
STATA January 1997

TECHNICAL STB-35

BULLETIN
A publication to promote communication among Stata users

Editor Associate Editors
H. Joseph Newton Francis X. Diebold, University of Pennsylvania
Department of Statistics Joanne M. Garrett, University of North Carolina
Texas A & M University Marcello Pagano, Harvard School of Public Health
College Station, Texas 77843 James L. Powell, UC Berkeley and Princeton University
409-845-3142 J. Patrick Royston, Royal Postgraduate Medical School
409-845-3144 FAX
stb@stata.com EMAIL

Subscriptions are available from Stata Corporation, email stata@stata.com, telephone 979-696-4600 or 800-STATAPC,
fax 979-696-4601. Current subscription prices are posted at www.stata.com/bookstore/stb.html.

Previous Issues are available individually from StataCorp. See www.stata.com/bookstore/stbj.html for details.

Submissions to the STB, including submissions to the supporting files (programs, datasets, and help files), are on a nonex-
clusive, free-use basis. In particular, the author grants to StataCorp the nonexclusive right to copyright and distribute the ma-
terial in accordance with the Copyright Statement below. The author also grants to StataCorp the right to freely use the ideas,
including communication of the ideas to other parties, even if the material is never published in the STB. Submissions should
be addressed to the Editor. Submission guidelines can be obtained from either the editor or StataCorp.

Copyright Statement. The Stata Technical Bulletin (STB) and the contents of the supporting files (programs, datasets,
and help files) are copyright c by StataCorp. The contents of the supporting files (programs, datasets, and help files), may be
copied or reproduced by any means whatsoever, in whole or in part, as long as any copy or reproduction includes attribution
to both (1) the author and (2) the STB.

The insertions appearing in the STB may be copied or reproduced as printed copies, in whole or in part, as long as any copy
or reproduction includes attribution to both (1) the author and (2) the STB. Written permission must be obtained from Stata
Corporation if you wish to make electronic copies of the insertions.

Users of any of the software, ideas, data, or other materials published in the STB or the supporting files understand that such use
is made without warranty of any kind, either by the STB, the author, or Stata Corporation. In particular, there is no warranty of
fitness of purpose or merchantability, nor for special, incidental, or consequential damages such as loss of profits. The purpose
of the STB is to promote free communication among Stata users.

The Stata Technical Bulletin (ISSN 1097-8879) is published six times per year by Stata Corporation. Stata is a registered
trademark of Stata Corporation.

Contents of this issue page

crc45. New options for survival-time data 2
crc46. Better numerical derivatives and integrals 3
dm43. Automatic recording of definitions 6
gr22. Binomial smoothing plot 7
gr23. Graphical assessment of the Cox model proportional hazards assumption 9
ip14. Programming utility: Numeric lists 14
ip15. A dialog box layout manager for Stata 16

sbe13.1. Correction to age-specific reference intervals (“normal ranges”) 21
sg63. Logistic regression: Standardized coefficients and partial correlations 21
sg64. pwcorrs: An enhanced correlation display 22
sg65. Computing intraclass correlations and large ANOVAs 25
sg66. Enhancements to the alpha command 32

2 Stata Technical Bulletin [STB-35]

crc45 New options for survival-time data

Two new options have been added to stset: first and force.

Syntax

The syntax of the stset command is

stset timevar
�

failvar
� �

weight
� �

, id(idvar) t0(entrytimevar) first force gent0(newvar) noshow

�
The first option

first specifies that in time-varying data (data for which id() is also specified), observations after the first failure event
are to be ignored and, in fact, deleted from the data.

first is useful when you have multiple outcome variables. For instance, consider the following bit of data:

. list patid time r1 r2 if patid==123

patid time r1 r2

1. 123 1 0 0

2. 123 3 1 0

3. 123 7 1 0

4. 123 20 1 1

r1 and r2 are two different outcome variables and assume you intend to analyze them one at a time. Say you wish to analyze
outcome r1 and that the corresponding event can occur at most once. In that case, the value of r1 is irrelevant in the third and
fourth observations; here those values are coded as 1, but they could have been coded as missing or any other value. Whatever
the value of r1 for the third and fourth observations, those observations must be removed from the data lest it appear that patient
123 has reentered the data and is eligible for the failure event to recur. Specifying first removes the observations.

If you type

. stset time r1, id(patid) first

the dataset will be changed to contain only two observation on patient 123:

. list patid time r1 r2 if patid==123

patid time r1 r2

1. 123 1 0 0

2. 123 3 1 0

Starting with the original dataset, if you type

. stset time r2, id(patid) first

the dataset will contain all four observations for patient 123 (but fewer on some other patient if event r2 ever preceded r1).

first is also useful when analyzing multiple-failure data and you wish to create and set a dataset of the first failure events.

Since first can change the data, be sure you have saved your original data on disk. stset, first will change the data
only if the stset operation is successful and then only if any observations need to be deleted.

The force option

The other new option is force. force drops observations with missing values of the time, outcome, id(), t0(), or
weighting variables, so force, like first, can change the data and the same cautions (and features) apply.

force is useful in cases where data contains missing values and dropping the observations is the appropriate thing to do.
We recommend you do not specify force at the outset. Instead, try the command without force and find out if there is a
problem. If there is, specify force only after determining that dropping the observations is the appropriate correction.

Stata Technical Bulletin 3

crc46 Better numerical derivatives and integrals

The new dydx and integ commands are improved versions of Stata’s utilities for calculating numerical first derivatives
and integrals (see [R] range in the Stata Reference Manual).

These new versions first fit a cubic spline to the data and then compute the derivative or integral of the spline. This method
gives more accurate estimates of the derivative and integral, especially for smooth functions, than did the old versions which
used simple approximation formulas.

The old dydx and integ commands also did not deal properly with datasets in which there were tied x values. If there
are tied x values, the new versions use the mean of y at the tied x values. The new versions also allow if and in restrictions
and have a by(varlist) option.

Syntax

The syntax of the new dydx and integ is

dydx yvar xvar
�
if exp

� �
in range

�
, generate(newvar)

�
replace by(varlist)

�
integ yvar xvar

�
if exp

� �
in range

� �
, generate(newvar) replace by(varlist) trapezoid initial(#)

�
Options

generate(newvar) specifies the name of the new variable to be created. It is not optional for dydx.

replace requests that if an existing variable is specified for generate(), it should be overwritten.

by(varlist) requests that the derivative or integral be computed separately for each set of values of varlist.

trapezoid specifies that the integral be computed using the trapezoidal rule (i.e., the sum of (xi � xi�1)(yi + yi�1)=2) rather
than using cubic splines (the default). Cubic splines will give superior results for most smooth functions; for irregular
functions, trapezoid may give better results.

initial(#) specifies the initial value of the integral; i.e., the value of the integral at min(x). If not specified, the initial value
is taken as 0.

Examples

As an example, we will generate a dataset containing 100 points from the function exp(�x=6) sin(x) over the interval
[0; 12.56].

. range x 0 12.56 100

obs was 0, now 100

. gen y = exp(-x/6)*sin(x)

A graph of these data is shown in Figure 1.

y
=

 e
xp

(-
x/

6
)*

si
n

(x
)

x
0 5 10 15

-.5

0

.5

1

Figure 1.

4 Stata Technical Bulletin [STB-35]

We estimate the derivative using the new dydx, and compute the relative difference between this estimate and the true
derivative.

. dydx y x, gen(dy)

. gen dytrue = exp(-x/6)*(cos(x) - sin(x)/6)

. gen error = abs(dy - dytrue)/dytrue

Figure 2 shows a graph of the error (the variable error). The error is greatest at the endpoints as one would expect. The error
is approximately 0.5% at each endpoint, but the error quickly falls to less than 0.01%.

E
rr

o
r

in
 d

e
ri

v
a

ti
v

e
 e

s
ti

m
a

te

x
0 5 10 15

0

.002

.004

.006

Figure 2. Relative error in derivative estimate.

We now estimate the integral using integ:

. integ y x, gen(iy)

number of points = 100

integral = .85316396

. gen iytrue = (36/37)*(1 - exp(-x/6)*(cos(x) + sin(x)/6))

. display iytrue[_N]

.85315901

. display abs($S_2 - iytrue[_N])/iytrue[_N]

5.799e-06

. gen diff = iy - iytrue

The relative difference between the estimate (stored in $S 2) and the true value of the integral is about 6� 10�6. A graph
of the absolute difference (diff) is shown in Figure 3. Note that here, error is cumulative. Again, most of the error is due to a
relatively poorer fit near the endpoints.

E
rr

o
r

in
 i

n
te

g
ra

l
e

st
im

a
te

x
0 5 10 15

0

2.0e-06

4.0e-06

6.0e-06

8.0e-06

Figure 3. Absolute error in integral estimate.

Stata Technical Bulletin 5

Saved Results

integ saves the number of unique x points in the global macro S 1 and the estimate of the integral in S 2.

Methods and Formulas

Consider a set of data points (x1; y1), : : : , (xn; yn) generated by a function y = f(x). dydx and integ first fit these points
with a cubic spline. The cubic spline is then analytically differentiated (integrated) to give an approximation for the derivative
(integral) of f .

The cubic spline (see, for example, Press et al. (1992)) consists of n� 1 cubic polynomials Pi(x), with the ith one defined
on the interval [xi; xi+1]:

Pi(x) = yiai(x) + yi+1bi(x) + y
00

i ci(x) + y
00

i+1di(x)

where

ai(x) =
xi+1 � x

xi+1 � xi

ci(x) =
1

6
(xi+1 � xi)

2
ai(x)f[ai(x)]

2 � 1g

bi(x) =
x� xi

xi+1 � xi

di(x) =
1

6
(xi+1 � xi)

2
bi(x)f[bi(x)]

2 � 1g

and y
00

i and y
00

i+1 are constants whose values will be determined as described below. The notation for these constants is justified
by the fact that P 00

i (xi) = y
00

i and P
00

i (xi+1) = y
00

i+1.

Since ai(xi) = 1, ai(xi+1) = 0, bi(xi) = 0, and bi(xi+1) = 1, therefore Pi(xi) = yi and Pi(xi+1) = yi+1. Thus, the Pi
jointly define a function that is continuous at the interval boundaries. It is also desirable that the first derivative be continuous
at the interval boundaries; that is,

P
0

i (xi+1) = P
0

i+1(xi+1)

The above n� 2 equations (one equation for each point except the two endpoints) and the values of the first derivative at the
endpoints, P 0

1(x1) and P
0

n�1(xn), determine the n constants y00i .

The value of the first derivative at an endpoint is set to the value of the derivative obtained by fitting a quadratic to the
endpoint and the two adjacent points; namely, we use

P
0

1(x1) =
y1 � y2

x1 � x2
+

y1 � y3

x1 � x3
�

y2 � y3

x2 � x3

and a similar formula for the upper endpoint.

dydx approximates f 0(xi) using P
0

i (xi).

integ approximates F (xi) = F (x1) +
R xi
x1

f(x) dx using

I0 +
i�1X
k=1

Z xk+1

xk

Pk(x) dx

where I0 (an estimate of F (x1)) is the value specified by the initial(#) option. If the trapezoid option is specified, integ
approximates the integral using the trapezoidal rule:

I0 +
i�1X
k=1

1

2
(xk+1 � xk)(yk+1 + yk)

If there are ties among the xi, the mean of yi is computed at each set of ties, the cubic spline is fit to these values.

Acknowledgment

The new versions of dydx and integ were inspired by the dydx2 command written by Patrick Royston of the Royal
Postgraduate Medical School in London.

Reference
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. 1992. Numerical Recipes in C, The Art of Scientific Computing. 2d ed. Cambridge:

Cambridge University Press.

6 Stata Technical Bulletin [STB-35]

dm43 Automatic recording of definitions

Jeroen Weesie, Utrecht University, Netherlands, weesie@weesie.fsw.ruu.nl

In this insert I describe programs genl and repl that enhance Stata’s generate and replace commands with the following
functionality. First, automatic variable labels are generated to record the way in which variables were defined or changed. Second,
we employ characteristics, a language element introduced in version 4.0 of Stata, to save the complete definition of variables.
These definitions can be displayed (program defntion) or reapplied (program redo).

Syntax

genl

�
type
�

newvar = exp
�
if exp

� �
in range

� �
, by(varlist) label(string) nodef

�
repl oldvar = exp

�
if exp

� �
in range

� �
, by(varlist) label(string) oldlabel nodef

�
redo varlist

defntion

�
varlist

� �
, other

�
Description

genl and repl are substitutes for Stata internal commands generate and replace, but they also automatically generate
variable labels and create a characteristic Defntion that contains the defining expression.

redo uses the characteristic Defntion to redefine the variables in the order implied by varlist. This allows a primitive
spreadsheet to be constructed.

defntion displays the definitions of the variables.

Remarks

Stata’s variable labels may not exceed 31 characteristics, thus truncation may be necessary; to avoid confusion, truncated
labels end in “: : :”.

The definition comprises, optionally, the by varlist clause, the defining expression, and the case restrictions if and in.

Options

label(string) specifies the label of the variable instead of the defining expression. Specify label() to force an empty label.
Specifying a label not does affect the definition of the characteristic Defntion.

nodef suppresses the generation (genl) or modification (repl) of the characteristic Defntion.

oldlabel specifies that the label of the variable changed not be changed.

by(varlist) specifies that the expression should be evaluated “by varlist:”. The sort order of the variables is changed only if
needed.

other specifies that defntion include all variables, even those without a definition.

Examples

The command

. genl age = Tnow - Tbirth

creates age as the difference Tnow - TBirth and generates a variable label “Tnow - TBirth”, and a characteristic Defntion

equal to “Tnow - TBirth”. Thus, this command is equivalent to the three commands:

. gen age = Tnow - Tbirth

. label var age "Tnow - Tbirth"

. char age[Defntion] = "Tnow - Tbirth"

Stata Technical Bulletin 7

Further examples of the use of genl and repl are

. genl N = invnorm(uniform()) normal variate

. genl M = N + 1, label(own label) specify own label

. repl M = M + uniform(), nodef replace with new label, do not change definition

The by() option allows the specification of subgroups relative to which expressions should be evaluated. Thus, the command

. genl int Z = M + _n, by(age)

is, apart from the generation of variable labels and the characteristic Defntion, equivalent to the two commands

. sort age

. quietly by age: gen int Z = M + _n

The command defntion lists all defined variables, i.e., all variables with associated characteristic Defntion.

. defntion

Variable | definition (char Defntion)

---------+---

age | Tnow - Tbirth

N | invnorm(uniform())

M | N + 1

Z | by age: M + _n

Since N is defined using pseudo-random numbers, re-evaluating the expression generates new values for N:

. redo N

Note that the variable M was defined in terms of N. Since genl stored the definition of M, it is possible to update M:

. redo M

Since variables are updated in the specified order, it would have been easier to have issued the command

. redo N M

gr22 Binomial smoothing plot

Nicholas J. Cox, University of Durham, UK, FAX (011) 44-91-374-2456, n.j.cox@durham.ac.uk

The Stata command smooth is described in the manual (see [R] smooth) as providing robust nonlinear smoothers. It offers a
set of ingredients, including running medians of varying lengths, from which users can assemble their own customized smoothers.
The menu also includes Hanning, a moving average (running mean) with weights in the ratio 1:2:1, so that in fact users have
the further possibility of assembling various linear smoothers. In a now classical work on spectrum estimation in the late 1940s,
J. W. Tukey named this smoother after Julius von Hann, an Austrian climatologist who liked using it. The smoothers concerned
are collectively called binomial smoothers, with weights in proportion to the binomial coefficients. They remain widely used
in several fields, including climatology. It is easy to produce these smoothers using smooth by repeating Hanning. Thus, the
binomial smoother of length 5, with weights in the ratio 1:4:6:4:1, is obtained by Hanning twice. The possibility of combining
smoothers follows from the fact that convolution of binomial coefficients yields other binomial coefficients. One reference on
the associated mathematics is Graham, Knuth, and Patashnik (1989).

What bsmplot does is automate this so that the user gets immediately a graph of smoothing results by specifying the
window length, that is, the number of values in the binomial smoother. The most obvious application is to regularly spaced time
series, such as temperatures for a series of years.

8 Stata Technical Bulletin [STB-35]

Syntax

bsmplot yvar xvar
�
if exp

� �
in range

� �
, window(#) graph options

�

Description

bsmplot produces a plot of both yvar and the result of smoothing yvar by a binomial filter against xvar. Normally, but not
necessarily, xvar will contain equally spaced times and yvar some fluctuating response.

Binomial filters have weights given by the coefficients in the expansion of (a+ b)n. Thus,

(a+ b)2 = 1a+ 2ab+ 1b (a+ b)4 = 1a4 + 4a3b+ 6a2b2 + 4ab3 + 1b4

and more compactly, listing here only examples with odd numbers of weights, which are the practical choices in smoothing:

1 2 1 length 3
1 4 6 4 1 length 5
1 6 15 20 15 6 1 length 7
1 8 28 56 70 56 28 8 1 length 9

and so on. Each weight is divided by the sum of the weights to produce scaled weights that have sum 1. Thus, smoothing with
weights in the ratio 1:2:1 means compute the smoothed value at index i by the sum of one-fourth the values at indices i � 1
and i+ 1 and one-half the value at index i, as each weight is divided by their sum 4.

Options

window(#) specifies the length of the binomial filter. The default is 3, giving the filter with weights in the ratio 1:2:1, often
known as Hanning. The length must be an odd number and at least 3.

graph options are options allowed with graph, twoway. The default values are xlabel ylabel c(||s) s(iii) gap(6).
t1title shows the window length. c(..s) would show just the smooth values, suppressing the plot of the data.

Example

We consider smoothing the global average temperature data for 1856 to 1990 given in Figure 1.

g
lo

b
a

l
te

m
p

e
ra

tu
re

,
d

e
g

 C

year
1850 1900 1950 2000

-.4

-.2

0

.2

.4

Figure 1. Unsmoothed data.

In Figure 2, we show the result of using bsmplot for the smoother of length 11.

Stata Technical Bulletin 9

. bsmplot gltemp year, window(11)

11-term binomial smoothing

g

lo
b

a
l

te
m

p
e

ra
tu

re
,

d
e

g
 C

year
1850 1900 1950 2000

-.4

-.2

0

.2

.4

Figure 2. Smoother of length 11.

In Figure 3, we increase the window width to 21 and use the c(..s) option so that we only see the smoothed data.

. bsmplot gltemp year, window(11) c(..s)

21-term binomial smoothing

g

lo
b

a
l

te
m

p
e

ra
tu

re
,

d
e

g
 C

year
1850 1900 1950 2000

-.4

-.2

0

.2

.4

Figure 3. Smoother of length 21.

Reference
Graham, R. L., D. E. Knuth, and O. Patashnik. 1989. Concrete mathematics: A foundation for computer science. Reading, MA: Addison–Wesley.

gr23 Graphical assessment of the Cox model proportional hazards assumption

Joanne M. Garrett, University of North Carolina at Chapel Hill, garrettj@med.unc.edu

One of the main assumptions of the Cox proportional hazards model is that the hazard ratio is proportional over time. For
example, suppose a group of cancer patients on an experimental treatment are followed for 10 years. If the hazard of dying
is twice the rate for the non-treated group as for treated group (HR = 2.0), the proportional hazards assumption presumes this
ratio is the same at one year, two years, or at any point on the time scale. Because the Cox model, by definition, is constrained
to follow this assumption, it is important to evaluate its validity before modeling. If the assumption fails, alternative modeling
choices would be more appropriate (e.g., a stratified Cox model).

This insert offers two programs, stphplot and stcoxkm, which can be used to graphically evaluate the proportional hazards
assumption. Although using a graph to assess the validity of the assumption is somewhat subjective, it can be a helpful tool.
Both programs are additions to the new survival-time data and commands created in version 5.0 of Stata and follow that format.
Data must be stset before these commands will work (see [R] st stset).

10 Stata Technical Bulletin [STB-35]

stphplot plots �ln(�ln(survival)) curves for each category of a nominal or ordinal independent variable versus ln(time).
These are often referred to as “loglog” plots. Optionally, these estimates can be adjusted for covariates. If the plotted lines are
reasonably parallel, the proportional hazards assumption has not been violated, and it would be appropriate to base the estimate for
that variable on a single baseline survivor function. Another graphical, though less common method of evaluating the proportional
hazards assumption is to plot the Kaplan–Meier observed survival curves and compare them to the Cox predicted curves for
the same variable. This plot can be graphed using stcoxkm. When the predicted and observed values are close together, the
proportional hazards assumption has not been violated.

Syntax of the stphplot command

stphplot

�
if exp

� �
, by(xvar) strata(xvar) adjust(varlist) noshow graph options

�

Options

by(xvar) produces separate “loglog” lines for each value of xvar, where xvar is a nominal or ordinal independent variable.

strata(xvar) is an alternative to by(); the adjust() option must also be included (see [R] st sts graph).

adjust(varlist) adjusts the estimates to that for 0 values of the varlist specified. Any adjusted variables are centered automatically
by the program before estimation, and therefore do not have to be centered beforehand; adjust() can be specified for
either by() or strata().

noshow prevents stphplot from showing the key st variables.

graph options are most of the options available in graph.

Syntax of the stcoxkm command

stcoxkm

�
if exp

� �
, by(xvar) noshow graph options

�

Options

by(xvar) produces separate predicted and observed lines for each value of xvar, a nominal or ordinal independent variable.

graph options are most of the options available in graph; if ylabel() is selected, values for the y-axis must be included.

Note: strata() and adjust() are not available for stcoxkm.

Example 1

All the examples come from a leukemia remission study. The data consist of 42 patients who are followed over time to see
how long (weeks) before they go out of remission (relapse: 1 = yes, 0 = no). Half the patients receive a new experimental
drug and the other half receive a standard drug (trtment1: 1 = drug A, 0 = standard). White blood cell count, a strong indicator
of the presence of leukemia, is divided into three categories (wbc3cat: 1 = normal, 2 = moderate, 3 = high).

. describe

Contains data from Leukemia.dta

obs: 42 Leukemia Remission Study

vars: 8 27 Dec 1996 12:47

size: 504 (98.9% of memory free)

1. weeks byte %8.0g Weeks in Remission

2. relapse byte %8.0g yesno Relapse

3. trtment1 byte %8.0g trtlbl1 Treatment I

4. trtment2 byte %8.0g trtlbl2 Treatment II

5. wbc3cat byte %9.0g wbclbl White Blood Cell Count

6. wbc1 byte %8.0g wbc3cat==Normal

7. wbc2 byte %8.0g wbc3cat==Moderate

8. wbc3 byte %8.0g wbc3cat==High

Sorted by: weeks

Stata Technical Bulletin 11

. stset weeks relapse

data set name: Leukemia.dta

id: -- (meaning each record a unique subject)

entry time: -- (meaning all entered at time 0)

exit time: weeks

failure/censor: relapse

In this example, we examine whether or not the proportional hazards assumption holds for drug A versus the standard drug
(trtment1). First, we will use stphplot, followed by stcoxkm.

. stphplot, by(trtment1) c(ll) xlabel ylabel
-L

n
[-

L
n

(S
u

rv
iv

a
l

P
ro

b
a

b
il

it
ie

s)
]

B
y

C
a

te
g

o
ri

e
s

o
f

T
re

a
tm

e
n

t
I

ln(weeks)

 t r tment1==Standard tr tment1==Drug A

0 1 2 3 4

-1

0

1

2

3

Figure 1.

. stcoxkm, by(trtment1) c(..ll) s(OOST) xlabel

O
b

se
rv

e
d

 v
s.

 P
re

d
ic

te
d

 S
u

rv
iv

a
l

P
ro

b
a

b
il

it
ie

s
B

y
C

a
te

g
o

ri
e

s
o

f
T

re
a

tm
e

n
t

I

Weeks in Remission

 Observed: t r tment1==Standard Observed: t r tment1==Drug A
 Predicted: tr tment1==Standard Predicted: tr tment1==Drug A

0 10 20 30 40

0.00

0.25

0.50

0.75

1.00

Figure 2.

Figure 1 (stphplot) displays lines that are parallel, implying the proportional hazards assumption for trtment1 has not
been violated. This is confirmed in Figure 2 (stcoxkm) where the observed values (connected by STAGE with dotted lines) and
predicted values (connected by solid lines) are close together.

The graph in Figure 3 is the same as Figure 1, adjusted for white blood cell count (using two dummy variables). The
adjustment variables were centered temporarily by stphplot before the adjustment was made.

12 Stata Technical Bulletin [STB-35]

. stphplot, strata(trtment1) c(ll) xlabel ylabel adj(wbc2 wbc3)

-L
n

[-
L

n
(S

u
rv

iv
a

l
P

ro
b

a
b

il
it

ie
s)

]
B

y
C

a
te

g
o

ri
e

s
o

f
T

re
a

tm
e

n
t

I

ln(weeks)

 t r tment1==Standard tr tment1==Drug A

0 1 2 3 4

-1

0

1

2

3

Figure 3.

Note that the lines in Figure 3 are still parallel, although somewhat closer together. Examining the proportional hazards
assumption on a variable without adjustment for covariates is usually adequate as a diagnostic tool before using the Cox model.
However, if it is known that adjustment for covariates in a final model is necessary, one may wish to re-examine whether or not
the proportional hazards assumption still holds.

Example 2

We use the same data to examine the proportional hazards assumption for white blood cell count (wbc3cat). Separate lines
are created for each of the three categories. Predicted values for the Cox model are based on estimates using dummy variables.

. stphplot, by(wbc3cat) c(lll) xlabel ylabel

-L
n

[-
L

n
(S

u
rv

iv
a

l
P

ro
b

a
b

il
it

ie
s)

]
B

y
C

a
te

g
o

ri
e

s
o

f
W

h
it

e
 B

lo
o

d
 C

e
ll

 C
o

u
n

t

ln(weeks)

 wbc3cat==Normal wbc3cat==Moderate
 wbc3cat==High

0 1 2 3 4

-1

0

1

2

3

Figure 4.

Stata Technical Bulletin 13

. stcoxkm, by(wbc3cat) c(...lll) s(OOOTTT) xlabel

O
b

se
rv

e
d

 v
s.

 P
re

d
ic

te
d

 S
u

rv
iv

a
l

P
ro

b
a

b
il

it
ie

s
B

y
C

a
te

g
o

ri
e

s
o

f
W

h
it

e
 B

lo
o

d
 C

e
ll

 C
o

u
n

t

Weeks in Remission
0 10 20 30 40

0.00

0.25

0.50

0.75

1.00

wbc3cat=h igh

wbc3cat=normal

wbc3cat=modera te

Figure 5.

Once again the lines are reasonably parallel (Figure 4). Although this is not true for the first time points for each of the
categories of white blood cell count, the majority of the data do not violate the proportional hazards assumption. The observed
and predicted estimates are close (Figure 5), particularly for the “high” white blood cell count group; less so for the “moderate”
and “normal” groups. However, the differences are rather small, and modeling this variable either way should not change the
interpretation of the results.

Example 3

There is another variable on this dataset which measures a different drug (trtment2: 1 = drug B, 0 = standard). We wish
to examine the proportional hazards assumption for this variable.

. stphplot, by(trtment2) c(ll) xlabel ylabel

-L
n

[-
L

n
(S

u
rv

iv
a

l
P

ro
b

a
b

il
it

ie
s)

]
B

y
C

a
te

g
o

ri
e

s
o

f
T

re
a

tm
e

n
t

II

ln(weeks)

 t r tment2==Standard tr tment2==Drug B

0 1 2 3 4

-1

0

1

2

3

Figure 6.

14 Stata Technical Bulletin [STB-35]

. stcoxkm, by(trtment2) c(..ll) s(OOST) xlabel

O
b

se
rv

e
d

 v
s.

 P
re

d
ic

te
d

 S
u

rv
iv

a
l

P
ro

b
a

b
il

it
ie

s
B

y
C

a
te

g
o

ri
e

s
o

f
T

re
a

tm
e

n
t

II

Weeks in Remission

 Observed: t r tment2==Standard Observed: t r tment2==Drug B
 Predicted: tr tment2==Standard Predicted: tr tment2==Drug B

0 10 20 30 40

0.00

0.25

0.50

0.75

1.00

Figure 7.

Clearly this variable violates the proportion hazards assumption. Not only are the lines non-parallel, they cross (Figure 6).
The observed and predicted values deviate from each other badly (Figure 7). We have overestimated the positive effect of drug
B for the first half of the study, and have underestimated it in the later weeks. A single hazard ratio describing the effect of this
drug would be inappropriate. We definitely would want to stratify this variable in our Cox model.

ip14 Programming utility: Numeric lists

Jeroen Weesie, Utrecht University, Netherlands, weesie@weesie.fsw.ruu.nl

This insert describes a programming utility that is useful in programs with options that should accept a list of numbers.
With a numlist style option, a user can be allowed to specify 1-5 rather than typing 1 2 3 4 5 in full, and 0-1/0.25 rather
than typing 0 0.25 0.50 0.75 1.0. The command numlist verifies that the user has specified a legal numeric list, and—much
like unabbrev—returns an expanded numeric list to the calling program.

numlist has a sort option that specifies that the expanded numeric list should be in increasing order.

Syntax

The syntax of numlist is

numlist numeric list
�
, min(#) max(#) real sort format(fmt)

�
where numeric list is described below and fmt is any legal display format.

Description

numlist expands a numeric list which should satisfy the syntax

numeric list := numeric term [numeric list]

numeric term := [# j #-# j #-#/#]

with semantics
expression expands to

n n

n1 -n2 n1 n1 + 1 n1 + 2 : : : n2

n1 -n2 /n3 n1 n1 + n3 n1 + 2n3 : : : n2

A numeric term may not contain embedded blanks, while subsequent numeric terms should be separated by white space.

Stata Technical Bulletin 15

A number may be real if the option real is specified, otherwise number should be an integer. Note that if n2 < 0 (in the
second or third form), you have to enter two subsequent minus signs. Real numbers written in scientific notation may produce
a syntax error.

The expanded list of numbers, separated by blanks, is returned in the global macro S 1. The number of numbers is returned
in the global macro S 2.

Options

min(#) specifies the minimum number of terms allowed. The default is min(1) if not specified.

max(#) specifies the maximum number of terms allowed. The default is max(infinity). Note though that Stata imposes a
(version dependent) limit on the length of macros.

real specifies that the numbers in a numeric list may be reals.

sort sorts the values in increasing order.

format(fmt) specifies a display format, such as %5.3f or %9.2g, that is used to format the numbers in the expanded numeric
list.

Examples

. numlist 1-5 expands to 1 2 3 4 5

. numlist 1-5/2 expands to 1 3 5

. numlist 1-6/2 expands to 1 3 5

. numlist 1 5-7 11-17/2 expands to 1 5 6 7 11 13 15 17

Negative numbers may be included as well. Note, in particular, that negative upper-limits to ranges and negative increments
are permitted, but lead to funny looking expressions.

. numlist -2-1 expands to -2 -1 0 1

. numlist -6--2 expands to -6 -5 -4 -3 -2

. numlist -6--2/2 expands to -6 -4 -2

. numlist -2--6/-2 expands to -2 -4 -6

Lists may be sorted in increasing order, for example,

. numlist 1-10/2 2-10/2, sort expands to 1 2 3 4 5 6 7 8 9 10

Finally, lists in real numbers may lead to unexpected and unwanted results due to Stata’s default formatting:

. numlist 0-10/2.5, real expands to 0 2.5 5 7.5 10

. numlist 0-1/0.3, real expands to 0 0.3 0.6 0.88888888889

. numlist 0-1/0.1, real f(%3.1f) expands to 0 0.3 0.6 0.9

numlist serves a similar function for numeric lists as Stata’s unabbrev for varlists. Both will be of interest mainly to
programmers. Below we give the outline of how a program might use numlist. In the outline, also() is an option that should
allow a numlist.

program define ...

...

local options "ALso(string) ..."

...

parse "`*'"

...

if "`also'" ~= "" {

numlist `also'

local also "$S_1"

}

...

end

16 Stata Technical Bulletin [STB-35]

Acknowledgment

numlist is a modified version of the lexp program (which is a subroutine of the for2 command) written by Patrick
Royston. numlist allows for numeric lists with negative and/or real-valued numbers, and it optionally sorts lists.

ip15 A dialog box layout manager for Stata

Timothy J. Schmidt, Federal Reserve Bank of Kansas City, tschmidt@frbkc.org

In this insert, we present a program called diablo that constructs a Stata dialog box containing user-specified window
controls. The program thinks of a dialog box as a series of rows of controls and a user of diablo can very easily specify the
nature and contents of these rows without having to specify their exact location. This greatly simplifies the construction of dialog
boxes.

Syntax

The diablo command assumes two forms, both of which must be used in constructing a dialog box. To specify the window
controls for each row of the dialog box, the syntax is

diablo #, wincontrol
�
| wincontrol

�
: : :

where # is a positive integer indicating the row number in the dialog box and wincontrol is one of the following:

wincontrol window control

bu["label", macroname [, options]] command button

ch["text", macroname [, options]] check box

ed[macroname [, options]] edit box

st[text macroname [, options]] static text

ra["text", "text" [, "text" : : :], macroname] radio button

ls[list macroname, macroname [, options]] single choice list box

lm[list macroname, macroname [, options]] multiple choice list box

cs[list macroname, macroname [, options]] single choice combo box

cm[list macroname, macroname [, options]] multiple choice combo box

i invisible place holder

Note that all Stata window controls are available. In addition, diablo accepts an invisible place holder to allow the user
to control spacing in the dialog box. Several window controls in a row can be specified by separating them with a “pipe”
(“|”). All window controls (except i) require a list of parameters contained in square brackets and separated by commas. The
window controls, denoted by two-letter abbreviations, accept all valid Stata options listed in [R] window control. Options must
be specified as the final parameter in a window control parameter list.

After defining each row of a dialog box using the above syntax, one creates and displays the dialog box with the command

diablo "box title"

where box title is the text that will appear in the dialog box title bar.

Stata Technical Bulletin 17

Discussion

One of the most exciting new features in Stata version 5.0 is the ability to construct dialog boxes. Stata users can now use
dialog boxes to construct a custom graphical user interface (GUI) for their programs.

While Stata provides a rich set of window controls, it can be tedious to construct dialog boxes using Stata’s window

control ([R] window control) and window dialog ([R] window dialog) commands. Each control requires a separate Stata
command. Moreover, each window control requires explicit coordinates for placement in the dialog box. These requirements
may be burdensome if the process of constructing a dialog box involves a lot of trial and error. For instance, adding an additional
window control to a dialog box would usually require the programmer to recalculate the placement coordinates for all of the
other controls in the box.

Some computer languages, such as Java, provide tools to reduce the effort required to construct dialog boxes and other
window controls. These tools, often called “layout managers,” allow the user to specify the elements of a dialog box while
abstracting from most of the details of their construction. The purpose of diablo (“DIAlog Box LayOut manager”) is to provide
such a tool for Stata programmers.

diablo simplifies and automates several features of window control specification and dialog box construction. Instead of
issuing a separate Stata command for each window control in a dialog box, diablo users give one command for each row. For
example, the following command creates the first row of a dialog box with a static text field and an edit box:

. diablo 1, st[Text] | ed[EDvar]

In this example, the text in the static text field is contained in the global variable Text. The global variable EDvar will
contain whatever the user types into the edit box. The integer 1 indicates that the controls in the command will be placed in the
first row of the dialog box. Programmers can specify dialog box rows in any order since diablo will not actually construct the
dialog box until the user issues a final diablo command with the dialog box title in quotes. For instance,

. diablo "Linear regression"

creates a dialog box with the title “Linear regression”.

diablo positions the window controls in a rectangular r � c matrix where r is the number of rows specified by the
programmer (in the prior diablo commands) and c is the maximum number of controls specified in any of those rows. If the
user specifies fewer controls in one row than another, diablo will pad the right side of the shorter row with empty space. For
example,

. diablo 1, st[Text1] | st[Text2]

. diablo 2, ls[LBvars, LBpick]

. diablo 3, bu["OK", OKchek] | bu["Cancel", DBcancel]

. diablo "Test dialog box"

is equivalent to

. diablo 1, st[Text1] | st[Text2]

. diablo 2, ls[LBvars, LBpick] | i

. diablo 3, bu["OK", OKchek] | bu["Cancel", DBcancel]

. diablo "Test dialog box"

diablo’s i (read “invisible”) control serves as a place holder in the layout matrix. In this example, both sets of commands
instruct diablo to create a 3 � 2 dialog box with two static text controls in row 1 and a single choice list box in the first
column of the second row. The second column of the second row would be empty.

Some Stata window controls have text labels associated with them. For instance, command buttons require a text parameter
to label the button. diablo assists the programmer with these controls by automatically scaling command buttons, radio buttons,
check boxes, and static text according to the length of their associated labels. diablo also aligns radio buttons in a row at equal
horizontal intervals determined by the longest button label.

Examples

The following artificial example will illustrate how to use diablo to construct a dialog box with each of Stata’s window
controls. The result is shown in Figure 1.

18 Stata Technical Bulletin [STB-35]

Figure 1.

To construct this dialog box, we first define the global variables containing the static text and list box options.

. global Name1 "First name:"

. global Name2 "Last name:"

. global Fruit "Favorite fruit:"

. global Car "Favorite car:"

. global LBfruit "apple pear peach grape orange"

. global LBcars "Acura;BMW;Chevy;Dodge;Ferrari"

Stata’s static control requires a global macro that contains the text to be displayed. In this example, global macros Name1,
Name2, Fruit, and Car contain the text for the static controls in our sample dialog box. Stata’s list box and combo box controls
require a global macro that contains the choices presented in the list. In this example, global macros LBfruit and LBcars

contain the lists of choices for the list box and combo box that will be included in our sample dialog box. Note that spaces
separate the choices in LBfruit, while semicolons separate the choices in LBcars. (I chose different separators in the two lists
to demonstrate the use of Stata’s parse option in the combo box control.)

The next step is to use diablo to specify the rows of the dialog box. This sample dialog box will have six rows. Each
row requires a separate diablo command.

. diablo 1, st[Name1] | st[Name2]

. diablo 2, ed[EDname1] | ed[EDname2, password maxlen 8]

. diablo 3, st[Fruit] | st[Car]

. diablo 4, ls[LBfruit, LBpick] | cs[LBcars, CBpick, parse(;)]

. diablo 5, ra["red", "green", "blue", RAcolor] | ch["student", CHpick]

. diablo 6, bu["OK", OKchek, default] | bu["Cancel", DBcancel]

The first row contains two static text controls (st). diablo’s static text controls require only one parameter—the global
macro that contains the text to be displayed.

The second row contains two edit controls (ed). diablo’s edit controls require only one parameter—the name of a global
macro to hold the text entered by the user. In this example, EDname1 will contain any text entered by the user in the first edit
control in the second row. The second edit control in the row demonstrates how to specify any valid options for that control.
The Stata manual ([R] window control) enumerates the valid options for each control. Two options, password and maxlen 8,
are specified after the required global variable name. diablo syntax requires any options to be specified only after all required
parameters.

After a third row with two static text controls, the fourth row of this sample dialog box contains a list box (ls) and
a combo box (cs). Both types of boxes require two parameters. The first parameter is the global variable with the string of
possible choices. The second parameter is the global variable which will contain the user’s selection. Finally, the list and combo
boxes will also accept a third parameter—the optional parse command. In the example above, the parse option is used in the
combo box control to distinguish the choices, separated by semicolons, in the LBcars global variable. Because diablo parses

Stata Technical Bulletin 19

on commas to distinguish window control parameters, users should avoid using commas as field separators in their choice global
variables (like LBcars).

The fifth diablo command creates a set of radio buttons (ra) and a check box (ch) in the fifth row of the dialog box. The
radio button control requires button labels in quotes; Stata requires at least two buttons in each set of radio buttons. The example
above creates a set of three radio buttons, respectively labeled “red”, “green”, and “blue.” The global variable RAcolor will
contain the user’s selection. The status of the check box, here labeled “student,” will be recorded in the global variable CHpick.

The sixth and final row contains two command buttons (bu), one labeled “OK” and the other labeled “Cancel”. In the
second parameter in a command button, specify a global variable that codifies an action when the user presses the button. In the
example above, the first button also contains an option that marks it as the default button in the dialog box.

Now that we have specified the contents of the dialog box, we create it using the second form of the diablo command:

. diablo "Survey information"

The command in this example will create a dialog box with “Survey information” in the title bar. diablo will automatically
handle all of the details of calculating the placement of each control in the dialog box.

To see how diablo simplifies the task of creating dialog boxes in Stata, we can create the same sample dialog box using
standard Stata commands. We begin by defining the same global variables:

. global Name1 "First name:"

. global Name2 "Last name:"

. global Fruit "Favorite fruit:"

. global Car "Favorite car:"

. global LBfruit "apple pear peach grape orange"

. global LBcars "Acura;BMW;Chevy;Dodge;Ferrari"

Then we have to program each window control separately.

. window control static Name1 10 5 80 9

. window control static Name2 100 5 80 9

. window control edit 10 19 80 10 EDname1

. window control edit 100 19 80 10 EDname2 password maxlen 8

. window control static Fruit 10 34 80 9

. window control static Car 100 34 80 9

. window control ssimple LBfruit 10 48 80 50 LBpick

. window control scombo LBcars 100 48 80 30 CBpick parse(;)

. window control radbegin "red" 10 103 30 10 RAcolor

. window control radio "green" 45 103 30 10 RAcolor

. window control radend "blue" 80 103 30 10 RAcolor

. window control check "student" 120 103 70 10 CHpick

. window control button "OK" 10 118 60 12 OKchek default

. window control button "Cancel" 120 118 60 12 DBcancel

Finally, we create the dialog box with the window dialog ([R] window dialog) command.

. window dialog "Survey information" . . 195 150

Note the differences between the diablo method and the standard Stata method of creating the same dialog box. Using
diablo almost always requires fewer (and never more) commands than the standard method. In this example, the diablo method
requires eight fewer commands than the standard method. In addition, diablo eliminates the need to specify explicit coordinates
for the placement of dialog box controls. This feature permits more general and flexible code and saves the programmer time in
the development process. By requiring explicit placement coordinates, however, the standard Stata method offers finer control
of dialog box layout.

As another example, we use diablo to produce a dialog box that has the same components as the example in the Stata
manual (see [R] window control). The following program produces the dialog box in Figure 2, which only differs slightly from
the Stata example.

program define stdb

version 5.0

local varlist opt

parse "`*'"

global DB_var "`varlist'"

20 Stata Technical Bulletin [STB-35]

global CHpick1 1

global CHpick2 0

global CHpick3 0

diablo 1, ch["Check 1 ", CHpick1] | ch["Check 2 ",CHpick2] | ch["Check 3 ",CHpick3]

global RApick 1

diablo 2, ra["radio 1","radio 2","radio 3",RApick]

global Name1 "Please enter name:"

global Name2 "Please enter password:"

diablo 3, st[Name1] | st[Name2]

diablo 4, ed[EDname1] | ed[EDname2, password maxlen 8]

global Name3 "Select many:"

global Name4 "Select one:"

diablo 5, st[Name3] | st[Name4]

diablo 6, lm[DB_var,DB_ms] | ls[DB_var,DB_ss]

diablo 7, st[Name3] | st[Name4]

diablo 8, cm[DB_var,DB_ms1] | cs[DB_var,DB_ss1]

diablo 9, bu["OK", DBok, default] | bu["Cancel",DBcancel]

local ok 1

global DBok "di `ok'"

global DBcancel "exit 3000"

diablo "Test Dialog"

end

Figure 2.

Conclusion

In summary, the standard method of dialog box construction may be appropriate for boxes requiring unconventional
configurations of window controls. For most applications, however, diablo offers significant advantages in writing compact,
simple, and flexible code to construct dialog boxes in Stata.

Stata Technical Bulletin 21

sbe13.1 Correction to age-specific reference intervals (“normal ranges”)

Eileen Wright, Royal Postgraduate Medical School, UK, ewright@rpms.ac.uk
Patrick Royston, Royal Postgraduate Medical School, UK, proyston@rpms.ac.uk

In our article in the previous edition of STB (Wright and Royston 1996), there is an error in the description of the data
from the American HANES I Survey of Health and Nutrition (page 29). The text states that the data are the heights of 2274 girls,
while the axis labels and legends of the figures refer to weight. We would like to confirm that the results, graphs, and output
from xriml are all obtained from the data on weight and that the word “height” should be read as “weight”. We apologize for
any confusion this may have caused.

Reference
Wright, E. and P. Royston. 1996. sbe13: Age-specific reference intervals (“normal ranges”). Stata Technical Bulletin 34: 24–34.

sg63 Logistic regression: standardized coefficients and partial correlations

Joseph Hilbe, Arizona State University, atjmh@asuvm.inre.asu.edu

Many medical research journals have articles which provide standardized coefficients for logistic regressions models on
clinical data. Although these can be produced quite easily in SAS, Stata does not provide for such output. Since standardized
coefficients are unitless, they can provide information as to the relative worth a predictor has to the model.

I have provided a command called lstand to be used following the logistic command which displays the predictor,
its coefficient, odds ratio, standardized coefficient, partial correlation (Atkinson’s R), and the p-value. I have found it useful to
directly import the resultant table into a word processor when preparing the results section of a manuscript.

Syntax

lstand

Remarks

Standardized coefficients are calculated in the same manner as in SAS:

Bsp
�2=3

where the denominator is the standard deviation of the underlying logistic distribution, B is the predictor estimate, and s is the
standard deviation of the predictor.

Partial correlations, otherwise known as Atkinson’s R, are calculated as

R =

s
W � 2

2jL0j

where W is the Wald statistic and jL0j is the absolute value of the intercept log-likelihood. I had written a program to display
partial correlations and other statistics for STB-7 (May 1992), but it is now outdated.

Example

We use the low birth weight data described in Hosmer and Lemeshow (1989, Appendix 1) and in the Stata manual (see
[R] logistic). First, we use logistic:

22 Stata Technical Bulletin [STB-35]

. logistic low age lwt smoke ptl ht ui

Logit Estimates Number of obs = 189

chi2(6) = 25.88

Prob > chi2 = 0.0002

Log Likelihood = -104.39591 Pseudo R2 = 0.1103

--

low | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--

age | .9586258 .0331527 -1.222 0.222 .895801 1.025857

lwt | .9858131 .0065579 -2.148 0.032 .9730433 .9987505

smoke | 1.734347 .5959725 1.602 0.109 .8843789 3.401213

ptl | 1.80987 .630593 1.703 0.089 .9142657 3.582796

ht | 6.439757 4.419149 2.714 0.007 1.677839 24.7166

ui | 2.089219 .9537039 1.614 0.107 .8539267 5.111489

--

Now we see the results of lstand:

. lstand

Table of Predictor Estimates:

Standardized Coefficients and Partial Correlations

No. Var Coef OR St.Coef PartCorr Prob(z)

===

0 Constant 1.3790

1 age -0.0423 0.9586 -0.1234 0.0000 0.222

2 lwt -0.0143 0.9858 -0.2409 -0.1055 0.032

3 smoke 0.5506 1.7343 0.1486 0.0492 0.109

4 ptl 0.5933 1.8099 0.1614 0.0619 0.089

5 ht 1.8625 6.4398 0.2511 0.1512 0.007

6 ui 0.7368 2.0892 0.1447 0.0508 0.107

===

Reference
Hosmer, D. W., Jr., and S. Lemeshow. 1989. Applied Logistic Regression. New York: John Wiley & Sons.

sg64 pwcorrs: An enhanced correlation display

Fred Wolfe, Arthritis Research Center, Wichita, KS, fwolfe@southwind.net

The Stata commands correlate and pwcorr display the Pearson correlation matrix for a group of variables. correlate
performs the analysis using casewise deletion, while pwcorr is a pairwise procedure. spearman displays Spearman’s rank
correlation for a single pair of variables at a time. Although these commands provide the desired results, the default formatting
of the output is often unsatisfactory.

Suppose one has a dataset of 200 variables and is interested in the correlation of only a few of these variables with many
or all of the rest of the variables. Using pwcorr or correlate one must display the entire matrix. Since the procedure displays
only seven columns at a time, a complete display of such a matrix would fill more than 75 computer screens. One could speed
up the output by moving the variables of major interest to the front of the variable list using aorder and then “breaking” after
a sufficient number of column variables and their row pairs have been displayed. To do this is awkward at best; to do it with
the spearman procedure is impossible.

The pwcorrs command is an improved version of pwcorr and spearman that combines the features of both commands
into single command that has enhanced formatting.

First, pwcorrs allows the specification of from 1 to 6 column variables. It then displays the correlations of these n variables
with the selected row variables. If no column variables are selected, then pwcorrs defaults to the standard Stata method of
displaying the entire correlation matrix.

pwcorrs also allows control over the row variables. Using the select option, the analyst can display an alphabetic list
of row variables, e.g., select(a b g,s-t).

pwcorrs will display the output in the dataset order or, optionally, in sorted order. If required, casewise deletion can be
specified. To make the output more appropriate and more useful for exporting, variables that are specified more than once will
be deleted, and string variables will be skipped and not displayed. The above option incorporates a suggestion of Nick Cox
(University of Durham, UK) that specifies the minimum level of correlation coefficient required for printing.

Stata Technical Bulletin 23

The original code is modified from the standard Stata (version 5.0) ado files, and the help files were similarly derived from
Stata’s. Helpful criticisms, comments and ideas were obtained from Cox.

Syntax

pwcorrs

�
varlist

� �
weight

� �
if exp

� �
in range

� �
, obs sig print(#) star(#) bonferroni

sidak above(#) vars(#) sort cwdeletion spearman select(list)
�

Options

obs adds a line to each row of the matrix reporting the number of observations used in calculating the correlation coefficient.

sig adds a line to each row of the matrix reporting the significance level of each correlation coefficient.

print(#) specifies the significance level of correlation coefficients to be printed. Coefficients with larger significance levels are
left blank. print(10) or print(.1) would list only coefficients significant at the 10% level or better.

star(#) specifies the significance level of coefficients to be starred. star(5) or star(.05) would star all coefficients significant
at the 5% level or better.

bonferroni makes the Bonferroni adjustment to calculated significance levels. This affects printed significance levels and the
print() and star() options. pwcorrs, print(.05) bonferroni prints coefficients with Bonferroni-adjusted significance
levels of .05 or less.

sidak makes the Sidak adjustment to calculated significance levels. This affects printed significance levels and the print() and
star() options. pwcorrs, print(.05) sidak prints coefficients with Sidak adjusted significance levels of .05 or less.

above(#) specifies the minimum level of correlation coefficients to be printed. Coefficients with smaller coefficients are left
blank. above(.5) would list only coefficients of 0.5 or greater.

vars(#) specifies that on the first # variables on the varlist are to be correlated with the variables on the varlist. This produces
columns of correlations rather than a correlation matrix. From 1 to 6 variables may be specified.

sort requests the varlist be reported in sorted order. If vars(#) is specified, the first vars(#) will not be sorted.

cwdeletion removes observations (cases) with missing values for the varlist from the calculations.

spearman specifies Spearman correlations. The default is to perform Pearson correlations.

select(list) selects the letters of the alphabet to be included in the analyses. A range can be selected as well, e.g., (a f s-w).

Examples

We begin by looking at Stata’s automobile data. Using the command pwcorrs with no arguments gives the same output
as pwcorr except the make variable is not displayed in the list of correlations. The command

. pwcorrs price weight mpg displ, sig var(2) sort

results in

Pearson Correlations

| price weight

----------+------------------

price | 1.0000

|

|

weight | 0.5386 1.0000

| 0.0000

|

displ | 0.4949 0.8949

| 0.0000 0.0000

|

mpg | -0.4686 -0.8072

| 0.0000 0.0000

|

24 Stata Technical Bulletin [STB-35]

since the var(2) option says to display correlations of the first two variables in the list with all the variables in the list. The
sig option produces the rows of significance levels of the correlations, all of which are 0 to four decimal places in this example,
and the sort option specifies that after the first two variables, the “row variables” are to be displayed in sorted order.

If we enter the command

. pwcorrs price weight mpg displ, sig obs var(2) above(0.5) sp cwd sort

we get

Spearman Correlations

(n=74)

| price weight

----------+------------------

price | 1.0000

|

| 74

|

weight | 1.0000

| 0.0000

| 74 74

|

displ | 0.9054

| 0.0010 0.0000

| 74 74

|

mpg | -0.5419 -0.8576

| 0.0000 0.0000

| 74 74

|

which are the Spearman correlations because of the sp option, the number of nonmissing observations for each pair of variables is
displayed because of the obs option, only those correlations above 0.5 in absolute value are displayed because of the above(0.5)
option, and all cases are removed for all variables if that observation is missing for any variable (none are removed in this
example).

We next consider the hacomp3.dta dataset which is composed of demographic, clinical, radiographic, and laboratory
variables obtained on 96 persons with rheumatoid arthritis and 96 persons with osteoarthritis. In this group, we are studying two
laboratory markers of joint damage, hyaluronic acid (ha) and cartilage oligomeric matrix protein (comp). There are a total of 80
variables so pwcorrs makes it easier to study the correlations.

First, a description of the dataset:

. describe

Contains data from hacomp3.dta

obs: 192 Hyaluron Collagen Matrix Protei

vars: 80 18 Dec 1996 12:08

size: 37,248 (99.8% of memory free)

--

1. ha double %10.0g HA

2. comp double %10.0g COMP

3. cibloc str3 %9s Location of ELISA plate

4. mosort int %8.0g Original sort Order

5. plate byte %9.0g Plate #

6. patkey int %10.0g Patient identifier

7. encountr byte %8.0g Visit #

8. specdate int %d Specimen date

9. lastname str14 %14s

10. firstnam str10 %10s

11. age float %9.0g Age

12. duration float %9.0g Disease duration

13. followup float %9.0g Followup (years)

(output omitted)
80. hnar byte %9.0g Narrowing both hands additive

Now we get Spearman correlations for the variables ha and comp with all of the variables whose names start with the
letters “a”, “f”, and any letter in the range “s” through “w”:

Stata Technical Bulletin 25

. pwcorrs ha com _all, v(2) sort sel(a f s-w) sp

Spearman Correlations

| ha comp

----------+------------------

ha | 1.0000

comp | 0.3848 1.0000

age | 0.4940 0.1602

am_stiff | 0.1675 0.1491

anxindex | 0.0539 -0.0733

fatigsca | 0.0673 0.0345

followup | 0.0622 0.1599

severity | 0.1855 -0.0135

sex | 0.0978 0.1652

sleepsca | 0.0999 0.0032

smokenow | -0.0079 -0.0391

smokepst | 0.0117 -0.0154

smokeve | 0.0204 0.0112

specdate | -0.0687 0.0183

tjrhipl | 0.1161 -0.0021

tjrhipr | -0.0913 -0.0294

tjrknl | 0.1900 0.0424

tjrknr | 0.1902 0.1813

wdi | 0.2440 0.1255

weight | -0.0919 -0.0369

wpainsca | 0.0965 -0.0438

sg65 Computing intraclass correlations and large ANOVAs

John R. Gleason, Syracuse University, 73241.717@compuserve.com

Stata has long offered the loneway command as a means of computing the intraclass correlation coefficient, and of
performing a single-factor ANOVA with a large number of levels. However, loneway has some flaws: (1) its estimate of the
intraclass correlation can be distorted in highly unbalanced analyses; (2) its estimate of the intraclass correlation is incorrect
for weighted analyses; (3) its estimate of the reliability of a group-averaged score is incorrect; (4) for weighted analyses with
missing data, it produces the wrong ANOVA table [Editor’s note: this bug has been fixed in the official updates on this STB

disk]; and (5) it is extremely slow. The last point may be critical because simulation might be the best way to learn about the
sampling behavior of an intraclass correlation.

This insert offers three commands for improved calculation of intraclass correlations, including a replacement for loneway.
The new commands also offer several variations on the basic ANOVA approach to estimating intraclass correlations. We begin
with a review of the main features of that approach.

The random-effects ANOVA model

The intraclass correlation � has a long history of application, including studies of familial resemblance in biology, and
of reliability of measurements in psychology and related disciplines. The oldest estimator of � is based on computing the
ordinary Pearson r over all possible pairs of observations within a subgroup. Karlin et al. (1981) present a class of such pairwise
estimators, a class that includes the maximum likelihood (under normality) estimator as a special case. Here, we concentrate on
the ANOVA approach, where estimation of � is viewed as a variance components problem. The notation extends that of Donner
(1986), who provides a very useful review of the subject.

Suppose we have a response variable y measured on each of ni elements within each of k groups or classes. We adopt the
model

yij = �+ ai + "ij i = 1; 2; : : : ; k; j = 1; 2; : : : ; ni (1)

where the ai and the "ij are independent random variables with E(ai) = E("ij) = 0, Var(ai) = �
2
a, and Var("ij) = �

2
" . Hence,

E(yij) = � and Var(yij) = �
2
a + �

2
" . This is, of course, a random-effects analysis of variance model, where often it is also

assumed that all random terms have Gaussian distributions. In studies of familial resemblance, the classes might be k families
selected at random, and the i-th family has ni members; the ni perhaps vary widely across families. In studying the reliability
of ratings or other assessments, one might have a random sample of k individuals or stimuli (the classes), each assessed by a
panel of raters or judges. In this case, one would typically have the same number of ratings per stimulus: n1 = � � � = nk = n.
In any event, the total number of observations is N =

P
i ni.

Consider now a more general version of model (1), in which observation yij is in fact the mean of wij independent
values of y = � + ai + "ijk, with the ai and "ijk as just described. Then model (1) is unchanged except that we now have

26 Stata Technical Bulletin [STB-35]

Var("ij) = �
2
"=wij , so that E(yij) = � and Var(yij) = �

2
a + �

2
"=wij . This is the weighting scheme presumed by Stata’s

aweight option; the unweighted version of model (1) is just the case where wij = 1 for all i and j.

Now define

� = �
2
a=�

2
" and � =

�
2
a

�2a + �2"

=
�

1 + �

Under model (1), � equals the ordinary correlation between any two observations in the same class or group, i.e., the intraclass
correlation. From this perspective, the central problem is to estimate a ratio of variance components (�). The analysis of variance
for this model would yield an among-groups variance (MSa) and an error variance (MSe):

MSa =
X
i

wi�(�yi� � �y
��
)2=(k � 1) and MSe =

X
i

X
j

wij(yij � �yi�)
2
=(N � k)

where

wi� =
X
j

wij ; �yi� =

P
j wijyij

wi�

; and �y
��
=

P
i wi��yi�P
i wi�

Straightforward calculations show that

E(MSe) = �
2
" and E(MSa) = �

2
" + g�

2
a

where

g =

P
i wi� �

P
i w

2
i�=
P

i wi�

k � 1
(2)

In the unweighted case, we have

wi� = ni;

X
i

wi� = N; and g =
N �

P
i n

2
i =N

k � 1
(3)

Estimating rho

The core of the ANOVA method of estimating � is to equate MSa and MSe with their expected values, and solve for
estimates of �2" and �

2
a, and hence of �. This gives

�̂ =
MSa �MSe

gMSe
=

F
� � 1

g
(4)

where F
� = MSa=MSe is the usual F -statistic. Then

�̂ =
�̂

1 + �̂
=

F
� � 1

F � � 1 + g
(5)

Note that F �

< 1 is possible, in which case it is customary to set �̂ = 0. This is often referred to as the ANOVA estimate of
�. Still, other possibilities must be considered, so define the function

r(x; a; b) = max

�
x� a

x� a+ ab
; 0

�
(6)

where all arguments are positive real numbers. Then the estimator given in (5) is just �̂ = r(F �

; 1; g).

The unweighted, balanced case

To motivate some other possibilities, consider the unweighted, balanced version of model (1), where wij = 1 for all i and
j, n1 = � � � = nk = n, and g = n. If we add the usual normality assumption so that ai � N(0; �2a) and "ij � N(0; �2"), then
F

� is distributed as a multiple of the central F distribution: F � = MSa=MSe � (1 + n�)F (k� 1; N � k). It is easy to show
that (4) is a biased estimator of �, and that an unbiased estimator would result if we instead used

�̂ =
F

� � E(F)

nE(F)
where E(F) =

N � k

N � k � 2

Stata Technical Bulletin 27

Starting with this estimate of �, we would obtain

�̂ =
�̂

1 + �̂
= r(F �

; E(F); n) (7)

Also in this special case, exact confidence intervals for � are easily derived from the central F distribution. For confidence
1��, the endpoints of the interval are r(F �

; F1��=2; n) and r(F �

; F�=2; n) where Fp is the p-th quantile of F (k� 1; N � k).
As �! 1, the endpoints converge to r(F �

; F:5; n), which suggests

�̂ =
F

� � F:5

n
and �̂ =

�̂

1 + �̂
= r(F �

; F:5; n) (8)

where F:5 = F:5(k � 1; N � k). So, �̂ in (8) is the center, in a sense, of a confidence interval for � at any �.

Thus, in the unweighted, balanced case, the estimators r(F �

; 1; n), r(F �

; F:5; n), and r(F �

; E(F); n) correspond to
choosing 1, the median, or the mean as reference points in the F (k � 1; N � k) distribution. When k and n are large, those
three points will be quite similar, but in small samples there may be useful distinctions among the resulting estimators of �.
Also, the distribution of F � is not generally proportional to central F outside this special case, so the nominal properties of the
reference points F:5 and E(F) will then be at best approximate.

Finally, consider an application in which this special case often arises, estimating the reliability of assessment and measurement
devices. In this situation, one has a set of n raters, judges, or measuring devices and, barring the occasional failure, the value of n
is constant across the k objects assessed or measured. In this situation, � is the reliability of an individual rating or measurement,
and one might well be interested in the reliability that would be attained if one were to use the mean of t measurements.
(Typically one would pick t = n, but equations (9) and (10) below are valid for any t > 0.) If individual measures arise from
model (1), then the mean �yi� of t such measurements of a given object has variance Var(�yi�) = �

2
a + �

2
"=t, and so the reliability

is

�t =
�
2
a

�2a + �2"=t
=

t�

1 + t�
(9)

This is the so-called “Spearman–Brown prophecy formula,” which may also be written in the form

�t =
t�

1 + (t� 1)�
(10)

Equation (10) can be found in Winer (1962, 127) and Nunnally (1978, 243), among many other sources.

To estimate �t, one merely substitutes �̂ for � in (9), or �̂ for � in (10). Hence, if one estimates � as �̂ = r(x; a; b), then
the corresponding estimate of �t must be

�̂t =
t r(x; a; b)

1 + (t� 1)r(x; a; b)
= r(x; a; b=t)

For the common choice �̂ = r(F �

; 1; n) and t = n, we obtain �̂n = r(F �

; 1; 1) = (F � � 1)=F �. �̂n can be viewed as the
reliability of the group means �yi�, an interpretation not generally available in unbalanced designs.

New commands for intraclass correlations

The flaws in loneway can now be stated succinctly: (1) The reported �̂ is not the usual choice r(F �

; 1; g) but is instead
r(F �

; 1; N=k), and N=k can be far from g in weighted or unbalanced analyses; (2) when the user requests the aweight option,
the reported �̂ is incorrect; (3) the reported �̂t is inconsistent with both the Spearman–Brown formula and the incorrect version
of that formula given in the Reference Manual; (4) when there are aweights and missing values of y or the group variable, the
reported values of MSa and MSe are incorrect [Editor’s note: this bug has been fixed in the official updates on this STB disk];
and (5) execution time is much too long, especially when k � 375.

Before demonstrating these flaws, we introduce a command to replace loneway. The syntax of l1way is

l1way response var group var
�
weight

� �
if exp

� �
in range

� �
, center(Fpos) ems

�

28 Stata Technical Bulletin [STB-35]

As with loneway, aweights are allowed. For compatibility with loneway, by default l1way returns �̂ = r(F �

; 1; N=k),
where r() is defined by (6), above. The option ems causes l1way to replace N=k with g in calculating �̂, where g is given
by (2) above. The option center() selects a value for the second argument of the function r(), i.e., a reference point in the
F (k � 1; N � k) distribution. The argument Fpos may be 1 (the default), or med or mean which select F:5 or E(F) for the
relevant F distribution as the reference point.

Consider an example generated from model (1) with �
2
" = 1 and � = 0:6:

. use ex1

. list

y group w

1. 1.398982 1 1

2. . 1 1

3. . 2 1

4. -.853521 6 1

(output omitted)

21. . 6 1

22. 1.277835 1 1

23. . 5 1

24. .5526405 5 100

. tab group, summ(y)

Group | Summary of Response variable

variable | Mean Std. Dev. Freq.

------------+------------------------------------

1 | 1.6333718 .51446953 3

2 | .67936756 1.3004536 3

3 | -1.2514399 .83630143 3

4 | -1.0245926 .81025697 4

5 | -.46231361 .87985187 3

6 | -.57802446 .24229907 3

------------+------------------------------------

Total | -.21239402 1.2476196 19

Note that some y values are missing so that N = 19 and k = 6. First, fit an unweighted version of model (1):

. loneway y group

One Way Analysis of Variance for y: Response variable

Source SS df MS F Prob > F

--

Between group 19.072222 5 3.8144444 5.54 0.0060

Within group 8.9457627 13 .68813559

--

Total 28.017985 18 1.5565547

R-squared = 0.6807

Estimated SD of group effect = .93189008

Estimated SD within group = .82953938

Intra-group correlation = 0.5893 (SD = 0.1387)

Estimated reliability of a group-averaged score = 0.8179

Conservative t-deflator = 1.5174

. l1way y group, ems

(The same ANOVA table reported by loneway)

Intra-group r = 0.5899

Estimated reliability of a group mean (n=3.16) = 0.8196

loneway reports �̂ = r(5:54; 1; N=k) = 0:5893, whereas l1way (with the ems option) reports �̂ = r(5:54; 1; g) = 0:5899. The
two values differ little here because the design is nearly balanced so that N=k = 3:167 is near g = 3:158.

Now examine the value �̂t = 0:8179 reported by loneway. Recall that �̂t is the estimated reliability of the mean of t
values of y: For what value of t is �̂t = 0:8179? In a balanced design, one might suppose that t = n, but here there is no
single n. The Reference Manual claims that (in the present notation) t = N=k and that �̂N=k = (N=k)�̂=(1 + (N=k)�̂) =
3:167�0:5893=(1+3:167�0:5893). This proves to be 0:6511 which differs from the reported 0:8179. And if �̂N=k = 0:8179,
�̂ = 0:5893 and this formula were correct, then working backward would give N=k = 7:622 as the “average group size,” which
makes little sense given that maxfnig = 4. In fact, the Manual’s formula for �̂t is incorrect; see (10) above.

Stata Technical Bulletin 29

l1way has used (10) to obtain �̂g = r(5:54; 1; 1) = 0:8196; the value of g is shown after n= in the output. A sensible
interpretation in this case is that an average of 3 values of y from each group would have reliability near 0:82. Since 3 is near all
of the ni, 0:82 can be viewed as an estimate of the reliability of the cell means �yi�; in weighted or more unbalanced situations, the
analogous interpretation may not hold. Finally, note that without the ems option, l1way would calculate �̂ = r(F �

;Fpos; N=k)
and �̂N=k = r(F �

;Fpos; 1).

Next, consider fitting model (1) using w as the weight variable. w consists entirely of the value 1 except for observation 24,
where w equals 100. That is, we suppose that the 24th value of y is actually the mean of 100 y values (an extreme example,
admittedly). l1way produces

. l1way y group [aw=w], ems

One Way Analysis of Variance for y: Response variable

Source SS df MS F Prob > F

--

Between group 4.0902243 5 .81804486 5.53 0.0060

Within group 1.92339 13 .14795308

--

Total 6.0136143 18 .33408968

Intra-group r = 0.4352

Estimated reliability of a group mean (n=5.88) = 0.8191

and the built-in command oneway gives the same ANOVA table, but loneway yields

. loneway y group [aw=w]

One Way Analysis of Variance for y: Response variable

Source SS df MS F Prob > F

--

Between group 3.682831 5 .73656621 4.11 0.0185

Within group 2.3307833 13 .17929102

--

Total 6.0136143 18 .33408968

(output omitted)

The problem, it seems, is that the dataset contains observations where y is missing but w is not [Editor’s note: this bug has
been fixed in the official updates on this STB disk]:

. replace w = . if y == .

(5 real changes made, 5 to missing)

. loneway y group [aw=w]

One Way Analysis of Variance for y: Response variable

Source SS df MS F Prob > F

--

Between group 4.0902243 5 .81804486 5.53 0.0060

Within group 1.92339 13 .14795308

--

Total 6.0136143 18 .33408968

R-squared = 0.6802

Estimated SD of group effect = .43143552

Estimated SD within group = .38464669

Intra-group correlation = 0.5885 (SD = 0.1389)

Estimated reliability of a group-averaged score = 0.8174

Conservative t-deflator = 1.5169

Note that because the weighted and unweighted analyses yield nearly the same F
�, loneway must produce nearly the

value of �̂ = r(F �

; 1; N=k) in the two cases. This is tantamount to claiming that it doesn’t matter whether the 24th observation
provides one y or the mean of 100 y values, which seems peculiar. To paint the problem more boldly, suppose that in fact every
observation provides a y that is the mean of 100 individual y values from model (1):

30 Stata Technical Bulletin [STB-35]

. gen W = 100

. l1way y group [aw=W], ems

One Way Analysis of Variance for y: Response variable

Source SS df MS F Prob > F

--

Between group 19.072222 5 3.8144444 5.54 0.0060

Within group 8.9457627 13 .68813559

--

Total 28.017985 18 1.5565547

Intra-group r = 0.0142

Estimated reliability of a group mean (n=315.79) = 0.8196

But, the command loneway y group produces exactly the same output as loneway y group [aw=W]. In particular, loneway
claims that �̂ = 0:5893 whether each y is the mean of 1 or of 100 values; plainly, this is incorrect.

Note that because Stata scales the weights so that
P

i wi� = N , the ANOVA table is the same in the unweighted

and weighted analyses. In the unweighted case, working from model (1) gives g = 3:158, c�2" = MSe = 0:6881, andc�2a = (3:8144 � 0:6881)=3:158 = 0:9900. Then, �̂ = 0:9900=0:6881 = 1:4387, and �̂ = 1:4387=(1 + 1:4387) = 0:5899,
as reported by l1way. But if each y is the mean of 100 values from model (1) as the weight variable W asserts, then

MSe = 0:6881 is actually an estimate of �2"=100, and so c�2" = 100MSe = 68:81. Then, �̂ = 0:9900=68:81 = 0:014387, and
�̂ = 0:014387=(1+0:014387) = 0:0142, also as reported by l1way, just above. Note that g = 315:79 in this weighted analysis,
so that l1way’s �̂t = 0:8196 is just an estimate that group means based on 316 individual y values would have reliability near
0:82.

Consider one more extreme example, this time to demonstrate the effects of imbalance in unweighted analyses. For a
fixed value of N , a worst case occurs when one group is of size N � k + 1 and the remaining groups are of size 1, for then
g = 2� k=N . Data set ex2.dta creates this situation with k = 6, n1 = � � � = n5 = 1, n6 = 100, and y generated from model
(1) with �

2
" = 1 and � = 0:6. Given 99 df for estimating �

2
" , we might expect a sensible estimate of �, even though 5 of the 6

groups have n = 1:

. use ex2, replace

. l1way y group, ems

One Way Analysis of Variance for y: Unweighted Response variable

Source SS df MS F Prob > F

--

Between group 25.639151 5 5.1278303 5.15 0.0003

Within group 98.602474 99 .99598458

--

Total 124.24162 104 1.194631

Intra-group r = 0.6810

Estimated reliability of a group mean (n=1.94) = 0.8058

. loneway y group

(The same ANOVA table reported by l1way)

Intra-group correlation = 0.1916 (SD = 0.0648)

Estimated reliability of a group-averaged score = 0.2211

Conservative t-deflator = 4.3667

We have here N=k = 17:5 and g = 1:94, and loneway computes �̂ = r(5:15; 1; 17:5) = 0:1916 whereas l1way returns
�̂ = r(5:15; 1; 1:94) = 0:6810. That is, E(MSa) = �

2
" + 1:94�2a, but loneway acts as though E(MSa) = �

2
" + 17:5�2a, and

so gives an estimate far from the true �. l1way estimates that group means based on 2 values of y would have reliability near
0:81, whereas loneway appears to claim that the means based on 17:5 values of y would have reliability near 0:22. This latter
value is wildly incorrect, because plugging t = 17:5 and �̂ = 0:1916 into equation (10) gives �̂t = 0:8058, the same value
reported by l1way. Note also that the observed means �yi� will not behave much like the means of 17–18 y values.

On computational efficiency

loneway requires more memory for temporary variables than l1way, and under Stata 5.0 for Windows l1way is about
2–2.5 times faster than loneway. Still, it is possible to do much better, at least in some situations. First, if the number of groups

Stata Technical Bulletin 31

k is less than 376 then the built-in command oneway can be used to do most of the work. The command iclassr takes just
that approach; the syntax is

iclassr response var group var
�
weight

� �
if exp

� �
in range

� �
, center(Fpos) ems noisily

�
The noisily option causes display of the ANOVA table which is otherwise suppressed; the other options are the same as those
of l1way. For k < 376, iclassr does exactly the same job as l1way, but faster. How much faster? With the ems option,
iclassr is perhaps only 20–25% faster than l1way. But when N=k is near g, it is reasonable to omit the ems option, and then
iclassr is 2–3 times faster than l1way, or 4–6 times faster than loneway.

Second, suppose that n1 = � � � = nk = n = 2. This is a common situation in reliability problems, where one has
assessments of k objects and the goal is to estimate the inter-rater or inter-device reliability � for pairs of raters or measuring
devices. Typically, the data would be unweighted, and then g = n = 2 which permits very rapid calculation of �̂. The command
iclassr2 caters to this situation; the syntax is

iclassr2 response var1 response var2
�
if exp

� �
in range

� �
, center(Fpos)

�
loneway, l1way, and iclassr expect a single response variable y and a group or class variable (“long format”), but iclassr2
expects paired values of y stored in two response variables (“wide format”). Weights are not permitted, and iclassr2 enforces
ni = 2 by performing casewise deletion (observations are ignored if either response variable is missing). The center option is
the same as in l1way and iclassr, and there is no need for an ems option.

In addition to allowing wide format data, iclassr2 provides speed. At k = 375, iclassr and iclassr2 are about equally
fast, being about 3 times faster than l1way and at least 5–6 times faster than loneway. When k is large (say, k � 1000),
iclassr2 can be about 12 times faster than loneway.

Remarks

1. Because N=k can be far from g in unbalanced or weighted analyses, the intraclass correlation �̂ = r(F �

; 1; N=k) reported
by loneway can be a poor estimator, and one should instead compute �̂ = r(F �

; 1; g).

2. But, it may be that g � N=k, e.g., in an unweighted analysis of a nearly balanced design. �̂ = r(F �

; 1; N=k) and
�̂ = r(F �

; 1; g) will then be numerically similar, but there can be a large speed advantage in computing the former; omitting
the ems option of l1way or iclassr gains that advantage. Most of the cost of g is for

P
i n

2
i =N , which loneway stores

in the global macro S 3 but, interestingly, does not use to compute �̂ = r(F �

; 1; g).

3. l1way, iclassr, and iclassr2 omit some items reported by loneway. This includes the SD of �̂ which loneway obtains
from a formula that assumes a large k, and normally distributed yij in model (1). The SD is of little interest when � is far
from 0, because of skew in the distribution. More importantly, one will often be better served by simulating the sampling
properties of �̂, and hence the emphasis on speed in this insert.

Saved Results

l1way, iclassr, and iclassr2 each save �̂ and �̂t in global macros S 1 and S 2, respectively. Following iclassr,
result() will hold the same contents as following the command oneway. l1way creates a similar situation by storing in

scalars S 1–S 6 the values that would be found in result(1)– result(6) following the command oneway; see [R] oneway
for details.

Acknowledgment

This research was supported by a grant R01-MH54929 from the National Institute on Mental Health to Michael P. Carey.

References
Donner, A. 1986. A review of inference procedures for the intraclass correlation coefficient in the one-way random effects model. International

Statistical Review 54: 67–82.

Karlin, S., E. C. Cameron, and P. T. Williams. 1981. Sibling and parent–offspring correlation estimation with a variable family size. Proceedings of
the National Academy of Sciences of the USA 78: 2664–2668.

Nunnally, J. C. 1978. Psychometric Theory. 2d ed. New York: McGraw–Hill.

Winer, B. J. 1962. Statistical Principles in Experimental Design. New York: McGraw–Hill.

32 Stata Technical Bulletin [STB-35]

sg66 Enhancements to the alpha command

Jeroen Weesie, Utrecht University, Netherlands, weesie@weesie.fsw.ruu.nl

This insert describes a rather extensive modification of Stata’s alpha command, called alpha2. The main extensions that
were made are

1. An option to display the effects of individual items. For each of the items, alpha2 displays the item-test correlation, the
item-rest correlation, the average inter-item covariance/correlation for the test scale excluding the item, and Cronbach’s
alpha.

2. Variable labels can be displayed in a compact format to ease the interpretation of the long item batteries.

3. An option to specify which items are to be reversed.

4. Options to characterize the observations to be used in terms of the number of nonmissing values among the items.

As far as I know, alpha2 is backward compatible with alpha. For example, it returns the same results in the S # macros.
If the individual item effects are not requested, alpha2 is (much) faster than alpha if listwise deletion is used, and somewhat
slower otherwise.

We illustrate alpha2 with the automobile data, auto.dta. However, we introduced some missing values in most of the
variables and perturbated the price variable for illustration of several features of alpha2. First, I want to compare Cronbach’s
� for a standardized additive scale as computed by the standard alpha command, and by alpha2.

. alpha price hdroom rep78 trunk weight length turn displ gratio, std gen(X)

Scale = sum(standardized variables)

rep78: reversed

gratio: reversed

Average interitem correlation: 0.5050

Number of items in the scale: 9

Scale Reliability Coefficient: 0.9018

. alpha2 price hdroom rep78 trunk weight length turn displ gratio, std

Test scale = mean(standardized items)

Reversed items: rep78 gratio

Average interitem correlation: 0.5050

Number of items in the scale: 9

Scale Reliability Coefficient: 0.9018

While the scale is actually rather satisfactory at first sight, we like to see whether all items fit the scale. This can be assessed
informally with the new option item.

. alpha2 price hdroom rep78 trunk weight length turn displ gratio, std item

Test scale = mean(standardized items)

item-test item-rest inter-item

Item | Obs Sign correlation correlation correlation alpha

---------+--

price | 61 + 0.3365 0.1748 0.6094 0.9258

hdroom | 61 + 0.6959 0.5921 0.5214 0.8971

rep78 | 69 - 0.5760 0.4447 0.5555 0.9091

trunk | 62 + 0.7796 0.6878 0.4990 0.8885

weight | 61 + 0.9183 0.8835 0.4654 0.8744

length | 56 + 0.9146 0.8791 0.4652 0.8744

turn | 60 + 0.8796 0.8300 0.4756 0.8788

displ | 64 + 0.9113 0.8676 0.4642 0.8739

gratio | 68 - 0.8031 0.7253 0.4914 0.8855

---------+--

Test 0.5050 0.9018

---------+--

Note that alpha2 has a table-like output format that is similar to the format used by, for example, SPSS. We use the standard
term test to denote the additive scale, and item instead of variable. The number of nonmissing values of the items ranges
from 56 to 69 (See column 2). Like alpha, alpha2 estimates correlations (covariances) using all available data by default; see
below for options to modify this behavior.

Stata Technical Bulletin 33

The third column specifies the direction in which an item variable entered the scale. Here, a - sign means that the item
was reversed. The bottom output line in the table gives the (average) inter-item correlation and the alpha coefficient for a test
scale based on all items. These numbers are, as they should be, identical to the compact output of alpha2 if the option item

was not specified. The other lines of output describe the effect of single item on the scale.

The fourth column gives the item-test correlations. Apart from the sign of the correlation for items that entered the scale
in reversed order, these correlations are, or should be, the same numbers that would be obtained with the commands

. alpha price ... gratio, std gen(X)

. corr price ... gratio, gen(X)

Typically, we like the item-test correlations to be roughly the same for all items. Item-test correlations may actually not be
very adequate to detect items that fit poorly, because the poorly fitting items may distort the scale. Thus, it may be more useful
to consider item-rest correlations (Nunnally 1978), i.e., the correlation between an item and the scale that is formed by all other
items. These are shown in column 5. The average inter-item correlations (covariances) of all items, excluding one, are shown
in column 6. Finally, column 7 shows Cronbach’s � coefficient for the test scale that consist of all but one item.

In this case, the price item does not seem to fit well in the scale on all respects. The item-test and item-rest correlations
of price are much lower than for the other items. The average inter-item correlation increases substantially by removing the
item price; apparently, price does not correlate so strongly with the other items. Finally, we see that Cronbach’s � coefficient
would increase from .9018 to .9258 if the item price is dropped—for well-fitting items we would of course expect that �
decreases by “shortening” by test.

Note that .9258 would also be the obtained as the � statistic if we issue the alpha2 command on the item-list that excludes
price.

. alpha2 hdroom rep78 trunk weight length turn displ gratio, std item

Test scale = mean(standardized items)

item-test item-rest inter-item

Item | Obs Sign correlation correlation correlation alpha

---------+--

hdroom | 61 + 0.7013 0.5951 0.6474 0.9278

rep78 | 69 - 0.5767 0.4386 0.6966 0.9414

trunk | 62 + 0.7940 0.7024 0.6161 0.9183

weight | 61 + 0.9298 0.8980 0.5717 0.9033

length | 56 + 0.9251 0.8905 0.5772 0.9053

turn | 60 + 0.8862 0.8355 0.5899 0.9097

displ | 64 + 0.9244 0.8823 0.5722 0.9035

gratio | 68 - 0.8229 0.7488 0.6078 0.9156

---------+--

Test 0.6094 0.9258

---------+--

The variable names for the automobile data are actually reasonably informative. However, the items in long item batteries
that are commonly used to measure personality traits, attitudes or values, etc., are usually named with indexed names such as
item12 1, item12 2, etc. The content of the items used are often too closely related to make meaningful summaries in the 8
characters possible. Thus, I included an output option label that forces alpha2 to produce the same statistical information in
a more compact format that leaves room to includes variable (item) labels. In this compact format alpha2 has to exclude the
number of nonmissing values of the items, it displays the statistics in fewer digits, and uses the somewhat cryptic headers:

it-cor = item-test correlation
ir-cor = item-rest correlation (rest = test-item)
ii-cor = average inter-item correlation/covariance

. alpha2 hdroom rep78 trunk weight length turn displ gratio, std item label

Test scale = mean(standardized items)

Items | S it-cor ir-cor ii-cor alpha label

---------+--

hdroom | + 0.701 0.595 0.647 0.928 Headroom (in.)

rep78 | - 0.577 0.439 0.697 0.941 Repair Record 1978

trunk | + 0.794 0.702 0.616 0.918 Trunk space (cu. ft.)

weight | + 0.930 0.898 0.572 0.903 Weight (lbs.)

34 Stata Technical Bulletin [STB-35]

length | + 0.925 0.890 0.577 0.905 Length (in.)

turn | + 0.886 0.836 0.590 0.910 Turn Circle (ft.)

displ | + 0.924 0.882 0.572 0.903 Displacement (cu. in.)

gratio | - 0.823 0.749 0.608 0.916 Gear Ratio

---------+--

Test 0.609 0.926 mean(standardized items)

---------+--

Finally, similar to alpha’s factor-analytic method to determine “automatically” the sign in which items are entered in the
test scale, alpha2 has an option reverse to set the signs manually.

Syntax

alpha2 varlist
�
if exp

� �
in range

� �
, asis coo detail

gen(newvar) item label min(#) reverse(varlist) std

�

Options

asis indicates that the sense (sign) of each item should be taken as presented in the data. The default is to empirically determine
the sense (using principal components factor analysis) and reverse the scorings for any that enter negatively. Note that
subscales use the same directions of the items. Use reverse (see below) to manually specify the signs (directions) of the
items without transforming the data.

coo specifies that cases with missing values should be deleted “listwise”. The default is pairwise computation of covari-
ances/correlations.

detail specifies that the matrix of inter-item covariance or correlation should be displayed if std is specified. If different
numbers of observations have been used to compute correlations or covariance, these are displayed as well.

gen(newvar) specifies that the scale constructed from varlist is to be stored in newvar. Unless asis is specified, the sense
of items entering negatively is automatically reversed. If std is also specified, the scale is constructed using standardized
(mean 0, variance 1) values of the individual items. Unlike most Stata commands, gen() does not employ casewise deletion.
A score is created for every observation for which there is a response to at least one item (one variable in varlist is not
missing). The additive score is divided by the number of items over which the sum is calculated.

item specifies that item-test and item-rest correlations and the effects of removing an item from the scale are displayed.

label requests that the detailed output table is displayed in a compact format that enables the inclusion of variable labels.

min(#) specifies that only cases with at least # observations are included in the computations. coo is a shorthand to min(k),
with k the number of variables in varlist.

reverse(varlist) specifies that the signs (directions) of the variables (items) in varlist should be reversed.

std specifies that the items in the scale are to be standardized (mean 0, variance 1) before summing.

Saved Results

Like alpha, alpha2 returns the average inter-item covariance/correlation in S 4, the number of items in S 5, and the alpha
statistic in S 6.

Reference
Nunnally, J. C. 1978. Psychometric Theory. 2d ed. New York: McGraw Hill.

Stata Technical Bulletin 35

STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt datasets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology ssa survival analysis
sed exploratory data analysis ssi simulation & random numbers
sg general statistics sss social science & psychometrics
smv multivariate analysis sts time-series, econometrics
snp nonparametric methods svy survey sampling
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified
srd robust methods & statistical diagnostics

In addition, we have granted one other prefix, crc, to the manufacturers of Stata for their exclusive use.

36 Stata Technical Bulletin [STB-35]

International Stata Distributors

International Stata users may also order subscriptions to the Stata Technical Bulletin from our International Stata Distributors.

Company: Applied Statistics & Company: Smit Consult
Systems Consultants Address: Scheidingstraat 1

Address: P.O. Box 1169 Postbox 220
Nazerath-Ellit 17100, Israel 5150 AE Drunen

Phone: +972 6554254 Netherlands
Fax: +972 6554254 Phone: +31 416-378 125

Email: sasconsl@actcom.co.il Fax: +31 416-378 385
Countries served: Israel Email: j.a.c.m.smit@smitcon.nl

Countries served: Netherlands

Company: Dittrich & Partner Consulting Company: Timberlake Consultants
Address: Prinzenstrasse 2 Address: 47 Hartfield Crescent

D-42697 Solingen West Wickham
Germany Kent BR4 9DW U.K.

Phone: +49 212-3390 99 Phone: +44 181 462 0495
Fax: +49 212-3390 90 Fax: +44 181 462 0493

Email: available soon Email: 100412.2603@compuserve.com
Countries served: Austria, Germany, Italy Countries served: Ireland, U.K.

Company: Metrika Consulting Company: Timberlake Consultants
Address: Roslagsgatan 15 Satellite Office

113 55 Stockholm Address: Praceta do Comércio,
Sweden N�13–9� Dto. Quinta Grande

Phone: +46-708-163128 2720 Alfragide Portugal
Fax: +46-8-6122383 Phone: +351 (01) 4719337

Email: hedstrom@metrika.se Telemóvel: 0931 62 7255
Countries served: Baltic States, Denmark, Finland, Email: 100412.2603@compuserve.com

Iceland, Norway, Sweden Countries served: Portugal

Company: Ritme Informatique
Address: 34 boulevard Haussmann

75009 Paris
France

Phone: +33 1 42 46 00 42
Fax: +33 1 42 46 00 33

Email: ritme.inf@applelink.apple.com
Countries served: Belgium, France,

Luxembourg, Switzerland

