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Abstract. This paper discusses and illustrates the method of regression calibra-
tion. This is a straightforward technique for fitting models with additive mea-
surement error. We present this discussion in terms of generalized linear models
(GLMs) following the notation defined in Hardin and Carroll (2003). Discussion
will include specified measurement error, measurement error estimated by replicate
error-prone proxies, and measurement error estimated by instrumental variables.
The discussion focuses on software developed as part of a small business innovation
research (SBIR) grant from the National Institutes of Health (NIH). The authors
of this paper served as consultants to Stata Corporation on that grant.
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1 Introduction

This paper describes software for analyzing measurement error models. This software
production was funded by a National Institutes of Health (NIH) Small Business Inno-
vation Research Grant (SBIR) (2R44RR12435-02) which was managed by Stata Cor-
poration. The goal of the work described in the grant is the production of software to
analyze statistical models where one or more covariates are measured with error. The
software development included two major features. The first development feature is
the development of the Stata program to support communication to dynamically linked
user-written computer code. Stata Corporation was responsible for this development
and support for user-written code in the C language was added to Stata version 8. Stata
refers to compiled user-written code as a plugins and maintains documentation on their
website at http://www.stata.com/support/plugins. See Hardin and Carroll (2003)
for an introduction.

The project described was supported by Grant Number R44 RR12435 from the National Institutes
of Health, National Center for Research Resources. Its contents are solely the responsibility of the
authors and do not necessarily represent the official views of the National Center for Research Resources.

c© Stata Corporation st0001



2 Regression Calibration

Following the presentation in Carroll et al. (1995), we discuss the regression calibra-
tion method for correcting bias in fitting generalized linear measurement error models.

The basis of the regression calibration algorithm for measurement error analysis is
the construction of the calibration model for generation of estimated covariate values
X̂ for the unknown covariates XU. After all, were we privy to XU there would be no
issue. Somehow, we must estimate the missing information in such a way as to eliminate
bias in the estimated coefficients and we must take into account this estimation when
constructing variance estimates.

Given the resulting bias discussed in Hardin and Carroll (2003), we must first build
the calibration function so that the bias can be removed from the results of the standard
analysis. The following section provides the formula and explanations for how this is
done.

This article focuses on one possible approach to addressing measurement error. Our
discussion is meant to provide the reader with an understanding of the statistical con-
cepts and theory behind the regression calibration method. Just as important, we also
wish to communicate the capabilities of the software developed to include regression
calibration functionality.

2 Regression calibration

The regression calibration method is a simple approach wherein we need only develop
and fit the calibration model for the regression of the unknown covariates XU on
(XZ,XW). This is accomplished using replication, validation, or instrumental data
in place of the unknown XU. This first stage regression results in a calibration function
for estimating XU. The unobserved covariates are then replaced by their predicted val-
ues from the calibration model in a standard analysis. Finally, the standard errors are
adjusted to account for the estimation of the unknown covariates. The typical approach
is to calculate standard errors using bootstrap or sandwich methods, but asymptotic
standard errors have been derived by one of the authors (Carroll) and are included in
the associated software.

With replicate data, the measurement error variance may be estimated by

Σ̂uu =
1∑n

i=1(ki − 1)

n∑

i=1

ki∑

j=1

(Wij −Wi·)(Wij −Wi·)T

Alternatively, the user may specify this variance matrix if it is known or estimated
externally (to the dataset in use).

We need information to substitute for XU and we know that the best linear approx-
imant to XU given (Z,W) is

X̂U ≈ µXU
+

(
Σxx

Σzx

) [
Σxx + Σuu/k Σxz

Σzx Σzz

]−1 (
W − µW

Z− µZ

)
(1)
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In order to operationalize this linear approximant, we make the usual substitutions
for unknown quantities. First, we use µ̂W = µXU

; substituting the mean of the replicate
values for the mean of the unknown covariates. In addition,

Σ̂zz =
1

n− 1

n∑

i=1

(Zi − Z·)(Zi − Z·)T

as the usual analysis of variance estimate. We use

Σ̂xz =
1
ν

n∑

i=1

ki(Wi· − µ̂W)(Zi − Z·)T

Σ̂xx =
1
ν

{
n∑

i=1

ki(Wi· − µ̂W)(Wi· − µ̂W)T
}
− n− 1

ν
Σ̂uu

where ν =
∑

i ki−
∑

i k2
i /

∑
i ki. The estimated variance matrix for the unknown XU is

seen in two components due to the variance of XU and the measurement error variance.

Armed with these estimates, it is straightforward to mechanically derive the esti-
mated values for the unknown XU, produce estimates X̂U using equation 1, and proceed
with a standard analysis. Obviously, calculation of a variance matrix for the estimated
coefficients will have to address the additional parameters from this substitution.

3 Comparison to current Stata commands

Hardin and Carroll (2003) illustrate the effect of measurement error in linear regres-
sion. Clearly, if we had an estimate of the unknown measurement error variance, we
could adjust the results from an analysis using the error-prone covariates. In fact, the
[R] eivreg command does this by requiring a specification of the attenuation factor
(reliability ratio). To see the relationship, let’s follow the example from [R] eivreg.

. eivreg price foreign weight, r(weight .85)

assumed errors-in-variables regression
variable reliability

Number of obs = 74
weight 0.8500 F( 2, 71) = 50.37

* 1.0000 Prob > F = 0.0000
R-squared = 0.6483
Root MSE = 1773.54

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

foreign 4637.32 624.5362 7.43 0.000 3392.03 5882.609
weight 4.31985 .431431 10.01 0.000 3.459601 5.180099
_cons -8257.017 1452.086 -5.69 0.000 -11152.39 -5361.64

Since the weight variable is 85% reliable, we know that 15% of the variance for that
error-prone variable is due to the measurement error variance. It is easy to calculate
this:
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. summ weight

Variable Obs Mean Std. Dev. Min Max

weight 74 3019.459 777.1936 1760 4840

. local suu = .15*r(Var)

. mat uinit = (‘suu’)

We put the estimated variance into a matrix because the rcal command requires
this. We do not have any replicate measurements, so we will specify the same measure-
ment error variance as was specified as a reliability to the eivreg command.

. rcal (price=foreign) (www: weight), suuinit(uinit) suuignore

Regression calibration No. of obs = 74
Link = Identity

Residual df = 71 Wald F(2,71) = 25.15
Prob > F = 0.0000

(IRLS EIM) Scale param = 4481776

Variance Function: V(u) = 1 [Gaussian]
Link Function : g(u) = u [Identity]

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

foreign 4637.32 873.833 5.31 0.000 2894.946 6379.693
www 4.31985 .6103749 7.08 0.000 3.102797 5.536903

_cons -8257.017 1345.591 -6.14 0.000 -10940.05 -5573.985

In this example, it is assumed that the weight variable is 85% reliable. Alternatively,
we say that weight is an error prone covariate for the unobserved true covariate. We
assume that weight is equal to the unobserved covariate plus error. The total variance
for the weight variable is equal to the variance of the unobserved covariate plus the
variance of the measurement error.

Aside from the peculiarities of the syntax for the new rcal command, the resulting
adjustment made to remove the bias from the estimated coefficients is the same for these
commands. The scale parameter is equal to the MSE from the eivreg command. The
difference in algorithms for calculating the variance matrix is obvious, but the standard
errors are approximately of the same scale. We can investigate this further by requesting
bootstrap standard errors from the rcal command.

. rcal (price=foreign) (www: weight), suuinit(uinit) brep(299)

Regression calibration No. of obs = 74
Bootstrap reps = 299

Residual df = 71 Wald F(2,71) = 17.92
Prob > F = 0.0000

(IRLS EIM) Scale param = 4481776

Variance Function: V(u) = 1 [Gaussian]
Link Function : g(u) = u [Identity]

Bootstrap
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price Coef. Std. Err. t P>|t| [95% Conf. Interval]

foreign 4637.32 901.7399 5.14 0.000 2839.301 6435.338
www 4.31985 .7216277 5.99 0.000 2.880965 5.758735

_cons -8257.017 2436.941 -3.39 0.001 -13116.14 -3397.894

4 Syntax and options

The previous section illustrated a very basic use of the rcal command. Generally,
there are two or more parenthesized equations specified to the command. The first
parenthesized equation is the dependent variable Y, followed by an equal sign, followed
by the list of covariates measured without error XZ.

Subsequent parenthesized equations list information on the measurement error vari-
ables. For each unobserved variable, an equation is specified with a label, followed by
a colon, followed by the list of replicate variables for that unobserved variable. Hardin
and Carroll (2003) explain that these lists must all be the same length and the order
matters when specifying the replicate variables for the unobserved variable.

If the measurement error equations all have a single replicate, the user must specify
the variance for the measurement error variance. This is specified with the suuinit()
option which names a matrix communicating the measurement error variance. This
matrix should be square and of dimension the number of measurement error equations.

For example,

rcal (y=z1 z2 z3) (x1: w11 w12 w13) (x2: w21 w22 w23)

specifies a model with dependent variable y, XZ given by [z1, z2, z3], and includes
information for two unobserved variables. The labels x1 and x2 are restricted to not
coincide with any variable names that exist in the dataset. The unobserved variable
represented by the x1 label will be estimated by the 3 replicates stored in the w11, w12,
and w13 variables. Likewise, we have a similar description for the unobserved variable
represented by the x2 label. Utilizing the notation laid out in Hardin and Carroll (2003),
we have XU represented by [x1, x2]. The replicate observed variables are XW specified
by [ (w11, w12, w13) , (w21, w22, w23) ]. Writing the XW matrix in this manner makes
it clear that there are two unknown covariates so that the dimension of the measurement
error variance is (2× 2).

Since there are three possible replicates for each observation for the two different
unobserved variables in this particular model, the user is not required to specify the
measurement error variance. However, this does not preclude the user from providing
this estimate if it is available.

An additional consideration of user-specified measurement error variances is the
confidence of the estimate. If the measurement error variance is specified, then the
variability of obtaining this estimate is ignored in the calculation of the standard errors
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for the model of interest. One can also ignore this variability while still estimating the
measurement error variance via replicates using the uuignore option.

4.1 Computational note on calculating standard errors

The calculation of the asymptotic and sandwich standard errors are very computation-
ally intensive. Since much time was spend optimizing the algorithm, the results will
generally be available within seconds for small to moderate size data sets. For large
data sets, however, the time required to compute the standard errors can be very long.
Should rcal require more than 30 seconds to provide an answer, it will display an
estimate of the time it will take to complete the calculation.

The rcal command implements a fast internal bootstrap which for large data sets is
significantly faster than the default asymptotic standard errors (when using the default
or a reasonable number of bootstrap replicates). The larger the data set the more of a
speed advantage the bootstrap will have over asymptotic standard errors. In one case
a hundred fold speed differential was observed for a data with of 100,000 observations.

It is also possible to calculate the naive variance regression calibration estimate
using the naive option. Naive standard errors are calculated by generating the missing
covariates and assuming them to be true. In general this option is for pedagogical
and diagnostic purposes only since the standard errors it calculates are incorrect. One
advantage naive estimates do have is that they require no special computational effort.
That makes them useful when testing the rcal command and options on a large data
set. Another use would be if no standard errors are desired, say if one wanted to use
the rcal command to calculate the jackknife standard errors.

5 Building the missing covariate

The rcal command does not directly support generation of the missing covariates.
Often, researchers think that the missing covariate is simply replaced by the mean of
the replicates, but this is not true. See equation 1 for clarification.

In the do-file below, we generate some data to illustrate how you can build the
covariate values that are used in fitting a GLM via the regression calibration method.

set seed 139423
set obs 100
gen z1 = uniform()
gen z2 = invnorm(uniform())
gen x1 = uniform()
gen w1 = x1 + invnorm(uniform())*.5
gen w2 = x1 + invnorm(uniform())*.5
gen w3 = x1 + invnorm(uniform())*.5
gen y = z1 + 2*z2 + 3*x1 + 4 + invnorm(uniform())

gen wbar = (w1+w2+w3)/3

reg y z1 z2 wbar
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rcal (y=z1 z2) (what: w1 w2 w3)

Note how simply replacing the missing covariate with the mean of the replicates does
not generate the same point estimates estimated using regression calibration. The
correct formula given in equation 1 can be calculated using the saved results of the
rcal command.

mat szz = e(szz)
mat sxx = e(sxx)
mat sxz = e(sxz)
mat suu = e(suu)

mat a = sxx sxz’
mat b1 = sxx + suu/3 , sxz
mat b2 = sxz’, szz
mat b = b1 b2
mat c = a’ * syminv(b)

summ z1
gen z1b = z1 - r(mean)
summ z2
gen z2b = z2 - r(mean)
summ wbar
gen wbarb = wbar - r(mean)

gen xh = c[1,1] * wbarb + c[1,2] * z1b + c[1,3] * z2b

Once we build the missing covariate, we can verify our calculations using regress.

. rcal (y=z1 z2) (xhat: w1 w2 w3)

Regression calibration No. of obs = 100
Link = Identity

Residual df = 96 Wald F(3,96) = 104.32
Prob > F = 0.0000

(IRLS EIM) Scale param = 1.437038

Variance Function: V(u) = 1 [Gaussian]
Link Function : g(u) = u [Identity]

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

z1 .4172764 .4620955 0.90 0.369 -.499976 1.334529
z2 2.235349 .1274325 17.54 0.000 1.982397 2.4883

xhat 2.252182 .6978701 3.23 0.002 .8669208 3.637443
_cons 4.828447 .258867 18.65 0.000 4.3146 5.342294

. reg y z1 z2 xh

Source SS df MS Number of obs = 100
F( 3, 96) = 109.72

Model 472.993992 3 157.664664 Prob > F = 0.0000
Residual 137.955609 96 1.4370376 R-squared = 0.7742

Adj R-squared = 0.7671
Total 610.949602 99 6.1712081 Root MSE = 1.1988

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

z1 .4172764 .457687 0.91 0.364 -.4912252 1.325778
z2 2.235349 .1265596 17.66 0.000 1.98413 2.486567
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xh 2.252182 .5015322 4.49 0.000 1.256648 3.247715
_cons 5.795312 .2456567 23.59 0.000 5.307688 6.282937

This do-file illustrates how the missing covariate is estimated. The generation of
the missing variable in the Stata dataset is specific to the size of the problem that we
simulated, but the mechanics of the operation should be apparent.

6 NHANES example

Using data from the National Health And Examination Survey (NHANES), we inves-
tigate the presence of breast cancer qbc as a function of other covariates; qage is the
age in years of the patient, pir is the poverty index ratio, qbmi is the body mass index,
alcohol is indicator for whether the individual uses alcohol, famhist is an indicator of
whether there is a family history of breast cancer, and agemen is the age at menarche.
Two additional covariates qcalorie and qsatfat are measurements recorded as recalls
for the individual on their saturated caloric fat intake.

We fit a regression calibration model calculating bootstrap standard errors. In this
model, we specify that qcalorie and satfat are replicate measures for an unknown
covariate measure of the saturated fat intake of the individual. This model is fit in much
less time than an equivalent SIMEX model—see Hardin et al. (2003) for comparison.

. local y "qbc"

. local z "qage pir qbmi alcohol famhist agemen"

. local x "qcalorie qsatfat"

. rcal (‘y’ = ‘z’) (w: ‘x’), fam(bin) brep(199) seed(12394)

Regression calibration No. of obs = 3145
Bootstrap reps = 199

Residual df = 3137 Wald F(7,3137) = 4.35
Prob > F = 0.0001

(IRLS EIM) Scale param = 1.068394

Variance Function: V(u) = u(1-u) [Bernoulli]
Link Function : g(u) = log(u/(1-u)) [Logit]

Bootstrap
qbc Coef. Std. Err. t P>|t| [95% Conf. Interval]

qage .0648976 .0169298 3.83 0.000 .031703 .0980921
pir .1283659 .0756971 1.70 0.090 -.020055 .2767867
qbmi -1.484298 2.451664 -0.61 0.545 -6.291326 3.322731

alcohol .446928 .2893229 1.54 0.123 -.1203533 1.014209
famhist .6662337 .4817085 1.38 0.167 -.2782621 1.610729
agemen -.1504096 .270934 -0.56 0.579 -.6816354 .3808162

w -.0463208 .0224759 -2.06 0.039 -.0903898 -.0022519
_cons -5.28918 1.066968 -4.96 0.000 -7.381205 -3.197154
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7 Formal Stata syntax

rcal ( depvar =
[
varlist

]
)

[
(
[
label :

]
varlist) ... (

[
label:

]
varlist)

] [
weight

]
[
if exp

] [
in range

] [
, message(#) family(string) link(string)

ltolerance(#) iterate(#)

level(#) robust naive suuinit(matrixname) suuignore

bstrap brep(#) btrim(#) seed(#) saving(string) replace
]

General Options

message(#) specifies the desired (observed) level of printed messages of the plugin
module. Users can use this option to suppress or request warning and informational
messages.

0) Display nothing, not even fatal error messages.

1) Display print fatal error messages only.

2) Display warning messages (default).

3) Display informational messages.

4) Display more informational messages.

Note that the ADO code that handles the I/O to the plugin may still print error
messages regardless of the message level setting.

The message command can also be used to see intermediate details of the internal
calculations of the code. These where used by the authors to debug the code.
The notation and mnemonics used are not documented and may not correspond to
anything in the printed documentation. Furthermore the numbers may be in a raw
and unadjusted format that are difficult to interpret.

5, 6 & 7) Display details with increasing verbosity.

Messages levels are cumulative.

family(string) specifies the distribution of the dependent variable. The gaussian
family is the default. The choices and valid family and link combinations are the
same as for Stata’s glm command.

link(string) specifies the link function; the default is the canonical link for the cmd:family()
specified. The choices and valid family and link combinations are the same as for
Stata’s glm command.

ltolerance(#) specifies the convergence criterion for the change in deviance between
iterations. The default is 10−6.
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iterate(#) specifies the maximum number of iterations allowed in fitting the model;
The default is 100. It is rare that one needs to increase this.

Standard Error Options

level(#) specifies the confidence level, in percent, for confidence intervals of the coef-
ficients.

robust specifies that the Huber/White/sandwich estimator of variance is to be used in
place of the traditional calculation. We do not support the cluster option in rcal.

naive specifies that the naive variance estimate should be used. This means that the
missing covariates measured with error are generated, but then assumed to be true.
This option is for pedagogical and diagnostic purposes and should not be otherwise
used.

suuinit(matrixname) specifies the measurement error covariance matrix. This is cal-
culated from the replications in the measurement error variables if it is not specified.

suuignore specifies that the error associated with estimating the measurement error
should be ignored. This option could be specified if the user provides an estimate
of the measurement error from an external source believed to be true. This may
be relevant if the covariance comes from a large, careful independent study, for
which only summary statistics are available. Note that this does not mean that the
measurement error is ignored, but rather the error associated with estimating it is
ignored.

Bootstrap Options

bstrap specifies that bootstrap standard errors should be calculated. The bootstrap is
internal to the code for the regression calibration command. The estimated time to
perform the bootstrap will be displayed should the bootstrap require more than 30
seconds.

brep(#) specifies the number of bootstrap samples generated to calculate the bootstrap
standard errors of the fitted coefficients. The default is 199.

btrim(#) specifies the amount of trimming applied to the collection of bootstrap sam-
ples prior to calculation of the bootstrap standard errors. The default is .02 meaning
that 1% of the samples (rounded) will be trimmed at each end.

When the bootstrap is run with mess(3) an informational message similar to this
one will display:

Average number of iterations per GLM call: 3.0
Maximum number of iterations for a GLM call: 3
Minimum number of iterations for a GLM call: 3
Trimming total of 4 bootstrap replications (2.0%).
Maximum change in standard errors due to trimming: 2.4%

indicating that 4 samples (2 on each end) where trimmed and that this trimming
resulted in a 2.4% change in magnitude of one of the standard errors. All other
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standard errors changed less than 2.4%. This simple diagnostic gives an indication
on how trimming influenced the bootstrap standard errors.

seed(#) specifies a random number seed used in generating random samples for the
bootstrap calculations. This option has no effect if bootstrapping is not specified.
Its main purpose is to allow repeatability of bootstrap results. The default is 0 which
will seed the random number generator using the system clock.

saving(string) specifies the file to which the bootstrap results will be saved.

replace the existing ’bootstrap results’ file if it exists.
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