StatA

TecHNICAL

BuLLeTiN

A publication to promote communication among Stata users

July 1995
STB-26

Editor Associate Editors

Sean Becketti Francis X. Diebold, University of Pennsylvania
Stata Technical Bulletin Joanne M. Garrett, University of North Carolina
8 Wakeman Road Marcello Pagano, Harvard School of Public Health

South Salem, New York 10590 James L. Powell, UC Berkeley and Princeton University
914-533-2278 J. Patrick Royston, Royal Postgraduate Medical School

914-533-2902 FAX
stb@stata.com EMAIL

Subscriptions are available from Stata Corporation, email stata@stata.com, telephone 979-696-4600 or 800-STATAPC,
fax 979-696-4601. Current subscription prices are posted at www.stata.com/bookstore/stb.html.

Previous Issues are available individually from StataCorp. See www.stata.com/bookstore/stbj.html for details.

Submissions to the STB, including submissions to the supporting files (programs, datasets, and help files), are on
a nonexclusive, free-use basis. In particular, the author grants to StataCorp the nonexclusive right to copyright and
distribute the material in accordance with the Copyright Statement below. The author also grants to StataCorp the right
to freely use the ideas, including communication of the ideas to other parties, even if the material is never published
in the STB. Submissions should be addressed to the Editor. Submission guidelines can be obtained from either the
editor or StataCorp.

Copyright Statement. The Stata Technical Bulletin (STB) and the contents of the supporting files (programs,
datasets, and help files) are copyright @ by StataCorp. The contents of the supporting files (programs, datasets, and
help files), may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy or
reproduction includes attribution to both (1) the author and (2) the STB.

The insertions appearing in the STB may be copied or reproduced as printed copies, in whole or in part, as long
as any copy or reproduction includes attribution to both (1) the author and (2) the STB. Written permission must be
obtained from Stata Corporation if you wish to make electronic copies of the insertions.

Users of any of the software, ideas, data, or other materials published in the STB or the supporting files understand
that such use is made without warranty of any kind, either by the STB, the author, or Stata Corporation. In particular,
there is no warranty of fitness of purpose or merchantability, nor for special, incidental, or consequential damages such
as loss of profits. The purpose of the STB is to promote free communication among Stata users.

The Stata Technical Bulletin (ISSN 1097-8879) is published six times per year by Stata Corporation. Stata is a registered
trademark of Stata Corporation.

Contents of this issue page

crc39. How to make older ado-files work correctly 2
crc40. Correcting for ties and zeros in sign and rank tests 2
dm31. Counting missing values: an extension to egen 4
dm32. Matching names in Stata 5
dm33. Elapsed days using 30-day months 8
dm34. Constructing axis labels for dates 8

ip8. An enhanced for command 12
sg35.1. Robust tests for the equality of variances: correction 12
sg37.1. Orthogonal polynomials: correction 12

sg40. Testing for the mean of a skewed variable 13
sg4l. Random-effects probit 15
sg42. Plotting predicted values from linear and logistic regression models 18
snp6.1. ASH, WARPing, and kernel density estimation for univariate data 23

snp8.1. Robust scatterplot smoothing: correction 31

2 Stata Technical Bulletin STB-26

crc39 How to make older ado-files work correctly

Some readers of the STB have called our technical support line to tell us they have problems getting ado-files from early
issues of the STB to work correctly. The problem arises with older ado-files that use elements of Stata that have changed since
the publication of that program. StataCorp makes every effort to minimize the number of changes to existing features when new
versions of Stata are released, but, inevitably, some features must be changed to accommodate requested improvements.

There is a way to make older ado-files function as intended. Stata’s version command instructs Stata to behave as if it
were the specified version of Stata, regardless of the version that is actually being used. For instance, the command

. version 3.0

tells Stata to interpret and execute subsequent commands exactly as Version 3.0 of Stata would. (Of course, this example works
only if you are running Version 3.0 or later of Stata.) You should always include a version command as the first line of your
own ado-files. This practice protects the programs from changes in later versions of Stata.

The version command was introduced in Version 3.0 of Stata. As a consequence, ado-files written under earlier versions
of Stata (or published before STB-7) will not contain this command. If you have difficulty running one of these programs, simply
add the command “version 2.1” to the beginning of the program, and it will execute normally.

crc40 Correcting for ties and zeros in sign and rank tests

The current Stata commands that perform sign and rank tests (signtest, signrank, and ranksum) do not correct for
ties and zeros. Included in this issue’s crc directory are new versions of signtest, signrank, and ranksum that compute the
appropriate corrections to the variance when ties or zeros occur.

Assumptions for the sign test and Wilcoxon signed-rank test

Both the sign test and Wilcoxon signed-rank tests test the null hypothesis that the distribution of a random variable X has
median zero. The sign test makes no additional assumptions, but the Wilcoxon signed-rank test makes the additional assumption
that the distribution of X is symmetric. If X = Y; — Y5, where Y] and Y5 have the same distribution, then it follows that the
distribution of X is symmetric about zero. Thus, the Wilcoxon signed-rank test is often described as a test of the hypothesis
that two distributions are the same; i.e., Y7 ~ Ys.

The test statistic for the sign test is the number n of observations greater than zero. Assuming that the probability of an
observation being equal to zero is exactly zero, then, under the null hypothesis, n,. ~ Binomial(n,p = %), where n is the total
number of observations. But what do we do if we have some observations that are zero?

Fisher’s Principle of Randomization

We have a ready answer to this question if we view the test from the perspective of Fisher’s Principle of Randomization
(Fisher 1935). Fisher’s idea (stated in a modern way) was to look at a family of transformations of the observed data such that
the a priori likelihood (under the null hypothesis) of the transformed data is the same as the likelihood of the observed data.
The distribution of the test statistic is then produced by calculating its value for each of the transformed “randomization” data
sets, considering each data set equally likely.

For the sign test, the “data” are simply the set of signs of the observations. Under the null hypothesis of the sign test,
P(X; > 0) = P(X; < 0), so we can transform the observed signs by flipping any number of them and the set of signs will
have the same likelihood. The 2" possible sign changes form the family of randomization data sets. If we have no zeros, this

1

procedure again leads to n4 ~ Binomial(n,p = 3).

If we do have zeros, changing their signs leaves them as zeros. So if we observe ng zeros, each of the 2" sign-change
data sets will also have ny zeros. Hence, the values of n calculated over the sign-change data sets range from 0 to n — ng,
and the “randomization” distribution of n is Binomial(n — ng,p = %)

Stata Technical Bulletin 3

Example

. signtest mpg = 22

Sign test
sign | observed expected

positive | 26 34.5

negative | 43 34.5
zero | 5 5
all | 74 74

One-sided tests:

Ho: median of mpg = 22 vs. Ha: median of mpg > 22
Pr(#positive >= 26)
= Binomial(n = 69, x >= 26, p = 0.5) = 0.9853

Ho: median of mpg = 22 vs. Ha: median of mpg < 22
Pr(#negative >= 43)
= Binomial(n = 69, x >= 43, p = 0.5) = 0.0266

Two-sided test:

Ho: median of mpg = 22 vs. Ha: median of mpg “= 22
Pr(#positive >= 43 or #negative >= 43)
= min(1, 2*Binomial(n = 69, x >= 43, p = 0.5)) = 0.0533

Handling zeros and ties in the Wilcoxon signed-rank test

Fisher’s Principle of Randomization can also be used to deal with zeros and ties in the Wilcoxon signed-rank test. Here the
data consist of the signed ranks; i.e., we first calculate 7; = sign(x;) rank(|z;|) for the each of the original observations. Given
our assumption of symmetry, we have f(z;) = f(—x;), where f is the distribution of X. Hence, the likelihood is unchanged
if we flip signs on the x;, and thus the family of randomization data sets is the 2™ possible sign changes for the r;.

When we observe x; = 0, r; will always be zero in each of the randomization data sets (using sign(0) = 0). When we
have ties, we can assign averaged ranks for each group of ties and then treat them the same as the other ranks. The randomization
distribution can be expressed as follows: If the observed test statistic is ¢ = Y r;, the distribution of ¢ is T' = Y r;S;, where
the r; are the observed signed-ranks (considered fixed) and the S; are independent random variables with P(S; = 1) = % and

1

P(S; = —1) = 1. It is easy to see that E(T) = 0 and Var(T) = 1 > r2. The test statistic for the Wilcoxon signed-rank test

is usually expressed as the sum of the positive signed-ranks, but this just differs from 7" by a constant.

Example

. signrank x1 = x2

Wilcoxon signed-rank test

sign | obs sum ranks expected
positive | 33 1256 1382.5
negative | 37 1509 1382.5
zero | 4 10 10
all | 74 2775 2775
unadjusted variance 34456.25
adjustment for ties -568.12
adjustment for zeros -7.50
adjusted variance 34390.62
Ho: median of x1 = x2
z = -0.682
Prob > |z| = 0.4952

The “unadjusted variance” is the variance that the randomization distribution would have had if there had been no ties or zeros;
ie., Varunaqj (1) = 1 >, i = n(n + 1)(2n + 1)/24. The adjustment for ties is the change in the variance when the ranks
(for nonzero observations) are replaced by averaged ranks. The adjustment for zeros is the change in the variance when the
ranks for the zeros are signed to make r; = 0; i.e., the variance is reduced by 37", i = ng(ng + 1)(2no + 1)/24.

4 Stata Technical Bulletin STB-26

Handling ties in the Wilcoxon rank-sum test (Mann-Whitney test)

For the Wilcoxon rank-sum test, we have two independent random variables X; and X2, and we test the null hypothesis
that X; ~ X5. We have a sample of size n; from X and another of size ny from Xs. The data are then ranked without regard
to the sample to which they belong. Wilcoxon’s test statistic (Wilcoxon 1945) is the sum of the ranks for the observations in the
first sample: T' =) Ry;. Mann and Whitney’s U statistic (Mann and Whitney 1947) is the number of pairs (X1;, X2;) such
that X7; > Xo;. These statistics differ only by a constant: U = T — nq(ns + 1)/2.

Again Fisher’s Principle of Randomization provides a method for calculating the distribution of the test statistic, ties or
not. The randomization distribution consists of the (771) ways to choose 1y ranks from the set of all n = nj 4 ny ranks and
assign them to the first sample. It is a straightforward exercise to verify that E(T) = ny(n + 1)/2 and Var(T) = ninys?/n,
where s is the standard deviation of the combined ranks for both groups. This formula for the variance is exact and holds when
there are no ties and when there are ties and we use averaged ranks. (Indeed, the variance formula holds for the randomization
distribution of choosing n; numbers from any set of n numbers.)

Example

. ranksum mpg, by(foreign)

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

foreign | obs rank sum expected
(O 52 1688.5 1950
1] 22 1086.5 825
combined | 74 2775 2775
unadjusted variance 7150.00
adjustment for ties -36.95
adjusted variance 7113.05
Ho: median mpg(foreign==0) = median mpg(foreign==1)
z = -3.101
Prob > |z| = 0.0019

Other methods of handling zeros and ties

Other proposed methods of handling zeros and ties can sometimes lead to anomalies (Pratt and Gibbons 1981). The only
other procedure that can be recommended is to decide a priori to break all zeros and ties in such a way as to make the p-value as
large as possible. This is, of course, a very conservative procedure and can lead to an appreciable loss in power if the probability
of observing zeros and ties is not small.

References
Fisher, R. A. 1935. Design of Experiments. Edinburgh: Oliver and Boyd.

Mann, H. B. and D. R. Whitney. 1947. On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical
Statistics 18: 50-60.

Pratt, J. W. and J. D. Gibbons. 1981. Concepts of Nonparametric Theory. New York: Springer-Verlag.

Wilcoxon, F. 1945. Individual comparisons by ranking methods. Biometrics 1: 80-83.

dm31 Counting missing values: an extension to egen

Richard Goldstein, Qualitas, Inc., EMAIL richgold @netcom.com

The rmiss () function available with Stata’s egen command counts the number of missing values in a variable list. However,
rmiss () will not accept string variables in the variable list. I have written a generalization to rmiss (), called rmiss2(), that
follows the same syntax and offers the same functionality as rmiss() except that rmiss2() handles both numeric and string
variables. The following example illustrates the use of rmiss2().

. use example
(1978 Automobile Data)

Stata Technical Bulletin 5

list

make price mpg
1 4099 22
2. AMC Pacer 4749 17
3. AMC Spirit . 22
4 Buick Century 4816 20
5 7827

. egen nmiss = rmiss(price mpg)

list

make price mpg nmiss
1. 4099 22 0
2. AMC Pacer 4749 17 0
3. AMC Spirit . 22 1
4. Buick Century 4816 20 0
5. 7827 1

. drop nmiss

. egen nmiss = rmiss(make price mpg)
type mismatch

r(109);
. egen nmiss = rmiss2(make price mpg)
. list
make price mpg nmiss
1. 4099 22 1
2. AMC Pacer 4749 17 0
3. AMC Spirit . 22 1
4. Buick Century 4816 20 0
5. 7827 . 2

dm32 Matching names in Stata

Peter Sasieni, Imperial Cancer Research Fund, London, FAX (011)-44-171-269-3429

I was recently faced with the problem of trying to identify individuals who appeared more than once in a data base
of approximately 8000 records collected over a nine year period. Although sex and age (in years) might be used to partially
eliminate false matches, it was only possible to identify matches by using the names. These had been entered as two strings:
namel (surname) and name2 (forename). Exact matches were easy to obtain. The following code provides a separate id to each
unique name. id is missing for names that occur only once.

. generate str30 name = namel + name2

. sort name

. generate long id = (name != name[_n-1])
. replace id = sum(id)

. sort id

. quietly by id: replace id=id[2]

The problem with this approach is that it does not permit any variations in spelling of names. We cannot easily identify
“BILL” with “WILLIAM” without using a sophisticated program, but it ought to be possible to match “ANN” with “ANNE”.
Additionally we would like to check for the inversion of surname and forename. The following code tackles the name inversion
and partially overcomes the problem of slight variants in one or other name.

. generate byte stack=1

. global nobs=_N

. global nfrom=$nobs+1

. expand 2

. replace namel = name2 in $nfrom/1

. replace name2 = namel[_n-$nobs] in $nfrom/1
. replace stack=2 in $nfrom/1

. sort namel name2

. generate byte ml=(name2==name2[_n-1] | name2==name2[_n+1])

ml identifies individuals that are near matches. It is guaranteed to match “SASIENI PETER” with “PETER SASIENI”. It
has a good chance of matching “SASIENI PETER” with “SASIENIE PETER”. This is because m1 only looks for an exact match
of name2 and, provided there are not lots of different people with the surname “SASIENI”, these two records are likely to be

6 Stata Technical Bulletin STB-26

adjacent in the sorted data base. Thus “SASIENI PETER” and “SOSIENI PETER” are less likely to be matched since they will
be separated by anyone with the name “SMITH”. Likewise “SMITH YVONNE” and “SMITH YVETTE” will probably match (when
sorted by the forename — stack==2), but “SASIENI JOHN” and “SASIENI JONATHAN” are unlikely to match. (The latter fails
because there is not an exact match and because “JOHN” and “JONATHAN are unlikely to be consecutive forenames in a large,
alphabetically sorted, data base.)

One way of trying to match such names is to relax the matching criterion, using

. generate str2 n2a=substr(name2,1,2)

. generate byte m2=(n2a==n2a[_n-1] | n2a==n2a[_n+1])

Another is to create a new variable and to sort the data using it. For example

. generate str7 namex=substr(namel,1,3)+substr(namel,-3,3)+substr(name2,1,1)
. sort namex

. generate byte m3=(namex==namex[_n-1] | namex==namex[_n+11)

We found the above tricks quite useful for identifying additional matches without creating too many false matches. The
difficulty in obtaining a substantially better solution to the problem of matching names in Stata stems from the size of the
problem. One could imagine computing a score that would describe the distance between any two names, but since one wishes
to compare every record with every other record, there would be _N*(_N-1)/2 (i.e., approximately 32 million when _N=8000)
such scores to compute. It would not be difficult to store only the 5 closest names and their scores, but the problem of computing
the scores is probably beyond the capabilities of Stata.

A related STB entry by William Gould (dm13) is concerned with separating a list of names into prefixes (such as Mr. and
Ms.), first names, middle initials, last names, suffixes (such as Jr.) and affiliations (such as BSc. or Esq.). Although there is no
overlap between nmatch, the program presented here, and Gould’s extrname program, it will be useful to run extrname before
attempting to match names whenever the names have been entered in a variety of formats.

A program to match names

We include with this insert an ado-file, nmatch, which uses minlen and replstr from dml3.1. This program probably
should be adapted to the particular problem at hand. The enclosed version assumes that the names have been entered in uppercase
as two string variables. The syntax is

nmatch namevarl namevar?2

nmatch produces five additional variables: _m1 identifies observations that share the same values for both namevarl and namevar2
with another observation. Observations share a common integer value of _m1 if and only if they have the same names in namevarl
and namevar2. Observations with unique names have m1 set to missing.

Similarly _m2 and _m3 are integer-valued variables for observations with identical values in either namevarl or namevar2
and lexicographically adjacent, but non-identical, values in the other variable. Observations with a nonmissing value for _m1 will
only be nonmissing for _.m2 or _m3 if the relaxed matching criteria identify an additional observation that matches the original,
exactly matching names. For example “WILLIAM GOULD”, “WILLIAM GOULD” and “WILL GOULD”.

_m4 makes use of replstr to search for names that match apart from certain spelling variations. nmatch makes the
following substitutions (in the order given) to strings in namevarl and namevar2 before searching for a new match:

Y—>1I
IE > I
EI - I
0u — 0
Z—3S
LL — L
NN — N
T — T
FF — F
PH—V
HN — N
MAC — MC

-mb looks for matches by interchanging the value of namevarl with that of namevar2. Only exact matches are counted.

Stata Technical Bulletin 7

Example

When applied to our data set of 7873 observations, the result was

. describe Nx*

1. Namel stri5 %15s surname
2. Name?2 str10 %10s forename

. nmatch Namel Name2

. describe _x*

3. _ml int %8.0g Exact match
4. _m2 int %8.0g forename match
5. _m3 int %8.0g surname match
6. _m4 int %8.0g Sound match
7. _mb int %8.0g Reverse match
. summarize _m*
Variable | Obs Mean Std. Dev. Min Max
_ml | 794 3689.597 2205.015 8 7439
_m2 | 42 3513.095 2409.536 266 6737
_m3 | 10 5214.4 1737.218 2602 6975
_mé4 | 19 3730.579 2561.6 464 7321
_m5 | 2 7654 0 7654 7654

Of the 42 observations with nonmissing -m2 (same first name), all but 7 were subsequently eliminated. Of the 10 identified
by -m3 (same surname), 8§ were confirmed, whereas only 2 of the 19 new matches identified by -m4 had ages that were compatible.
The pair identified by _m5 were observations on the same individual.

I regret that the data set used in this example cannot be made available due to data protection legislation. To help readers
gain familiarity with nmatch, I have constructed an artificial example using the automobile data supplied with Stata.

I split the make variable into two new variables, Make and Model, and stored just these two variables in an example data
set that is provided on the distribution diskette.

. use example
(1978 Automobile Data)

. list in £/5
Make Model
1. AMC Concord
2. AMC Pacer
3. AMC Spirit
4. Buick Century
5. Buick Electra

Applying nmatch to these data produces

. nmatch Make Model
. summarize

Variable | Obs Mean Std. Dev. Min Max

Make |
Model |
_mi |
_m2 |
_m3 |
_m4 |
_m5 |

37.14286 21.31398 2 67

OB OOOO

There are no exact matches (_m1 is always missing) because this data set contains exactly one record for each type of automobile.
There are fourteen cases where the value of Make is identical and the values of Model are lexicographically adjacent.

8 Stata Technical Bulletin STB-26

. list _m3 Make Model if _m3!=.

_m3 Make Model
8. 54 Buick Regal
9. 54 Buick Riviera
17. 46 Chev. Monte Carlo
18. 46 Chev. Monza
31. 45 Merc. Marquis
32. 45 Merc. Monarch
33. 67 Merc. XR-7
34. 67 Merc. Zephyr
36. 24 Olds Cutl Supr
37. 24 Olds Cutlass
56. 2 Datsun 200
B7. 2 Datsun 210
68. 22 Toyota Corolla
69. 22 Toyota Corona

The treatment of the four Mercury models is instructive.

I invite the interested reader to modify this data set and to use it to experiment with nmatch.

Reference
Gould, W. 1993a. dm13: Person name extraction. Stata Technical Bulletin 13: 6-11.

——. 1993b. dm13.1: String manipulation functions. Stata Technical Bulletin 13: 11-13.

dm33 Elapsed days using 30-day months

Ken Heinecke, Century Investment Management Corporation, EMAIL heinecke @itis.com

Financial analysts often find it necessary to calculate cash flows based on a 360-day year. I have written days360 to
calculate the number of days between two given dates based on twelve 30-day months. The syntax of the command is

days360, begdate(datel) enddate (date2)

where datel and date2 must be entered as mm/dd/ccyy or mm-dd-ccyy. Note that the centuries are required and that both
begdate () and enddate () must be specified for the program to run. The program calculates the number of elapsed days and
saves it in the global macro days.

Methodology

I have followed the NASD method for calculating 30-day months. If the beginning date is the 31st of a month, it becomes
equal to the 30th of the same month. If the ending date is the 31st of a month and the beginning date is less than the 30th of a
month, the ending date is considered to be equal to the 1st of the next month. If the ending date is the 31st and the beginning
date is the 30th or 31st, the ending date becomes equal to the 30th day of the same month.

Example
. days360, b(3/31/1995) e(2/28/1996)

. macro list days
days: 328

. days360, b(5-15-1990) e(7-1-1992)

. macro list days
days: 766

dm34 Constructing axis labels for dates

Sean Becketti, Editor, Stata Technical Bulletin

This insert presents yrxlab, a simple utility designed for a single, narrow purpose: constructing attractive axis labels for
date variables. I hesitate to publish such a specialized function, however, I use yrxlab so frequently and it solves such a nagging
problem, that I believe it may be useful to a large number of STB users.

Stata Technical Bulletin 9

Background

Stata provides several ways of generating axis labels for date variables. When the date variable is stored as a Stata elapsed
date with a date format, the datelab program can be used (Riley 1995). While date formats are useful, they are a relatively
recent addition to Stata. As a consequence, over the years many time series users (including myself) developed other encodings
for date variables. For instance, I routinely create a variable that is equal to the last two digits of the year plus the fraction of
the year elapsed. Thus, with monthly data, I would type

. generate date = (year-1900) + (month-1)/12

This variable works nicely as the z-variable in time series graphs.

Even with this natural encoding of the date, it can be difficult to produce an attractive x1abel(). In an interactive session,
I generally start by typing, say,

. graph y date, ylabel xlabel

to see what Stata will produce. If I am unhappy with the results, I will explicitly type the desired values in the xlabel () option.

This approach will not work when the graph is produced inside a program or do-file. In this situation, I have sometimes
hard-coded an xlabel() (when the date coverage of the date was predictable and constant) or used nicenum to guess at a
likely set of values to label (Hardin 1995).

Neither of these approaches completely solves the problem. The difficulty is that the implicit rules for selecting an attractive
set of values to label is different when the values are dates. In particular, it is frequently helpful to the reader to label each year
even if doing so “crowds” the x-axis a bit. yrxlab makes it easy to construct this type of xlabel() inside a Stata program.

Constructing a “year” label

yrxlab constructs a valid xlabel specification for the period covered by a set of variables and stores it in S_1. The syntax
of yrxlab is

yrxlab varlist [if exp] [in range] [, step(#) year(year-variable)]

yrxlab assumes that some measure of time involving years will be the z-variable in an upcoming graph. yrxlab determines
the minimum and maximum values of the year-variable for which there are nonmissing values in any of the variables in the
varlist. The year-variable actually can be any variable that will be displayed along the z-axis. If no year-variable is specified,
the program assumes there is a variable in the current data set named year. (This default is tailored to my working habits.)
Then yrlab constructs an xlabel option that labels the z-axis at every step-th value between the minimum and maximum
values. The default step() is one.

Example

A simple example will illustrate the use of yrxlab. This example uses several programs from the Stata time series library
(Becketti 1995), but none of them are needed to use yrxlab. They are included only to make the example more realistic.

Suppose a colleague claims that the monthly average of the daily 1-year constant maturity Treasury (CMT) rate is well-modeled
by a first-order autoregressive process. You are convinced that this claim is mistaken, and you decide to produce a graph that
provides evidence on this question. First you estimate a first-order autoregression for the 1-year CMT. You use a data set that
contains monthly data for the 1990s, set the period and date variable markers to let the time series programs know you are
working with monthly data, and estimate the model.

. use example
(1-year Treasury rates)
. describe

Contains data from example.dta

Obs: 66 (max= 30478) 1-year Treasury rates
Vars: 3 (max= 99) 10 Jul 1995 17:22
Width: 8 (max= 200)

1. year int %8.0g Year

2. month int %8.0g month Month

3. cmtl float %9.3f 1-year CMT yield

Sorted by: year month

10

Stata Technical Bulletin STB-26

. period 12
12 (monthly)

. datevars year month

. tsreg cmtl, lag(l) nomult replace

Monthly data:

February, 1990 to June, 1995 (65 obs)

Source | SS df MS Number of obs = 65
' F(C 1, 63) = 2395.00
Model | 167.770367 1 167.770367 Prob > F = 0.0000
Residual | 4.41316457 63 .070050231 R-squared = 0.9744
t Adj R-squared = 0.9740
Total | 172.183531 64 2.69036767 Root MSE = .26467
cmtl | Coef . Std. Err. t P>t [95% Conf. Intervall
L.cmtl | .9689501 .0197992 48.939 0.000 .9293845 1.008516
_cons | .131867 .1112399 1.185 0.240 -.0904283 .3541623
AIC: -2.628
Schwarz criterion: -2.561
Durbin-Watson test: .916
seasonal DW test: 1.634
Q(12) test: O
LM(12) test: .03
ARCH(12) test: 0.15
normality test: .45

Already you detect problems with the model. The Q and LM tests indicate serially correlated residuals, as does the Durbin—Watson

test.

Now you increase the size of the current data set to produce forecasts through the end of 1998. You use filldate to fill
in the missing values of the date variables. Then you use tspred to calculate dynamic forecasts from the model. You suspect
your colleague’s enthusiasm for the first-order autoregressive model may be based on a naive comparison of historical values
with static, within-sample forecasts, so you use predict to calculate the static forecasts as well.

. set obs 108

obs was 66, now 108

. filldate, beg(1995 7)

. tspred forecast

. predict fit
(43 missing values generated)

Now you encode a date variable, using the technique described above, and graph the historical values along with the two

predictions.

. generate date =

. graph cmt fit forecast date, c(111l) s(o..) ylabel xlabel

(year-1900) + (month-1)/12

(graph appears, see Figure 1)

The inadequacy of the model and the reason for your colleague’s enthusiasm are both evident in this graph. However, Stata’s
choices of “nice” values for the dates don’t correspond to the choices you want. You use yrxlab to construct a better set.

. generate yr = year—1900

. yrxlab cmt forecast, year(yr)
. global xlab "$S_1"

. display "$S_1"
x1ab(90,91,92,93,94,95,96,97,98)

. graph cmt fit forecast date, c(11l) s(o..) ylabel $xlab

(graph appears, see Figure 2)

Remarks

yrxlab is most useful in Stata programs and ado-files, where it is necessary to handle date ranges without knowing in
advance how many years will be covered. To prevent “overcrowding” along the z-axis, your programs can set the step() value
to control the number of values that are labeled. There are (at least) two ways to approach this problem. First, you can take an
initial peek at the minimum and maximum date values as a guide to setting the step size. Alternatively, you can leave the step
size at its default of one and test the size of the string returned in S_1 by yrxlab. If the string is too long, change the step size
to two and try again. If it’s still too long, change the step size to five and try again, and so on.

8.000 7 4/

6.000

4.000

2.000 2.000

Stata Technical Bulletin 11

As it stands yrxlab is a narrowly specialized program, but its basic function has wider applicability and the program easily
can be cannibalized. First, yrxlab can construct an xlabel for any variable, not just for a date. The year () option allows you
to specify any variable for the z-axis variable. There is one potential pitfall. yrxlab blithely assumes that the minimum and
maximum values of the year () variable will be nice numbers, like integers. When the x-variable is a floating point variable,
this assumption can produce unsightly labels. Logic could be added to yrxlab to handle this problem.

Second, yrxlab addresses a long-standing problem of axis labels: finding a convenient way to specify stepped values. I
have long yearned for a simple way to tell Stata to label every kth value from p;, t0 Tmax. yrxlab is a partial solution for
that problem, at least for the xlabel.

Third, yrxlab contains a subroutine that, with a little modification, can provide a more general solution to the problem of
stepped values in a wide variety of settings. This subroutine is called steplist and its syntax is

steplist , from(#) to(#) [§pace(str) step(#)]

bigskipsteplist stores in S_1 the values from from() to to() in increments of size step(). The default step size is 1.
(If to() is less than from(), step() must be negative.) By default, the values are separated by single spaces, but an alternative
separator can be specified with the space () option.

yrxlab calls steplist to construct the list of values, then wraps it up as an xlabel, as follows:

steplist, from(*min~) to(*max~”) space(",") step(step”)
global S_1 "xlab($S_1)"

Clearly, steplist can be used in many other settings.

References

Becketti, S. 1995. sts7.6: A library of time series programs for Stata (Update). Stata Technical Bulletin 24: 30-35.
Hardin, J. 1995. dm28: Calculate nice numbers for labeling or drawing grid lines. Stata Technical Bulletin 25: 2-3.
Riley, A. 1995. dm26: Labeling graphs with date formats. Stata Technical Bulletin 24: 4-5.

Figures
o 1-year CMT yield fit o 1-year CMT yield - fit
forecast forecast

8.000 - 4/ 3

6.000

4.000

90 95 100 90 91 92 93 94 95 96 97 98

Figure 1 Figure 2

12 Stata Technical Bulletin STB-26

ip8 An enhanced for command

Patrick Royston, Royal Postgraduate Medical School, London, FAX (011)-44-181-740-3119

Stata’s for command is extremely useful, but it has a limitation that I seem to trip over frequently. for replaces the @
token with whatever the user has typed. Unfortunately, for also inserts a space in front of the @ when doing the substitution.
For example, the command

. for 10 20, any : generate mpg@ = mpg*Q
which one might hope would generate two new variables, mpg10 and mpg20, instead fails with an error message saying that
mpg already exists. The reason is that for has expanded the command to

. generate mpg 10 = mpg* 10

. generate mpg 20 = mpg* 20

which have syntax errors. This insert presents for2 which remedies the problem.

In addition, for2 has a new option, numeric, that provides list expansion for numeric forlists. For example, 1-5 is
expanded to 1 2 3 4 5, whereas 1-5/2 becomes 1 3 5.

The syntax of for2 is

for2 list [, any noheader nostop numeric] 1 stata_cmd
Apart from numeric, which is illustrated below, the options are the same as for the standard for command.

Example

. for2 3-9/3 15, numeric: generate group@ = group+@

This command creates four new variables called group3, group6, group9 and groupi5, equal to group+3, group+6,
group+9 and group+15 respectively.

sg35.1 Robust tests for the equality of variances: correction

Mario A. Cleves, Arkansas Foundation for Medical Care, FAX 501-785-3460

Several astute readers of the STB noticed errors in robvar.ado, a program I wrote to calculate robust tests for the equality
of variances. There were two problems. First, due to a typo, the reported statistics were incorrect. Second, the syntax diagram
for robvar mistakenly indicated that if and in clauses are allowed in robvar.

I have corrected the typo and retested robvar. I am convinced that robvar now reports accurate results. However, robvar
does not handle if and in. I leave that extension to a later insert. The corrected program appears on the STB-26 distribution
diskette.

I wish to thank the alert readers who first noticed these problems, and I encourage any readers with questions or concerns

to contact me at the FAX number listed above.

Reference
Cleves, M. 1995. sg35: Robust tests for the equality of variances. Stata Technical Bulletin 25: 13-15.

sg37.1 Orthogonal polynomials: correction

William M. Sribney, Stata Corporation, FAX 409-696-4601, EMAIL stata@stata.com
The orthpoly program described in sg37 for computing orthogonal polynomials gave a syntax error when used with if,
in, or weights. A corrected version is supplied on the STB-26 media.
Reference

Sribney, W. M. 1995. sg37: Orthogonal polynomials. Stata Technical Bulletin 25: 17-18.

Stata Technical Bulletin 13

sg40 Testing for the mean of a skewed variable

Richard Goldstein, Qualitas, Inc., EMAIL richgold @netcom.com

While the standard one-sample ¢ test is relatively robust, it can have problems if the data are sufficiently non-normal. If
the problem is tails that are too heavy, the Wilcoxon test ([5s] signrank) can be used. However, if the data are skewed (even as
much as to a lognormal distribution), then both the ¢ test and the Wilcoxon sign-rank test can have problems (as can the sign
test). In this case, there is evidence that one-sided tests can be badly off (two-sided tests are not as badly off).

This insert presents johnson, an ado-file that implements Johnson’s corrected ¢ test for skewed data. Johnson’s test loses
little power, compared to the ¢ test, when the distribution of the data is normal (Kleijnen et al. 1986). The test is sensitive to
the degree of skewness and the sample size. As Sutton (1993) recently showed, the test is slightly conservative when the skew
is greater than 1.5 and noticeably conservative when the skew is 2.9 or greater. Sample sizes of less than 20 for skew of about
1.5 or less than 80 for skew of about 3 also can affect the test. In these situations, Sutton recommends a bootstrap correction to
Johnson’s test that appears to improve the results.

Chen (1995) has proposed a modified, upper-tailed, Johnson test that is better, in terms both of power and of the accuracy
of the p-value, than either Johnson’s test or Sutton’s bootstrap correction when the sample size is less than 20. The difference
is not large, however, unless the asymmetry is marked and/or the sample size is less than 10.

The syntax for this test is

johnson varname = { # | varname2 } [if exp] [in range]

johnson displays the results of the classical ¢ test (as reported by Stata’s ttest command), of Johnson’s modified ¢ test (denoted
by t1), and of Chen’s modification of Johnson’s test (denoted by t2).

Example

We use the automobile data set supplied with Stata to illustrate johnson. We wish to test whether the mean of mpg is equal
to 20. This variable exhibits a fair amount of skewness.

. use \statalauto
(1978 Automobile Data)

. summarize mpg, detail

Mileage (mpg)

Percentiles Smallest

1% 12 12

5% 14 12
10% 14 14 Obs 74
25%, 18 14 Sum of Wgt. 74
50% 20 Mean 21.2973
Largest Std. Dev. 5.785503

75% 25 34
90% 29 35 Variance 33.47205
95% 34 35 Skewness .9487176
997 41 41 Kurtosis 3.975005

We use signrank to calculate Wilcoxon’s test and johnson to calculate, first, the classical ¢ test and, second, Johnson’s
modified ¢ test.

. signrank mpg = 20
Test: Equality of distributions (Wilcoxon Signed-Ranks)

Result of mpg - (20)
Sum of Positive Ranks
Sum of Negative Ranks

z-statistic 1.20
Prob > |z]| 0.2296

1610.5
1164.5

14 Stata Technical Bulletin STB-26

. johnson mpg = 20
Variable | Obs Mean Std. Dev.

mpg | 74 21.2973 5.785503

Ho: mean = 20

t =1.93 with 73 d.f.
Pr > |t| = 0.0576
Ho: mean = 20

tl = 1.96 with 73 d.f.
Pr > |t| = 0.0542
Ho: mean = 20

t2 = 1.96 with 73 d4d.f.
Pr > |t| = 0.0542

In the next example, we use new data on mileage, taken from the second example in the description of the ttest command
([5s] ttest). We conduct a paired-samples test on these data.

. use mpg, clear
(Stata manual, 3: 249)

. ttest mpgl = mpg2

Variable | Obs Mean Std. Dev.
mpgl | 12 21 2.730301
mpg2 | 12 22.75 3.250874

diff. | 12 -1.75 2.70101

Ho: diff = 0 (paired data)
t = -2.24 with 11 d.f.
Pr > |t| = 0.0463
. johnson mpgl = mpg2
Variable | Obs Mean Std. Dev.

__000009 | 12 -1.75 2.70101

Ho: mean = 0
t = -2.24 with 11 4.f.
Pr > |t| = 0.0463

Ho: mean = 0
tl = -2.06 with 11 4.f.
Pr > |t| = 0.0635

Ho: mean = 0
t2 = -2.06 with 11 4.f.
Pr > |t| = 0.0636

Instead of testing the equality of the means of the two variables, it is equivalent to test whether the mean difference of the
variables is zero.

. generate diff = mpgl-mpg2
. ttest diff = 0
Variable | Obs Mean Std. Dev.

diff | 12 -1.75 2.70101

Ho: mean = 0
t = -2.24 with 11 4.f.
Pr > |t| = 0.0463

. johnson diff = 0
Variable | Obs Mean Std. Dev.

diff | 12 -1.75 2.70101

Ho: mean = 0
t = -2.24 with 11 4.f.
Pr > |t| = 0.0463
Ho: mean = 0
tl = -2.06 with 11 d.f.
Pr > |t| = 0.0635
Ho: mean = 0
t2 = -2.06 with 11 4.f.
Pr > |t| = 0.0636

Stata Technical Bulletin 15

References
Chen, L. 1995. Testing the mean of skewed distributions. Journal of the American Statistical Association 90: 767-772.

Johnson, N. J. 1978. Modified ¢ tests and confidence intervals for asymmetrical populations. Journal of the American Statistical Association 73:
536-544.

Kleijnen, J. P. C., G. L. J. Kloppenburg, and F. L. Meeuwsen. 1986. Testing the mean of an asymmetric population: Johnson’s modified ¢ test revised.
Communications in Statistics, Part B—Simulation and Computation 15: 715-732.

Sutton, C. D. 1993. Computer-intensive methods for tests about the mean of an asymmetrical distribution. Journal of the American Statistical Association
88: 802-810.

sg41 Randome-effects probit

William M. Sribney, Stata Corporation, FAX 409-696-4601, EMAIL stata@stata.com

rfprobit estimates a random-effects model for cross-sectional time-series probit. The syntax of rfprobit is

rfprobit depvar [indepvars] [if exp] [in range] [, i(varname) quadrat(#) nochisq
nolog level(#) maximize_ options |

Options

i (varname) specifies the variable corresponding to an independent unit (e.g., a subject id). This variable represents the 7 in x;;.
Either this option must be specified or 7+ must be set using the iis command; see [5s] xt in the Reference Manual.

quadrat (#) specifies the number M of points to use for Gaussian—Hermite quadrature. The default is 6. Increasing its value
improves accuracy slightly but also increases computation time (see the following discussion).

nochisq omits the estimation of the constant-only model. This will reduce computation time at the cost of not being able to
calculate the model x? or pseudo R2.

nolog suppresses the display of the likelihood iterations.

level(#) specifies the significance level, in percent, for confidence intervals of the coefficients; see [4] estimate.

maximize_options control the maximization process; see [7] maximize. Use the trace option to view parameter convergence.
The 1tol (#) option can be used to loosen the convergence criterion (default is 1e-6) during specification searches.

Maximum-likelihood estimation procedure

rfprobit uses the maximum-likelihood estimation procedure outlined in Butler and Moffitt (1982). For independent units
1=1,2,..., n, measured at times ¢t = 1, 2, ..., T;, the random-effects probit model is

Ui = X B+ v + €

” :{1 if y5, >0
“ 0 otherwise

where v; ~ N(0,02%), €;; ~ N(0,02), with v; and €;; independent (and also both independent of x;). The model for the
unobserved continuous y7; is the estimate from Stata’s xtreg command. In the probit model for y;;, however, B, o,, and o
are not all identifiable, so we arbitrarily set 0. = 1. Further, rather than using o,,, we parameterize the likelihood in terms of
the within-subject correlation

2

gy

== 2
o5+ 0

If we condition on v; and X;, the y;; are independent, and we have
T;

P(yilxi,v;) = HF(XitB + vi), where F(z) = {

t=1

O(z) if y; =1

and @ is the cumulative normal density function. Integrating over the distribution of v; gives

0o 67112/205 T;
H FxuB+v)| dv

i S
—0o0 v t=1

16 Stata Technical Bulletin STB-26

The log-likelihood is then I = Y7, log P(y|x;).

The integral for P(y;|x;) can be approximated using M-point Gaussian-Hermite quadrature:

o M
/ e f(z)dx =~ Z Wi f(Zm)
m=1

— 00

The weights w,, and points z,, are computed using the algorithm described in Press et al. (1992). The quadrature formula
requires that f(x) can be well-approximated by a polynomial. As the time periods T; become large, HtT:1 F(x4B + v;) is no
longer well-behaved. Thus, this procedure should only be used for small-to-moderate T; (Borjas and Sueyoshi 1994). Based on
simulations, max 7; < 50 appears to be a safe upper bound. Other than this limit, there are no restrictions on 7;; rfprobit
handles unbalanced data as well as balanced.

Example

Using the NLSY data (Center for Human Resource Research 1989) on women aged 14-24 in 1968, we model union
membership (1 if union; O if not union) using random-effects probit. Women were surveyed in 16 years during the period
1968-1988, and we restrict our data set to those women who have completed their education. The number of women in this
subsample is n = 4148 with T; ranging from 1 to 12 with a median of 4 and N = 19,213 total observations.

. rfprobit union age grade black msp c_city not_smsa south, i(idcode)

Constant-only model
rho = 0.0 Log Likelihood = -10459.226

rho = 0.1 Log Likelihood ~ -9457.8385
rho = 0.2 Log Likelihood ~ -8921.8396
rho = 0.3 Log Likelihood ~ -8584.5937
rho = 0.4 Log Likelihood ~ -8361.8598
rho = 0.5 Log Likelihood ~ -8225.3245
rho = 0.6 Log Likelihood ~ -8174.1754
rho = 0.7 Log Likelihood ~ -8243.8223
Iteration 0: Log Likelihood = -8174.1754
Iteration 1: Log Likelihood = -7999.4702
Iteration 2: Log Likelihood = -7959.4034
Iteration 3: Log Likelihood = -7956.9872
Iteration 4: Log Likelihood = -7956.984
Iteration 5: Log Likelihood = -7956.984
Full model
rho = 0.0 Log Likelihood = -10029.956
Iteration 0: Log Likelihood = -8028.1384
Iteration 1: Log Likelihood = -7797.9036
Iteration 2: Log Likelihood = -7776.2779
Iteration 3: Log Likelihood = -7776.233
Iteration 4: Log Likelihood = -7776.233
Random-Effects Probit Number of obs = 19213
Model chi2(7) = 361.50
Prob > chi2 = 0.0000
Log Likelihood = -7776.2329784 Pseudo R2 = 0.0227
union | Coef. Std. Err. z P>|z| [95% Conf. Intervall
union |
age | .0099185 .0026351 3.764 0.000 .0047538 .0150833
grade | .0710084 .0112895 6.290 0.000 .0488814 .0931353
black | .679326 .06209 10.941 0.000 .5576319 .8010201
msp | -.0296221 .0383182 -0.773 0.439 -.1047244 .0454803
c_city | .1560987 .0483332 3.230 0.001 .0613674 .2508301
not_smsa | -.0568532 .0588848 -0.965 0.334 -.1722654 .058559
south | -.7573341 .0522798 -14.486 0.000 -.8598006 -.6548676
_cons | -2.448033 .1758944 -13.918 0.000 -2.79278 -2.103286
rho |
_cons | .6374987 .010156 62.770 0.000 .6175933 .6574042

LR test of rho = O: chi2(1) 4507.45
Prob > chi2 = 0.0000

We compare the results to a standard probit model:

Stata Technical Bulletin

. probit union age grade black msp c_city not_smsa south, nolog

Probit Estimates Number of obs = 19213
chi2(7) = 858.54

Prob > chi2 = 0.0000

Log Likelihood = -10029.956 Pseudo R2 = 0.0410
union | Coef. Std. Err. z P>|z]| [95% Conf. Intervall
age | .0064769 .0016737 3.870 0.000 .0031965 .0097572
grade | .0315457 .0043774 7.207 0.000 .0229662 .0401251
black | .4617062 .0249721 18.489 0.000 .4127618 .5106506
msp | -.0104392 .0214401 -0.487 0.626 -.0524609 .0315826
c_city | .0774842 .0249138 3.110 0.002 .028654 .1263144
not_smsa | -.0363566 .026501 -1.372 0.170 -.0882976 .0155845
south | -.4986367 .0229117 -21.763 0.000 -.5435429 -.4537305
_cons | -1.295481 .0766311 -16.905 0.000 -1.445675 -1.145286

The results for the two probit model are not qualitatively different, but, as we would expect, the z statistics for the coefficients
are generally less extreme (i.e., less significant) for the random-effects model. We could also use Stata’s hprobit to analyze

these data:
. hprobit union age grade black msp c_city not_smsa south, group(idcode)
Probit Regression with Huber standard errors Number of obs = 19213
Log Likelihood =-10029.956 Pseudo R2 = 0.0410
Grouping variable: idcode
union | Coef. Std. Err. z P>|z| [95% Conf. Intervall
age | .0064769 .0023834 2.718 0.007 .0018055 .0111482
grade | .0315457 .0086773 3.635 0.000 .0145384 .0485529
black | .4617062 .0462117 9.991 0.000 .371133 .55622794
msp | -.0104392 .0346756 -0.301 0.763 -.078402 .0575237
c_city | .0774842 .0433076 1.789 0.074 -.0073972 .1623656
not_smsa | -.0363566 .0516286 -0.704 0.481 -.1375468 .0648336
south | -.4986367 .0432001 -11.542 0.000 -.5833073 -.4139661
_cons | -1.295481 .1385339 -9.351 0.000 -1.567002 -1.023959

hprobit’s z statistics are, for most of the coefficients, the least extreme of the three.

Computation time

rfprobit is slow. The preceding example with N = 19,213 observations took about 8 hours to run on a bottom-of-the-line
IBM RS-6000 (Pentiums are about 4 times faster). Remember, this is a big data set—almost 20,000 observations—and computation
time is roughly proportional to N, so you can get results for small (N < 1000) data sets in less time (< 30 minutes).

But the ado-file program for rfprobit is slow. There are two reasons for this. The first is the need to loop over the M
points for the Gaussian—Hermite quadrature. Because of this, computation time is roughly proportional to M. By default, M is
set to a small value: M = 6. M can be changed using the quadrat (#) option, but, in the simulations I have run, increasing
M did not appreciably change the estimates for the coefficients or their standard errors. However, users may want to increase
M when fitting their final model.

For specification searches, the options nochisq and 1tol(1e-4) will reduce computation time by roughly 10-20 percent.
Using probit or hprobit for initial specification searches is also a good idea.

Stata’s ml commands

The second reason for rfprobit’s slowness is the use of the derivl method of Stata’s m1 command. The deriv0O and
derivil methods are intended as quick-and-dirty techniques (quick for the user to implement, that is). The deriv1 method uses
analytic first derivatives and numerical second derivatives, and because of this, its computation time is roughly proportional to
the number of variables in the model. The derivO method uses numerical first and second derivatives, and its computation time
is roughly proportional to the square of the number of variables in the model. Actually, there is nothing “dirty” about deriv0
and deriv1. With the updated versions of the m1 commands distributed in STB-25, these methods give excellent accuracy.

18 Stata Technical Bulletin STB-26

The preferred methods to use with the m1 commands are the 1f (linear form) and deriv2 (analytic first and second
derivatives) methods. The 1f method is easy to program, fast, and accurate, but requires that the log-likelihood be a simple
sum over the observations (i.e., all observations independent) of a function of x;B. Unfortunately, the log-likelihoods for
random-effects models do not meet this requirement.

The deriv2 method can be fast if the ado-file that computes the likelihood can be implemented without explicit looping
over the variables in model. The usual trick for doing this is to use the matrix accum command, which computes terms of
the form X’WX, where W is diagonal. But, not all the terms in the likelihoods for random-effects models fit this form. The
matrix glsaccum command is another tool one can possibly use.

The bottom line for random-effects probit is that the deriv2 method is not feasible to implement—at least for this approach
for computing the likelihood. A fast command for random-effects probit will only come when it is implemented as an internal
command in Stata.

References
Borjas, G. J. and G. T. Sueyoshi. 1994. A two-stage estimator for probit models with structural group effects. Journal of Econometrics 64: 165-182.

Butler, J. S. and R. Moffitt. 1982. A computationally efficient quadrature procedure for the one-factor multinomial probit model. Econometrica 50:
761-764.

Center for Human Resource Research. 1989. National Longitudinal Survey of Labor Market Experience, Young women 14-24 years of age in 1968.
Ohio State University.

Hamerle, A. and G. Ronning. 1995. Panel analysis for qualitative variables. In Handbook of Statistical Modeling for the Social and Behavioral Sciences,
ed. G. Arminger, C. C. Clogg, and M. E. Sobel, 401-451. New York: Plenum Press.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. 1992. Numerical Recipes in C, The Art of Scientific Computing. 2d ed. Cambridge:
Cambridge University Press.

sg42 Plotting predicted values from linear and logistic regression models

Joanne Garrett, University of North Carolina, FAX 919-966-2274

In linear and logistic regression models, it is often easier to interpret the plot of fitted values against a continuous predictor
than to infer the same information from the table of regression coefficients. This insert presents two programs, regpred and
logpred, designed to make the calculations and plots simple to do. regpred estimates a linear regression model (using regress)
and logpred fits a logistic regression model (using logistic) to calculate and plot predicted values and 95 percent confidence
intervals of the predictions for user-specified values of a continuous predictor variable. Although the model is fit using all the
data, predictions are estimated and plotted only for the requested values of the predictor. Restricting the values against which
predictions are plotted can produce a graph that is less “busy” than a graph that includes every possible value. All estimates are
adjusted to the means of any covariates in the model. A linear specification of the predictor variable is assumed, but quadratic
or cubic forms can be requested. By default, the model, the plot, and a list of the estimates are printed, but any of these can be
suppressed.

Syntax and options
regpred and logpred employ the same syntax:
{ regpred | logpred } yvar xvar [if exp] , from(#) to(#) [inc(#)
adjust (covlist) poly(#) nomodel nolist noplot graph-options]
In both commands, xvar is a continuous predictor variable. yvar is the outcome variable, which is continuous in regpred and
binary (coded 0/1) in logpred.
from(#) specifies the minimum value of xvar, the predictor variable.
to(#) specifies the maximum value of xvar.
inc (#) specifies the amount by which xvar is incremented between from() and to(). The default increment is 1.
adjust (covlist) specifies the list of other covariates in the model, that is, the variables for which the estimates are adjusted.

poly(#) indicates the order of the polynomial used for xvar in the model. The default is ‘1’, that is, a linear specification.
Quadratic (poly(2)) and cubic (poly(3)) specifications also may be requested.

Stata Technical Bulletin 19

nomodel suppresses the output from the regress or logistic command.
nolist suppresses the list of predicted values and confidence intervals.

noplot suppresses the graph.

Predicted Values for Systolic blood pressure -- sbp

160

150

140

Predicted Values and 95% CI

130

T T
40 50 60 70 80
Age in years

Figure 1: Systolic blood pressure as a function of age

Example 1

All the examples use data from a follow-up study of coronary heart disease among a cohort of 35 to 80-year-old men. In the
first example, we use regpred to examine the effect of age on systolic blood pressure adjusted for a measure of socio-economic
status (ses), cholesterol level (chl), a dummy variable for catecholamine level (cat: 1 = high, 0 = low), and a dummy variable
for the results of an electrocardiogram (ecg: 1 = abnormal, 0 = normal). We request the predicted values of systolic blood
pressure for ages 40 to 76 in increments of 4 years. In addition to the plot of predicted values, regpred displays the output
from regress and a list of the ten requested predictions and their 95 percent confidence intervals.

. use evans2
(Example CHD Data)
. regpred sbp age, from(40) to(76) inc(4) adj(ses chl cat ecg) xlab ylab

Source | SS af MS Number of obs = 1218
+ F(5, 1212) = 142.50
Model | 340431.471 5 68086.2942 Prob > F = 0.0000
Residual | 579108.338 1212 477.81216 R-squared = 0.3702
+ Adj R-squared = 0.3676
Total | 9195639.81 1217 755.579137 Root MSE = 21.859
sbp | Coef. Std. Err. t P>|t| [95% Conf. Intervall
age | .2687184 .0740076 3.631 0.000 .12356211 .4139157
ses | .1799013 .0471049 3.819 0.000 .0874852 .2723175
chl | .0862696 .0162771 5.300 0.000 .0543352 .1182039
cat | 33.78119 1.840977 18.350 0.000 30.16933 37.39304
ecg | 8.60972 1.525701 5.643 0.000 5.616411 11.60303
_cons | 93.2565632 6.027453 15.472 0.000 81.42992 105.0807
(graph appears, see Figure 1)
Predicted Values and 95} Confidence Intervals
Outcome Variable: Systolic blood pressure —-- sbp
Independent Variable: Age in years —- age
Covariates: ses chl cat ecg
Total Observations: 1218
age pred_y lower upper
1. 40 141.7931 139.4565 144.1297
2. 44 142.8680 141.0000 144.7359

3. 48 143.9429 142.4623 145.4234

20 Stata Technical Bulletin STB-26

52 145.0177 143.7654 146.2700
56 146.0926 144.8207 147.3645
60 147.1675 145.6376 148.6974
64 148.2424 146.3093 150.1754
68 149.3172 146.9077 151.7268
72 150.3921 147.4683 153.3159
76 151.4670 148.0080 154.9260

O W ~NO» U

1

Systolic blood pressure is positively and significantly associated with an increase in age (Bage = 0.2687, p = 0.000).
Predicted values and 95 percent confidence intervals are calculated and plotted for ages 40,44,48, ...,76. The graph displays a
modest increase in systolic blood pressure from about 142 mm/Hg for a 40 year old to about 150 mm/Hg for someone who is
76. The list of the predicted values and confidence intervals also displays the outcome variable, the independent variable, any
covariates, and the number of observations used in the regression.

Example 2

Using the same model, we request a graph showing the relationship between systolic blood pressure and cholesterol level
(controlling for age, ses, cat, and ecg). Because we have already seen the regression table in the previous example, we use
the nomodel option to suppress it now. Cholesterol values for this data set range from 90 to 350. We request the predictions of
systolic blood pressure corresponding to a low cholesterol value of 100 to a high of 320, in increments of 20.

. regpred sbp chl, £(100) t(320) i(20) adj(age ses cat ecg) xlab ylab nomodel
(graph appears, see Figure 2)

Predicted Values and 95% Confidence Intervals

Outcome Variable: Systolic blood pressure -- sbp
Independent Variable: Serum cholesterol -- chl
Covariates: age ses cat ecg
Total Observations: 1218

chl pred_y lower upper
1. 100 135.8365 132.0663 139.6068
2. 120 137.5619 134.3881 140.7357
3. 140 139.2873 136.6902 141.8844
4. 160 141.0127 138.95566 143.0698
5. 180 142.7381 141.1468 144.3294
6. 200 144.4635 143.1800 145.7469
7. 220 146.1889 144.9333 147.4445
8. 240 147.9143 146.3911 149.4374
9. 260 149.6396 147.6705 151.6088
10. 280 151.3650 148.8651 153.8649
11. 300 153.0904 150.0187 156.1622
12. 320 154.8158 151.1503 158.4814

Predicted Values for Systolic blood pressure -- sbp

160

150

140

Predicted Values and 95% ClI

130

T T
100 200 300
Serum cholesterol

Figure 2: Systolic blood pressure as a function of cholesterol level

Systolic blood pressure is positively and significantly associated with an increase in cholesterol (8., = 0.0863, p = 0.000).
Predicted values and confidence intervals are calculated and plotted for cholesterol values of 100, 120, 140, ..., 320. The graph
shows an increase in systolic blood pressure from about 135 mm/Hg for an individual with a cholesterol reading of 100 to about
155 mm/Hg for someone with a cholesterol level over 300.

Stata Technical Bulletin 21

Example 3

To illustrate the use of logpred, we examine the effect of cholesterol level on the development of coronary heart disease,
measured as a binary variable (chd: 1 = develops coronary heart disease, 0 = no coronary heart disease), controlling for
catecholamine level (cat), electrocardiogram abnormality (ecg), age, and smoking status (smk: 1 = smoker, 0 = non-smoker).
Once again, we request predictions corresponding to values of cholesterol from 100 to 320 in increments of 20. This time our
results are the predicted probabilities, derived from the logistic regression model, of developing coronary heart disease.

. logpred chd chl, £(100) t(320) i(20) adj(cat ecg age smk) xlab
ylab(0,.1,.2,.3,.4) b2(Serum Cholesterol -- Linear)

Logit Estimates Number of obs = 1218
chi2(5) = T71.77
Prob > chi2 = 0.0000
Log Likelihood = -402.67442 Pseudo R2 = 0.0818
chd | Odds Ratio Std. Err. z P>|z]| [95% Conf. Intervall
chl | 1.009411 .0023077 4.097 0.000 1.004898 1.013944
cat | 2.172936 .5117931 3.295 0.001 1.369502 3.447712
ecg | 1.516705 .313654 2.014 0.044 1.011283 2.274727
age | 1.033073 .01107 3.036 0.002 1.011602 1.054999
smk | 2.288827 4923483 3.849 0.000 1.501452 3.489108
(graph appears, see Figure 3)
Predicted Values and 95% Confidence Intervals
Outcome Variable: Coronary heart disease -- chd
Independent Variable: Serum cholesterol -- chl
Covariates: cat ecg age smk
Total Observations: 1218
chl pred lower upper
1. 100 .036077 .0203964 .0630371
2. 120 .0431892 .0265678 .0694673
3. 140 .0516284 .0344545 .0766827
4. 160 .0616104 .0443882 .0849209
5. 180 .0733731 .0565853 .0946419
6. 200 .0871729 .0708539 .1068183
7. 220 .1032788 .0861404 .1233667
8. 240 .1219628 .1008455 .1467803
9. 260 .1434861 .1144303 .1784332
10. 280 .1680806 .1274682 .2183937
11. 300 .1959264 .1405662 .2663331
12. 320 .227126 .1540861 .3216245

Predicted Values for Coronary heart disease -- chd

Probabilities and 95% CI
n
1

T T
100 200 300
Serum Cholesterol -- Linear

Figure 3: Probability of heart disease as a function of cholesterol level

Cholesterol is positively associated with the probability of developing coronary heart disease (p < 0.001). For example,
people with a cholesterol level of 100 have a probability of about 0.03 of developing coronary heart disease, adjusted for the
covariates in the model, while people with a cholesterol reading of 300 have a probability of 0.20 of developing coronary heart
disease. The confidence interval around the probabilities starts to get rather wide as cholesterol increases, which suggests the

22 Stata Technical Bulletin STB-26

data may be getting sparse at higher levels of cholesterol or the relationship may not be linear (in the log odds) in that range.
The next example explores the latter possibility.

Example 4

We repeat Example 3, but we use the poly option to allow the probability of heart disease to be a cubic function of
cholesterol level. The model estimates are displayed so we can examine the p-values for the two additional regressors. Note that
the square and cube of cholesterol need not be generated in advance; they are created temporarily and then dropped. Since we
are mainly interested in the plot, the final summary table is suppressed.

. logpred chd chl, £(100) t(320) i(10) adj(cat ecg age smk) xlab
ylab(0,.1,.2,. 3,.4) b2(Serum Cholesterol —- Cubic) poly(3) nolist

Logit Estimates Number of obs = 1218
chi2(7) = 81.30

Prob > chi2 = 0.0000

Log Likelihood = -397.90735 Pseudo R2 = 0.0927
chd | Odds Ratio Std. Err. z P>|z]| [95% Conf. Intervall

chl | 1.450816 .1919012 2.813 0.005 1.119497 1.880191
x_sq | .9984854 .0005558 -2.723 0.006 .9973966 .9995753
x_cube | 1.000002 7.64e-07 2.680 0.007 1.000001 1.000004
cat | 2.151983 .5098775 3.235 0.001 1.352572 3.423869

ecg | 1.551171 .3244517 2.099 0.036 1.02948 2.337232

age | 1.032317 .0111402 2.947 0.003 1.010712 1.054384

smk | 2.372324 .5158739 3.973 0.000 1.549087 3.633056

(graph appears, see Figure 4)

This graph suggests a somewhat different interpretation than does the graph from the linear model. In the cubic model,
the probability of developing coronary heart disease increases as cholesterol increases to just above 200, levels off until the
cholesterol values start approaching 300, and then starts increasing rather dramatically (although the confidence interval does get
quite wide at the highest values).

Predicted Values for Coronary heart disease -- chd

Probabilities and 95% CI

T T T
100 200 300
Serum Cholesterol -- Cubic

Figure 4: Probability of heart disease as a cubic function of cholesterol level

Note

regpred and logpred are similar to the adjmean and adjprop programs I presented in sg33 (Garrett 1995). adjmean
and adjprop calculate adjusted means and adjusted probabilities, respectively, for nominal, rather than continuous, predictor
variables.

Reference
Garrett, J. 1995. sg33: Calculation of adjusted means and adjusted proportions. Stata Technical Bulletin 24: 22-25.

Stata Technical Bulletin 23

snp6.1 ASH, WARPing, and kernel density estimation for univariate data

Isafas Hazarmabeth Salgado-Ugarte, Makoto Shimizu, and Toru Taniuchi,
University of Tokyo, Faculty of Agriculture, Department of Fisheries, Japan
FAX (011)-81-3-3812-0529, EMAIL isalgado @tansei.cc.u-tokyo.ac.jp

Kernel density estimators are important tools for exploring and analyzing data distributions (see the references in Salgado-
Ugarte et al. 1993). However, one drawback of these procedures is the large number of calculations required to compute them.
As a consequence, it can be time consuming to compute kernel density estimators even for moderate sample sizes and when using
fast processors. Scott (1985) suggested an alternative procedure to overcome this problem: the Averaged Shifted Histogram
(ASH). Subsequently, Hardle and Scott (1988) developed a more general framework called WARPing (weighted averaging of
rounded points).

This insert, based mainly on some chapters from the books by Hardle (1991) and Scott (1992), briefly introduces the ASH
and WARPing procedures for density estimation and presents some ado-files and Turbo Pascal programs for their calculation.

Averaged shifted histograms and warring

As discussed in snp6, the histogram is defined by specifying two parameters: the origin, zg, and the width, h, of the bins.
Substantial evidence has accumulated (Silverman 1986; Fox 1990) that the choice of origin may have an important influence
on the resulting histogram, despite some theoretical results indicating that this choice should have a negligible impact (Scott
1992). To demonstrate this phenomenon, we use well-known data on snowfall in Buffalo, New York (Parzen 1979). These data
measure the annual snowfall in inches in each of the 63 winters from 1910/11 through 1972/73. The following Stata commands
produce five different histograms for these data. Each histogram uses the same bin width (h = 10) but a different origin, and
each histogram provides a valid density estimate (after rescaling).

. use bufsnow

. graph snow, bin(11) xscale(20,130)
. graph snow, bin(11) xscale(22,132)
. graph snow, bin(11) xscale(24,134)
. graph snow, bin(12) xscale(16,136)
. graph snow, bin(11) xscale(18,128)

The resulting graphs (after some editing with Stage) appear as Figure 1. (The final graph in Figure 1 will be explained
below.) Some of these histograms are unimodal, others are bimodal and even trimodal. Scanning across the histograms, there
appears to be a main mode around 80 inches. Some of the histograms indicate secondary modes around 50 or 100 inches. We
can choose any of these histograms to represent the data distribution, but our choice would be arbitrary.

.206349 A T .206349 =

il

20 snow 130 22 snow 132

w

snow 136

Fraction
Fraction

.222222 4 — .238095

n

Fraction
o
Fraction
o
>l

.222222 4 — .020635

Fraction
0
Density

0 0

18 snow 128 14 Midpoint 140
Figure 1. Five histograms with different origins and the corresponding ASH

24 Stata Technical Bulletin STB-26

To eliminate the influence of the choice of origin, Scott (1985) suggested an ingenious device: instead of choosing among
several histograms, Scott proposed averaging several histograms with different origins to produce the average shifted histogram
(ASH).

It is perhaps easiest to understand the ASH and WARP by tracing their development from the definition of a simple histogram.
We can assume, without loss of generality, that all n observations of the variable of interest lie in the half-open interval [0, Kh).
(Clearly, we can translate the values of any n observations to lie within any specified interval.) We partition this interval into
K + 1 bins, each with width h. The kth bin, By, is defined as

By = [kh,(k+1)h), k=0,....K

The histogram is defined as
~ Vi

1
f(.r) = nh = nh ZI[tmtkﬂ)(Ii)

where vy, is the number of observations in By, and I is the indicator function, equal to one when z; lies in the specified interval
and zero otherwise.

Now consider a collection of M histograms, fl]/”\2 fM each with the bin width, h, and with the sequence of bin

origins

h 2h (M —1)h

to=0,—,—,...,————

M’ M M

We are now adding the inessential restriction
(M - 1)h
Ti =
M

The naive (unweighted) ASH is defined as
1
M

~

F(o) = Fasw(e) = fie)

1

s

It is convenient in what follows to define the bins to be narrower, depending on the number of histograms to be averaged,
By = [ké, (k+1)0), 6=h/M
Vi continues to denote the number of observations in By. The expression for the ASH can be generalized to

-1 .
1 (M — i) Vi
sy =Ly L=l
i=1—M
M-1 .
1 7
== Z <l_|_]\4|>yk+i for x € By,

i=1-M

<

S

Since it is the average of a sequence of histograms, the ASH has the appearance of a histogram as well, although the ASH
can be made continuous using linear interpolation schemes. The interpolation approach produces the frequency polygon of the
averaged shifted histogram (FP-ASH).

The ASH method is a special case of the more general WARP or weighted average of rounded points, developed by Hardle
and Scott (1988). The general expression for the WARP, and hence, by extension, the ASH, is

M-1
-~ 1
f(.%‘,M) = E Z WL (i) Vk+1 forx € By
li|<M
where the weights are defined by
K(i/M
wa (i) = M x (i/M) i=1-M,...,M—1

Sl K (/M)

Stata Technical Bulletin 25

As these formulae indicate, WARPing is based on the smaller bin mesh (Bj) defined by h, the bandwidth, and a new
parameter, M, that indicates the number of shifted histograms to average. The rounded points are the bin counts in the By. The
weighting operation is symbolized by wyz(), and the specification of this weighting function determines which kernel density
estimator is used in computing the WARP.

The calculation of a WARP estimate takes three steps: (1) binning the data; (2) calculating the weights; and (3) weighting the
bins. In the first step, a mesh of intervals is created and the number of observations in each interval is counted. The information
about the data is reduced to a list of bin counts along with their midpoints. In the second step, a nonnegative, symmetric weight
function is calculated. The weights are normalized to sum to M, the number of shifted histograms. For example, the weight
function for the ASH is

wyrsy =1 — (|i|/M)

Finally, the density estimate in each bin is computed as the product of the bin count and the weight. This brief description covers
only the highlights of the procedure. See Hardle (1991) or Scott (1992) for more details.

WARPiNg in Stata

Programs to calculate WARPs are available from a number of sources. Scott (1992) and Hardle (1991) present several
algorithms for calculating WARPs and other density estimators. They also provide program listings in FORTRAN, C, and the
S language. In addition, Brian Ripley maintains a full collection of C programs and S functions from Hardle’s book. These
programs are available from Statlib via EMAIL or FTP.

Based on these examples, we decided to write a Stata program to calculate WARPs. However, as we noted in the introduction,
kernel density estimators, which are required to calculate the WARPs, are time-consuming to compute. To speed the process, we
wrote a program in Turbo Pascal that performs the key calculations at high speed. This Pascal program is called from a Stata
ado-file and, hence, is invisible to the Stata user. This approach allows users to retain the ease of use of Stata while gaining the
speed advantage of the compiled Pascal program.

The Pascal program is supplied in two forms on the distribution diskette. warpings.com is a binary executable that can
be used with the DOS and Windows versions of Stata. warpings.pas contains the source code of the program. This source can
be adapted by the reader for other operating systems.

For those readers who will be adapting the source file, here is a brief overview of warpings.pas. The program is divided
into a main routine and eight subroutines. DataInput requests the name of an ASCI file that contains the raw data. This file
should consist of a single column of values and must not contain any missing values. This file can be created by Stata’s outfile
command. The program then prompts the user to specify the bandwidth, h, and the number of histograms to shift and average,
M. Next, the subroutine SelectKernel prompts the user to select the type of weight function (kernel) to use. The choices are:
uniform, triangular (ASH), Epanechnikov, quartic, triweight, and Gaussian. The SortData subroutine arranges the observations in
ascending order. InitialCalc determines the origin of the mesh according to the values specified for A and M. BinmeshCalc
counts the number of observations in each bin. CreateWeight calculates the weight function selected by the user. WeightBins
forms the product of the bin counts and the weights. Finally, ResulFile writes an ASCII file, named resfile, that contains the
density estimates and the corresponding bin midpoints.

We have integrated warpings. com into three Stata ado-files: warpstep, warpoly, and warping. warpstep and warpoly
display graphs of WARP estimates. warpstep presents the estimates in histogram form, while warpoly linearly interpolates
estimated points to display a frequency polygon. warpings generates new variables that contain the density estimates and bin
midpoints.

Examples
We use the snowfall data introduced above to illustrate our programs. First, we use warpstep to display the ASH.
. warpstep

TYPE THE PATH, NAME AND EXTENSION OF TEXT DATA FILE
bufsnow.raw

THE NUMBER OF VALUES READ IS: 63

IF THIS IS NOT CORRECT PLEASE INTERRUPT AND
USE STATA COMMAND outfile TO GENERATE AN ASCII
FILE WITH THE DESIRED DATA VECTOR

26 Stata Technical Bulletin STB-26

GIVE THE VALUE OF THE BANDWIDTH “h~

10

GIVE THE NUMBER OF HISTOGRAMS TO SHIFT AND AVERAGE
5

SPECIFY THE WEIGHT FUNCTION:

1 = Uniform; 2 = Triangle (ASH); 3 = Epanechnikov
4 = Quartic; 5 = Triweight; 6 = Gaussian

2

(64 observations read)

The graph produced by warpstep is displayed as the last graph in Figure 1. This graph is the average of five shifted
histograms of the snowfall data (as displayed in the first five graphs in Figure 1) where each histogram uses a bin width of 10
and the averaging uses the triangle weight function. The resulting ASH no longer depends in any important way on the origins of
the original histograms. Notice that the ASH suggests that the unknown density may have three modes, a feature that is difficult
to apprehend in the original histograms.

warping stores the calculations displayed by warpstep in two new variables. The syntax of warping is

warping density midpoint

where denvar and midvar are new variables that contain the density estimates and corresponding bin midpoints, respectively.
warping prompts the user for the name of the ASCII file containing the data; the bandwidth; the number of histograms to
calculate, shift, and average; and the weight function to use.

We can use warping to reproduce the ASH in Figure 1.

. warping density midpoint

[the sequence of prompts and responses is omitted]

. generate inter = midpoint[2] - midpoint[1]
. generate lowcut = midpoint - inter/2

. graph density lowcut, s(.) c(J) border

The resulting graph is essentially identical to the last graph that appears in Figure 1.

Figure 2 displays WARP estimates using M € {1,2,4,8,16,32} and h = 13.6. The first of the six graphs is the ordinary
histogram (M = 1). Two modes are apparent in this graph. Every ASH with M > 2 reveals the presence of a third mode to the
left of the primary mode. The appearance of this additional mode is not an artifact of the WARPing procedure, but rather the
result of a significantly improved signal-to-noise ratio obtained by averaging out the origin. The parameter for the origin, x¢, has
been replaced by a different parameter: M, the number of shifted histograms. This replacement is justified by the improvement
in the density estimate. Note, in particular, that the estimates are essentially the same for M > 4.

.02 4 02

Density
Density

-6.8 Lower cutoff 156.4 3.4 Lower cutoff 146.2

Density
Density

8.5 Lower cutoff 144.5 9.35 Lower cutoff 141.95

.02 4 .02 4

Density
Density

04 04
10.625 Lower cutoff 143.225 10.8375 Lower cutoff 143.013

Figure 2. ASH with M € {1,2,4,8,16,32}

Stata Technical Bulletin 27

WARPS as approximate kernel density estimators

WARPing can be used to approximate a particular kernel density estimator by selecting the appropriate weight function.
The WARP approaches the kernel function as the number of averaged histograms, M, increases (Hardle 1991). Figures 3 and 4
illustrate this fact. These figures display WARPs with M € {1,5, 15} along with the analogous kernel density estimate.

Figure 3 displays the histogram-like, step WARP using the quartic weight function and, in the final graph, the quartic
kernel density estimate for the Buffalo snowfall data. All estimates were calculated with A = 10. Figure 4 displays a similar
sequence for the coral trout length data. Figure 4 shows the frequency polygon version of the WARP using the Gaussian weight
function and, in the final graph, the Gaussian kernel density estimate. As these figures suggest, WARPs with M > 5 are nearly
indistinguishable from the corresponding kernel estimates. Note, in Figure 4, that the WARP estimate with M = 1 fails to reveal
the multimodality of the data. However, estimates with larger values of M clearly display the multiple modes.

.024
.014

20 Lower cutoff 140

.02
.014
04

20 Lower cutoff 140 20 Midpoint 140

Figure 3. Step WARPs and the quartic kernel

.024

.014

vensiy

)
Density
)

20 Lower cutoff 140

.024

.014

vensiy
o
Density

In our previous insert (1993), we presented several programs to calculate kernel density estimators. It was necessary to
revise these programs to support the calculation of WARPs. These updated programs are included on the distribution diskette. We
also have added some new programs that augment the choice of kernel estimators. Our complement of ado-files now calculates
estimates for the uniform, triangular (ASH), Epanechnikov, quartic (biweight), triweight, Gaussian, and cosinus kernels. (On-line
help can be obtained by typing ‘help kernel’.)

.008 4 .008 4

Lensiy
°
Density
°

200 Midpoint 600 200 Midpoint 600

04

vensity)
o
Density .

00 Midpoint 600 200 Midpoint 600

Figure 4. Polygon WARPs and the Gaussian kernel

N

28 Stata Technical Bulletin STB-26

All of these programs consider a mesh of 50 equally spaced points from x; — h — (range % 0.1) to z,, + h+ (range *0.1).
To compare kernel estimates, the kernels must have the same support (Hardle 1991). Gasser et al. (1985) suggest comparing
kernels over the common interval [—1,1]. Applying that suggestion, our kernel programs are listed in the following table:

Table 1. Kernel programs provided

Program Kernel K(z)
kernsim uniform 1I(]z| < 1)
kerntria triangle (ASH) (I—|2DI(]z] <1)
kernepa Epanechnikov 51— 22)I(|2| <1)
kernquar quartic B(1-22)%(z| < 1)
kerntriw triweight B51-22)21(2| <1)
kerncos cosinus Tcoszl(|z] <1)
kerngaus Gaussian %e";/ 2

Each of the kernel programs employs the same syntax:

program_name varname bandwidth density midpoint

where varname is the input variable, bandwidth is a scalar that specifies the half-width of each bin, and density and midpoint
are new variables that will contain the density estimates and bin midpoints, respectively.

As an example, we can recreate the quartic kernel displayed as the last graph in Figure 3 by typing

. kernquar snow 10 denl10 mid10
(output omitted)
. graph denl0 mid10, xlab ylab c(s) s(.) border

(The graph shown in Figure 3 enjoyed some additional editing in Stage.)

Equivalent kernels

When we calculate two different kernels using the same window width, the results are not readily comparable. Consider, for
example, Figure 5 which presents triweight and Gaussian kernels for the coral trout length data using A¢riweight = PGaussian = 15.
The triweight estimate is not as smooth as the Gaussian and suggests more modes.

.008 1 N
! | .. Triweight kernel
[- Gaussian kernel
.006
>
2 .004
[
a}
.002
0

200 600
Midpoint

Figure 5. Gaussian and triweight kernels with hg = hp = 15

Stata Technical Bulletin 29

Different kernels have different variances, even when the kernels have identical support, and the difference in variances
accounts for the qualitative differences in the density estimates. One way to correct for this difference is to adjust the window
widths to produce equal variances. Scott (1976) calculates conversion factors that equalize the variances of different kernels.
The following table summarizes conversion factors for some popular kernels.

Table 2. Inter-kernel conversion factors

To/From Uniform Triangle Epanechnikov Quartic Triweight Cosinus Gaussian
Uniform 0.715 0.786 0.663 0.584 0.761 1.740
Triangle 1.398 1.099 0.927 0.817 1.063 2432
Epanechnikov 1272 0910 0844 0.743 0968 2214
Quartic 1.507 1.078 1.185 0.881 1.146 2.623
Triweight 1.711 1.225 1.345 1.136 1.302 2978
Cosinus 1.315 0941 1.033 0.872 0.768 2.288
Gaussian 0.575 0.411 0.452 0381 0336 0437

We can use these conversion factors to obtain approximately the same degree of smoothing with any pair of kernels. For
example, Table 2 indicates we can produce a triweight kernel that is equivalent to a Gaussian kernel by using a bandwidth for
the triweight kernel that is 2.978 times the bandwidth used for the Gaussian kernel. Figure 6 displays triweight and Gaussian
kernels for the coral trout data where the bandwidth (h) of the Gaussian kernel is 15 and the bandwidth of the triweight kernel
is 44.67 = 2.978 x 15. Now both density estimators show a similar degree of smoothness. A closely related but more general
approach is the canonical bandwidth transformation proposed by Marron and Nolan (1988) in which the kernels functions are
scaled to their canonical forms allowing the bandwidths to be equalized using the Gaussian kernel as the reference.

.0062

.. Triweight kernel

- Gaussian kernel

.0031

Density

04 -

100 200 300 400 500 600 700
Midpoint
Figure 6. Gaussian and triweight kernels with hg = 15 and h = 44.67

Some comparisons of warp and kernel program performance

As documented in snp6 (Salgado-Ugarte et al. 1993), calculating kernel density estimators is slow, even on a fast computer.
The speed of the calculations depends crucially on n, the number of observations. In contrast, as we noted above, the WARPing
technique uses a discretization of the data, therefore the calculations depend on n only at the binning stage. Since the results
from any computerized procedure are discretized anyway when they are printed or displayed on screen, there is no loss of
information (Hardle 1991).

Hardle and Scott (1988) compare the computational efficiency of WARPing and kernel density estimation in detail. As a
guide to the relative performance of our implementations, we present some approximate timings in Table 3 below. The third
column of the table displays a ‘W’ if the WARP program warpstep was used and a ‘K’ if one of the kernel density estimation
programs was used. The value of h was set at 20 in each run of warpstep Times are measured, in seconds, from the last prompt
of warpings.com. These timings were obtained using small Stata on a 25 MHz, 486SX processor with 6 MB of RAM and no
math coprocessor. The data files listed are available on the distribution diskette and are described in snp6.

30 Stata Technical Bulletin STB-26

Table 3. Timing comparisons

Data file n W/K M Kernel Bins Time
trocolen.raw 316 w 15 Epanechnikov 303 5
” ” w 15 Gaussian 303
” ” \%% 50 Epanechnikov 1,004 13
trocolen.dta ” K uniform 50 150
” ” K Gaussian 50 170
catfish.raw 2,439 w 5 quartic 70 24
” ” W 15 quartic 204 26
catfish.dta ” K quartic 50 1,200

The timings in Table 3 demonstrate the impressive time savings achieved by the WARP procedure, even when M and the
number of bins become large. Because of this time savings, we now use warpstep and warpoly (with M = 15) to estimate
kernels and to explore data distributions, and we use warping to produce numerical values for the estimates.

Some final notes

There is a limit, albeit a generous one, to the size of the problem that warpings can handle. The array definition in the
Turbo Pascal program limits the number of sub-bins to 2000. For any particular series, the number of sub-bins is difficult to
predict: it depends on the number of observations, on the intervals between the observations, and on the choice of M. As an
example, though, with the Buffalo snowfall data, the maximum number of sub-bins is approached only when M exceeds 150.
As the figures above have shown, setting M > 5 produces an adequate estimate of the kernel. Our convention is to set M = 15,
which produces a smooth estimate without approaching the internal limits of warpings.

This suite of programs and ado-files have several other limitations. First, warpstep and warpoly use the infile command,
thus, there can be no data in memory when the ado-files are called, or the programs will terminate with an error message. This
feature may occasionally be a minor inconvenience, but it is safer than allowing warpstep and warpoly to silently delete the
user’s data set. Second, the input series must be stored as a single column of numbers in an ASCII data set. Third, none of the
ado-files in the suite can handle if and in clauses. This design leaves the user with the responsibility for deleting unwanted
cases prior to calling the WARP or kernel programs. Fourth, the results of warping must be saved and memory cleared before a
new estimate can be calculated and compared. We ask users to let us know of any problems they encounter with these programs,
and we also encourage them to send us any suggestions for improvements.

We have provided several example data sets on the distribution diskette, both as .raw and .dta files. We have included
the Buffalo snow data (bufsnow, 63 observations), the coral trout length data (trocolen, 316 observations), and the catfish
length data (catfish, 2,439 observations). The user can explore the distributions of these variables using different combinations
of bandwidth, number of shifted histograms, and weight function. We also have included the source code of the Turbo Pascal
program (warpings.pas) for users to examine and modify, if they wish.

Acknowledgments

The first author is grateful to the Ministry of Education, Science and Culture of Japan and to the National Autonomous
University of Mexico (FES Zaragoza and DGAPA) for their support.

References

Gasser, T., H. G. Miiller, and V. Mammitzsch. 1985. Kernels for nonparametric curve estimation. Journal of the Royal Statistical Society Series B,
47: 238-252.

Hardle, W. 1991. Smoothing Techniques with Implementations in S. New York: Springer-Verlag.

Hardle, W. and D. W. Scott. 1988. Smoothing in low and high dimensions by weighted averaging using rounded points. Technical report 88-16, Rice
University.

Stata Technical Bulletin 31

Marron, J. S. and D. Nolan. 1988. Canonical kernels for density estimation. Statistics and Probability Letters 7: 195-199.
Parzen, E. 1979. Nonparametrical statistical data modeling. Journal of the American Statistical Association 74: 105-131.

Salgado-Ugarte, 1. H. 1985. Algunos aspectos bioldgicos del bagre Arius melanopus Gunther (Osteichthyes: Arridae) en el Sistema Lagunar de
Tampamachoco. Ver. B. S. thesis, Carrera de Biologia, E.N.E.P. Zaragoza, Universidad Nacional Auténoma de México.

Salgado-Ugarte, 1. H., M. Shimizu, and T. Taniuchi. 1993. snp6: Exploring the shape of univariate data using kernel density estimators. Stata Technical
Bulletin 16: 8-19.

Scott, D. W. 1976. Nonparametric probability density estimation by optimization theoretic techniques. Ph.D. thesis, Department of Mathematical
Sciences, Rice University.

——. 1985. Averaged shifted histograms: effective nonparametric density estimators in several dimensions. Annals of Statistics 13: 1024-1040.

——. 1992. Multivariate Density Estimation: Theory, Practice, and Visualization. New York: John Wiley & Sons.

snp8.1 Robust scatterplot smoothing: correction

Sean Becketti, Editor, Stata Technical Bulletin

In producing the distribution diskette for STB-25, I inadvertently omitted two ado-files from the snp8 directory. This omission
made it impossible to run the two-step lowess procedure. To correct this problem, I have reproduced the complete set of files
for snp§—including the two omitted files—on the STB-26 distribution diskette.

I apologize to the authors and to the readers of the STB for this error, and I thank the readers who quickly brought this
problem to my attention.

References
Salgado-Ugarte, 1. S. and M. Shimizu. 1995. snp8: Robust scatterplot smoothing: enhancements to Stata’s ksm. Stata Technical Bulletin 25: 23-29.

32

Stata Technical Bulletin

STB-26

STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:

an announcements ip
cc communications & letters 0s
dm data management

dt data sets qs
gr graphics tt
in instruction 7z

Statistical Categories:

sbe biostatistics & epidemiology srd
sed exploratory data analysis ssa
sg general statistics ssi
smv multivariate analysis 5SS
snp nonparametric methods sts
sgc quality control sxd
sqv analysis of qualitative variables szz

instruction on programming
operating system, hardware, &
interprogram communication
questions and suggestions
teaching

not elsewhere classified

robust methods & statistical diagnostics
survival analysis

simulation & random numbers

social science & psychometrics
time-series, econometrics

experimental design

not elsewhere classified

In addition, we have granted one other prefix, crc, to the manufacturers of Stata for their exclusive use.

International Stata Distributors

International Stata users may also order subscriptions to the Stata Technical Bulletin from our International Stata Distributors.

Company: Dittrich & Partner Consulting
Address: Prinzenstrasse 2
D-42697 Solingen
Germany
Phone: +49 212-3390 99
Fax: +49 212-3390 90

Countries served:

Austria, Germany

Company: Howching
Address: 11th Fl. 356 Fu-Shin N. Road
Taipei, Taiwan, R.O.C.
Phone: +886-2-505-0525
Fax: +886-2-503-1680

Countries served:

Taiwan

Company: Metrika Consulting
Address: Ruddammsvagen 21
11421 Stockholm
Sweden
Phone: +46-708-163128
Fax: +46-8-6122383

Countries served:

Baltic States, Denmark, Finland,
Iceland, Norway, Sweden

Company: Oasis Systems BV
Address: Lekstraat 4
3433 ZB Nieuwegein
The Netherlands
Phone: +31 3402 66336
Fax: 431 3402 65844

Countries served: The Netherlands

Company: Ritme Informatique
Address: 34 boulevard Haussmann

75009 Paris, France

Phone: +33 142 46 00 42

Fax: 433 142 46 00 33

Countries served: Belgium, France,

Luxembourg, Switzerland

Company: Timberlake Consultants
Address: 47 Hartfield Crescent
West Wickham
Kent BR4 9DW, U.K
Phone: +44 181 462 0495
Fax: +44 181 462 0493

Countries served: Eire, Portugal, U.K.

