Panel data methods for microeconometrics using Stata

A. Colin Cameron Univ. of California - Davis

Prepared for West Coast Stata Users' Group Meeting Based on A. Colin Cameron and Pravin K. Trivedi, *Microeconometrics using Stata, Stata Press, forthcoming.*

October 25, 2007

Panel data are repeated measures on individuals (i) over time (t).

Regress y_{it} on \mathbf{x}_{it} for i = 1, ..., N and t = 1, ..., T.

Complications compared to cross-section data:

- Inference: correct (inflate) standard errors.
 This is because each additional year of data is not independent of previous years.
- Odelling: richer models and estimation methods are possible with repeated measures.

Fixed effects and dynamic models are examples.

Methodology: different areas of applied statistics may apply different methods to the same panel data set. This talk: **overview** of panel data methods and xt commands for **Stata 10** most commonly used by **microeconometricians**.

Three **specializations** to general panel methods:

- Short panel: data on many individual units and few time periods. Then data viewed as clustered on the individual unit. Many panel methods also apply to clustered data such as cross-section individual-level surveys clustered at the village level.
- Causation from observational data: use repeated measures to estimate key marginal effects that are causative rather than mere correlation.

Fixed effects: assume time-invariant individual-specific effects. IV: use data from other periods as instruments.

Oynamic models: regressors include lagged dependent variables.

Outline

- Introduction
- 2 Linear models overview
- Example: wages
- Standard linear panel estimators
- Linear panel IV estimators
- Linear dynamic models
- Long panels
- 8 Random coefficient models
- Olustered data
- Nonlinear panel models overview
- Onlinear panel models estimators
- Conclusions

2.1 Some basic considerations

- Regular time intervals assumed.
- Output Description (Should then rule out selection/attrition bias].
- Short panel assumed, with T small and N → ∞. [Versus long panels, with T → ∞ and N small or N → ∞.]
- Errors are correlated.

[For short panel: panel over t for given i, but not over i.]

- Parameters may vary over individuals or time.
 Intercept: Individual-specific effects model (fixed or random effects).
 Slopes: Pooling and random coefficients models.
- **§ Regressors**: time-invariant, individual-invariant, or vary over both.
- Prediction: ignored.
 [Not always possible even if marginal effects computed.]
- Dynamic models: possible.
 [Usually static models are estimated.]

2.2 Basic linear panel models

• Pooled model (or population-averaged)

$$y_{it} = \alpha + \mathbf{x}'_{it}\boldsymbol{\beta} + u_{it}.$$
 (1)

• Two-way effects model allows intercept to vary over i and t

$$y_{it} = \alpha_i + \gamma_t + \mathbf{x}'_{it}\boldsymbol{\beta} + \varepsilon_{it}.$$
 (2)

Individual-specific effects model

$$y_{it} = \alpha_i + \mathbf{x}'_{it}\boldsymbol{\beta} + \varepsilon_{it}, \qquad (3)$$

for short panels where time-effects are included as dummies in \mathbf{x}_{it} .

• Random coefficients model allows slopes to vary over i

$$y_{it} = \alpha_i + \mathbf{x}'_{it} \boldsymbol{\beta}_i + \varepsilon_{it}. \tag{4}$$

- Individual-specific effects model: $y_{it} = \mathbf{x}'_{it} \boldsymbol{\beta} + (\alpha_i + \varepsilon_{it}).$
- Fixed effects (FE):
 - α_i is possibly correlated with \mathbf{x}_{it}
 - regressor x_{it} can be endogenous (though only wrt a time-invariant component of the error)
 - can consistently estimate β for time-varying x_{it} (mean-differencing or first-differencing eliminates α_i)
 - cannot consistently estimate α_i if short panel
 - prediction is not possible
 - $\boldsymbol{\beta} = \partial \mathsf{E}[y_{it} | \alpha_i, \mathbf{x}_{it}] / \partial \mathbf{x}_{it}$

• Random effects (RE) or population-averaged (PA)

- α_i is purely random (usually iid $(0, \sigma_{\alpha}^2)$).
- regressor x_{it} must be exogenous
- corrects standard errors for equicorrelated clustered errors
- prediction is possible
- $\boldsymbol{\beta} = \partial \mathsf{E}[y_{it}|\mathbf{x}_{it}]/\partial \mathbf{x}_{it}$

Fundamental divide

- Microeconometricians: fixed effects
- Many others: random effects.

- Many methods assume ε_{it} and α_i (if present) are iid.
- Yields **wrong standard errors** if heteroskedasticity or if errors not equicorrelated over time for a given individual.
- For short panel can relax and use cluster-robust inference.
 - Allows heteroskedasticity and general correlation over time for given *i*.
 - Independence over *i* is still assumed.
- Use option vce(cluster) if available (xtreg, xtgee).
- This is not available for many xt commands.
 - then use option vce(boot) or vce(cluster)
 - but only if the estimator being used is still consistent.

Panel summary xtset; xtdescribe; xtsum; xtdata; xtline; xttab; xttran Pooled OLS regress Feasible GLS xtgee, family(gaussian) xtgls; xtpcse Random effects xtreg, re; xtregar, re Fixed effects xtreg, fe; xtregar, fe Random slopes xtmixed; quadchk; xtrc First differences regress (with differenced data) Static IV xtivreg; xthtaylor Dynamic IV xtabond; xtdpdsys; xtdpd

- PSID wage data 1976-82 on 595 individuals. Balanced.
- Source: Baltagi and Khanti-Akom (1990).
 [Corrected version of Cornwell and Rupert (1998).]
- Goal: estimate causative effect of education on wages.
- Complication: education is time-invariant in these data. Rules out fixed effects.

Need to use IV methods (Hausman-Taylor).

- xt commands require data to be in long form. Then each observation is an individual-time pair.
- Original data are often in wide form.
 Then an observation combines all time periods for an individual, or all individuals for a time period.
- Use reshape long to convert from wide to long.
- xtset is used to define *i* and *t*.
 - xtset id t is an example
 - allows use of panel commands and some time series operators.

. summarize

Variable	Obs	Mean	Std. Dev.	Min	Max
exp	4165	19.85378	10.96637	1	51
WKS	4165	46.81152	5.129098	5	52
occ	4165	.5111645	.4999354	0	1
ind	4165	.3954382	.4890033	0	1
south	4165	.2902761	.4539442	0	1
smsa	4165	.6537815	.475821	0	1
ms	4165	.8144058	.3888256	ō	ī
fem	4165	.112605	.3161473	ō	1
union	4165	. 36 39 856	.4812023	ō	ī
ed	4165	12.84538	2.787995	4	17
blk	4165	.0722689	.2589637	0	1
lwage	4165	6.676346	.4615122	4.60517	8.537
id	4165	298	171,7821	1	595
ť	4165	4	2.00024	î	7

Image: A mathematical states and a mathem

13 / 39

æ

- describe, summarize and tabulate confound cross-section and time series variation.
- Instead use specialized panel commands:
 - xtdescribe: extent to which panel is unbalanced
 - xtsum: separate within (over time) and between (over individuals) variation
 - xttab: tabulations within and between for discrete data e.g. binary
 - xttrans: transition frequencies for discrete data
 - xtline: time series plot for each individual on one chart
 - xtdata: scatterplots for within and between variation.

4.1 Standard linear panel estimators

- Pooled OLS: OLS of y_{it} on x_{it}.
- 2 Between estimator: OLS of \bar{y}_i on \bar{x}_i .
- Sandom effects estimator: FGLS in RE model. Equals OLS of $(y_{it} - \hat{\theta}_i \bar{y}_i)$ on $(\mathbf{x}_{it} - \hat{\theta}_i \bar{\mathbf{x}}_i)$; $\theta_i = 1 - \sqrt{\sigma_{\varepsilon}^2 / (T_i \sigma_{\alpha}^2 + \sigma_{\varepsilon}^2)}$.
- Within estimator or FE estimator: OLS of $(y_{it} \bar{y}_i)$ on $(\mathbf{x}_{it} \bar{\mathbf{x}}_i)$.
- Solution First difference estimator: OLS of $(y_{it} y_{i,t-1})$ on $(\mathbf{x}_{it} \mathbf{x}_{i,t-1})$.
 - Implementation:
 - xtreg does 2-4 with options be, fe, re
 - xtgee does 3 (with option exchangeable)
 - regress does 1 and 5.
 - Only 4. and 5. give consistent estimates of β in FE model.

Variable	ols	olsrob	fe	ferob	re	rerob
exp	0.0447	0.0447	0.1138	0.1138	0.0889	0.0889
exp2	-0.0007	-0.0007	-0.0004	-0.0004	-0.0008	-0.0008
wks	0.0001	0.0001 0.0058	0.0001	0.0001	0.0001	0.0001
ed	0.0012	0.0019	0.0005	0.0009	0.0007	0.0009
0005	0.0022	0.0052	0.0000	0.0000	0.0061	0.0054
	0.0673	0.1400	0.0389	0.0649	0.0936	0.1334
N	4165.0000	4165.0000	4165.0000	4165.0000	4165.0000	4165.0000
r2_0	0.2830	0.2830	0.0476	0.0476	0.1830	0.1830
г2_b г2_w			0.0276 0.6566	0.0276	0.1716 0.6340	0.1716 0.6340
sigma_u sigma_e			1.0362	1.0362 0.1522	0.3195 0.1522	0.3195
rho			0.9789	0.9789	0.8151	0.8151

legend: b/se

- Coefficients vary considerably across OLS, FE and RE estimators.
- Cluster-robust standard errors (suffix rob) larger even for FE and RE.
- Coefficient of ed not identified for FE as time-invariant regressor.

A. Colin Cameron Univ. of California - Da

Panel methods for Stata

4.3 Fixed effects versus random effects

• Use Hausman test to discriminate between FE and RE.

- If fixed effects: FE consistent and RE inconsistent.
- If not fixed effects: FE consistent and RE consistent.
- So see whether difference between FE and RE is zero.

$$\mathsf{H} = \left(\widetilde{\boldsymbol{\beta}}_{1,\mathsf{RE}} - \widehat{\boldsymbol{\beta}}_{1,\mathsf{FE}}\right)' \left[\widehat{\mathsf{Cov}}[\widetilde{\boldsymbol{\beta}}_{1,\mathsf{RE}} - \widehat{\boldsymbol{\beta}}_{1,\mathsf{FE}}]\right]^{-1} \left(\widetilde{\boldsymbol{\beta}}_{1,\mathsf{RE}} - \widehat{\boldsymbol{\beta}}_{1,\mathsf{W}}\right),$$

where β_1 corresponds to time-varying regressors (or a subset of these).

- Problem: hausman command assumes RE is fully efficient. But not the case here as robust se's for RE differ from default se's. So hausman is incorrect.
- Instead implement Hausman test using suest or panel bootstrap or Wooldridge (2002) robust version of Hausman test.

• Consider model with possibly transformed variables:

$$y_{it}^* = lpha + \mathbf{x}_{it}^{*\prime} oldsymbol{eta} + u_{it}$$
 ,

where $y_{it}^* = y_{it}$ or $y_{it}^* = \bar{y}_i$ for BE or $y_{it}^* = (y_{it} - \bar{y}_i)$ for FE or $y_{it}^* = (y_{it} - \theta_i \bar{y}_i)$ for RE.

- OLS is **inconsistent** if $E[u_{it}|\mathbf{x}_{it}^*] = 0$.
- So do **IV estimation** with **instruments** \mathbf{z}_{it}^* satisfy $E[u_{it}|\mathbf{z}_{it}^*] = 0$.
- Command xtivreg is used, with options be, re or fe.
- This command does not have option for robust standard errors.

- Problem in the fixed effects model
 - If an endogenous regressor is time-invariant
 - Then FE estimator cannot identify β (as time-invariant).
- Solution:
 - Assume the endogenous regressor is correlated only with α_i (and not with ε_{it})
 - Use exogenous time-varying regressors \mathbf{x}_{it} from other periods as instruments
- Command xthtaylor does this (and has option amacurdy).

- Simple dynamic model regresses y_{it} in **polynomial in time**.
 - e.g. Growth curve of child height or IQ as grow older
 - use previous models with **x**_{it} polynomial in time or age.
- Richer dynamic model regresses y_{it} on **lags** of y_{it}.

• Leading example: AR(1) model with individual specific effects

$$y_{it} = \gamma y_{i,t-1} + \mathbf{x}'_{it} \boldsymbol{\beta} + \alpha_i + \varepsilon_{it}.$$

- Three reasons for y_{it} being serially correlated over time:
 - True state dependence: via y_{i,t-1}
 - Observed heterogeneity: via x_{it} which may be serially correlated
 - Unobserved heterogeneity: via α_i
- Focus on case where *α_i* is a **fixed effect**
 - FE estimator is now inconsistent (if short panel)
 - Instead use Arellano-Bond estimator

6.3 Arellano-Bond estimator

• **First-difference** to eliminate α_i (rather than mean-difference)

$$(y_{it}-y_{i,t-1})=\gamma(y_{i,t-1}-y_{i,t-2})+(\mathbf{x}_{it}-\mathbf{x}'_{i,t-1})\boldsymbol{\beta}+(\varepsilon_{it}-\varepsilon_{i,t-1})\mathbf{x}_{i,t-1}$$

- **OLS inconsistent** as $(y_{i,t-1} y_{i,t-2})$ correlated with $(\varepsilon_{it} \varepsilon_{i,t-1})$ (even under assumption ε_{it} is serially uncorrelated).
- But y_{i,t-2} is not correlated with (ε_{it} ε_{i,t-1}), so can use y_{i,t-2} as an instrument for (y_{i,t-1} y_{i,t-2}).
- Arellano-Bond is a variation that uses **unbalanced set** of instruments with further lags as instruments.

For t = 3 can use y_{i1} , for t = 4 can use y_{i1} and y_{i2} , and so on.

- Stata commands
 - xtabond for Arellano-Bond
 - xtdpdsys for Blundell-Bond (more efficient than xtabond)
 - xtdpd for more complicated models than xtabond and xtdpdsys.

- For **short panels** asymptotics are T fixed and $N \rightarrow \infty$.
- For long panels asymptotics are for $T \to \infty$
 - A dynamic model for the errors is specified, such as AR(1) error
 - Errors may be correlated over individuals
 - Individual-specific effects can be just individual dummies
 - Furthermore if N is small and T large can allow slopes to differ across individuals and test for poolability.

• Models with stationary errors:

- xtgls allows several different models for the error
- xtpcse is a variation of xtgls
- xtregar does FE and RE with AR(1) error

• Models with **nonstationary errors** (currently active area):

- As yet no Stata commands
- Add-on levinlin does Levin-Lin-Chu (2002) panel unit root test
- Add-on ipshin does Im-Pesaran-Shin (1997) panel unit root test in heterogeneous panels
- Add-on xtpmg for does Pesaran-Smith and Pesaran-Shin-Smith estimation for nonstationary heterogeneous panels with both N and T large.

- Generalize random effects model to random slopes.
- Command xtrc estimates the random coefficients model

$$y_{it} = \alpha_i + \mathbf{x}'_{it}\boldsymbol{\beta}_i + \varepsilon_{it},$$

where (α_i, β_i) are iid with mean (α, β) and variance matrix Σ and ε_{it} is iid.

• No vce(robust) option but can use vce(boot) if short panel.

- Not used in microeconometrics but used in many other disciplines.
- Stack all observations for individual i and specify

$$\mathbf{y}_i = \mathbf{X}_i \boldsymbol{eta} + \mathbf{Z}_i \mathbf{u}_i + oldsymbol{arepsilon}_i$$

where \mathbf{u}_i is iid $(\mathbf{0}, \mathbf{G})$ and \mathbf{Z}_i is called a design matrix.

- Random effects: $\mathbf{Z}_i = \mathbf{e}$ (a vector of ones) and $\mathbf{u}_i = \alpha_i$
- Random coefficients: $\mathbf{Z}_i = \mathbf{X}_i$.
- Other models including multi-level models are possible.
- Command xtmixed estimates this model.

- Consider data on individual *i* in village *j* with **clustering on village**.
- A cluster-specific model (here village-specific) specifies

$$y_{ji} = \alpha_i + \mathbf{x}'_{ji} \boldsymbol{\beta} + \varepsilon_{ji}.$$

- Here clustering is on village (not individual) and the repeated measures are over individuals (not time).
- Use xtset village id
- Assuming equicorrelated errors can be more reasonable here than with panel data (where correlation dampens over time).
 So perhaps less need for vce(cluster) after xtreg

- If α_i is **random** use:
 - regress with option vce(cluster village)
 - xtreg,re
 - xtgee with option exchangeable
 - xtmixed for richer models of error structure
- If α_i is **fixed** use:
 - xtreg,fe

10.1 Nonlinear panel models overview

• General approaches similar to linear case

- Pooled estimation or population-averaged
- Random effects
- Fixed effects

Complications

- Random effects often not tractable so need numerical integration
- Fixed effects models in short panels are generally not estimable due to the incidental parameters problem.
- Here we consider **short panels** throughout.

• Standard nonlinear models are:

- Binary: logit and probit
- Counts: Poisson and negative binomial
- Truncated: Tobit

10.2 Nonlinear panel models

- A **pooled** or **population-averaged model** may be used. This is same model as in cross-section case, with adjustment for correlation over time for a given individual.
- A fully parametric model may be specified, with conditional density

$$f(y_{it}|\alpha_i, \mathbf{x}_{it}) = f(y_{it}, \alpha_i + \mathbf{x}'_{it}\boldsymbol{\beta}, \gamma), \quad t = 1, ..., T_i, \ i = 1, ..., N,$$
 (5)

where γ denotes additional model parameters such as variance parameters and α_i is an individual effect.

A conditional mean model may be specified, with additive effects

$$\mathsf{E}[y_{it}|\alpha_i,\mathbf{x}_{it}] = \alpha_i + g(\mathbf{x}'_{it}\boldsymbol{\beta}) \tag{6}$$

or multiplicative effects

$$\mathsf{E}[y_{it}|\alpha_i, \mathbf{x}_{it}] = \alpha_i \times g(\mathbf{x}'_{it}\boldsymbol{\beta}). \tag{7}$$

	Counts	Binary
Pooled	poisson	logit
	negbin	probit
GEE (PA)	xtgee,family(poisson)	xtgee,family(binomial) link(logit
	xtgee,family(nbinomial)	xtgee,family(poisson) link(probi
RE	xtpoisson, re	xtlogit, re
	xtnegbin, fe	xtprobit, re
Random slopes	xtmepoisson	xtmelogit
FE	xtpoisson, fe	xtlogit, fe
	xtnegbin, fe	

plus tobit and xttobit.

- Extend pooled OLS
 - Give the usual cross-section command for conditional mean models or conditional density models but then get cluster-robust standard errors
 - Probit example:

```
probit y x, vce(cluster id)
```

```
or
```

```
xtgee y x, fam(binomial) link(probit) corr(ind)
vce(cluster id)
```

- Extend pooled feasible GLS
 - Estimate with an assumed correlation structure over time

```
    Equicorrelated probit example:

    xtprobit y x, pa vce(boot)

    or

    xtgee y x, fam(binomial) link(probit) corr(exch)

    vce(cluster id)
```

11.2 Random effects estimation

- Assume individual-specific effect α_i has specified distribution $g(\alpha_i | \boldsymbol{\eta})$.
- Then the unconditional density for the *i*th observation is

$$f(y_{it}, ..., y_{iT} | \mathbf{x}_{i1}, ..., \mathbf{x}_{iT}, \boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\eta}) = \int \left[\prod_{t=1}^{T} f(y_{it} | \mathbf{x}_{it}, \alpha_i, \boldsymbol{\beta}, \boldsymbol{\gamma}) \right] g(\alpha_i | \boldsymbol{\eta}) d\alpha_i.$$
(8)

• Analytical solution:

- For Poisson with gamma random effect
- For negative binomial with gamma effect
- Use xtpoisson, re and xtnbreg, re

No analytical solution:

- For other models.
- Instead use numerical integration (only univariate integration is required).
- Assume normally distributed random effects.
- Use re option for xtlogit, xtprobit
- Use normal option for xtpoisson and xtnegbin

• Can extend to random slopes.

- Nonlinear generalization of xtmixed
- Then higher-dimensional numerical integral.
- Use adaptive Gaussian quadrature
- Stata commands are:
 - xtmelogit for binary data
 - xtmepoisson for counts
- Stata add-on that is very rich:
 - gllamm (generalized linear and latent mixed models)
 - Developed by Sophia Rabe-Hesketh and Anders Skrondal.

• In general not possible in short panels.

• Incidental parameters problem:

- N fixed effects α_i plus K regressors means (N + K) parameters
- But $(N + K) \rightarrow \infty$ as $N \rightarrow \infty$
- Need to eliminate α_i by some sort of differencing
- possible for Poisson, negative binomial and logit.
- Stata commands
 - xtlogit, fe
 - xtpoisson, fe (better to use xtpqml as robust se's)
 - xtnegbin, fe
- Fixed effects extended to **dynamic models** for logit and probit. No Stata command.

12. Conclusion

- Stata provides commands for panel models and estimators commonly used in microeconometrics and biostatistics.
- Stata also provides diagnostics and postestimation commands, not presented here.
- The emphasis is on short panels. Some commands provide cluster-robust standard errors, some do not.
- A big distinction is between fixed effects models, emphasized by microeconometricians, and random effects and mixed models favored by many others.
- Extensions to nonlinear panel models exist, though FE models may not be estimable with short panels.
- This presentation draws on two chapters in Cameron and Trivedi, *Microeconometrics using Stata*, forthcoming.

Book Outline

For Cameron and Trivedi, Microeconometrics using Stata, forthcoming.

- 1. Stata basics
- 2. Data management and graphics
- 3. Linear regression basics
- 4. Simulation
- 5. GLS regression
- 6. Linear instrumental variable regression
- 7. Quantile regression
- 8. Linear panel models
- 9. Nonlinear regression methods
- 10. Nonlinear optimization methods
- 11. Testing methods
- 12. Bootstrap methods

- **13.** Binary outcome models
- 14. Multinomial models
- 15. Tobit and selection models
- 16. Count models
- 17. Nonlinear panel models
- 18. Topics
- A. Programming in Stata
- B. Mata

Econometrics graduate-level panel data texts

- Comprehensive panel texts
 - Baltagi, B.H. (1995, 2001, 200?), *Econometric Analysis of Panel Data*, 1st and 2nd editions, New York, John Wiley.
 - Hsiao, C. (1986, 2003), *Analysis of Panel Data*, 1st and 2nd editions, Cambridge, UK, Cambridge University Press.
- More selective advanced panel texts
 - Arellano, M. (2003), *Panel Data Econometrics*, Oxford, Oxford University Press.
 - Lee, M.-J. (2002), Panel Data Econometrics: Methods-of-Moments and Limited Dependent Variables, San Diego, Academic Press.
- Texts with several chapters on panel
 - Cameron, A.C. and P.K. Trivedi (2005), *Microeconometrics: Methods and Applications*, New York, Cambridge University Press.
 - Greene, W.H. (2003), *Econometric Analysis*, fifth edition, Upper Saddle River, NJ, Prentice-Hall.
 - Wooldridge, J.M. (2002, 200?), *Econometric Analysis of Cross Section and Panel Data*, Cambridge, MA, MIT Press.