of equations are familiar examples. Stata’s while loop provides exactly this capability, but it is not
directly available from the command line. So, to build even a very simple loop, a novice must learn the rudiments of Stata
programming, including macro manipulation, and probably also the details of creating and storing text files where Stata can find
them. This insert offers two commands, loop and loopdef, that permit while loops to be built and used interactively, from
the command line.
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loop builds a while loop, then fetches and executes commands until some condition (the guard) is satisfied. The user
need only specify the guard and the commands that form the body of the loop. The command sequence (or, loop body) can
be included in a loop option or created beforehand, perhaps with the accessory program loopdef. In the latter case, the loop
body can be built either by typing on the command line or by recalling previously issued commands. (In windowed versions of
Stata, clicking in the Review window does the trick.) In this way, worthwhile computations can be designed and run by users
with little or no knowledge of Stata programming, and without using a text editor. In fact, loop and loopdef were designed
to enable undergraduates using StataQuest to explore the bootstrap and other simulation-based methods. (Each of the examples
below runs nicely in StataQuest.)

We begin with a simple example and defer, briefly, presentation of the formal syntax of loop and loopdef.

Example 1

Think of the dataset readpoor.dta (included with this insert) as a simple population:

. use readpoor, replace

(Poverty and 3rd Grade Reading)

. describe

Contains data from readpoor.dta

obs: 124 Poverty and 3rd Grade Reading

vars: 4 22 Feb 1997 13:22

size: 1,364 (99.8% of memory free) * _dta has notes

-------------------------------------------------------------------------------

1. school byte %8.0g Elementary school

2. district byte %8.0g School district

3. reading byte %9.0g * % reading mastery, 3rd grade

4. eligible float %9.0g * % students free lunch eligible

* indicated variables have notes

-------------------------------------------------------------------------------

Sorted by: school

Imagine that you wanted to demonstrate the process of sampling without replacement and calculating the mean of the variable
eligible for samples of size n = 10. Rather than using Stata’s sample command, you might type

. gen U = .

. replace U = uniform()

. sort U

. summ eligible in 1/10

(responses from Stata suppressed)

and repeat the last three commands a few times. If you were accustomed to programming in Stata, you might even write a
simple program to repeat those three commands, something resembling

program define x

local i = 0

while `i' < `1' {

local i = `i' + 1

replace U = uniform()

sort U

summ eligible in 1/10

}

end

so that typing x 10 repeats the replace/sort/summarize command sequence 10 times.

loop provides a reusable form of the program x, one that permits the loop body replace/sort/summarize to be replaced
with other sequences, transparently—e.g., no .ado file is ever created or modified. In fact, a one-liner is possible:

. loop, cmd(replace U = uniform\[\]; sort U; summ eligible in 1/10) iter(10) noi

(124 real changes made)

Variable | Obs Mean Std. Dev. Min Max

---------+-----------------------------------------------------

eligible | 10 30.47 25.63626 3.4 83.2

(124 real changes made)

(output omitted)
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In this usage, the loop body is supplied as the argument of an option, cmd(), with individual commands separated by the
character “;” (rather as though the directive “#delimit ;” were in effect). The option iter(10) requests 10 iterations of the
loop, and noi specifies that the loop is to be run noisily, so that output of commands within the loop body is visible.

Note the treatment of the parentheses for the uniform() function. Stata’s parser will not permit the characters “(” and
“)” within the enclosing parentheses of the option cmd(). Thus, any parentheses in the commands of the loop body are entered
using escape sequences, “\[” in place of “(” and “\]” in place of “)”. After translating such escape sequences, loop saves
the commands given in the cmd() option in the global macro LOOP CMD—which is also its default source for the loop body.
So, loop, iter(5) requests another 5 iterations of the commands currently stored in LOOP CMD. Similarly, the option review

causes loop to display a command sequence but without executing the commands. Hence,

. loop, rev

-> Iteration 1:

>. replace U = uniform()

>. sort U

>. summ eligible in 1/10

shows the commands that would be executed five times by loop, iter(5).

Entering parentheses as “\[” and “\]” may strike some as unwieldy, and a loop body can be built directly by typing

global LOOP CMD "command1; command2; : : : "

This avoids the difficulty with parentheses, but loopdef provides a more flexible approach. loopdef creates, replaces, or
appends to an existing loop body by prompting for and accepting command line input. For our example, the process resembles

. loopdef

Replacing LOOP_CMD

Enter: command <Return> command <Return> ... command <Return><Return>

>. replace U = uniform()

>. sort U

>. summ eligible in 1/10

>.

In response to each prompt (>.), the user types a command, or a null line to exit. Alternatively, the user can insert recently
issued commands by using PrevLine (PgUp in Windows) or, in windowed versions of Stata, by clicking in the Review window.

Syntax of loopdef

The syntax of loopdef is

loopdef

�
, append macro(macname)

�

loopdef accepts a series of Stata commands from the command line and stores them, separated by the character “;”, in a global
macro.

Options for loopdef

append requests that commands be appended to the current contents of the selected macro.

If the option macro(macname) is present, the commands are stored in the macro macname; otherwise, the default macro
LOOP CMD is used. By default, loopdef creates the selected global macro, or replaces its contents if it already exists.

Syntax of loop

The syntax of loop is

loop

�
, cmd(cmdseq) iter(#) more noisily review step verbose while(wguard)

�

Options for loop

The option cmd(cmdseq) determines the source of the commands to be executed by loop. If cmd(cmdseq) is absent, loop
tries to read commands from the global macro LOOP CMD. If cmd(cmdseq) is present, cmdseq is either a sequence of Stata
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commands separated by “;”, or the name of a global macro containing such a command sequence, preceded by the keyword
“MACRO”. (Note the capitalization.) In the former case, the character “(” must be entered as “\[” and the character “)”
as “\]”; after those pairs are translated to the appropriate parenthesis characters, the command sequence is saved in the
global macro LOOP CMD.

iter(#) controls the maximum number of iterations performed by loop; the default # is 1.

more causes loop to insert a more command after executing each command in the loop body, so that any displayed results can
be examined.

noisily controls loop’s overall noisiness. If present, the loop is defined as “noisily while some condition {: : :”: Unless
overridden, loop body commands display their output in the Results window. If the option noisily is absent, the loop is
defined as “quietly while some condition {: : :”.

review invokes the verbose option and then steps through the loop body until the iteration limit is reached, displaying but
never executing commands.

step inserts a single more at the end of the loop body, so that execution pauses after each iteration is complete.

verbose performs a service similar to noisily for the commands that make up the loop body. By default, only command
output is displayed; verbose causes each command to be echoed to the Results window before it is executed, and also
displays an iteration counter.

while(wguard) allows entry to the loop as long as the condition wguard remains true and, when the iter(#) option is present,
if the iteration limit has not expired. That is, if both the iter(#) and while(wguard) options are given, the loop is defined
as while (iterations < #) & (wguard is true) {: : :

Only the relevant logical condition is present if only one of iter() or while() is given; exactly one iteration occurs if neither
of the iter() and while() options is present.

Example 2

There is another feature of the loop command, one that requires a demonstration. loop makes it possible to construct
worthwhile simulations from the command line; we illustrate this point with the command resample (article ip18 in this issue).
Briefly, resample draws a random sample with replacement of a varlist from the current data, adding the resampled variables
to the current data. Placing resample inside a loop body generates a stream of bootstrap samples.

To illustrate, suppose we wish to simulate the bootstrap distribution of the correlation r between reading and eligible

in readpoor.dta, using B = 200 random resamples of the n = 124 data points. First, we need to make room for B = 200
values of r, create a variable to hold the simulated r’s, and set the seed for uniform():

. use readpoor, replace

(Poverty and 3rd Grade Reading)

. set obs 200

obs was 124, now 200

. gen r_boot = .

(200 missing values generated)

. set seed 970211

A bootstrap distribution, and bootstrap standard error for r are then but one and two commands away, respectively:

. loop, cmd(resample reading eligible in 1/124; corr reading_ eligibl_ in 1/124;

replace r_boot=_result\[4\] in I_) i(200)

. summ r_boot

Variable | Obs Mean Std. Dev. Min Max

---------+-----------------------------------------------------

r_boot | 200 -.7530506 .0345884 -.8444534 -.6398583

In this example, the variables reading and eligibl are a bivariate random resample of the variables reading and
eligible, created by the command resample; see article ip18 in this issue for details. Following the correlate command,
result(4) holds the value of r and the trick is to deposit that value, on iteration i, in the ith observation of the variable r boot.
loop’s iteration counter is the global macro I , so in a program one would write replace r boot= result(4) in $I , but
saving that command in another macro would cause premature evaluation of the macro I . loop avoids this by accepting instead
the range “in I ”, which it translates into “in $I ” at the last moment. Note that this trick works only for the phrase “in I ”,
and only at the end of a command. See Remarks (below) for comments on more general usage of loop’s iteration counter.
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Example 3

readpoor.dta contains data from 124 elementary schools contained within 46 geographically-defined districts. The dataset
sch dist.dta holds the distribution of the number of schools per district:

. use sch_dist, replace

(124 schools within 46 districts)

. list

schools freq

1. 1 26

2. 2 7

3. 3 3

4. 4 2

5. 5 3

6. 6 3

7. 11 1

8. 23 1

. summ schools [fw=freq]

Variable | Obs Mean Std. Dev. Min Max

---------+-----------------------------------------------------

schools | 46 2.695652 3.687032 1 23

Thus, 26 districts consist of a single school, 7 districts have 2 schools, etc. The mean number of schools per district is �x = 2.696,
and the proportion of single-school districts is p̂1 = 26=46.

Suppose we wish to fit a logarithmic series distribution to this dataset, i.e., a model in which the probability of exactly k

schools per district is

pk = �
�1
�
k
=k; k = 1; 2; : : : ; 0 < � < 1; � = � log(1� �)

The maximum-likelihood estimator (MLE) �̂ of � satisfies �̂ = log(1 + �x�̂), and an easy initial estimate of � is
�̂1 = � log(p̂1=�x). The MLE can be found by repeatedly setting �̂0 = �̂1, and �̂1 = log(1+ �x�̂0), after which �̂ = 1� exp(��̂1)
is the MLE of �. Plainly, we need to issue two commands not a fixed number of times, but until the two scalars are nearly equal.
The while() option provides just that ability.

In our example, following the summarize command above, we can find the MLE �̂ to within 0.0001 by

. scalar XB = _result(3)

. scalar T0 = .

. scalar T1 = -log((26/46)/_result(3))

. global LOOP_CMD "scalar T0 = scalar(T1); scalar T1 = log(1 + scalar(XB)*scalar(T0))"

. loop, while(abs\[scalar\[T0\] - scalar\[T1\]\] >= 0.0001)

At exit, the global macro LOOP 0 holds the number of iterations performed, so

. di "LOOP_0", scalar(T1), 1 - exp(-scalar(T1))

11 1.7376413 .82406512

shows the number of iterations, and the MLEs �̂ = 1.738 and �̂ = 0.824. The listing below displays the observed frequencies
(dist) and the expected frequencies (exp dist) from the logarithmic series distribution with �̂ = 0.824:

schools dist exp_dist

1 26 21.82

2 7 8.99

3 3 4.94

4 2 3.05

5 3 2.01

6+ 3 5.19

Note that (a) as with cmd(), all parentheses in the argument of while() must be entered as escape sequences, and (b)
since the while() condition is evaluated at the top of the loop, both the scalars T0 and T1 must be defined in advance.
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Remarks

1. When the loop body is extracted from the cmd() option of loop, built with loopdef, or created directly as in Example
3, the result is saved in a global macro. The command sequence is then limited by the properties of Stata’s macros; see
[R] limits for length restrictions. Also, no command thus entered can contain “"”, “{”, or “{”, because these characters
cannot be embedded in a macro. This precludes the use of certain display commands, and of if–else constructs.

2. The limitations mentioned in (1) can be circumvented by placing commands in a do-file. Any number of the commands in
the loop body can be of the form do dofilename; the commands in dofilename are executed directly, and do not suffer the
effects of Stata’s macros. This does, however, require a bit more sophistication from the user. In addition, the commands in
the do-file are treated as a block so that some of loop’s options are applicable only to the do command itself. For example,
review will display only “>. do dofilename”, not the individual commands in dofilename.

3. Regardless of the source of the loop body, loop’s iteration counter is the global macro I . Translation of the phrase in I

into in $I , described in Example 2, occurs only for individual loop body commands, not for commands in a do-file. But
do-file commands do not suffer from premature evaluation of macros, and so any do-file command can refer to the value
of the iteration counter as $I wherever it is legal to do so in a Stata command. For example, if $I == 8 tests whether
the current iteration is the eighth—a phrase that cannot be used in any command that is saved in a macro.

4. Nested loops are possible, provided the macros containing the loop bodies do not conflict; so, there can be at most one
instance of the global macro LOOP CMD in any nest of loops. The iteration counter is always I , regardless of the depth of
nesting—loop handles the details of managing multiple instances of I . At exit, each instance of loop saves the number
of iterations performed in global macro LOOP 0. If an error or Break causes a premature exit from any level, global macros
LOOP 0 and LOOP D may be left behind; this is harmless.

5. Individual commands can be prefixed with noisily or quietly, and followed with the command more. This provides
finer control over the display of output and over pauses than do the options noisily, more, and step; however, these
options can be imposed or removed without editing the loop body.
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ip18 A command for randomly resampling a dataset

John R. Gleason, Syracuse University, 73241.717@compuserve.com

Stata offers a generous selection of commands to aid in resampling-based inference. Some examples are bs, bsample,
bstat, bstrap, and simul, a collection that provides great power and flexibility for designing simulations, but at some cost.
First, to make good use of these commands requires some knowledge of Stata programming. That, combined with an unfamiliar
design (bs is different) is enough to intimidate novice users. Second, these commands overwrite the current data with a simulated
dataset, which is not desirable in some problems. Third, the commands in this collection are not presently available in StataQuest,
which prevents their use in some teaching situations.

This insert presents resample, another command for generating random samples with replacement—a less formidable
sampling command in two useful senses: It requires no knowledge of Stata programming, and it uses only very basic features
of Stata. In fact, resample and its companion program loop (Gleason 1997) were designed for use by undergraduates using
StataQuest. (Each of the examples below runs nicely in StataQuest; see the file sqdemo.do that accompanies this insert.)
Together, loop and resample help to bring resampling methods within the computing skills of novice Stata users.

Syntax

resample varlist
�
if exp

� �
in range

� �
, names(namelist)

�

Description

resample draws a random sample with replacement from each of the varlist variables, sampling in casewise fashion
observations where the if and in clauses are true. Thus, if there are p varlist variables, resample produces a p variate random
resample, not p unrelated univariate resamples.
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Options

names(namelist) provides a list of names for the variables created by resampling varlist; names not so provided are fabricated
by resample (see Remark 2, below).

Remarks

Stata’s bsample command also draws random resamples with replacement, but resample is different in several ways.
bsample samples from all variables and all observations in memory, and the resample replaces the current data. resample
samples from selected variables, and inserts the resample in the current data as a set of new variables named (by default) to
resemble their parent variables. resample permits if exp and in range qualifiers so that, unlike bsample, it can sample from
subsets of observations. The resample is stored in the observations selected by the if and in clauses; observations not selected
receive missing values in the resample.

resample aims at simplicity and ease of use. The current data need not be sorted in any particular way, and the current
sort order is restored when resample exits. The naming and labeling of variables in the resample is automatic, as is the
replacement of an old resample by a new one each time resample is invoked. In effect, typing resample varlist leaves the
data unchanged, except that a random resample has just been added to the current data (or has just replaced an earlier resample).
The entire process resembles commands that are familiar to novice users, such as generate x = y+z or replace a = c/d. But,
the user need not think about whether to use generate or replace, about how to name the variables for the resample, and
other similar matters.

Example 1

Consider the familiar law school dataset that appears in Efron and Tibshirani (1993), and many other places:

. use law_sch, replace

(15 Law Schools in 1973)

. describe

Contains data from law_sch.dta

obs: 15 15 Law Schools in 1973

vars: 2 12 Feb 1997 21:00

size: 150 (99.9% of memory free) * _dta has notes

-------------------------------------------------------------------------------

1. lsat int %8.0g Average LSAT score

2. gpa float %9.0g Average undergrad GPA

-------------------------------------------------------------------------------

Sorted by:

The correlation between lsat and gpa is r = 0.776:

. corr lsat gpa

(obs=15)

| lsat gpa

--------+------------------

lsat| 1.0000

gpa| 0.7764 1.0000

Imagine that we wish to simulate (yet again!) the bootstrap distribution of this well-studied correlation. This is, of course, a
matter of resampling the variables lsat and gpa and applying the correlate command to the resample, some largish number
of times. The first of these steps is just

. resample lsat gpa

which, without further ado, adds two new variables to the data in memory:

. describe

Contains data from law_sch.dta

obs: 15 15 Law Schools in 1973

vars: 4 12 Feb 1997 21:00

size: 240 (99.9% of memory free) * _dta has notes

-------------------------------------------------------------------------------

1. lsat int %8.0g Average LSAT score

2. gpa float %9.0g Average undergrad GPA

3. lsat_ int %8.0g Random resample of lsat

4. gpa_ float %9.0g Random resample of gpa

-------------------------------------------------------------------------------

Sorted by:

Note: data has changed since last save
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The variables lsat and gpa are, as their labels assert, a random sample with replacement from the parent variables lsat

and gpa. Correlating the resampled variables is as simple as using Prevline (PgUp in Windows) a time or two, and appending
underscores in the earlier command corr lsat gpa. (After which, result(4) holds the value of r.) The next replication is
just resample lsat gpa, which places a new resample in lsat and gpa , and corr lsat gpa —a few more uses of Prevline.

To perform a real bootstrap simulation, the resample/correlate sequence must be performed many times. For that, we
need a faster version of repeatedly using Prevline; the command loop (Gleason 1997) provides just that. Briefly, loop makes
it possible to build and run simple while loops—otherwise available only in programs—from the command line. To illustrate,
here is a complete bootstrap simulation of r for the law school data, with B = 600 replications:

. set seed 970211

. set obs 600

obs was 15, now 600

. gen r_boot = .

(600 missing values generated)

. loop, c(resample lsat gpa in 1/15; corr lsat_ gpa_ in 1/15;

replace r_boot = _result\[4\] in I_) i(600)

The first three commands select a seed for uniform(), make room for, and create a variable in which to store 600 bootstrapped
values of r. The loop command repeats the resample/corr commands 600 times, saving r from the ith resample in the ith
observation of r boot; see Gleason (1997) for additional details. The standard deviation of the 600 values in r boot is the
bootstrap estimate of the standard error of r, about 0.137 for these 600 replications:

. summ r_boot

Variable | Obs Mean Std. Dev. Min Max

---------+-----------------------------------------------------

r_boot | 600 .7683948 .137143 .1929524 .9924148

Replacing the command resample lsat gpa in 1/15 with the two commands resample lsat in 1/15 and resample gpa

in 1/15 creates resamples of lsat and gpa that are independent of each other. This would permit a bootstrap test of the
hypothesis that � = 0; Example 2 provides a more interesting example of such a test.

Example 2

Consider now a bootstrap test of a hypothesis that cannot be tested by traditional methods. First, the data:

. use mammal42, replace

(Sleep Correlates in 42 Mammals)

. describe

Contains data from mammal42.dta

obs: 42 Sleep Correlates in 42 Mammals

vars: 11 3 Mar 1997 17:25

size: 2,520 (99.4% of memory free) * _dta has notes

-------------------------------------------------------------------------------

1. species str25 %25s Mammal species

2. swav_sl float %9.0g Slow wave sleep (hrs/day)

3. pdox_sl float %9.0g Paradoxical sleep (hrs/day)

4. totsleep float %9.0g Total sleep (hrs/day)

5. lifespan float %9.0g Maximum life span (yrs)

6. is_prey byte %8.0g gradelbl Likely to be preyed upon?

7. expos_sl byte %8.0g gradelbl Exposed during sleep?

8. indanger byte %8.0g gradelbl In danger from other animals?

9. lbod float %9.0g log(Body Weight, in kg)

10. lbr float %9.0g log(Brain Weight, in g)

11. lgest float %9.0g log(Gestation Time, in days)

-------------------------------------------------------------------------------

Sorted by: species

The observations are 42 species of mammals, a subset of the data originally published by Allison and Cicchetti (1976) as part
of a study of correlates of sleep in mammals. (The larger dataset is also included with this insert as mammals.dta.) Suppose
that we take pdox sl as our response variable (y), and that we wish to select a linear regression model using forward stepwise
regression, choosing among k = 8 candidate carriers (X):

. sw reg pdox_sl lbod lbr lgest swav life is_p expo ind, forward pr(.4) pe(.2)

(output omitted)



20 Stata Technical Bulletin [STB-37]

Source | SS df MS Number of obs = 42

---------+------------------------------ F( 6, 35) = 12.96

Model | 54.5372384 6 9.08953973 Prob > F = 0.0000

Residual | 24.5427598 35 .701221708 R-squared = 0.6896

---------+------------------------------ Adj R-squared = 0.6364

Total | 79.0799982 41 1.92878044 Root MSE = .83739

------------------------------------------------------------------------------

pdox_sl | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

lgest | -.4995744 .2121019 -2.355 0.024 -.9301641 -.0689848

indanger | -1.127007 .3452461 -3.264 0.002 -1.827894 -.4261201

lbod | .5592599 .1487169 3.761 0.001 .2573486 .8611712

is_prey | .6291256 .30274 2.078 0.045 .0145307 1.24372

lbr | -.4629427 .1973462 -2.346 0.025 -.8635768 -.0623086

swav_sl | .0785652 .0519718 1.512 0.140 -.0269432 .1840737

_cons | 5.412631 1.079146 5.016 0.000 3.221848 7.603413

------------------------------------------------------------------------------

The selected model has k0 = 6 of the k = 8 candidate X’s, with R
2 = 0.69 and “adjusted R-squared” R

2� = 0.64.

We may view the fit of this model with suspicion: might not stepwise selection “find” equally good models when y is
unrelated to all k X’s? After all, we have n = 42 and k = 8, and it is known that E(R2) = k=(n � 1) = 0.195 in the null
case where E(y) = �0, a constant; R2� adjusts R

2 so that E(R2�) = 0 in the same null case. But these results are for a
single, fixed k-carrier model, and under the usual normal theory assumptions. What values of R2 and R

2� would be likely
given stepwise selection applied to real data where y is quite unrelated to the k X’s?

A bootstrap test can answer such questions; the approach here follows Efron and Tibshirani (1993, Chapter 16). Suppose
we randomly sample the response variable pdox sl, and use the resample pdox sl rather than its parent in the regression,
leaving the values of the carriers (X) unperturbed. Let T0 be the value of some statistic (say R

2 or R2�) from the stepwise
regression of the parent variable pdox sl on the 8 X’s, and Ti be the same statistic when the ith resample pdox sl serves
as y; i = 1; 2; : : : . Calculating Ti from each of B resamples creates a bootstrap sampling distribution for T under the null
hypothesis that the distribution of y is not a function of the X’s. The bootstrap p value for testing that hypothesis is just
p̂B = #(Ti � T0)=B. (Note: this is the familiar conditional model for inference in regression, where the X’s are held fixed
and the response y is sampled at those fixed values.)

Implementing this test is a matter of a few preliminaries and then, repeatedly: a call to resample and one to the stepwise
regression command, followed by saving the value of T ; loop manages the details of repeating those steps B times. We illustrate
the test with B = 100 replications, and two versions of T . First, the preliminaries (with responses from Stata suppressed):

. global LOOP_CMD "resample pdox_sl in 1/42;

sw reg pdox_sl_ lbod lbr lgest swav life is_p expo ind in 1/42, forward pr(.4) pe(.2);

replace r2 = _result(8) in I_;

reg pdox_sl_ lbod lbr lgest swav life is_p expo ind in 1/42;

replace R2 = _result(8) in I_"

. gen r2 = .

. gen R2 = .

. set seed 970222

. set obs 100

By default, loop repeats commands stored in the global macro LOOP CMD. In practice, LOOP CMD would likely be created with
the command loopdef, not assigned directly as in the display above; see Gleason (1997). The commands in LOOP CMD generate
a random resample of pdox sl, use that resample as y in a stepwise regression on the 8 carriers, and save T = R

2� in the ith
observation on variable r2. Then, the same resample serves as y in an ordinary regression on the same carriers, and T = R

2�

from that regression is saved in the ith observation on variable R2.

Simulating the effects of stepwise selection is then just loop, i(100), after which

. summ r2

Variable | Obs Mean Std. Dev. Min Max

---------+-----------------------------------------------------

r2 | 100 .0690929 .085126 0 .3901406

reveals that the largest simulated value of R2� is well below the observed value R2� = 0.64. So the model picked by stepwise
selection fits better than we would expect under the null hypothesis that pdox sl is unrelated to the 8 carriers (p̂B = 0=100).
And R

2� does display the expected upward bias from stepwise selection, having mean near 0.07, but a closer examination
reveals more interesting effects. For example,



Stata Technical Bulletin 21

. count if r2 == 0

34

shows that stepwise selection has about a 1/3 chance of choosing the correct model, i.e., of choosing k
0 = 0 of the 8 X’s so

that R2� = 0. But in the remaining 2/3 of the cases, R2� is typically larger than it would have been with all k = 8 X’s in the
model; recall that variable R2 has exactly that latter value of R2�:

. reg r2 R2 if r2

(output omitted)
------------------------------------------------------------------------------

r2 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

R2 | .6899984 .0540483 12.766 0.000 .5820245 .7979722

_cons | .0811955 .0059041 13.752 0.000 .0694008 .0929902

------------------------------------------------------------------------------

Roughly, when stepwise selection fails to eliminate all of the X’s, it produces R2� � 0.08+ 0.7t, where t is the value of R2�

from the model with all 8 of the X’s included. Figures 1 and 2 show histograms of the bootstrap distributions contained in
variables r2 and R2; the vertical line in each plot is at the observed R

2� = 0.64.
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Remarks

1. resample imposes some discipline, in the name of simplicity. First, there must be enough memory to store a copy of
each varlist variable. Also, the resample size is always the same as the number of observations selected by the if and in

clauses. Typically that’s as you would want it, but there’s no alternative.

2. Then, there is the matter of resampled variable names. Here is the rule that resample follows: (a) Name the resample of
the ith varlist variable with the ith word of namelist, if present; (b) Else, append an underscore to the ith varlist name or,
if ith name has eight characters, change the eighth character to an underscore. (c) If the result at step (b) is the same as
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the ith varlist name, change the resampled variable name to upper case; if the result is still the ith varlist name, change
the resampled variable name to lowercase.

3. Once it has a name, resample overwrites any existing variable so named with a resampled variable, and with no warning.
Certainly, it is possible to name variables so that steps (b) and (c) in Remark 2 will lead resample to mistakenly overwrite
variables that are not previous resamples of its own creation. However, some unusual habits in variable naming are required
to create this situation; the names option exists to avoid this problem, when necessary. Beyond this, the names option need
never be used.

4. Note that the default naming precludes use of abbreviated variable names, and that use of resample all to resample all
current variables is unwise. In the latter case, use instead resample A - Z where A and Z are the first and last varlist
variables in the current ordering.

5. Missing values in the varlist variables are resampled, exactly as though they were not missing. But care should be taken
to avoid resampling “artificial” missing values. As in Examples 1 and 2, it may be necessary to store results from B > N

replications, where N is the number of observations in the data. set obs B creates the necessary space, but it is then
important to avoid resampling and using the missing values in the observations thus created. The resample command (and
others) should then include a phrase resembling in 1/N.

6. The data need not be sorted in any special way, e.g., the n observations selected by the if and in clauses can be scattered
throughout the current data. However, resample will be faster if the data are sorted so that, as in Examples 1 and 2, the
selected observations are the first n observations in the dataset.

7. resample can be either slower or faster than bsample; its main virtue is that it permits resampling of selected observations
and/or variables without otherwise altering the current data.
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smv7 Inference on principal components

Jeroen Weesie, Utrecht University, Netherlands, email: weesie@weesie.fsw.ruu.nl

The Stata command factor computes a principal components analysis (or, in linear algebra terms, a spectral decomposition)
of a covariance or correlation matrix. Like all statistical software that I am familiar with, Stata does not compute standard errors
of the principal components, or the percentage of variance explained. The required statistical theory has been available for quite
a while now. Anderson (1963) and James (1964) considered the eigenvectors (“principal components”) and eigenvalues of a
Wishart distribution, i.e., the distribution of the sample covariance matrix S from multivariate normally distributed N(�;�)
observations. They showed that sample eigenvectors/values are consistent and are asymptotically normally distributed with an
asymptotic variance matrix that can be expressed in terms of the eigenvalues and eigenvectors of �, and hence can be consistently
estimated in terms of the spectral decomposition of S (actually, we have to impose the condition that all eigenvalues are distinct;
otherwise eigenvalues are not continuous functions of a matrix, and so sample eigenvectors are inconsistent estimates of the
“true” eigenvector.) Moreover, the eigenvectors and eigenvalues are asymptotically independent. Various authors have shown,
however, that these asymptotic results are not very robust for violations of the normality assumption. Tyler (1981) generalizes
James’s results to general elliptic distributions.

Note that Stata does not compute the “correct” asymptotic standard errors for other multivariate models as well. For instance,
while Anderson (1963) discusses asymptotic unconditional standard errors for canonical correlations and canonical loadings, Stata
computes standard errors that are conditional on the “other” loadings without indication why the standard results were not used.

I would welcome enhancements of Stata in this direction. To stimulate this development, I submit a new command pca that
computes the asymptotic VCE of the k largest eigenvalues and the associated eigenvectors for multivariate normally distributed
observations. While the implementation allows standardization (i.e., computation of results on the correlation matrix, rather than
the covariance matrix), standard errors are not adapted. Due to sensitivity to normality, the asymptotic results should be interpret
cautiously. In a future version, I plan to implement Tyler’s results for multivariate elliptic distributions.
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Syntax

pca varlist
�
if exp

� �
in range

� �
weight

� �
, factor(#) std level(#)

�

Options

factor(#) specifies the number of factors (components) to be extracted.

std specifies that the pca analysis should be performed on the correlation matrix rather than on the covariance matrix. The
reported standard errors are not fully asymptotically correct for correlation matrices.

level(#) specifies the confidence level, in percent, for confidence intervals. The default is level(95) or as set by set level.

To illustrate pca, we use the standard automobile data distributed with Stata. The command

. pca price-gratio, factor(2) std

requests the 2-factor solution for the standardized variables and gives as output

. pca price-gratio, factor(2) std

#factors EigenValue %Explained Std. Err

--------------------------------------------------

1 6.3125 0.6312 0.0434

2 1.0763 0.7389 0.0325

3 1.0140 0.8403 0.0204

4 0.4303 0.8833 0.0155

5 0.3959 0.9229 0.0107

6 0.2792 0.9508 0.0073

7 0.2563 0.9764 0.0036

8 0.1257 0.9890 0.0019

9 0.0815 0.9972 0.0006

10 0.0284 1.0000 0.0000

Principal components of correlation matrix Number of obs = 69

(Std. errors based on multivariate normality) Number of factors = 2

Rho (%var expl.) = 0.7389

Std Err Rho = 0.0325

------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

fac1 |

price | .2073618 .0479062 4.328 0.000 .1134674 .3012562

mpg | -.3394075 .0265159 -12.800 0.000 -.3913778 -.2874373

rep78 | -.1829803 .0502463 -3.642 0.000 -.2814611 -.0844994

hdroom | .2303667 .0455058 5.062 0.000 .141177 .3195564

trunk | .3003215 .0357232 8.407 0.000 .2303054 .3703377

weight | .3847707 .0129657 29.676 0.000 .3593584 .410183

length | .377097 .0159992 23.570 0.000 .3457392 .4084548

turn | .3542234 .0234499 15.106 0.000 .3082626 .4001843

displ | .3742455 .0172583 21.685 0.000 .3404199 .4080712

gratio | -.3305683 .0287349 -11.504 0.000 -.3868876 -.274249

---------+--------------------------------------------------------------------

fac2 |

price | .38764 1.303601 0.297 0.766 -2.16737 2.94265

mpg | .0520395 .2204905 0.236 0.813 -.380114 .4841931

rep78 | .7638665 .2149283 3.554 0.000 .3426147 1.185118

hdroom | .3048525 1.28677 0.237 0.813 -2.217171 2.826876

trunk | .3401359 .7019222 0.485 0.628 -1.035606 1.715878

weight | .0094606 .2239531 0.042 0.966 -.4294795 .4484007

length | .0432423 .0757097 0.571 0.568 -.105146 .1916306

turn | -.1831128 .0992953 -1.844 0.065 -.377728 .0115025

displ | -.0120712 .2630603 -0.046 0.963 -.5276599 .5035175

gratio | .1388243 .2278293 0.609 0.542 -.307713 .5853615

------------------------------------------------------------------------------

pca interfaces fully to the internal Stata code for estimation. Thus, one can use test to test hypotheses, predict to obtain
factor scores etc.

References
Anderson, T. W. 1963. Asymptotic theory for principal components analysis. Annals of Mathematical Statistics 34: 468–488.

James, A. T. 1964. Distributions of matrix variates and latent roots derived from normal samples. Annals of Mathematical Statistics 35: 475–501.

Tyler, D. T. 1981. Asymptotic inference for eigenvectors. Annals of Statistics 9: 725–736.



24 Stata Technical Bulletin [STB-37]

ssa9 Cox proportional hazards model with the exact calculation for ties

William Gould, Stata Corporation, wgould@stata.com

The new command provided here—stcoxe—estimates Cox proportional hazards (CPH) models just as does Stata’s stcox

command. It differs from stcox in that it uses the exact calculation for failures occurring at the same time; stcox, on the other
hand, uses the Peto–Breslow approximation (Peto 1972, Breslow 1974).

That is, each term in the CPH likelihood corresponds to a failure time. Consider a time at which there is one failure. The
conditional probability of the particular unit i being the one to fail in the group at risk is

P(i fails j 1 fails from Ri) =
exp(xib)P

j2Ri
exp(xjb)

where Ri is the set of those at risk of failure at the time of the ith failure (which, of course, includes i itself). If each of the
failure times in the data had just one failure associated with them, then the overall log-likelihood function would simply beP

i lnP(i fails j 1 fails from Ri).

Assume instead that at some failure time there are two failures, i1 and i2. These are called tied failures or simply ties. The
exact probability that i1 and i2 fail is

P(i1 and i2 fail j 2 fail from Ri) =
exp(xi1b) exp(xi2b)P

j;k2Ri;j<k
exp(xjb) exp(xkb)

That is what stcoxe calculates.

stcox uses the Peto–Breslow approximation. This starts by sequencing the two failure events,

P(i1 and i2 fail j 2 fail from Ri) =P(i1 and then i2 fail j 2 fail from Ri) + P(i2 and then i1 fail j 2 fail from Ri)

=P(i1 fails j 1 fails from Ri)P(i2 fails j 1 fails from Ri � i1)

+ P(i2 fails j 1 fails from Ri)P(i1 fails j 1 fails from Ri � i2)

In the above, Ri is the set of units at risk at the time of failure under consideration which includes i1 and i2 along with all the
other units failing or censored at later times. Ri � i1 refers to the risk pool with i1 removed. Ri � i2 refers to the risk pool
with i2 removed. Calculating each of the four probabilities is a straight forward application of the one-failure formula above.
Similarly, if at some failure time there were three failures, we would consider all possible permutations of the ordering of the
individual failures i1, i2, and i3.

The Peto–Breslow approximation then approximates the above by

P(i1 and i2 fail j 2 fail from Ri) =P(i1 and then i2 fail j 2 fail from Ri) + P(i2 and then i1 fail j 2 fail from Ri)

�P(i1 fails j 1 fails from Ri)P(i2 fails j 1 fails from Ri)

+ P(i2 fails j 1 fails from Ri)P(i1 fails j 1 fails from Ri)

That is, in calculating the probability of i2 failing after i1 fails, the pool Ri is used rather than Ri � i1 and similarly, in
calculating the probability of i1 failing after i2, the pool Ri is used rather than Ri� i2. The Peto–Breslow approximation simply
fails to remove from the risk pools the failures that have already occurred. If the number of tied failures di relative to the size
of the risk pool ni is small, then substitution of the approximation will not affect results much.

Thus, stcoxe is for use when di=ni is large. When di = 1 for all i, stcox and stcoxe will report the same results.

Syntax

The syntax of stcoxe is the same as stcox except that there are fewer options:

stcoxe varlist
�
if exp

� �
in range

� �
, nohr strata(varnames) level(#) noshow

�

As with stcox, stcoxe is for use with survival-time data and you must have stset your data before using this command.
stcoxe shares the features of all estimation commands. To reset problem-size limits, see [R] matsize. stcoxe differs from
stcox in that

1. stcoxe uses the exact calculation for failures occurring at the same time.
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2. stcoxe is slower and requires more memory.

3. stcoxe does not provide the robust method of calculating the variance-covariance matrix of the estimators.

4. stcoxe does not provide estimates of the baseline hazard or survivor functions nor does it provide martingale or efficient
score residuals.

Note that stcoxe does provide stratified estimation, as does stcox.

stcoxe and stcox produce identical results when there are no failures occurring at the same time (no ties).

Options

nohr specifies that coefficients rather than exponentiated coefficients are to be displayed or, said differently, coefficients rather
than hazard ratios. This option affects how results are displayed, not how they are estimated. nohr may be specified at
estimation or when replaying previously estimated results (which you do by typing stcoxe).

strata(varnames) specifies up to 5 strata variables. Observations with equal values of the variables are assumed to be in
the same stratum. Stratified estimates (equal coefficients across strata but baseline hazard unique to each stratum) are then
estimated.

level(#) specifies the confidence level for the confidence intervals of the coefficients.

noshow prevents stcoxe from displaying the identities of the key st variables above its output.

Examples

Stata comes with a dataset named cancer.dta containing fictional data on a drug trial:

. use /usr/local/stata/cancer, clear

(Patient Survival in Drug Trial)

. stset studytim died

dataset name: /usr/local/stata/cancer.dta

id: -- (meaning each record a unique subject)

entry time: -- (meaning all entered at time 0)

exit time: studytim

failure/censor: died

. tab drug, gen(dr)

Drug type |

(1=placebo) | Freq. Percent Cum.

------------+-----------------------------------

1 | 20 41.67 41.67

2 | 14 29.17 70.83

3 | 14 29.17 100.00

------------+-----------------------------------

Total | 48 100.00

Roughly 43% of failure times record the death of more than one person:

. sort studytim

. quietly by studytim: gen deaths = cond(_n==_N,sum(died),.)

. tab deaths if deaths>0

deaths | Freq. Percent Cum.

------------+-----------------------------------

1 | 12 57.14 57.14

2 | 8 38.10 95.24

3 | 1 4.76 100.00

------------+-----------------------------------

Total | 21 100.00

Estimating a model with stcox (using the Peto–Breslow approximation) and stcoxe (using the exact calculation) results in

. stcox age dr2 dr3

failure time: studytim

failure/censor: died

Iteration 0: Log Likelihood =-99.911448

Iteration 1: Log Likelihood =-82.331523

Iteration 2: Log Likelihood =-81.676487

Iteration 3: Log Likelihood =-81.652584

Iteration 4: Log Likelihood =-81.652567

Refining estimates:
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Iteration 0: Log Likelihood =-81.652567

Cox regression -- entry time 0

No. of subjects = 48 Log likelihood = -81.652567

No. of failures = 31 chi2(3) = 36.52

Time at risk = 744 Prob > chi2 = 0.0000

------------------------------------------------------------------------------

studytim |

died | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

age | 1.118334 .0409074 3.058 0.002 1.040963 1.201455

dr2 | .1805839 .0892742 -3.462 0.001 .0685292 .4758636

dr3 | .0520066 .034103 -4.508 0.000 .0143843 .1880305

------------------------------------------------------------------------------

. stcoxe age dr2 dr3

failure time: studytim

failure/censor: died

Cox regression (exact method for ties) -- entry time 0

No. of subjects = 48 Log likelihood = -72.972325

No. of failures = 31 chi2(3) = 38.40

Time at risk = 744 Prob > chi2 = 0.0000

------------------------------------------------------------------------------

studytim | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

age | 1.126355 .0428041 3.131 0.002 1.045509 1.213453

dr2 | .1558151 .0805856 -3.595 0.000 .056543 .4293783

dr3 | .0405622 .028857 -4.505 0.000 .010059 .1635644

------------------------------------------------------------------------------

Results are similar.
Peto-Breslow Approx. Exact

Variable H.R. S.E. H.R. S.E.

age 1.11 .04 1.13 .04
dr2 .18 .09 .16 .08
dr3 .05 .03 .04 .03

Methods and formulas

For a discussion of the Peto–Breslow approximation and the exact calculation, see Kalbfleisch and Prentice (1980, 72–75).

The conditional logistic regression likelihood function and the CPH likelihood functions are really the same. The difference
is that in conditional logistic regression the user specifies the risk pools explicitly whereas in the CPH model the risk pools are
derived from the entry, failure, and censoring times.

Stata’s clogit command for estimating conditional logistic regressions uses the exact calculation for ties. Thus, stcoxe
temporarily expands the data to contain the risk pools and then uses clogit to estimate results.
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ssa9.1 Survival analysis subroutine for programmers

William Gould, Stata Corporation, wgould@stata.com

[Editor’s Note: The software for this insert is obtained by installing ssa9. There is no additional software to install.]

Syntax

st rpool newvar
�
if exp

� �
in range

� �
, strata(varnames) nopreserve

�

st rpool is for use with survival-time data; see [R] st. You must have stset your data before using this command.
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Description

st rpool converts the st data in memory to data on the risk pools. Variable newvar is created indexing the pools.

st rpool requires a failure variable be stset.

Options

strata(varnames) specifies that separate pools are to be formed for the strata denoted by varnames. varnames may be string
or numeric or any combination.

nopreserve specifies the original data is not to be preserved prior to transformation. Note, this preservation does not refer to
permanent saving of the data. If nopreserve is not specified, the data is temporarily saved so, should anything go wrong
during the transformation such as running out of memory, the original data can be brought back. If the transformation
completes without problem, the preserved copy of the original data is erased.

If you wish to retain a copy of the original data, it is your responsibility to save the data first regardless of whether you
specify this option.

Remarks

The risk pools R1, R2, : : : , are each defined as the set of observations at risk at first failure time, second failure, : : : , in
the data. Consider the following simple data:

. list

id time dead x

1. 101 1 1 6.18

2. 102 4 1 .61

3. 103 6 0 5.55

. stset time dead

(output omitted)

This data, converted to risk pools, becomes

. st_rpool event

. sort event id

. list

id time dead x event

1. 101 1 1 6.18 1

2. 102 4 0 .61 1

3. 103 6 0 5.55 1

4. 102 4 1 .61 2

5. 103 6 0 5.55 2

event = 1 signifies the risk pool at the time of the first failure in the data. At that time, there were three “persons” who
might have potentially failed: ids 101, 102, and 103. Id 101 did fail. (We see this because dead = 1 for that observation and
is 0 for the others in the risk group.)

event = 2 signifies the risk pool at the time of the second failure. At that time, there were two persons who might have
failed, ids 102 and 103. Id 102 did fail.

Risk pools are formed on the basis of failure times, not the failures themselves. If there are multiple failures at a certain
time, it is still one risk pool. For instance, in the following data there are two failures at time 7:

. list

id time dead x

1. 201 1 1 .87

2. 202 7 0 .26

3. 203 7 1 .04

4. 204 8 1 .42

5. 205 8 1 .9

6. 206 9 0 .52

. stset time dead

(output omitted)

This data, converted to risk pools, becomes

. st_rpool event

. sort event id
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. by event: list id time dead x

-> event= 1

id time dead x

1. 201 1 1 .87

2. 202 7 0 .26

3. 203 7 0 .04

4. 204 8 0 .42

5. 205 8 0 .9

6. 206 9 0 .52

-> event= 2

id time dead x

7. 202 7 0 .26

8. 203 7 1 .04

9. 204 8 0 .42

10. 205 8 0 .9

11. 206 9 0 .52

-> event= 3

id time dead x

12. 204 8 1 .42

13. 205 8 1 .9

14. 206 9 0 .52

Note that there are two failures in the third risk pool (which corresponds to the failure time 8).

Also note that risk pools can contain single observations:

. list

id time dead x

1. 301 1 1 .84

2. 302 7 0 .21

3. 303 7 1 .56

4. 304 8 1 .26

5. 305 8 1 .95

6. 306 9 1 .28

. stset time dead

(output omitted)

. st_rpool event

. sort event id

. by event: list id time dead x

-> event= 1

id time dead x

1. 301 1 1 .84

2. 302 7 0 .21

3. 303 7 0 .56

4. 304 8 0 .26

5. 305 8 0 .95

6. 306 9 0 .28

-> event= 2

id time dead x

7. 302 7 0 .21

8. 303 7 1 .56

9. 304 8 0 .26

10. 305 8 0 .95

11. 306 9 0 .28

-> event= 3

id time dead x

12. 304 8 1 .26

13. 305 8 1 .95

14. 306 9 0 .28

-> event= 4

id time dead x

15. 306 9 1 .28

Note that the final risk pool contains only one observation because only one “person” was left alive at that time.

st rpool handles entry time and will allow stratification, meaning separate pools for separate groups. For instance,
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. list

id t0 time dead group

1. 401 0 4 1 1

2. 402 0 8 0 1

3. 403 0 12 1 1

4. 404 9 16 0 1

5. 405 0 4 1 2

6. 406 4 8 0 2

7. 407 0 12 1 2

. stset time dead, t0(t0)

(output omitted)

. st_rpool event, strata(group)

. sort event id

. by event: list id t0 time dead group

-> event= 1

id t0 time dead group

1. 401 0 4 1 1

2. 402 0 8 0 1

3. 403 0 12 0 1

-> event= 2

id t0 time dead group

4. 403 0 12 1 1

5. 404 9 16 0 1

-> event= 3

id t0 time dead group

6. 405 0 4 1 2

7. 407 0 12 0 2

-> event= 4

id t0 time dead group

8. 407 0 12 1 2

Example

The Cox proportional hazard models is the same as the conditional logistic model where the groups are the risk pools.
Thus, one way of obtaining an estimate of the Cox model is

. st_rpool event

. clogit dead ..., group(event)

If there are no multiple failures at the same time in the data (no ties), results estimated this way will be the same as results
estimated by stcox. The issue of ties is important because stcox handles ties using the Peto–Breslow approximation whereas
clogit handles ties using an exact calculation.

In fact, stcoxe uses this method to estimate Cox models, see Gould (1977).

Warnings

Expanding the data to contain the risk pools is convenient for some calculations, but be warned that the resulting dataset
may contain a large number of observations because of the replication. A dataset that contained 1,000 observations, each of
which failed at times 1, 2, 3, : : : , would contain 1,000 + 999 + 998 + : : :+ 1 = 500,500 observations after conversion to risk
pools.

If, however, there were only ten discrete times at which failures could occur, then the resulting expanded data could not
contain more than 1,000 + 999 + : : :+ 991 = 9,995 observations.

Unrelatedly, st rpool requires a failure variable be stset. In very simple st datasets the user is required to stset only
a time variable and then all observations are assumed to reflect failures. Before calling st rpool, you must create a failure
variable if one does not already exist. The appropriate call is

st_is

: : :

preserve /* optional but preferable */

local d : char _dta[st_d]

if "`d'"=="" {

tempvar d

qui gen byte `d' = 1

char _dta[st_d] "`d'"

}
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tempvar event

st_rpool `event' : : :, nopreserve

You are required to make a failure variable because you will need it in interpreting the results produced by st rpool. Within
each pool designated by `event', it is the observations `d'!=0 that failed.

Reference
Gould, W. 1997. ssa9: Cox proportional hazards model with the exact calculation for ties. Stata Technical Bulletin 37: 24–26.

zz7 Cumulative Index for STB-31–STB-36

[an] Announcements

STB-31 2 an59 Statement from the new editor
STB-31 2 an60 STB-25–STB-30 available in bound format
STB-32 2 an61 Submission guidelines
STB-33 2 an62 Stata 5.0
STB-33 2 an63 Updates available on the Stata web site

[crc] StataCorp. Provided Support Materials

STB-32 3 crc44 Confidence intervals in a 2� 2 table
STB-35 2 crc45 New options for survival-time data
STB-35 3 crc46 Better numerical derivatives and integrals

[dm] Data Management

STB-32 5 dm42 Accrue statistics for a command across a by list
STB-35 6 dm43 Automatic recording of definitions

[dt] Datasets

STB-32 9 dt3 Reading EpiInfo datasets into Stata
STB-34 2 dt3.1 An updated utility to convert EpiInfo datasets

[gr] Graphics

STB-36 2 gr16.1 Convex hull plots
STB-34 3 gr20 Low-level graphics in data coordinates
STB-34 9 gr21 Flexible axis scaling
STB-35 7 gr22 Binomial smoothing plot
STB-35 9 gr23 Graphical assessment of the Cox model proportional hazards assumption
STB-36 4 gr24 Easier bar charts
STB-36 8 gr25 Spike plots for histograms, rootograms, and time-series plots

[ip] Instruction on Programming

STB-34 10 ip13 Maximum-likelihood estimation using the ml command
STB-35 14 ip14 Programming utility: Numeric lists
STB-35 16 ip15 A dialog box layout manager for Stata
STB-36 11 ip16 Using dialog boxes to vary program parameters

[os] Operating System, Hardware, & Interprogram Communication

STB-32 10 os16 Importing Stata graphs into word processors on a Macintosh
STB-34 21 os16.1 Importing Stata graphs into word processors on the Macintosh: Part 2

[sbe] Biostatistics & Epidemiology

STB-34 24 sbe13 Age-specific reference intervals (“normal ranges”)
STB-35 21 sbe13.1 Correction to age-specific reference intervals (“normal ranges”)
STB-36 15 sbe13.2 Correction to age-specific reference intervals (“normal ranges”)
STB-36 15 sbe14 Odds ratios and confidence intervals for logistic regression models with effect modification

[sed] Exploratory Data Analysis

STB-32 12 sed2 Patterns of missing data
STB-33 2 sed2.1 Update to patterns of missing data
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[sg] General Statistics

STB-33 3 sg42.1 Extensions to the regpred command
STB-33 6 sg49.1 An improved command for paired t tests: Correction
STB-32 13 sg51 Inferences about correlations using the Fisher z-transform
STB-32 18 sg52 Testing dependent correlation coefficients
STB-32 19 sg53 Maximum-likelihood complementary log-log regression
STB-32 20 sg54 Extended probit regression
STB-32 21 sg55 Extensions to the brier command
STB-32 23 sg56 An ado-file implementation of a simplex-based maximization algorithm
STB-33 7 sg57 An immediate command for two-way tables
STB-33 9 sg58 Mountain plots
STB-33 10 sg59 Index of ordinal variation and Neyman–Barton GOF

STB-33 12 sg60 Enhancements for the display of estimation results
STB-33 15 sg61 Bivariate probit models
STB-33 21 sg62 Hildreth–Houck random coefficients model
STB-35 21 sg63 Logistic regression: Standardized coefficients and partial correlations
STB-35 22 sg64 pwcorrs: An enhanced correlation display
STB-35 25 sg65 Computing intraclass correlations and large ANOVAs
STB-35 32 sg66 Enhancements to the alpha command
STB-36 23 sg67 Univariate summaries with boxplots
STB-36 26 sg68 Goodness-of-fit statistics for multinomial distributions
STB-36 29 sg69 Immediate Mann–Whitney and binomial effect-size display

[smv] Multivariate Analysis

STB-34 34 smv3.1 Discriminant analysis: An enhanced command

[snp] Nonparametric Methods

STB-32 27 snp11 Test for trends across ordered groups revisited
STB-33 24 snp12 Stratified test for trend across ordered groups

[sts] Time-Series and Econometrics

STB-32 30 sts11 Hildreth–Lu regression
STB-34 36 sts12 A periodogram-based test for white noise

[svy] Survey Sample

STB-31 3 svy1 Some basic concepts for design-based analysis of complex survey data
STB-31 6 svy2 Estimation of means, totals, ratios, and proportions for survey data
STB-31 23 svy3 Describing survey data: sampling design and missing data
STB-31 26 svy4 Linear, logistic, and probit regressions for survey data
STB-31 31 svy5 Estimates of linear combinations and hypothesis tests for survey data

[zz] Not Elsewhere Classified

STB-31 42 zz6 Cumulative index for STB-25–STB-30
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STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt datasets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology ssa survival analysis
sed exploratory data analysis ssi simulation & random numbers
sg general statistics sss social science & psychometrics
smv multivariate analysis sts time-series, econometrics
snp nonparametric methods svy survey sampling
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified
srd robust methods & statistical diagnostics
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