»  Home »  Products »  Stata 15 »  More in statistics

More in statistics

  • tobit now accepts censoring limits and constraints
  • Some people think of tobit as being censored at zero. Stata's tobit estimation command allows you to specify the lower value of the censoring point and specify an upper censoring point. All that is unchanged. You can now specify censoring points—upper, lower, or both—that vary observation by observation. The censoring points can be stored in variables.

    tobit now allows constraints.

    tobit now has the other standard features that it always should have had, but this is just for completeness. You can, for instance, specify initial values.

  • tpoisson, ul()
  • The existing estimation command tpoisson fits truncated Poisson models. It previously fit only left-truncated models. It now fits left-, right-, and both-truncated models. New option ul() specifies the upper truncation limit.

  • One- and two-sample mean tests with clustered data
  • Existing command ztest has new option cluster() and other new options to account for clustering.

  • One- and two-sample proportion tests with clustered data
  • Existing command prtest has new option cluster() and other new options to account for clustering.

  • gsem now fits truncated Poisson models
  • gsem, whether used to fit the new LCA models or the existing generalized SEM models, now fits truncated Poisson models if you specify option family(poisson, ltruncated(...)).

  • Standard deviations and correlations instead of variances and covariances for multilevel models and generalized SEM
  • For multilevel models, estat sd displays random effects and within-group error parameter estimates as standard deviations and correlations instead of the variances and covariances reported in the estimation output.

    Similarly after gsem, estat sd reports the estimated variance components as standard deviations and correlations.

  • bayesmh has new options for displaying results
    • bayesmh now allows the eform and eform(string) options for reporting exponentiated coefficients such as odds ratios, incidence-rate ratios, and the like.
    • bayesmh now allows new option show(paramlist) to specify which model parameters should be presented in the output. Option show() joins existing option noshow(). Specify one, the other, or neither.
    • bayesmh now allows new option showreffects to specify that all random-effects estimates be presented in the output. They are not displayed by default.

  • Postestimation supports new bayes: prefix command
  • If you use the new bayes: prefix command with multilevel models such as mixed or meglm, then bayesgraph, bayesstats ess, and bayesstats summary have new options.

    New option showreffects displays the results for all random-effects parameters.

    New option showreffects() displays specified random-effects parameters.

    By default, results are displayed for all model parameters except the random-effects parameters.

  • These new estimation commands may be used with the svy: prefix:
  • CommandPurpose
    svy: asmixlogitAlternative-specific mixed logit regression
    svy: heckpoissonPoisson regression with sample selection
    svy: hetregressHeteroskedastic linear regression
    svy: stintregParametric interval-censored survival regression
    svy: zioprobitZero-inflated ordered probit
    svy: metobitMultilevel tobit regression
    svy: meintregMultilevel interval regression
    svy: eregressExtended linear regression
    svy: eintregExtended interval regression
    svy: eprobitExtended probit regression
    svy: eoprobitExtended ordered probit regression
    svy: gsemFor latent class analysis

  • The following existing estimation commands support combined use of svy: and fmm: to fit survey-adjusted finite mixture models:
  • CommandPurpose
    svy: fmm: regressLinear regression
    svy: fmm: tobitTobit regression
    svy: fmm: intregInterval regression
    svy: fmm: truncregTruncated regression
    svy: fmm: ivregressInstrumental-variable regression
    svy: fmm: logitLogistic regression
    svy: fmm: probitProbit regression
    svy: fmm: cloglogConditional log-log regression
    svy: fmm: ologitOrdered logistic regression
    svy: fmm: oprobitOrdered probit regression
    svy: fmm: mlogitMultinomial logistic regression
    svy: fmm: poissonPoisson regression
    svy: fmm: nbregNegative binomial regression
    svy: fmm: tpoissonTruncated Poisson regression
    svy: fmm: betaregBeta regression
    svy: fmm: glmGeneralized linear model
    svy: fmm: stregParametric survival regression

  • Cauchy distribution
  • A new family of Cauchy distribution functions—cauchyden(), cauchy(), cauchytail(), invcauchy(), invcauchytail(), and lncauchyden()—compute the density, cumulative distribution, reverse cumulative distribution, inverse cumulative distribution, and natural logarithm of the density.

    rcauchy is a Cauchy random-number generator.

  • Laplace distribution
  • A new family of Laplace distribution functions—laplaceden(), laplace(), laplacetail(), invlaplace(), invlaplacetail(), and lnlaplaceden()—compute the density, cumulative distribution, reverse cumulative distribution, inverse cumulative distribution, inverse reverse cumulative distribution, and natural logarithm of the density.

    rlaplace() is a Laplace random number generator.

  • Multivariate normal distribution
  • Mata functions are now available for calculating values and derivatives of the multivariate normal distribution.


Stata

Shop

Support

Company


The Stata Blog: Not Elsewhere Classified Find us on Facebook Follow us on Twitter LinkedIn Google+ YouTube
© Copyright 1996–2017 StataCorp LLC   •   Terms of use   •   Privacy   •   Contact us