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crc41 New lfit, lroc, and lstat commands

The following new features have been added to the lfit, lroc, and lstat set of post-logistic commands:

1. lfit with the group(#) option no longer has any arbitrariness when dividing observations into quantiles for the Hosmer–
Lemeshow goodness-of-fit test.

2. lfit with group(#) has a new option, equal, which prevents anomalies that could occur if there are large numbers of
ties at the quantile boundaries.

3. lfit with group(#) now works when fweights are used with logistic.

4. lfit with the table option produces more output; it displays predicted probabilities, observed and expected counts for
both outcomes, and totals for each group.

5. The rules and asif options can be used to include observations dropped by logistic because their covariates determined
success or failure perfectly.

6. The commands are no longer restricted to the estimation sample; statistics can be computed for any set of observations.
This makes it possible to compute calibration and discrimination statistics for validation samples; see sbe12 (Tilford et al.
1995) in this issue.

7. A vector of coefficients can be used to specify the model rather than the last model estimated by logistic. A goodness-of-fit
test can be computed for a set of published coefficients applied to another data set.

8. A new command lsens produces a graph of sensitivity and specificity versus probability cutoff and optionally creates new
variables containing this data.

9. The output of lstat has been improved.

Syntax

lfit
�
depvar

� �
weight

� �
if exp

� �
in range

� �
, group(#) equal table

all rules asif beta(matname)
�

lroc
�
depvar

� �
weight

� �
if exp

� �
in range

� �
, nograph graph options

all rules asif beta(matname)
�

lstat
�
depvar

� �
weight

� �
if exp

� �
in range

� �
, cutoff(#)

all rules asif beta(matname)
�

lsens
�
depvar

� �
weight

� �
if exp

� �
in range

� �
, nograph graph options genprob(varname)

gensens(varname) genspec(varname) replace

all rules asif beta(matname)
�

Remarks

If you use these new commands the same way you used the old commands, you will get the same results except for lfit,
group(#) which uses a slightly different grouping scheme; see the following discussion for details.

The estimation sample is always used by default. When weights, if, or in are used with logistic, it is not necessary to
repeat them with these commands when you want statistics computed for the estimation sample (although there is no harm in
doing so—the result is the same). Use if, in, or the all option only when you want statistics computed for a set of observations
other than the estimation sample. Only specify weights (only fweights are allowed) when you want to use a different set of
weights.

depvar may only be specified when using the beta() option; see Options below.

Options

all requests that the statistic be computed for all observations in the data set ignoring any if or in restriction specified with
logistic. Note: Any observations dropped by logistic because their covariates determined success or failure perfectly
are excluded (as are any other observations in the data set with the same values as the ones dropped); to include these
observations, use the rules or asif options.



Stata Technical Bulletin 3

rules requests that the predicted probabilities be set to 0 or 1 according to the “rules” determined during estimation for those
observations dropped by logistic because their covariates determined success or failure perfectly. See [5s] logit in the
Stata Reference Manual for a description of the rules option for predict.

asif requests that the predicted probabilities be computed using the estimated coefficients ignoring any exclusion criteria or
“rules” determined during estimation for those observations dropped by logistic because their covariates determined
success or failure perfectly. See [5s] logit in the Stata Reference Manual for a description of the asif option for predict.

beta(matname) specifies a row vector containing coefficients for a logistic model. The columns of the row vector must be
labeled with the corresponding names of the independent variables in the data set. The dependent variable depvar is specified
immediately after the command name.

group(#) specifies the number of quantiles to be used to group the data for the Hosmer–Lemeshow goodness-of-fit test.
group(10) is typically specified. If this option is not given, the Pearson goodness-of-fit test is computed using the covariate
patterns in the data as groups.

equal can only be specified when the group() option is used. This option determines how observations whose predicted
probabilities are exactly equal to a quantile boundary are grouped. If equal is not specified, observations lying on a quantile
boundary are grouped with the lower adjacent quantile. If equal is specified, observations lying on a quantile boundary
are averaged and placed into the lower and upper adjacent quantiles in the proportions required to make the number of
observations in each quantile exactly equal; see Methods and Formulas below.

table displays a table of the groups used for the Hosmer–Lemeshow or Pearson goodness-of-fit test with predicted probabilities,
observed and expected counts for both outcomes, and totals for each group.

nograph suppresses graphical output.

graph options are any of the options allowed with graph, twoway; see [3] twoway.

cutoff(#) specifies the value for determining whether an observation has a predicted positive outcome. Default is 0.5.

genprob(varname), gensens(varname), and genspec(varname) specify the names of new variables created to contain,
respectively, the probability cutoffs and corresponding sensitivity and specificity.

replace requests that, if existing variables are specified for genprob(), gensens(), or genspec(), they should be overwritten.

The new lfit

If you run the logistic command and type lfit (or lfit, group(#)), you will get the Pearson (or Hosmer–Lemeshow)
goodness-of-fit test performed on the estimation sample just as with the old lfit command. We do this below using data from
Hosmer and Lemeshow (1989), omitting those with race classified as “other”.

. logistic low lwd race1 smoke ptd ht if race2~=1

Logit Estimates Number of obs = 122

chi2(5) = 21.77

Prob > chi2 = 0.0006

Log Likelihood = -61.304392 Pseudo R2 = 0.1508

------------------------------------------------------------------------------

low | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

lwd | 1.182983 .6924617 0.287 0.774 .3756005 3.7259

race1 | 3.274937 1.748904 2.221 0.026 1.149843 9.327546

smoke | 3.866022 1.976902 2.644 0.008 1.419057 10.53243

ptd | 3.54029 2.001356 2.236 0.025 1.169088 10.72088

ht | 2.976229 2.365802 1.372 0.170 .6266815 14.13467

------------------------------------------------------------------------------

. lfit, group(10) table

Logistic model for low, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

Note: Because of ties, there are only 7 distinct quantiles.

_Group _Prob _Obs_1 _Exp_1 _Obs_0 _Exp_0 _Total

3 0.0845 3 3.3 36 35.7 39

4 0.2322 4 3.0 10 11.0 14

6 0.2630 6 6.8 20 19.2 26
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7 0.2969 3 3.8 10 9.2 13

8 0.5151 3 3.0 3 3.0 6

9 0.5582 10 8.7 6 7.3 16

10 0.8054 5 5.4 3 2.6 8

number of observations = 122

number of groups = 7

Hosmer-Lemeshow chi2(5) = 1.35

Prob > chi2 = 0.9299

The new lfit with the group() option produces a different grouping than the old lfit. There are 39 observations each
having a predicted probability of 0.0845 in this data set. The new lfit keeps them together, so the first group is comprised of
these 39 observations. The old lfit, on the other hand, aimed to make the first group contain exactly 12 observations, so it
randomly selected 12 of the 39 to put in the first group. If you issued the command again, it would randomly select another 12
of the 39. Hence, you could get slightly different answers for the same logistic model each time you ran the old lfit with the
group() option. Although this behavior is undesirable from the perspective of reproducibility, it is a valid statistical procedure.

The new lfit with the group() option acts deterministically; it puts all observations with the same predicted probabilities
into the same group. If, as in this example, we request 10 groups, the groups that the new lfit makes are [ p0; p10], (p10; p20],
(p20; p30], : : : , (p90; p100], where pk is the k-th percentile of the predicted probabilities, with p0 the minimum and p100 the
maximum. For this case, we have p0 = p10 = p20 = p30 and p50 = p60, so we only get seven groups.

This procedure, however, has its own drawbacks. If there are large numbers of ties at the quantile boundaries (as will
frequently happen if all independent variables are categorical and there are only a few of them), the sizes of the groups will be
uneven. If the totals in some of the groups are small, the �2 statistic is unreliable.

The equal option attempts to prevent this last problem by summing the observed and expected counts for all observations
tied at a quantile boundary. It then apportions the summed observed counts and summed expected counts into the quantiles on
either side of the boundary in such a way as to make the total number of observations in each group exactly equal. Here’s an
example:

. lfit, group(5) table equal

Logistic model for low, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

_Group _Prob _Obs_1 _Exp_1 _Obs_0 _Exp_0 _Total

1 0.0845 1.9 2.1 22.5 22.3 24.4

2 0.2322 4.0 3.2 20.4 21.2 24.4

3 0.2630 5.7 6.3 18.7 18.1 24.4

4 0.5151 7.2 8.2 17.1 16.2 24.4

5 0.8054 15.2 14.3 9.2 10.1 24.4

number of observations = 122

number of groups = 5

Hosmer-Lemeshow chi2(3) = 0.57

Prob > chi2 = 0.9024

We requested only 5 groups since we did not want the group totals to be appreciably smaller than the number of observations
tied at a particular predicted probability.

See the article by Tilford et al. in this issue (sbe 12) for examples of the use of if with lfit and lroc (statistics for
out-of-sample data) and the use of the beta() option (specifying the logistic model with a vector of coefficients).

Graphing sensitivity and specificity versus probability cutoff

The new command lsens produces a plot of sensitivity and specificity versus probability cutoff. The graph is equivalent
to what you would get from lstat if you varied the cutoff probability from 0 to 1.

. lsens

(graph appears, see Figure 1)

lsens will optionally create new variables containing the probability cutoff, sensitivity, and specificity:

. lsens, genprob(p) gensens(sens) genspec(spec) nograph
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Figure 1. Example of lsens output

Methods and Formulas

The following formulas describe how lfit with the group() option divides the observations into groups. Let p1 < p2 <

� � � < pm be the unique values of the predicted probabilities, and let wi be the number of observations having predicted probability
pi. Let oi be the sum of observed successes (the dependent variable not equal to zero) for those observations having predicted
probability pi. The expected number of successes for those observations having predicted probability pi is simply ei = wipi.
Let N =

P
wi be the total number of observations. Let G = # be the number of groups requested with group(#). Then the

smallest index q(j) such that

Wq(j) =

q(j)X
i=1

wi �
Nj

G

gives pq(j) as the upper boundary of the j-th quantile, ( j = 1, 2, : : : , G ). Let q(0) = 1 denote the first index.

If the equal option is not specified, the groups are

[ pq(0); pq(1)]; ( pq(1); pq(2)]; : : : ; ( pq(G�1); pq(G)]

If the table option is given, the upper boundaries pq(1), : : : , pq(G) of the groups appear next to the group number on the
output. The number of observations in the j-th group is

nj = wq(j�1)+1 + wq(j�1)+2 + � � �+ wq(j)

The number of observed successes in the j-th group is

Oj = oq(j�1)+1 + oq(j�1)+2 + � � �+ oq(j)

A similar formula gives the expected successes.

If the equal option is specified, groups are constructed so that there are exactly n = N=G observations in each group.
Note that, in most cases, n will not be an integer. If an observation has predicted probability pi with pq(j�1) < pi < pq(j), then
it belongs to the j-th group. Those observations with pi = pq(j) are apportioned into the j-th and (j + 1)-th groups. With this
apportionment scheme, the number of observed successes in the j-th group is

Oj =
Wq(j�1) � n(j � 1)

wq(j�1)

oq(j�1) + oq(j�1)+1 + oq(j�1)+2 + � � �+ oq(j)�1 +
nj �Wq(j)�1

wq(j)

oq(j)

Substituting ei for oi in the formula gives the expected successes. If wi is substituted into the formula, it is easy to see that one
gets nj = n as we claim.
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Note: If Wq(j) is equal to Nj=G, then the quantile boundary that appears on the output is [ pq(j) + pq(j+1)]=2, which is
the standard formula for computing percentiles. In other words, the predicted probabilities that are displayed by lfit are exactly
those from a standard percentile computation.

References
Hosmer, D. W. and S. Lemeshow. 1989. Applied Logistic Regression. New York: Wiley.

Tilford, J. M., P. K. Roberson, and D. H. Fiser. 1995. sbe12: Using lfit and lroc to evaluate mortality prediction models. Stata Technical Bulletin 28:

14–18.

crc42 Improvements to the heckman command

The heckman command has been improved. It now converges in fewer iterations and converges in some cases where the
old heckman did not. The new heckman also deals with missing values in a more sophisticated fashion, and it displays more
output when the trace option is specified.

The improvement in the convergence of heckman is due to a change in the parameterization of the correlation �. The old
parameterization was � = tan(��=2). The new parameterization uses an inverse hyperbolic tangent transformation:

� = atanh � =
1

2
log

�
1 + �

1� �

�
The atanh transformation and its inverse, tanh, (used each iteration to recover �) are numerically smoother than tan and atan. As
a result, the new version of heckman converges in fewer iterations and converges for large values of j�j when the old heckman

would not. In tests we have run where the old heckman converged, the new heckman produces the same answers as the old
heckman to a tolerance of < 10�5.

The old heckman would omit observations that contained any missing values for any exogenous variable from both the
probit and regression estimations. The new heckman is smarter. It doesn’t care if exogenous variables that are only part of the
regression equation (and not part of the probit equation) have missing values when the dependent variable of the regression
equation is also missing. Observations are retained as part of the sample for probit estimation as long as their values for all
exogenous variables of the probit equation are nonmissing.

When the trace option is specified, the new heckman first displays the initial probit and linear regression that give the
initial Mills’ ratio coefficient estimate and then gives the details of the maximum likelihood iterations.

Example

We redo the deliberately nonsensical example given at the end of [5s] heckman in the Stata Reference Manual.

. use auto

(1978 Automobile Data)

. replace price = . if foreign

(22 real changes made, 22 to missing)

. eq price mpg weight

. eq probit: displ

. heckman price probit, trace

Probit Estimates Number of obs = 74

chi2(1) = 44.06

Prob > chi2 = 0.0000

Log Likelihood = -23.004215 Pseudo R2 = 0.4892

------------------------------------------------------------------------------

__00047O | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

displ | .0231829 .0059231 3.914 0.000 .011574 .0347919

_cons | -2.999473 .787286 -3.810 0.000 -4.542525 -1.456421

------------------------------------------------------------------------------

Note: 0 failures and 3 successes completely determined.

Mills' ratio coefficient estimate from regression

Source | SS df MS Number of obs = 52

---------+------------------------------ F( 3, 48) = 18.17

Model | 260157662 3 86719220.6 Prob > F = 0.0000

Residual | 229037139 48 4771607.06 R-squared = 0.5318

---------+------------------------------ Adj R-squared = 0.5025

Total | 489194801 51 9592054.92 Root MSE = 2184.4
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------------------------------------------------------------------------------

price | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

__00047Q | 2557.997 1143.039 2.238 0.030 259.7625 4856.231

mpg | 162.7514 137.8043 1.181 0.243 -114.3226 439.8254

weight | 5.120607 .9647999 5.307 0.000 3.180747 7.060467

_cons | -14778.32 5545.562 -2.665 0.010 -25928.42 -3628.217

------------------------------------------------------------------------------

Coefficient of Mills' ratio 2557.997

Initial estimate of rho 1.171029

Initial rho set to 0.99

Heckman model may be inappropriate since initial |rho| > 0.9

ML computation begins ...

162.75137 5.120607 -14778.316 .02318294 -2.9994732 2.6466524

7.6890969

Iteration 0: Log Likelihood = -494.74219

(nonconcave function encountered)

(output omitted)

Iteration 12: Log Likelihood = -490.83493

105.5897 4.1791758 -10449.21 .0262556 -3.3591755 2.2028686

7.7478327

Iteration 13: Log Likelihood = -490.83493

Heckman selection model Number of obs = 74

Model chi2(4) = 58.71

Prob > chi2 = 0.0000

Log Likelihood = -490.8349341

------------------------------------------------------------------------------

price | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

price |

mpg | 105.5897 77.37173 1.365 0.172 -46.0561 257.2355

weight | 4.179176 .6291039 6.643 0.000 2.946155 5.412197

_cons | -10449.21 3376.82 -3.094 0.002 -17067.66 -3830.765

---------+--------------------------------------------------------------------

probit |

displ | .0262556 .0067118 3.912 0.000 .0131007 .0394105

_cons | -3.359176 .855216 -3.928 0.000 -5.035368 -1.682983

---------+--------------------------------------------------------------------

_athrho |

_cons | 2.202869 .892738 2.468 0.014 .4531342 3.952603

---------+--------------------------------------------------------------------

_lnsigma |

_cons | 7.747833 .1010999 76.635 0.000 7.549681 7.945985

------------------------------------------------------------------------------

rho 0.97588 [_athrho]_cons = atanh(rho)

sigma 2316.5463 [_lnsigma]_cons = ln(sigma)

lambda 2260.6717 269.7547

Note the large value of rho. The old heckman would not converge when given this example. Although this behavior may be
desirable for stupid models such as this, we replace it with a heckman that is numerically sounder.

dm35 A utility for surveying Stata-format data sets

Timothy J. Schmidt, Federal Reserve Bank of Kansas City, FAX 816-881-2199

dtainfo is a utility program that reads all Stata-format data sets in the current directory and reports information about their
contents. dtainfo can be used to report the location, type, and other content information for a specific variable and content
information for each Stata data set and its variables.

Syntax

To obtain information about a specific variable, the syntax is

dtainfo varname
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where varname is the name of the variable you seek. To obtain summary information about all Stata data sets in the current
directory, the syntax is

dtainfo
�
, sort(fnamejobsjvarjdoublejfloatjlongjintegerjbytejmiss)

�

Options

sort(fnamejobsjvarjdoublejfloatjlongjintegerjbytejmiss) specifies the sort order of the report as follows:

argument sorts report by

fname filename
obs number of observations
var number of variables
double number of type double variables
float number of type float variables
long number of type long variables
integer number of type integer variables
byte number of type byte variables
miss number of missing observations

Discussion

In conducting a research project, many researchers construct and accumulate numerous Stata data sets in a disk directory
devoted to the project. As a result, two problems commonly arise. First, it can become difficult to distinguish between data sets
and to identify how they are similar or different. Second, it can be difficult to remember where a particular variable is stored.
dtainfo is designed to help alleviate these problems.

For quick comparisons of a large number of data sets, dtainfo provides an overview of the contents and structure of all
Stata-format data sets (those ending in a .dta file extension) in the current disk directory. dtainfo offers several advantages
over current alternatives in Stata. First, dtainfo provides more information than describe ([5d] describe) by displaying the
date the file was last saved, the number of missing observations in the data set, and a summary of the number of variables by
type. Second, dtainfo is more convenient to use in examining a large number of data sets. In one listing, dtainfo provides
a “snapshot” of every Stata-format data set in the current directory. With describe or cf ([5d] cf), the user can examine or
compare only one file at a time, a tedious task when the number of files is large. In addition, the user may specify that dtainfo
report the summary information sorted on any one of the reported fields. With the sorting option, the user can quickly identify
similar or dissimilar data sets by their most important features.

A second problem in working with many data sets is remembering where a particular variable is stored. To locate a variable,
the user would probably resort to describing each data set likely to contain it. If the number of data sets is large, this process
could be tedious and time consuming. With dtainfo, however, the user can rapidly locate all occurrences of a particular variable
name in the current directory’s Stata-format data sets. For each occurrence of a variable name, dtainfo reports the data set
in which it is located, its variable type, the number of observations, and the number of missing observations. This information
allows the user to quickly locate where a variable is stored and to identify differences in any multiple occurrences of a variable.
Thus, the information from dtainfo can complement Stata’s codebook ([5d] codebook), compare ([5d] compare), and inspect

([5d] inspect) commands.

Example

The following example illustrates the use of dtainfo. Suppose the user is conducting research on foreign exchange rates.
In a separate disk directory, the user has created a number of Stata-format data sets to store a large amount of data. After being
away from the project for a time, the user may find it useful to have a quick survey of all the Stata-format data sets.

. dtainfo

Data set Date Time Obs Vars Doub Floa Long Int Byte Miss

JAPAN.DTA 10-29-92 11:14 118 27 0 27 0 0 0 557

FXRATE.DTA 9-07-95 13:30 3660 8 0 5 0 0 3 705

FORDIFF.DTA 9-07-95 13:31 171 70 0 68 0 1 1 785
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EDAILY.DTA 9-07-95 13:33 3687 4 0 1 0 1 2 140

EASTGERM.DTA 9-07-95 13:39 32 5 0 2 0 1 1 5

REALFXMO.DTA 9-07-95 13:55 284 18 0 16 0 1 1 114

UKMON.DTA 12-10-92 11:21 79 3 0 3 0 0 0 0

FXRATE1.DTA 1-08-93 13:47 1827 6 0 6 0 0 0 219

BFXIGEJA.DTA 6-23-94 12:36 124 19 0 19 0 0 0 138

FXRATE2.DTA 1-08-93 13:49 1833 6 0 6 0 0 0 204

USACANCU.DTA 11-23-93 15:24 23 7 0 7 0 0 0 0

FORINDIC.DTA 3-12-93 13:39 183 32 0 32 0 0 0 193

FORCPIFX.DTA 3-15-93 15:02 170 18 0 18 0 0 0 13

For each data set in the current directory, dtainfo provides the user with a lot of information neatly summarized on one
line. For instance, EASTGERM.DTA was last saved on September 7, 1995, at 1:39 p.m. It contains five variables: two of type
float, one of type int, and one of type byte. Note that since Stata has six basic datatypes and dtainfo categorizes variables
by the five numeric datatypes, the other variable in EASTGERM.DTA must be a string. dtainfo also reports that EASTGERM.DTA
has 32 observations on each variable and a total of five missing values in the data set.

dtainfo can also provide the same information sorted on any one of its fields (except date and time). For instance, if the
user suspects that data sets with similar names contain similar data, it may be useful to sort by filename.

. dtainfo, sort(fname)

Data set Date Time Obs Vars Doub Floa Long Int Byte Miss

BFXIGEJA.DTA 6-23-94 12:36 124 19 0 19 0 0 0 138

EASTGERM.DTA 9-07-95 13:39 32 5 0 2 0 1 1 5

EDAILY.DTA 9-07-95 13:33 3687 4 0 1 0 1 2 140

FORCPIFX.DTA 3-15-93 15:02 170 18 0 18 0 0 0 13

FORDIFF.DTA 9-07-95 13:31 171 70 0 68 0 1 1 785

FORINDIC.DTA 3-12-93 13:39 183 32 0 32 0 0 0 193

FXRATE.DTA 9-07-95 13:30 3660 8 0 5 0 0 3 705

FXRATE1.DTA 1-08-93 13:47 1827 6 0 6 0 0 0 219

FXRATE2.DTA 1-08-93 13:49 1833 6 0 6 0 0 0 204

JAPAN.DTA 10-29-92 11:14 118 27 0 27 0 0 0 557

REALFXMO.DTA 9-07-95 13:55 284 18 0 16 0 1 1 114

UKMON.DTA 12-10-92 11:21 79 3 0 3 0 0 0 0

USACANCU.DTA 11-23-93 15:24 23 7 0 7 0 0 0 0

dtainfo is also useful in locating specific variables. For example, the user may remember the U.S. dollar/Canadian dollar
exchange rate variable is called ecan, but locating that variable among all of the data sets could be tedious. This is a job for
dtainfo.

. dtainfo ecan

EDAILY.DTA contains ecan : float 3687 observations 140 missing

dtainfo reports ecan is stored in the data set EDAILY.DTA as a type float variable with 3687 observations, 140 of which are
missing.

With a little creativity, dtainfo can assist the user in many other ways. For instance, a user who wanted to know which
data sets likely contain daily data could search for all occurrences of the variable day.

. dtainfo day

FXRATE.DTA contains day : byte 3660 observations 0 missing

EDAILY.DTA contains day : byte 3687 observations 0 missing

FXRATE1.DTA contains day : float 1827 observations 0 missing

BFXIGEJA.DTA contains day : float 124 observations 0 missing

FXRATE2.DTA contains day : float 1833 observations 0 missing

A final note

The heart of dtainfo is an executable file compiled from source code I wrote in C. Unfortunately, I do not have access
to a C compiler for the Apple Macintosh. Therefore, I am currently unable to provide a version of dtainfo for users of Stata
on the Apple Macintosh. However, if there is enough interest in dtainfo by users of the Mac version of Stata, I will be happy
to seek out a Mac and release a Mac-compatible version of dtainfo in a future issue of the STB. Alternatively, ambitious Mac
users with a C compiler can try to port the source code for dtainfo, which is included on the STB diskette.
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dm36 Comparing two Stata data sets

John R. Gleason, Syracuse University, 73241.717@compuserve.com

Stata provides the command cf ([5d] cf) for comparing a list of variables in memory with equally named variables in a
Stata-format data set stored on disk. However, the information provided by the cf command is often inadequate for the task at
hand. Consider the following situations:

1. You have collected a large and important data set. It is essential that the data be entered into Stata error-free, so you mimic
the practice of double-entry bookkeeping—two typists independently enter the data into text files or Stata’s data editor.
Afterward, you face the task of resolving the discrepancies (if any) between two supposedly identical Stata data sets.

2. You have data that were collected in three cities (say, Denver, Houston, and Omaha). You find it convenient to keep the
data in separate files (denver.dta, houston.dta, omaha.dta), as well as in a single, combined file (cities.dta). After
a time, you recall that some errors have been corrected in the Omaha data, but you’re uncertain about just where the
corrections were made. You’d like to compare omaha.dta with the Omaha observations in cities.dta to identify any
discrepant data values.

3. You have two versions of what is nominally the same data set. You know or suspect that there are many places where
corresponding data values in the two versions are not exactly the same—perhaps because the two versions are based on
slightly different computational algorithms, or because they were obtained from not-quite-interchangeable sources. You’d
like to meander through the two data sets, examining corresponding observations to discern any patterns in the discrepancies
that exist.

This insert presents compdta, a command that offers several advantages over cf in such situations. The syntax of compdta
is

compdta [ varlist ] [ if exp ] [ in range ] using filename [ , keep(max|min) list noisily sort ]

compdta compares the varlist from the data set in memory (the master data set) with like-named variables in the Stata-format
data set specified by filename (the using data set). If varlist is absent, the comparison is made for all variables in the master
data set. An if or in clause restricts the comparison to observations that satisfy those conditions; otherwise, all observations in
the master and using data sets are compared. Neither the master nor the using data set is altered by compdta. (The options are
explained in the text below.)

When the master and using data sets are in perfect agreement, compdta and cf give the same response (that is, silence),
and compdta’s noisily option produces output similar to that of cf’s verbose option: a list of the variables compared, with
an indication that no differences were found. Under other circumstances, the responses of compdta and cf differ in several
useful ways.

Example 1

Consider situation (1) above. The principal task is to resolve any mismatches by editing one or both of the values entered
by the typists. cf can only count the number of mismatches for each variable. compdta can, in addition, list the mismatched
pairs of data values and their observation number in side-by-side fashion; the list option produces such a display for each
varlist variable whenever disagreements are found.

To simulate situation (1), make a few changes in the 1980 Census housing data hsng.dta that is distributed with Stata.
Then, save the altered version as temp.dta:

. use hsng

(1980 Census housing data)

. replace state = upper(state) in 2/4

(3 real changes made)

. replace pop = pop + 2.5 in -2/-1

pop was long now double

(2 real changes made)

. save temp

file temp.dta saved

Now, use compdta to compare some variables in the two data sets. The default response of compdta resembles that of cf:

. use hsng

(1980 Census housing data)
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. compdta state-pop using temp

3 mismatches in state

2 mismatches in pop

But the list option allows compdta to display the information necessary to resolve discrepancies:

. compdta state-pop using temp, list

3 mismatches in state

state state_

2. Alaska ALASKA

3. Arizona ARIZONA

4. Arkansas ARKANSAS

2 mismatches in pop

pop pop_

49. 4705767 4705769.5

50. 469557 469559.5

In this display, the variable state is from the master data, the variable state is the variable named state in the using
data, etc. See Example 3 for details of compdta’s naming rules.

Example 2

Now consider situation (2) above. The problem is to compare two data sets, one of which purports to be a (proper) subset
of the other. Because cf does not allow if or in clauses, it cannot make such a comparison; compdta can. To simulate this
situation, extract from hsng.dta the 13 observations that are from region 4. Alter a single data value and save the data in
region4.dta. Then, use compdta to verify that the region 4 subset of hsng.dta is identical to region4.dta, except for the
single alteration:

. use hsng

(1980 Census housing data)

. keep if region==4

(37 observations deleted)

. replace state = "" in 10

(1 real change made)

. save region4

file region4.dta saved

. compdta if region==4 using hsng, l

1 mismatches in state

state state_

10. Oregon

Example 3

In situation (3) above, the two variants of the keep option can be quite helpful. compdta uses Stata’s merge command
to merge observations from the master and using data. If varlist specifies p variables and the if and in clauses specify n

observations, then compdta forms a data set with 2p variables and n observations. By default, compdta replaces this merged
data set with the master data at exit; keep(max) and keep(min) each leave a part of the merged data in memory. In addition,
both variants of keep create a variable named compdta that records the number of mismatched data values for each observation.

keep(max) retains the largest relevant portion of the merged data: all n observations on the varlist variables from the
master data, plus their counterparts from the using data when discrepancies are found. If mismatches are found in p

0 variables,
p+ p

0 variables are retained, ordered so that paired variables are adjacent to each other.

To illustrate, reconsider Example 1, but this time add the keep(max) option, and then use describe:

. use hsng

(1980 Census housing data)

. compdta state-pop using temp, keep(max)

3 mismatches in state

2 mismatches in pop
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. describe

Contains data

Obs: 50 (max= 30465) 1980 Census housing data

Vars: 7 (max= 99)

Width: 41 (max= 200)

1. state str13 %13s State

2. state_ str13 %13s state in temp.dta

3. division byte %8.0g division Census division

4. region byte %8.0g region Census region

5. pop long %10.0g Population in 1980

6. pop_ double %10.0g pop in temp.dta

7. _compdta byte %8.0g No. of mismatches

Sorted by:

Note: Data has changed since last save

The variables state and pop are the variables named state and pop in the using data—as their labels indicate. compdta
must assign new names to variables in the using data when they are merged with the master data. Its primary strategy is to
append an underscore to variable names in the using data (as in the example above). If a variable name is 8 characters long,
compdta begins at the end of the name and attempts to substitute an underscore or to toggle the case of the eighth character. If
this fails to produce an unused name, it moves one character to the left and repeats the process as necessary. (This strategy is
not guaranteed to succeed, but failures to produce an acceptable renaming should be extremely rare.)

The data set retained by keep(max) makes it easy to look for patterns in the mismatched data values, especially if the
spreadsheet data editor launched by the browse and edit commands is available. Moreover, it may be possible to quickly
produce a “correct” data set by (repeatedly) editing one version of a variable and then dropping its counterpart.

The keep(min) option might be preferred if you plan instead to reload the master or using data and make changes
there. keep(min) retains the smallest relevant portion of the merged data: Only those variables and those observations where
mismatched data values were found. In addition, keep(min) creates a variable named id that records the original observation
number, and sets to missing (or blank, for string variables) all pairs of retained data values that agree. This makes discrepant
data values easy to locate. To illustrate, repeat the last example, this time using keep(min), followed by list to display the
entire contents of the retained data set:

. use hsng, replace

(1980 Census housing data)

. compdta state - pop using temp, k(min)

3 mismatches in state

2 mismatches in pop

. list

state state_ pop pop_ _compdta _id

1. Alaska ALASKA . . 1 2

2. Arizona ARIZONA . . 1 3

3. Arkansas ARKANSAS . . 1 4

4. 4705767 4705769.5 1 49

5. 469557 469559.5 1 50

Example 4

By default, compdta makes the same assumption as cf about the ordering of observations—namely, that the master and
using data sets are to be compared using their current sort order. Thus, two identical data sets can yield many mismatches if
their sort orders differ. compdta’s sort option attempts to coerce the using data into the same sort order as the master data
before making comparisons.

To illustrate, copy hsng.dta to temp.dta changing only the sort order. Then, by default, compdta (like cf) finds many
mismatches in the two data sets:

. use hsng, replace

(1980 Census housing data)

. sort popden

. save temp, replace

file temp.dta saved

. use hsng

(1980 Census housing data)
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. compdta using temp

49 mismatches in state

45 mismatches in division

37 mismatches in region

(etc.)

But,

. compdta using temp, sort

finds no mismatches in the two data sets.

Note that compdta’s strategy for overcoming differences in sort order can fail if there are ties among the values of the
variables defining the sort order. (In the example above, sorting hsng.dta on region creates this situation.) This problem
can be avoided by sorting the master data set on a variable that creates a unique ordering of the observations (e.g., state in
hsng.dta).

Additional remarks

As noted earlier, the noisily option forces a verbose display of the comparison of varlist in the master and using data.
noisily also causes compdta to display notes about its progress as it prepares the merged data set described in Example 3.
For example, compdta compresses both the using and master data before merging. Ordinarily, this is done silently; noisily
displays the effects of the compress command. Further, noisily issues a warning when the master and using data sets differ
in sort order, and shows the minimum values of the maxvar and width parameters required by the merge operation.

Finally, compdta is usually faster than cf. This is because cf merges the using data one variable at a time, whereas
compdta performs a single merge of all the varlist variables from the using data. The disadvantage, of course, is that compdta
needs room for about twice as many variables as does cf. If the maxvar and width parameters cannot be set large enough, it
will be necessary to subdivide varlist and perform the comparison in stages.

ip10 Finding an observation number

Sean Becketti, Stata Technical Bulletin, stb@stata.com

Stata provides the if and in clauses to restrict the operation of a command to a subset of the data. These clauses make
it easy to locate interactively the observations that satisfy certain conditions. For example, if you use the familiar automobile
data and type

. list if foreign

Stata will display all the observations that contain information on foreign cars.

What if you want to find just the first observation on a foreign car? As it happens, these data contain all the domestic cars
first, followed by all the foreign cars. Thus, one way to solve this problem is

. list if foreign & !foreign[_n-1]

This command lists observation 53, the first foreign car in the data set. In fact, by poking around with the list command, it is
straightforward to locate any observation interactively, even when you don’t have any prior knowledge of the structure of the
data set.

This problem is more complicated inside a Stata program. It is relatively easy to use if and in to restrict an operation to
a particular observation. Sometimes, though, you really need to store the observation number of a target observation, perhaps to
set the boundaries of a while loop.

findobs solves this problem. findobs displays the observation number of the i-th observation that satisfies specified
conditions. The observation number is also stored in the S 1 macro, so it can be used later in the program. The syntax of
findobs is

findobs [ if exp ] [ in range ] [ , instance(#) ]

The instance() option specifies which occurrence of the target condition is to be located. For example, instance(3)
requests the observation number of the third occurrence of the specified conditions. The default is instance(1). Typing
instance(0) returns the number of the observation before the first occurrence. Negative numbers indicate that occurrences are
to be counted starting from the end of the data set. Thus, instance(-1) requests the observation number of the last occurrence,
instance(-2) requests the next-to-last occurrence, and so on. instance(-0) requests the number of the observation following
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the last occurrence. If the specified occurrence is not found, if the indicated observation number is less than one, or if it is
greater than N, findobs displays nothing and stores a missing value in S 1.

Examples

The following session log illustrates the operation of findobs

. drop _all

. set obs 10

obs was 0, now 10

. generate i = _n

. findobs if i==3

3

. display "$S_1"

3

. findobs if i==2*int(i/2) /* Find the first even number */

2

. findobs if i==2*int(i/2), instance(3) /* Find the third even number */

6

. findobs if i==2*int(i/2), instance(0)

1

. findobs if i==2*int(i/2), instance(-2) /* Next-to-last even number */

8

. findobs if i==3, instance(-0)

4

. findobs if i==2*int(i/2), instance(-0)

If you have installed the Stata time series library in your ado-path (Becketti 1995), findobs will detect it and display the
date associated with the target observation as well as the observation number. To illustrate this feature, we continue the example.

. generate int month = i

. generate year = 1995

. labmonth

. period 12

12 (monthly)

. datevars year month

. findobs if i==3

March, 1995 (3)

. display "$S_1"

3

. display "$S_2"

March, 1995

Reference
Becketti, S. 1995. sts7.6: A library of time series programs for Stata (Update). Stata Technical Bulletin 24: 30–35.

sbe12 Using lfit and lroc to evaluate mortality prediction models

John M. Tilford, Paula K. Roberson, and Debra H. Fiser
University of Arkansas for Medical Sciences

EMAIL mtilfor@care.ach.uams.edu

Recent developments in illness severity scoring systems permit medical researchers to estimate a patient’s probability
of death. Information on probability of death can be useful for a number of applications including patient prognosis, quality
assessment, and clinical research.
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Accuracy of the severity scoring system is crucial for these types of analyses. Lemeshow and LeGall (1994) review
several systems that estimate the probability of death for adult intensive care patients and document methods for evaluating the
performance of these systems. Evaluation of severity scoring systems is accomplished through assessment of calibration and
discrimination statistics in developmental and validation samples (Hadorn et al. 1993).

Calibration and discrimination

Calibration measures the correspondence between estimated probabilities of death predicted by the severity scoring system
and actual mortality. Formal testing of calibration uses Hosmer–Lemeshow goodness-of-fit tests (lfit following a logistic

regression model). Discrimination measures the ability of the model to distinguish survivors from nonsurvivors and is measured
by the area under the receiver operating characteristic (ROC) curve (lroc following logistic).

Assessment of model performance based solely on calibration and discrimination statistics from developmental samples
can be misleading. Developmental sample statistics tend to overstate performance because the model was calculated to provide
the best fit to these specific data. Clearly, to be useful, a model must perform well on the data from which it was developed.
Evaluation on an independent (validation) sample, however, provides a more comprehensive picture of how well the model will
perform in predicting future observations.

Previous versions of lfit and lroc permitted the calculation of calibration and discrimination statistics only on developmental
samples. With the new versions of lfit and lroc (see crc41 in this issue), these statistics are now available to Stata users on
both developmental and validation samples. Furthermore, the lfit procedure now includes probabilities of mortality (or other
outcomes of interest) in the output and both procedures permit researchers to substitute their own vector of coefficients in place
of the estimated coefficients from the logistic command.

Example

We present a simple example to calculate the Hosmer–Lemeshow goodness-of-fit statistic and the ROC curve in developmental
and validation data sets using estimated coefficients from a logistic regression and using coefficients from the published literature.
The example uses data from several large pediatric intensive care units (PICUs). Patient probabilities of mortality are predicted
using the Pediatric Risk of Mortality (PRISM) scoring system (Pollack et al. 1989). This scoring system assigns values to
physiologic variables routinely collected upon PICU admission and forms a PRISM score by summing the values. The PRISM score
and other variables are multiplied by coefficients from a published logistic regression equation to form the logit value X�. A
probability of mortality is calculated by transforming the logit value by the equation

P (PICU mortality) =
e
X�

1 + eX�

In this example, we estimate our own regression coefficients to illustrate Stata’s new capabilities and then compare calibration
and discrimination statistics based on our estimated coefficients and the published coefficients. The example uses preliminary
data and is for illustrative purposes only.

Part 1: Calibration and discrimination in the developmental sample

The first step involves randomly splitting 11,365 observations in half. The first half of the observations will be the
developmental sample and the second half will be the validation sample.

. use picu

. gen u = uniform()

. gen ndata = (u<=.5)

Second, we use the developmental sample to estimate a logistic regression on PICU mortality using variables included in
the original paper: operative status, age (in months), and the PRISM scores.
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. logistic mort opstat icuprism agem if ndata==1

Logit Estimates Number of obs = 5660

chi2(3) = 829.13

Prob > chi2 = 0.0000

Log Likelihood = -655.41765 Pseudo R2 = 0.3874

------------------------------------------------------------------------------

mort | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

opstat | .6122442 .1161535 -2.586 0.010 .4221208 .8879993

icuprism | 1.216156 .0108302 21.975 0.000 1.195113 1.237569

agem | 1.00173 .0011885 1.457 0.145 .9994037 1.004063

------------------------------------------------------------------------------

. logit

Logit Estimates Number of obs = 5660

chi2(3) = 829.13

Prob > chi2 = 0.0000

Log Likelihood = -655.41765 Pseudo R2 = 0.3874

------------------------------------------------------------------------------

mort | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

opstat | -.490624 .1897176 -2.586 0.010 -.8624636 -.1187843

icuprism | .1956949 .0089052 21.975 0.000 .1782409 .2131488

agem | .0017289 .0011864 1.457 0.145 -.0005965 .0040543

_cons | -5.114916 .1767704 -28.935 0.000 -5.46138 -4.768453

------------------------------------------------------------------------------

The results of this regression are displayed showing the underlying coefficients so that they can be compared to the published
coefficients. In general, the coefficients from this regression are similar to the published coefficients:

logit = �:433 opstat+ :207 icuprism� :005 agem� 4:782

To test calibration in the developmental sample, the Hosmer–Lemeshow goodness-of-fit test is calculated by lfit. Note
that, by default, lfit uses the same data that the logistic command used. We also requested the test to be calculated on ten
“deciles of risk” and displayed in a table.

. lfit, group(10) table

Logistic model for mort, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

_Group _Prob _Obs_1 _Exp_1 _Obs_0 _Exp_0 _Total

1 0.0046 3 2.3 563 563.7 566

2 0.0062 4 3.2 562 562.8 566

3 0.0075 2 3.8 566 564.2 568

4 0.0090 3 4.6 561 559.4 564

5 0.0131 4 6.3 562 559.7 566

6 0.0160 3 8.1 563 557.9 566

7 0.0217 9 10.4 557 555.6 566

8 0.0350 21 15.7 545 550.3 566

9 0.0861 37 30.8 529 535.2 566

10 0.9987 179 179.8 387 386.2 566

number of observations = 5660

number of groups = 10

Hosmer-Lemeshow chi2(8) = 9.38

Prob > chi2 = 0.3112

The output gives the ten groups, their cutoff probability, the number of observed deaths, the number of expected deaths, the
number of observed survivors, the number of expected survivors, and the total observations in each group. In this test, a lower
value of the �

2 statistic or a higher p-value indicates a better fitting model. The p-value of 0.31 indicates good calibration in
the developmental sample as does the close association between observed and expected mortality in the 10 probability groups.

The area under the ROC curve provides an estimate of the model’s discrimination:

. lroc, nograph

Logistic model for mort

number of observations = 5660

area under ROC curve = 0.8992

System developers typically require discrimination statistics around 0.70. Examination of the output from the lroc procedure
indicates the model has good discrimination in the developmental sample.
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Part 2: Calibration and discrimination in the validation sample

We now examine whether the model performs as well in the validation sample based on calibration and discrimination
statistics. To test calibration in the validation sample, we used the lfit procedure and specifically requested the test to be run
on the second half of our data that was not included in the logistic regression.

. lfit if ndata==0, group(10) table

Logistic model for mort, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

_Group _Prob _Obs_1 _Exp_1 _Obs_0 _Exp_0 _Total

1 0.0047 1 2.3 570 568.7 571

2 0.0063 4 3.3 566 566.7 570

3 0.0077 5 3.9 566 567.1 571

4 0.0094 4 4.8 566 565.2 570

5 0.0131 5 6.5 566 564.5 571

6 0.0159 3 8.2 567 561.8 570

7 0.0215 14 10.4 557 560.6 571

8 0.0359 16 15.8 554 554.2 570

9 0.0784 39 31.0 532 540.0 571

10 0.9987 174 184.1 396 385.9 570

number of observations = 5705

number of groups = 10

Hosmer-Lemeshow chi2(8) = 9.34

Prob > chi2 = 0.3143

The p-value for the Hosmer–Lemeshow test in the validation sample was almost exactly the same as the p-value for the
developmental sample.

. lroc if ndata==0, nograph

Logistic model for mort

number of observations = 5705

area under ROC curve = 0.8885

The discrimination test statistic (area under ROC curve= 0.8885) in the validation sample was only slightly lower than the
test statistic from the developmental sample (area under ROC curve= 0.8992). These statistics indicate the PRISM scores in our
data have excellent discrimination and calibration in both developmental and validation data sets.

Part 3: Calibration and discrimination using published coefficients

Finally, we compute calibration and discrimination statistics using the coefficients published by the developers of the PRISM

scoring system (Pollack et al. 1989). For comparison, we calculate these statistics on our developmental data set, but they could
be calculated on either the validation or developmental data set or on the entire data set.

First, we assign the published PRISM coefficients to a row vector named b. Then we label the columns of b with the
corresponding names of our independent variables.

. mat b = (-.433,.207,-.005,-4.782)

. mat colnames b = opstat icuprism agem _cons

We ask for calibration and discriminations statistics using the dependent variable mort (independent variables are automatically
determined from the column names of the row vector b).

. lfit mort if ndata==1, beta(b) group(10) table

Logistic model for mort, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

_Group _Prob _Obs_1 _Exp_1 _Obs_0 _Exp_0 _Total

1 0.0039 3 1.7 563 564.3 566

2 0.0053 2 2.7 571 570.3 573

3 0.0071 0 3.4 559 555.6 559

4 0.0089 3 4.5 563 561.5 566

5 0.0124 6 6.1 560 559.9 566

6 0.0178 4 8.7 562 557.3 566

7 0.0250 9 11.5 557 554.5 566

8 0.0415 19 18.1 547 547.9 566

9 0.0966 45 35.7 521 530.3 566

10 0.9995 174 198.9 392 367.1 566

number of observations = 5660

number of groups = 10

Hosmer-Lemeshow chi2(8) = 15.68

Prob > chi2 = 0.0471
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. lroc mort if ndata==1, beta(b) nograph

Logistic model for mort

number of observations = 5660

area under ROC curve = 0.9017

The Hosmer–Lemeshow �
2 statistic, not surprisingly, indicates a poorer fit using the published coefficients than coefficients

estimated from our own data. The area under the ROC curve, however, is similar to our previous estimates.

This information is useful for quality of care analyses based on this type of data. Quality of care analyses often use adjusted
mortality rates where the adjustments derive from severity models like the PRISM. Severity models that perform poorly in terms
of discrimination or calibration in either developmental or validation samples could cause such analyses to be misleading.

References
Hadorn D. C., E. B. Keeler, W. H. Rogers, and R. H. Brook. 1993. Assessing the performance of mortality prediction models. Santa Monica, CA:

RAND.

Lemeshow, S. and J. R. Le Gall. 1994. Modeling the severity of illness of ICU patients: a systems update. Journal of the American Medical Association
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Pollack M., U. E. Ruttimann, and P. R. Getson. 1988. Pediatric risk of mortality (PRISM) score. Critical Care Medicine 16: 1110–1116.

sg43 Modified t statistics

Richard Goldstein, Qualitas, Inc., EMAIL richgold@netcom.com

While it is widely known that t statistics are somewhat robust, it is not usually appreciated how narrow this robustness is.
t tests generally are not robust to skewed data or to comparisons where the variance of one group is larger than the variance
of the other or to comparisons where there is heterogeneity of effect (different observations are affected in different ways). It is
particularly important to note that the rank-sum test is also not robust in many of the same situations. This insert presents two
ado-files that provide alternative tests that perform better than the classical t test under these circumstances.

O’Brien’s generalized t test

I have written two modified versions of the two-sample t test which is helpful in some cases. The first is obrien, an
ado-file that implements O’Brien’s generalized t test and generalized rank-sum test (O’Brien 1988). The syntax is

obrien var [ if exp ] [ in range ] , by(groupvar)

where var is the response variable and groupvar, which is required, is a two-category grouping variable.

O-Brien’s test indicates whether there may be a problem with a t test or a ranksum test (heterogeneity of effect). A significant
result for the quadratic term implies nonlinearity of effect and suggests the use of the generalized rather than the classical test.
It is recommended that a p-value of 0.25 be used to determine whether there is nonlinearity. A significant result for the joint
test means there is a significant difference in the location of the groups. obrien presents both an adjusted version of O’Brien’s
test and the original, unadjusted version. The simple adjustment used here is to multiply the original p-value by 1.45. This
adjustment is discussed and extensive tables are given in Blair (1991). The last row of the display presents the standard results as
per O’Brien’s suggestion. Note that the p-value for the ranksum test will be slightly different than the value reported by Stata’s
ranksum command due to a slightly different treatment of ties. Note also that O’Brien’s article always presents one-sided tests,
while I always present two-sided tests.
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The following example uses the familiar automobile data to illustrate obrien:

. use auto

(1978 Automobile Data)

. obrien price, by(foreign)

p-values for generalized-t and generalized ranksum

t:by OLS t:by logistic ranksum

quadratic term: 0.0602 0.0762 0.9785

generalize (no adj.): 0.1553 0.1648 0.5880

generalize (adj.): 0.2251 0.2389 0.8526

standard: 0.6802 0.3012

. obrien mpg, by(foreign)

p-values for generalized-t and generalized ranksum

t:by OLS t:by logistic ranksum

quadratic term: 0.8189 0.9282 0.2108

generalize (no adj.): 0.0025 0.0095 0.0030

generalize (adj.): 0.0036 0.0138 0.0044

standard: 0.0005 0.0015

Another modified t test

modt provides another modified t test (Brownie et al. 1990). The syntax of modt is

modt var1 = var2 [ if exp ] [ in range ]

— or —

modt var [ if exp ] [ in range ] , by(groupvar)

There is also an immediate version of this command:

modti n1 mean1 sd1 n2 mean2

modt is primarily useful for comparing the means of two groups where one group is a control group, and it is expected that
the variance of the treatment group is larger than the variance of the control group. The control should be entered as var1 in
the first syntax. In the second syntax, the control group should have the lower value of groupvar; for instance, if the categories
of the group variable are coded as zero and one, then zero should be the control group.

For the immediate version, first type the sample size, the mean, and standard deviation for the control group, then type the
sample size and mean for the treatment group. There is no reason to enter the standard deviation for the treatment group.

This modification of the t test uses only the variance of the control group, though the means and numbers of observations
from both groups are used.

Again we use the automobile data to illustrate this command.

. modt mpg, by(foreign)

modified t-statistic: -4.100 df: 51

2-sided p-value: 0.0001

1-sided p-value: 0.0000

. modt price, by(foreign)

modified t-statistic: -0.396 df: 51

2-sided p-value: 0.6934

1-sided p-value: 0.3467

References
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sg44 Random number generators

Joseph Hilbe, Department of Sociology, Arizona State University, EMAIL atjmh@asuvm.inre.asu.edu
Walter Linde-Zwirble, Health Outcomes Technologies, EMAIL walterl22@aol.com

This insert presents ado-files we have written to implement random number generators (RNGs). These ado-files allow the
user to generate synthetic data from a variety of distributions. Many of these generators employ the rejection method using a
Lorenzean cover function.

Two different types of RNGs have been provided:

1. Standard random number generators, where the first term following the command is the desired number of observations
and additional terms specify the parameters of the distribution.

An example of this first type of RNG is rndbin, which generates binomial random numbers. To generate a variable called
xb that contains 20,000 pseudo-random draws from the binomial distribution with mean = .5, we type

. rndbin 20000 .5 1

( Generating . )

Variable xb created.

. summarize

Variable | Obs Mean Std. Dev. Min Max

---------+-----------------------------------------------------

xb | 20000 .50115 .5000112 0 1

2. Generators that rely on previously determined data and parameters. For this second type of RNG, a linear predictor is
calculated which, using the inverse canonical link function of the distribution, determines a value of �, the fitted value.
This value of � is then used to generate a random deviate appropriate to both the distribution and the data/parameters.

An example of this second type of RNG is rndpoix, which generates Poisson responses. For instance, define the linear
predictor y = 1+ .5jx1j � :25jx2j where x1; x2 are independent standard normal deviates. We generate 50,000 random Poisson
responses for this case as follows:

. drop _all

. set obs 50000

obs was 0, now 50000

. generate x1 = abs(invnorm(uniform()))

. generate x2 = abs(invnorm(uniform()))

. generate lp = 1 + .5*x1 - .25*x2 /* create the linear predictor */

. generate mu = exp(lp) /* Poisson inverse link */

. rndpoix mu

( Generating ............................ )

Variable xp created.

. glm xp x1 x2, f(poi) nolog

Residual df = 49997 No. of obs = 50000

Pearson X2 = 49351.31 Deviance = 53822.24

Dispersion = .9870854 Dispersion = 1.076509

Poisson distribution, log link

------------------------------------------------------------------------------

xp | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

x1 | .5013978 .0034082 147.116 0.000 .4947179 .5080777

x2 | -.2563966 .0042539 -60.274 0.000 -.2647341 -.2480592

_cons | 1.004081 .0051795 193.855 0.000 .9939293 1.014233

------------------------------------------------------------------------------

Note how similar the estimates are to the coefficients we specified in constructing the linear predictor.

Example: Constructing a probit model

The following example uses the binomial RNG to construct a probit model.

. drop _all

. set obs 20000

obs was 0, now 20000
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. generate x1 = abs(invnorm(uniform()))

. generate x2 = abs(invnorm(uniform()))

. generate lp = .5 + .3*x1 - .6*x2 /* create the linear predictor */

. generate den = 1 /* denominator = 1 (Bernoulli) */

. generate mu = normprob(lp) /* Probit inverse link */

. rndbinx mu den

( Generating . )

Variable bnlx created.

. glm bnlx x1 x2, f(bin den) l(probit) nolog

Residual df = 19997 No. of obs = 20000

Pearson X2 = 19997.04 Deviance = 25166.22

Dispersion = 1.000002 Dispersion = 1.2585

Binomial (N=den) distribution, probit link

------------------------------------------------------------------------------

bnlx | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

x1 | .2863205 .0159422 17.960 0.000 .2550743 .3175666

x2 | -.599287 .0158705 -37.761 0.000 -.6303926 -.5681814

_cons | .5106917 .0196748 25.957 0.000 .4721299 .5492536

------------------------------------------------------------------------------

Once again, the estimates are consistent with the coefficients we specified in the linear predictor. Moreover, note the �
2

dispersion. Well-specified binomial models have a �
2 dispersion approximating 1.0.

List of RNGs

Generators whose commands end in ‘x’ provide the capability to model a complete synthetic data set. RNGs of this type are
supplied for the following distributions: Poisson, binomial, gamma, and inverse Gaussian. An important caveat when working
with any RNG: care must be taken that parameters are sensible for the distribution in question.

The table below lists the RNGs now available in Stata. The first two (uniform and normal) are part of Stata proper. The
remainder are provided on the STB-28 distribution diskette. In the syntax diagrams, obs is the number of observations desired.
The other parameters should be self-explanatory.

Table 1. List of random number generators

Distribution Syntax

uniform uniform()

normal invnorm(uniform())

Student’s t rndt obs df

�
2 rndchi obs df

F rndf obs df n df d

log normal rndlgn obs mean var

Poisson rndpoi obs mean
rndpoix [ mu ]

binomial rndbin obs prob numb
rndbinx [ prob ] den

gamma rndgam obs shape scale
rndgamx [ mu ] , s(#)

inverse Gaussian rndivg obs mean sigma
rndivgx [ mu ], s(#)

exponential rndexp obs shape

Weibull rndwei obs shape scale

beta binomial rndbb obs denom prob k

References
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sg45 Maximum-likelihood ridge regression

Robert L. Obenchain, Eli Lilly and Company, Indianapolis, 317-276-3150

Ridge regression is a graphically oriented methodology for analysis of ill-conditioned (multicollinear) regression models.
Ridge methods tend to be computationally intensive, especially when normal-theory maximum-likelihood estimation techniques
are incorporated to provide objective information about the most appropriate form and extent of shrinkage. This insert presents
an overview of ridge concepts along with five Stata programs to monitor the effects of shrinkage.

Ill-conditioning and ridge regression

Fitting of models to ill-conditioned data collected retrospectively poses serious obstacles to multiple regression practitioners,
particularly in such fields as economics where interest can focus on the relative sizes of estimated coefficients. Consider the
classical multiple regression model

y = 1�+X� + � (1)

where y is an n�1 vector of observations on the response variable, � is the unknown intercept, X is an n�p matrix containing
coordinates for p � 2 nonconstant predictor variables, � is a p� 1 vector of unknown coefficients, and � is an n� 1 vector of
unobserved, normally-distributed disturbance terms

� � N(0; �2I) (2)

If the predictor variables are centered by subtracting off their observed means and the resulting X matrix of explanatory variables
is of full column rank, then the maximum-likelihood estimate of � is the least-squares solution

b� = (X 0

X)�1X 0

y (3)

It is straightforward to show that b� � N(�; �2(X 0

X)�1) (4)

Problems arise when X is ill-conditioned. Numerical ill-conditioning occurs when exact linear relationships exist between,
say, the i-th and j-th explanatory variables. That is,

xi = a+ bxj ; (5)

where a and b are constants. In this case, X 0

X is singular, and b� is not uniquely determined.

More commonly, two or more X variables are highly correlated, and X
0

X approaches singularity. In this situation, b� is
unique but is imprecisely estimated. In other words, the relative magnitudes of the elements of b� may be distorted (they may
even have “wrong” numerical signs), because the fitted coefficients are also highly correlated. As a result of this statistical
ill-conditioning, elements of b� or certain linear combinations may be insignificant primarily because their variances are relatively
large.

The topic of ill-conditioned regression models is one of the most thoroughly researched problems in statistics, and ridge
regression is one approach that has been proposed to treat the symptoms of ill-conditioning. Ridge estimators shrink the estimated
coefficient vector, b�, and thus provide biased estimates of �. But variance is also reduced by shrinking, so ridge estimators can
achieve lower mean squared error (MSE) risk than least squares.

An intuitive way to treat ill-conditioning is to increase the diagonal elements of X 0

X before attempting to invert this inner
products matrix and to form b� via equation (3) (Piegorsch and Casella 1989). Indeed, the original ridge estimator of Hoerl (1962)
was

�
� = (X 0

X + kI)�1X 0

y (6)

where k is a small, positive constant.

Interest in ridge regression was sparked by Hoerl and Kennard (1970a, 1970b) when they suggested plotting the p elements
of �� as a function of k in a graphical display called the ridge trace. They observed that the relative magnitudes of the elements
of �� tend to stabilize as k increases and over-optimistically conjectured that it is easy to pick an extent of shrinkage yielding
lower MSE than least squares. For more than twenty years now, a storm of criticisms, alternative proposals for choice of k, and
ridge simulation studies have appeared in the statistical literature. If any sort of consensus has emerged, it may well be that
(a) ridge methods tend to shrink much too much to be anywhere close to being minimax rules (that is, you can end up either
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winning big by reducing MSE or else losing big by increasing MSE) and (b) the generalized cross validation method of Golub,
Heath and Wahba (1979) for picking an appropriate extent of shrinkage is a consistent high-performer in simulation studies.

Classical, normal-theory maximum-likelihood estimation in generalized ridge regression has been a research interest of
mine since 1973. In my first published ridge paper, Obenchain (1975), I derived general equations for likelihood monitoring
that generated little interest, apparently due to their complexity. However, Gibbons (1981) did evaluate this O-method and found
that it out-performed generalized cross validation in her “favorable case” MSE calculations. In Obenchain (1981), I restricted
interest to a specific two-parameter family of generalized ridge estimators, given in equation (12) below, and derived a closed
form expression for the extent of shrinkage along a given ridge path that is most likely to achieve minimum MSE risk (see
equations (15) and (16) below). This maximum-likelihood approach to shrinkage is fairly conservative in the sense that it reduces
the MSE risk by only about 50 percent even when its �MSE = 0 (see equation (13) below), but this conservatism also means
that the maximum-likelihood approach can increase MSE by at most 25 percent in the least favorable cases, usually somewhere
in the �MSE = 0:8 to �

MSE = 0:9 range. Ridge methods that shrink more aggressively than maximum likelihood tend either to
do a little better or else much, much worse on MSE, depending upon whether the application is either favorable or unfavorable
to shrinkage, respectively.

Other ridge research efforts of mine (Obenchain 1978, 1984) led to greater understanding of a variety of multivariate
risk (matrix valued MSE) characteristics of shrinkage estimators, along with corresponding normal-theory maximum-likelihood
estimates. Like ridge coefficients, these risk estimates can also be plotted in traces to display the effects of shrinkage and to help
ridge practitioners decide whether to start shrinking in the first place and, once they start shrinking, where to stop.

Principal components and generalized ridge regression

This subsection contains technical details of generalized ridge estimation that may be skipped over on first reading. Here we
show (i) how to decompose least squares estimates into uncorrelated components and principal correlations, (ii) why regression
on principal components is a special case of generalized ridge regression, and (iii) how ridge estimators shrink least-squares
coefficients along the principal axes of the given X coordinates.

Even in cases where X is numerically ill-conditioned—rank(X) = r < min(p; n� 1)—the singular value decomposition
of X can be written as X = H�1=2

G
0. In this decomposition, H is an n� r semi-orthogonal matrix of standardized principal

coordinates, G is a p � r semi-orthogonal matrix of principal axis direction-cosines, and �1=2 is an r � r diagonal matrix of

ordered singular values, �1=21 � � � � � �
1=2
r > 0.

Although the least-squares solution is not uniquely determined when r < p, the shortest least-squares coefficient vector isb� = G��1=2
H

0

y � Gc, where c is the r � 1 vector of uncorrelated components of b�. Note that

c � N(
; �2��1) (7)

where 
 � G
0

� are the r unknown true components of �. The structure of these uncorrelated components, c = ��1=2
H

0

y,
provides key insights into the nature of statistical ill-conditioning:

ci = r
o
i

r
y0y

�i
(8)

where roi is the principal correlation between y and the i-th column of H , the familiar R-squared statistic is R2 = r
o2
1 + � � �+r

o2
r ,

and the t-statistic for testing 
i = 0 is

ti =
cib���1=2i

= r
o
i

s
n� r � 1

(1�R2)
(9)

Thus the i-th principal correlation, roi , determines whether the i-th component is statistically significant, and yet ci can be large
numerically simply because its �i is relatively small rather than because its roi is relatively large.

Linear generalized ridge estimates are of the form

�
� = G�c =

X
gi�ici (10)
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where � is an r � r diagonal matrix of non-stochastic shrinkage factors, �1; � � � ; �r, and gi is the i-th column of G. Each
shrinkage factor lies in the closed interval from zero to one, 0 � �i � 1, and the total extent of shrinkage is measured by

m = r � �1 � � � � � �r = rank(X)� trace(�) (11)

This m is called the multicollinearity allowance ridge parameter, introduced and discussed in Obenchain and Vinod (1974),
Vinod (1976) and Obenchain (1981). Ridge coincides with least squares at m = 0 (�1 = � � � = �r = 1), and all ridge coefficients
approach zero as m approaches its upper limit of m = p (�1 = � � � = �r = 0).

Regression on principal components is the special case of equation (10) in which each �i is either 0 or 1. Standard methods

for deciding which �i to set equal to zero are: (a) the components with the smallest singular values, �1=2i , or (b) the components
with the smallest absolute principal correlations, jroi j.

Our primary focus will be on the two-parameter ridge family in which the shrinkage factor applied to the i-th uncorrelated
component of the least-squares solution is of the general form

�i = �i=(�i + k�
q
i ); (12)

where k is nonnegative and q is a finite power that determines the shape (or curvature) of the ridge path through p-dimensional
space (Goldstein and Smith 1974). The “ordinary” ridge estimators of equation (6) correspond to q = 0 in equation (12).

The two-parameter family is quite versatile in the sense that most shrinkage paths considered in ridge regression literature
are either special cases or limiting cases of this family. For example, q = 1 yields uniform shrinkage, �1 = � � � = �p. In actual
ridge practice, ties among eigenvalues are rare (except in designed experiments.) The common situation is �1 > � � � > �r > 0
where r = rank(X) � p, and the first r shrinkage factors are then all unequal as long as m > 0, m < r and q 6= 1 in
equation (12). Note that q > 1 would focus initial shrinkage upon major principal axes, �1 < � � � < �r, while q < 1 focuses
initial shrinkage along minor axes, �1 > � � � > �r. These q < 1 (declining �) shrinkage patterns, when favored by the y data,
have much greater potential for reduction in MSE risk via variance-bias trade-offs than do the q > 1 patterns.

The limit as q approaches +1 is optimal for the Gibbons (1981) “unfavorable case” where the true � vector lies along
the eigenvector corresponding to the smallest regressor eigenvalue, �r. And the limit as q approaches �1 is essentially what
Marquardt (1970) called “assigned-rank” regression. In both of these limiting cases, the shrinkage path travels along a series
of “edges” of the principal-components regression hyper-rectangle. I have found that q = �5 is usually adequate to roughly
approximate these q = �1 limiting cases.

It is easily shown that the unknown extent of shrinkage that minimizes the MSE risk of �ici as a linear estimate of 
i is

�
MSE
i =



2
i


2i + (�2=�i)
=

�i

�i + (�2=
2i )
(13)

These equations can be solved to express 
i and � as functions of �i and of any trial value for the �i shrinkage factor to yield


i = ��

s
�i

�i(1� �i)
=

��p
k�

q
i

(14)

where the last expression follows only for ridge estimators in the two-parameter family of equation (12). The likelihood that
any given ridge estimation minimizes MSE risk is then defined by maximizing, by choice of the b� estimate and the � signs, the
likelihood that 
 is of the form given in equation (14). The resulting closed-form solution, Obenchain (1981), is

bk = bk(q) = �X�
(1�q)

j

� 1�R
2CRL2(q)

nR2CRL2(q)
(15)

where the “curlicue” function is

CRL(q) =

P��roj ���(1�q)=2jqP
ro2j

P
�
(1�q)

j

(16)

Furthermore, the most likely q-shape is the one that maximizes CRL(q) (Obenchain 1975) AND CAN be found by numerical
search. Note that these maximum-likelihood ridge estimators are more versatile than principal components regression in the sense

that they use both the r
o
i and the �

1=2

i to select shrinkage factors anywhere in the range 0 � �i < 1.
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A reasonable way to plot traces for the family of equation (12) is first to decide which p quantities will be plotted vertically,
then to fix the value of the shape parameter q, and finally to plot with m of equation (11) on the horizontal axis over the range
from m = 0 (k = 0) to m = r (k = +1). In the Stata ado files, numerical values for the k parameter are determined implicitly
given values for m and q. And all trace displays use m of equation (11) on the horizontal axis instead of k so that traces will
not only have finite width but will also be easier to compare for different choices of q-shape.

The Stata ado-files

This insert presents five Stata programs to estimate and evaluate models using maximum-likelihood ridge regression:

rxrcrlq determines which q-shape (curvature) for the shrinkage path is most likely to contain the MSE-optimal ridge estimator.
rxrcrlq searches a user-specified lattice of q-shapes within the range �5 � q � +5.

rxridge performs generalized ridge calculations and displays five types of traces of specified q-shape: (i) shrunken coefficients (��i
of equation (10)), (ii) estimated scaled (or relative) MSE, (iii) excess MSE eigenvalues (OLS minus ridge), (iv) inferior-direction
cosines, and (v) ridge shrinkage �-factors.

rxrmaxl computes three types of likelihood criteria to determine an ideal extent of shrinkage along a path of given q-shape:
(i) classical, (ii) random-coefficients, and (iii) empirical Bayes.

rxrrisk computes and displays, for specified true model parameters 
 and � and specified path q-shape, five types of traces:
(i) expected coefficients, (ii) true, scaled MSE, (iii) true excess MSE eigenvalues, (iv) the true inferior direction, and (v) ridge
shrinkage �-factors.

rxrsimu generates, for given model parameters and specified path q-shape, pseudo-random responses and a trace of the resulting
true scaled, squared-error losses from shrinkage.

Note that the first three programs—rxrcrlq, rxridge and rxrmaxl—are the ones you should find most useful for data
analysis and statistical inference. However, you may use the last two programs—rxrrisk and rxrsimu—to convince yourself
that the estimation methods incorporated in the first three programs can be expected to work well in actual practice; in fact, this
is the approach that we will use in this insert.

Our exploration of the Stata programs for likelihood-based ridge regression is organized as follows. First, we show how
true expected risks and simulated losses, respectively, can be expected to vary upon shrinkage when the regression parameters,
� and �, have known values. Unfortunately, these two preliminary sections have little to do with the usual analysis/inference
situation in which ridge regression is actually applied, that is, when the unknown regression parameters are to be estimated
from an observed response variable conditional on given predictor variables. On the other hand, we will see later that traces of
maximum-likelihood estimates of unknown, true MSE risks can mimic the most important features of their population analogs.
And illustrating this phenomenon certainly enhances the credibility of our graphical/likelihood approach to ridge regression
analysis.

The formal syntax diagrams and listings of options are reserved for the final section of the insert.

The Portland Cement data

The remainder of this insert uses the Portland Cement data of Hald (1952) to illustrate use of the five Stata programs. This
data set is well known and also quite small (only n = 13 observations on p = r = 4 predictor variables named v3CA, v3CS,
v4CAF and v2CS.) This is the same numerical example I used in Obenchain (1984) to illustrate that one’s data can suggest use
of a relatively extreme path shape; here, our motivation for using the q = �5 path shape will be postponed until we illustrate
the usage of rxrcrlq.ado.

Known model parameters: rxrrisk

Let us assume that the true values of the uncorrelated components of � are 
 = G
0

� = (:646; :0; :323; :108)0 and the
true error standard deviation is � = :215. These numerical values are fairly close to their least squares estimates for the heat

response variable of Hald (1952); namely, b
 = (:657; :008; :303; :388)0 and b� = :163. The example below uses rxrrisk to
display expected shrinkage results (Figures 1–4) for the q = �5 family of (12). We begin by using the Portland Cement data
and loading the matrices rxgamma and rxsigma with the values assumed for 
 and �, respectively.
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. use haldcemt

. matrix rxsigma = (.215)

. matrix rxgamma = (.646,.0,.323,.108)

. rxrrisk heat v3CA v3CS v4CAF v2CS, q(-5) m(2) t(0.001)

RXrrisk: Shrinkage Path has Qshape =-5.00

RXrrisk: Estimated Sigma = .16259326

RXrrisk: Estimated Uncorrelated Components...

c[1,4]

c1 c2 c3 c4

c1 .65695805 .00830862 .30277026 .38803631

RXrrisk: True Sigma = .215

RXrrisk: True Uncorrelated Components...

rxgamma[1,4]

c1 c2 c3 c4

r1 .646 0 .323 .108

RXrrisk will now rescale the true sigma and components,

preserving all signal/noise ratios, so as to equate the

expected response sum-of-squares to yTy = 12

RXrrisk: Rescaled True Sigma = .21513909

RXrrisk: Rescaled True Uncorrelated Components...

rxgamma[1,4]

c1 c2 c3 c4

r1 .6464179 0 .32320895 .10806987

MCAL = 0.000 ... True OLS Summed SMSE = 51.858386

MCAL = 0.500 ... True Summed SMSE Risk = 13.43022

MCAL = 1.000 ... True Summed SMSE Risk = .78905158

MCAL = 1.500 ... True Summed SMSE Risk = 1.0183621

MCAL = 2.000 ... True Summed SMSE Risk = 2.5913642

MCAL = 2.500 ... True Summed SMSE Risk = 2.6182079

MCAL = 3.000 ... True Summed SMSE Risk = 3.1409814

MCAL = 3.500 ... True Summed SMSE Risk = 5.5661976

MCAL = 4.000 ... True Summed SMSE Risk = 11.537242

RXrrisk: Expected Coefficients...

obs was 0, now 9

(Note: file rxrrisk1.dta not found)

file rxrrisk1.dta saved

(graph appears, see Figure 1)

RXrrisk: True Scaled MSE Risk...

obs was 0, now 9

(Note: file rxrrisk2.dta not found)

file rxrrisk2.dta saved

(graph appears, see Figure 2)

RXrrisk: True Excess Eigenvalues...

obs was 0, now 9

(Note: file rxrrisk3.dta not found)

file rxrrisk3.dta saved

(graph appears, see Figure 3)

RXrrisk: True Inferior Direction Cosines...

obs was 0, now 9

(Note: file rxrrisk4.dta not found)

file rxrrisk4.dta saved

(graph appears, see Figure 4)

RXrrisk: Shrinkage DELTA Factors...

obs was 0, now 9

(Note: file rxrrisk5.dta not found)

file rxrrisk5.dta saved

(graph appears, not shown)

rxrrisk begins by echoing the q-shape selected using q() option. For this example, we have selected q = �5. Next the
OLS estimates b� and b
 are displayed, followed by the “true” values we loaded. Next, rxrrisk steps through selected values
of m (labeled MCAL). The option m(2) (described later) controls the number of steps. The option t(0.001) sets the search
convergence criterion.

The results of rxrrisk are stored in Stata matrices. rxrrisk converts these matrices to Stata data sets (using rxrmkdta,
a utility routine) and saves these data sets under the names rxrrisk1.dta, rxrrisk2.dta, : : : , rxrrisk5.dta. (If data sets
with these names already exist, they are replaced.) The statistics stored in these data sets are displayed as Stata graphs, four of
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which appear, in slightly edited form, as Figures 1–4. The fifth graph is omitted. All five graphs are also stored on disk under
the names rxrrisk1.gph, rxrrisk2.gph, : : : , rxrrisk5.gph. (Again, previously stored graphs with these names will be
replaced.)

RXrr isk:  Expected Coeff ic ients

0 1 2 3 4
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Figure 1. Figure 2.

Figure 1 shows how the expected values of the ridge coefficients change as bias is introduced via the q = �5 family. The
dashed line that starts at the top left displays the trace for the predictor variable v3CA (in this, and in succeeding, figures). The line
with the long dashes that also lies above zero displays the trace for v3CS. The line with mixed dots and dashes displays the trace for
v4CAF. The solid line displays the trace for v2CS. The true regression coefficient vector, � = G
 = (:552; :332;�:020;�:344)0,
is displayed at m = 0 in Figure 1. Thus the first two, true coefficients are positive while the last two are negative. In particular,
note that bias introduced by shrinkage along the q = �5 path can tend to make �3 somewhat more negative than its true value
of �:020.

Figure 2 gives the associated scaled (or “relative”) MSE risks defined as follows. Risk is expected loss (or mean squared
error), and the scaled risk values plotted in Figure 2 are the diagonal elements of the mean squared error matrix each divided by
�
2. Scaled risk values measure the uncertainty in an estimate as a multiple of the variance of a single observation. Scaled risk

values also have the advantage of being known values for least-squares estimates even when regression parameters are unknown.
For example, the values at the left extreme (m = 0) of Figure 2 are the diagonal elements of (X 0

X)�1, which do not depend
upon � = G
 or �.

The eigenvalues of the difference in scaled risk matrices (least squares minus ridge) are displayed in Figure 3. As long as
these eigenvalues are all nonnegative, no linear combination of least squares coefficients has smaller risk than the corresponding
linear combination of ridge coefficients.
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Figure 3. Figure 4.
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At most one excess eigenvalue can be negative (Obenchain 1978), and the corresponding normalized eigenvector (Figure 4)
points in the inferior-direction of p-dimensional space along which ridge has higher risk than least squares. For example, the
first and third direction cosines (for variables v3ca and v4caf) are nearly equal when an inferior direction appears at m = 1:5
in Figure 4. Linear combinations like �1 � �3 are thus essentially orthogonal to the inferior direction at this m, so the ridge
estimate of �1 � �3 probably has lower risk than least squares. But the ridge estimate of �1 + �3 near m = 1:5 can possibly
have higher risk than least squares, because this linear combination has a relatively large projection onto the inferior direction.

Figures 1 through 4 indicate that our numerical example is amenable to ridge shrinkage with q = �5 in equation (12). The
trace of the scaled risk matrix decreases from 51.8 at m = 0 to 0.787 at m = 1:0 and then starts increasing again. Thus an m

value of about 1 is risk optimal when q = �5, and this is like saying that ill-conditioning has effectively reduced the rank of the
regressor matrix by one, from four to three. This makes very good sense in this example because the regressor matrix comes
from a “mixture” equipment with the four regressors adding (except for a relatively large round-off error) to 100 percent.

Simulated responses: rxrsimu

The logical next step in exploring our numerical example is to use pseudo-random numbers to simulate a response vector
for this model using procedure rxrsimu. The results from a single invocation of rxrsimu are displayed in the listing below
and in Figure 5.

. use haldcemt

. matrix rxsigma = (.215)

. matrix rxgamma = (.646,.0,.323,.108)

. rxrsimu heat v3CA v3CS v4CAF v2CS, q(-5) m(2)

RXrsimu: Shrinkage Path has Qshape =-5.00

RXrsimu: Estimated Sigma = .16259326

RXrsimu: Estimated Uncorrelated Components...

c[1,4]

r1 r2 r3 r4

c1 .65695805 .00830862 .30277026 .38803631

RXrsimu: True Sigma = .21513909

RXrsimu: True Uncorrelated Components...

rxgamma[1,4]

c1 c2 c3 c4

r1 .6464179 0 .32320895 .10806987

RXrsimu will now rescale the true sigma and components,

preserving all signal/noise ratios, so as to equate the

expected response sum-of-squares to yTy = 12

RXrsimu: Rescaled True Sigma = .21513909

RXrsimu: Rescaled True Uncorrelated Components...

rxgamma[1,4]

c1 c2 c3 c4

r1 .6464179 0 .32320895 .10806987

RXrsimu: Simulated Sigma = .21311153

RXrsimu: Simulated Uncorrelated Components...

c[1,4]

r1 r2 r3 r4

c1 .65260458 -.02292297 .27097722 1.3641871

MCAL = 0.000 ... True OLS Summed SSE Loss = 34.078349

MCAL = 0.500 ... True Summed SSE Loss = 7.1773437

MCAL = 1.000 ... True Summed SSE Loss = .32067964

MCAL = 1.500 ... True Summed SSE Loss = 1.0210648

MCAL = 2.000 ... True Summed SSE Loss = 2.5054672

MCAL = 2.500 ... True Summed SSE Loss = 2.5509614

MCAL = 3.000 ... True Summed SSE Loss = 3.0736594

MCAL = 3.500 ... True Summed SSE Loss = 5.4985368

MCAL = 4.000 ... True Summed SSE Loss = 11.5

RXrsimu: Simulated Shrinkage Coefficients...

obs was 0, now 9

(Note: file rxrsimu1.dta not found)

file rxrsimu1.dta saved

RXrsimu: Scaled True Squared Error Losses...

obs was 0, now 9

(Note: file rxrsimu2.dta not found)

file rxrsimu2.dta saved
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(graph appears, see Figure 5)

RXrsimu: Shrinkage DELTA Factors...

obs was 0, now 9

(Note: file rxrsimu5.dta not found)

file rxrsimu5.dta saved

(graph appears, not shown)

. list ysim yexp

ysim yexp

1. -1.123823 -1.115586

2. -1.251552 -1.477653

3. .6228011 .7167799

4. -.4981516 -.372227

5. -.0099682 -.0052288

6. .4211500 .651238

7. .3680945 .5466103

8. -1.119887 -1.291865

9. -.2948058 -.2422897

10. 1.434455 1.351955

11. -1.182420 -.8971266

12. 1.404445 1.091739

13. 1.229661 1.043654

There are some similarities in the operation of rxrrisk and rxrsimu. Both commands require that the true values of � and 

are specified in advance. Some of the initial output is identical in both commands as well. Like rxrrisk, the rxrsimu commands
automatically saves Stata data sets (rxrsimu1.dta, rxrsimu2.dta, and rxrsimu5.dta) and Stata graphs (rxrsimu2.gph
and rxrsimu5.gph). rxrsimu adds two variables to the existing data set. ysim contains the simulated values of the response,
while yexp contains the expected values.

Note that minimum overall loss occurs at about m = 1:0 in Figure 5. Also, remember that the expected value of the scaled,
squared-error loss trace of Figure 5 would be the scaled MSE risk trace of Figure 2.
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Figure 5.

Data analysis/inference: rxridge

Let us now continue our numerical example by analyzing the simulated responses (ysim) using procedure rxridge as if
we had no knowledge of the true regression parameter settings used to generate the data.

. rxridge ysim v3CA v3CS v4CAF v2CS, q(-5) m(2) t(0.001)

RXridge: Shrinkage Path has Qshape =-5.00

RXridge: Adjusted response sum-of-squares = 12

RXridge: OLS Residual Variance = .04541652

RXridge: Variance of Principal Correlations = .00378471

MCAL = 0.000 ... True OLS Summed SMSE = 51.858386

MCAL = 0.500 ... Estimated Summed SMSE = 13.367138

MCAL = 1.000 ... Estimated Summed SMSE = .53672157

MCAL = 1.500 ... Estimated Summed SMSE = 2.4061363
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MCAL = 2.000 ... Estimated Summed SMSE = 4.819774

MCAL = 2.500 ... Estimated Summed SMSE = 4.8481264

MCAL = 3.000 ... Estimated Summed SMSE = 5.17465

MCAL = 3.500 ... Estimated Summed SMSE = 9.8344084

MCAL = 4.000 ... Estimated Summed SMSE = 18.568804

RXridge: Shrinkage Coefficients...

obs was 0, now 9

(Note: file rxridge1.dta not found)

file rxridge1.dta saved

(graph appears, see Figure 6)

RXridge: Scaled MSE Risk Estimates...

obs was 0, now 9

(Note: file rxridge2.dta not found)

file rxridge2.dta saved

(graph appears, see Figure 7)

RXridge: Excess Eigenvalue Estimates...

obs was 0, now 9

(Note: file rxridge3.dta not found)

file rxridge3.dta saved

(graph appears, see Figure 8)

RXridge: Inferior Direction Cosine Estimates...

obs was 0, now 9

(Note: file rxridge4.dta not found)

file rxridge4.dta saved

(graph appears, see Figure 9)

RXridge: Shrinkage DELTA Factors...

obs was 0, now 9

(Note: file rxridge5.dta not found)

file rxridge5.dta saved

(graph appears, not shown)

RXridge: Estimated Sigma = .21311153

RXridge: Uncorrelated Components... Number of obs = 13

------------------------------------------------------------------------------

ysim | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

c1 | .6526046 .0411443 15.861 0.000 .5577258 .7474834

c2 | -.022923 .0490037 -0.468 0.652 -.1359258 .0900798

c3 | .2709772 .1424142 1.903 0.094 -.0574305 .599385

c4 | 1.364187 1.526713 0.894 0.398 -2.156419 4.884793

------------------------------------------------------------------------------

rxridge saves Stata data sets and graphs using naming conventions analogous to those used by rxrrisk and rxrsimu.

Note that only the estimates of the first and possibly third uncorrelated components are statistically significant, but the
fourth component is huge numerically. Thus our rxrsimu-generated response vector is even more susceptible to ill-conditioning
in X than the original heat data of Hald (1952).
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Figure 6. Figure 7.
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Note in Figure 6 that all four least-squares estimates for coefficients are positive (m = 0) and that shrinkage to at least
m = 1 is required to produce ridge coefficients with the “right” numerical signs.
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Figures 7–9 are traces of estimates of scaled risks, excess eigenvalues, and inferior direction cosines, respectively (Obenchain
1978, 1981). These traces are all based upon normal-theory maximum-likelihood, but scaled risk estimates have first been adjusted
using known constants that make them unbiased and then truncated, if necessary, so as to have correct range (no scaled risk
estimate is given that is below its scaled variance lower limit).

Visual examination of Figures 6–9 suggests that the ridge solution at m = 1:0 in the q = �5 family has much more
desirable risk characteristics than does the least squares solution.

Shrinkage path shape: rxrcrlq

So far we have plotted traces using only shape q = �5 in (12). This is because q = �5 was the MSE-optimal shrinkage
path shape for the original Hald (1952) data. And we can use procedure rxrcrlq to verify that this is also the best choice for
the rxrsimu generated data.

. rxrcrlq ysim v3CA v3CS v4CAF v2CS

RXrcrlq: Estimated Sigma = .21311153

RXrcrlq: Uncorrelated Components... Number of obs = 13

------------------------------------------------------------------------------

ysim | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

c1 | .6526046 .0411443 15.861 0.000 .5577258 .7474834

c2 | -.022923 .0490037 -0.468 0.652 -.1359258 .0900798

c3 | .2709772 .1424142 1.903 0.094 -.0574305 .599385

c4 | 1.364187 1.526713 0.894 0.398 -2.156419 4.884793

------------------------------------------------------------------------------

RXrcrlq: Classical, Normal-Theory, Maximum-Likelihood Choice of Q=>Shape

and MCAL=>Extent of Shrinkage in Generalized Ridge Regression...

----------------------------------------------------------------------

The curlicue function, CRL(Q), is the (nonnegative) Correlation

between the R-vector of absolute values of the principal correlations

of regressors with the response and the L-vector of regressor spread

eigenvalues raised to the power (1-Q)/2.

----------------------------------------------------------------------

qvec[21,5]

Qshape MCAL Konst CRL(Q) ChiSq

r1 5 3.9620787 1.760e+08 .05583205 45.426121

r2 4.5 3.9620482 24548041 .05585532 45.426088

r3 4 3.961938 3416311.2 .05593933 45.425969

r4 3.5 3.9615135 471414.18 .05626175 45.425512

r5 3 3.9597236 62767.277 .0576044 45.423578

r6 2.5 3.9511002 7157.8975 .06373354 45.414169

r7 2 3.8986512 460.94542 .09406287 45.353457

r8 1.5 3.4958991 10.524657 .24223801 44.703863
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r9 1 1.4705107 .58134686 .59741232 39.943159

r10 .5 1.4471443 .7457153 .74293599 35.504378

r11 0 1.7167549 2.4715085 .78595994 33.585201

r12 -.5 1.9154949 9.7502148 .81188967 32.212621

r13 -1 2.0447908 40.498435 .83293916 30.94283

r14 -1.5 2.1009248 171.06443 .85209421 29.635774

r15 -2 2.1182805 727.90415 .86989888 28.259285

r16 -2.5 2.1205947 3115.3572 .88627757 26.820271

r17 -3 2.1182927 13417.735 .90110205 25.337028

r18 -3.5 2.1152813 58203.02 .91432178 23.829866

r19 -4 2.1129101 254461.68 .92596664 22.318394

r20 -4.5 2.1116114 1121925.8 .9361225 20.820911

r21 -5 2.1115136 4990888.1 .94490765 19.354315

The most likely Qshape = -5.00 achieves Maximum CRL(Q) and Minimum ChiSq.

This Min ChiSq has degrees-of-freedom = 2 and sig.level =0.000

----------------------------------------------------------------------

In multiple regression models where the Minumum ChiSq is significantly

greater than zero, the 2-parameter generalized ridge family is probably

too restrictive (unlikely to contain the MSE optimal shrinkage factors.)

----------------------------------------------------------------------

rxrcrlq uses the maximum-likelihood equations (15) and (16) to evaluate alternative q-shapes for the shrinkage path. Here
the most likely q-shape is �5 because it achieves maximum CRL(q) and minimum �

2 in the listing above. This minimum �
2

has two degrees of freedom and a significance level that is zero to three decimal places. Thus the two-parameter generalized
ridge family is probably too restrictive (unlikely to contain the MSE optimal shrinkage factors) for this example.

Is there a family of shrinkage (�) factors “less restrictive” than equation (12) that we could consider? Not really; I know
of no proposals for, say, a three-parameter family. A full r-parameter solution (in which each � factor is estimated separately)
is possible, but this would impose no “smoothness” requirements whatsoever on shrinkage factors. (In the current example, the
data strongly suggest taking �2 much smaller than �1 or �3, but there is very little potential for MSE reduction by such a “greedy”
tactic because b
2 = �:02 is already tiny, numerically.) Besides, r-parameter estimates are not amenable to visual display using
ridge traces.

It is a straightforward task to generate traces for several different values of q and to make a choice (either objective or
subjective) of the shape one likes best. These traces can change shape and thus interpretation quite drastically as q changes.
Obviously unfavorable choices of q will have minimum SMSE risk either at or very close to m = 0 in Figures 2 and 7.
Furthermore, a negative excess eigenvalue will not only appear for very small m values in Figures 3 and 8 when q is unfavorable,
but this negative eigenvalue will also dominate the most positive eigenvalue in absolute magnitude. Anyway, the most likely
q-shape (which is �5 in our current example) usually strikes me as being adequately general even when the rxrcrlq �2 statistic
is significantly greater than zero.

A search on a finer lattice of q values over a wider range than �5 � q � +5 could be considered, of course, but we must
remember that the primary purpose of the rxrcrlq calculations is simply to interest us in examining the corresponding trace
displays.

Shrinkage extent: rxrmaxl

Other maximum-likelihood approaches besides the classical, fixed-coefficient approach of Obenchain (1975, 1981) are
possible, but they do not yield closed form expressions for the optimal k or m given q. The empirical Bayes approach of
Efron and Morris (1977) and the random coefficient method of Golub, Heath, and Wahba (1979) and Shumway (1982) are two
maximum-likelihood alternatives implemented in rxrmaxl. This program “monitors” all three of the above likelihood criteria
on a lattice of m values, referring to them as CLIK, EBAY, and RCOF, respectively.

. rxrmaxl heat v3CA v3CS v4CAF v2CS, q(-5) m(2) t(0.001)

RXrmaxl: Shrinkage Path has Qshape =-5.00

RXrmaxl: Estimated Sigma = .21311153

RXrmaxl: Uncorrelated Components... Number of obs = 13

------------------------------------------------------------------------------

ysim | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

c1 | .6526046 .0411443 15.861 0.000 .5577258 .7474834

c2 | -.022923 .0490037 -0.468 0.652 -.1359258 .0900798

c3 | .2709772 .1424142 1.903 0.094 -.0574305 .599385

c4 | 1.364187 1.526713 0.894 0.398 -2.156419 4.884793

------------------------------------------------------------------------------
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RXrmaxl: 3 Normal, Maximum-Likelihood Shrinkage Criteria...

(Classical, Empirical Bayes, and Random Coefficients)

MCAL = 0.500

MCAL = 1.000

MCAL = 1.500

MCAL = 2.000

MCAL = 2.500

MCAL = 3.000

MCAL = 3.500

MCAL = 4.000

RXrmaxl: Listings of Three Minus-2-Log-Likelihood Ratios...

CLIK[9,3]

CLIK EBAY RCOF

0 1.000e+100 1.000e+100 1.000e+100

.5 1.742e+12 83.985422 84.219263

1 9.889e+11 74.129038 74.567306

1.5 445435.87 31.003878 32.064207

2 738.64505 19.480671 20.780788

2.5 27.939063 28.33019 21.782698

3 35.164964 71.501773 31.229391

3.5 39.875945 151.47765 39.478093

4 45.465477 256.22102 45.465477

----------------------------------------------------------------------

The Maximum Likelihood choices for MCAL=>Extent of Shrinkage are

the ones that Minimize the CLIK, EBAY or RCOF criteria, above.

----------------------------------------------------------------------

The maximum-likelihood choices for m-extent of shrinkage are the ones that minimize the CLIK, EBAY or RCOF criteria,
above. I used rxrmaxl above to display these criteria for the ysim variable generated by rxrsimu within the q = �5 family.
CLIK is a minus two log likelihood ratio whose minimum has an asymptotic �2 distribution with two degrees of freedom. EBAY
and RCOF are normalized so they cannot become negative, but their minima apparently do not have asymptotic �2 distributions.
Anyway, the EBAY and RCOF criteria both favor m = 2 when q = �5 while CLIK favors m = 2:5. Thus, using the “2=r-ths
Rule-of-Thumb” of Obenchain (1978) for the extent of shrinkage likely to be good (that is, likely to dominate least-squares in
a matrix MSE sense) in this p = r = 4 predictor model, we again find that shrinkage to at least m = 2 � 2=r = 1 is highly
desirable.

The primary reservation that comes to my mind concerning the rxrmaxl.ado calculations is that they are difficult to plot,
at least simultaneously. All start at +1 at m = 0, and EBAY can also be very large as m approaches p. And, again, minimum
values are not comparable. However difficult they may be to produce, plots of these minus two log likelihoods are of interest
because one needs to see how flat each is near its minimum.

A summary of the example

The most striking feature of our example is the extent to which the rxridge estimates mimic their expected values from
rxrrisk. I assure the reader that this mimicry is typical rather than an artifact of the single set of simulated responses generated
using rxrsimu. The overall signal-to-noise ratio here was �0�=�2 = 2:5 when the diagonal elements of X 0

X were scaled to
equal (n� 1) = 12, and one might expect much less mimicry with much lower ratios. I suggest that skeptics simply try it for
themselves.

Next, I ask you to reexamine the estimated traces of Figures 6 through 9. Isn’t it remarkable how much incredibly detailed
information is contained in these traces concerning the extent and effects of shrinkage on ill-conditioned estimates of regression
coefficients?

Syntax

As promised above, this section presents the syntax diagrams for all of the ridge commands.

rxrcrlq depvar varlist [ if exp ] [ in range ] [ , nq(#) qmax(#) qmin(#) rescale(#) tol(#) ]

rxridge depvar varlist [ if exp ] [ in range ] [ , msteps(#) qshape(#) rescale(#) tol(#) ]

rxrmaxl depvar varlist [ if exp ] [ in range ] [ , msteps(#) qshape(#) omdmin(#) rescale(#) tol(#) ]

matrix rxsigma = (#)
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matrix rxgamma = (#,: : :,#)

rxrrisk depvar varlist [ if exp ] [ in range ] [ , msteps(#) qshape(#)

omdmin(#) rescale(#) tol(#) ]

rxrsimu depvar varlist [ if exp ] [ in range ] [ , msteps(#) qshape(#)

rescale(#) start(#) tol(#) ]

msteps(#) specifies the number of steps per unit increase in m, the multicollinearity allowance parameter; the default value
is 4. The total number of steps along the generalized shrinkage path from the least squares solution (m = 0) to all zero
coefficients (m = r) will thus be 1 + (msteps�r), where r = rank(X).

nq(#) specifies an integer number of q-shape values to evaluate between qmin and qmax, inclusive. The default value is 21,
and nq cannot be reset to any integer value less than 9.

omdmin(#) is the strictly positive minimum value to be used for calculation of (1 � �) shrinkage factors. The default is
omdmin= 10�13.

qmax(#) specifies the maximum q-shape to evaluate. The default value is qmax= +5, and qmax cannot be reset to any value
less than +2.

qmin(#) specifies the minimum q-shape to evaluate. The default value is qmin= �5, and qmin cannot be reset to any value
greater than �2.

qshape(#) controls the shape (or curvature) of the generalized shrinkage path through likelihood space; the default value is
0, which yields Hoerl–Kennard “ordinary” ridge regression. qshape= 1 yields uniform shrinkage, and all qshape values
between +5:0 and �5:0 are allowed.

rescale(#) controls the scaling of the response variable and all p predictor variables in the varlist. The default value is
rescale= 1 to scale all centered variables to have sample variance 1 (sample sum-of-squares equal to one fewer than the
number of observations). To retain the original scaling of variables in the Stata .dta file, specify rescale(0).

start(#) controls Stata’s uniform random number seed value, and the rxrsimu default value is 12345. If you make repeated
rxrsimu runs without changing this seed, you will get the same pseudo-random values each time. When you do change
start, make it large, positive, and odd.

tol(#) specifies the search convergence criterion and defaults to 0.01.

Restrictions: Several restrictions apply to the ridge programs.

1. The regression models always contain an intercept (constant) term.

2. The number, p, of (nonconstant) predictor variables, X , in the varlist must be at least two.

3. If p is greater than 20, the programs will refuse to draw trace plots.

4. The dependent variable, y, must be nonconstant.

5. No missing values are allowed.

6. The matrices rxgamma and rxsigma must be set prior to calling rxrrisk and rxrsimu.

The ridge programs internally center all variables to have mean zero, thus the fitted (hyper)plane always passes through
y = 0 at X = 0. The implied y-intercept at the original X origin can, of course, be determined implicitly as the coefficients
for the p, nonconstant regressors change, but the y-intercept is not calculated by the ridge programs.

In addition to coding these ridge programs for Stata, I have programmed my maximum-likelihood ridge algorithms in
SAS/IML, S-PLUS and GAUSS. Also, Bernhard Walter, of the Technische Universität München, has created splendidly interactive
routines for XLisp-Stat. However, the most complete implementation of my algorithms is provided by my stand-alone systems
for MS-DOS personal computers: rxridge.exe, rxtraces.exe, and pathproj.exe (Obenchain 1991 and Nash 1992). For
example, rxridge.exe calculates inference intervals (classical, confidence and Bayes HPD) for shrunken coefficients and performs
ridge residual analyses (outlying responses and/or high leverage regressor combinations). I distribute all of the above software
systems as freeware.
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STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt data sets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology srd robust methods & statistical diagnostics
sed exploratory data analysis ssa survival analysis
sg general statistics ssi simulation & random numbers
smv multivariate analysis sss social science & psychometrics
snp nonparametric methods sts time-series, econometrics
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified

In addition, we have granted one other prefix, crc, to the manufacturers of Stata for their exclusive use.

International Stata Distributors

International Stata users may also order subscriptions to the Stata Technical Bulletin from our International Stata Distributors.

Company: Dittrich & Partner Consulting Company: Oasis Systems BV
Address: Prinzenstrasse 2 Address: Lekstraat 4

D-42697 Solingen 3433 ZB Nieuwegein
Germany The Netherlands

Phone: +49 212-3390 99 Phone: +31 30 6066336
Fax: +49 212-3390 90 Fax: +31 30 6065844

Countries served: Austria, Germany Countries served: The Netherlands

Company: Howching Company: Ritme Informatique
Address: 11th Fl. 356 Fu-Shin N. Road Address: 34 boulevard Haussmann

Taipei, Taiwan, R.O.C. 75009 Paris, France
Phone: +886-2-505-0525 Phone: +33 1 42 46 00 42

Fax: +886-2-503-1680 Fax: +33 1 42 46 00 33
Countries served: Taiwan Countries served: Belgium, France,

Luxembourg, Switzerland

Company: Metrika Consulting Company: Timberlake Consultants
Address: Ruddammsvagen 21 Address: 47 Hartfield Crescent

11421 Stockholm West Wickham
Sweden Kent BR4 9DW, U.K

Phone: +46-708-163128 Phone: +44 181 462 0495
Fax: +46-8-6122383 Fax: +44 181 462 0493

Countries served: Baltic States, Denmark, Finland, Countries served: Eire, Portugal, U.K.
Iceland, Norway, Sweden


