

Fitting mixed random regret minimization models using mixrandregret.

UK Stata Meeting - London, 2022. Presenter: Álvaro A. Gutiérrez-Vargas

- Ziyue Zhu (📿, 🛅)'
- Álvaro A. Gutiérrez-Vargas (🖓, in)'
- Martina Vandebroek
- Research Centre for Operations Research and Statistics (ORSTAT)

1 Random Regret Minimization Models

- 2 Differences between RUM and RRM models.
- **3** Mixed Random Regret Minimization Models
- Individual Level Parameters
- **6** Implementation
- 6 Conclusions
- Ø Bibliography

1 Outline

 Random Regret Minimization Models Random Utility vs Random Regret Classical Regret Function

② Differences between RUM and RRM models.

8 Mixed Random Regret Minimization Models

Individual Level Parameters

6 Implementation

6 Conclusions

From Utility to Regret.

- From Utility to Regret.
- Regret: Situation where a non-chosen alternative ends up being more attractive than the chosen one for some of the attributes.

- From Utility to Regret.
- Regret: Situation where a non-chosen alternative ends up being more attractive than the chosen one for some of the attributes.
- Individuals are assumed to minimize regret.

- From Utility to Regret.
- Regret: Situation where a non-chosen alternative ends up being more attractive than the chosen one for some of the attributes.
- Individuals are assumed to minimize regret.
- Consider this hypothetical situation:

altern	total_time	total_cost
First	23	6
Second	27	4
Third	35	3

- From Utility to Regret.
- Regret: Situation where a non-chosen alternative ends up being more attractive than the chosen one for some of the attributes.
- Individuals are assumed to minimize regret.
- Consider this hypothetical situation:

altern	total_time	total_cost
First Second	23 27	6 4
Third	35	3

If we chose alternative 2:

- From Utility to Regret.
- Regret: Situation where a non-chosen alternative ends up being more attractive than the chosen one for some of the attributes.
- Individuals are assumed to minimize regret.
- Consider this hypothetical situation:

6 4 3

If we chose alternative 2:

Alternative 1 is faster...

- From Utility to Regret.
- Regret: Situation where a non-chosen alternative ends up being more attractive than the chosen one for some of the attributes.
- Individuals are assumed to minimize regret.
- Consider this hypothetical situation:

6 4 3

If we chose alternative 2:

- Alternative 1 is faster...
- Alternative 3 is cheaper...

- From Utility to Regret.
- Regret: Situation where a non-chosen alternative ends up being more attractive than the chosen one for some of the attributes.
- Individuals are assumed to minimize regret.
- Consider this hypothetical situation:

altern	total_time	total_cost
First Second	23 27	6 4
Third	35	3

If we chose alternative 2:

- Alternative 1 is faster...
- Alternative 3 is cheaper...

 \Rightarrow Regret models will (formalize and) minimize this notion of regret!

Some (unavoidable) notation for the rest of the presentation:

3 Zhu, Gutiérrez-Vargas & Vandebroek: Mixed random regret minimization models.

Some (unavoidable) notation for the rest of the presentation:

id	cs	altern	total_time	total_cost	choice
1	1	First	23	6	0
1	1	Second	27	4	0
1	1	Third	35	3	1
1	2	First	27	5	0
1	2	Second	35	4	1
1	2	Third	23	6	0

Some (unavoidable) notation for the rest of the presentation:

id	cs	altern	total_time	total_cost	choice
1	1	First	23	6	0
1	1	Second	27	4	0
1	1	Third	35	3	1
1	2	First	27	5	0
1	2	Second	35	4	1
1	2	Third	23	6	0

Individuals (id) are referred to by n answer s choice situations (cs).

Some (unavoidable) notation for the rest of the presentation:

id	cs	altern	total_time	total_cost	choice
1	1	First	23	6	0
1	1	Second	27	4	0
1	1	Third	35	3	1
1	2	First	27	5	0
1	2	Second	35	4	1
1	2	Third	23	6	0

lndividuals (id) are referred to by $\frac{n}{n}$ answer $\frac{s}{s}$ choice situations (cs).

They decide among J alternatives (altern) (referred to by i or j).

Some (unavoidable) notation for the rest of the presentation:

id	cs	altern	total_time	total_cost	choice
1	1	First	23	6	0
1	1	Second	27	4	0
1	1	Third	35	3	1
1	2	First	27	5	0
1	2	Second	35	4	1
1	2	Third	23	6	0

Individuals (id) are referred to by n answer s choice situations (cs).

- They decide among J alternatives (altern) (referred to by i or j).
- Alternatives are described by M attributes referred to by m (total_time and total_cost).

Some (unavoidable) notation for the rest of the presentation:

id	cs	altern	total_time	total_cost	choice
1	1	First	23	6	0
1	1	Second	27	4	0
1	1	Third	35	3	1
1	2	First	27	5	0
1	2	Second	35	4	1
1	2	Third	23	6	0

- lndividuals (id) are referred to by $\frac{n}{n}$ answer $\frac{s}{n}$ choice situations (cs).
- They decide among J alternatives (altern) (referred to by i or j).
- Alternatives are described by M attributes referred to by m (total_time and total_cost).
- $x_{ins,m}$: value of attribute *m* of alternative *i* for individual *n* in choice situation *s*.

Some (unavoidable) notation for the rest of the presentation:

id	cs	altern	total_time	total_cost	choice
1	1	First	23	6	0
1	1	Second	27	4	0
1	1	Third	35	3	1
1	2	First	27	5	0
1	2	Second	35	4	1
1	2	Third	23	6	0

lndividuals (id) are referred to by $\frac{n}{n}$ answer $\frac{s}{n}$ choice situations (cs).

- They decide among J alternatives (altern) (referred to by i or j).
- Alternatives are described by M attributes referred to by m (total_time and total_cost).

x_{ins,m}: value of attribute m of alternative i for individual n in choice situation s. (yes, 4 sub-indexes;

Some (unavoidable) notation for the rest of the presentation:

id	cs	altern	total_time	total_cost	choice
1	1	First	23	6	0
1	1	Second	27	4	0
1	1	Third	35	3	1
1	2	First	27	5	0
1	2	Second	35	4	1
1	2	Third	23	6	0

lndividuals (id) are referred to by $\frac{n}{n}$ answer $\frac{s}{n}$ choice situations (cs).

- They decide among J alternatives (altern) (referred to by i or j).
- Alternatives are described by M attributes referred to by m (total_time and total_cost).

x_{ins,m}: value of attribute m of alternative i for individual n in choice situation s. (yes, 4 sub-indexes; I am sorry...)

Some (unavoidable) notation for the rest of the presentation:

id	cs	altern	total_time	total_cost	choice
1	1	First	23	6	0
1	1	Second	27	4	0
1	1	Third	35	3	1
1	2	First	27	5	0
1	2	Second	35	4	1
1	2	Third	23	6	0

- Individuals (id) are referred to by n answer s choice situations (cs).
- They decide among J alternatives (altern) (referred to by i or j).
- Alternatives are described by M attributes referred to by m (total_time and total_cost).
- x_{ins,m}: value of attribute m of alternative i for individual n in choice situation s. (yes, 4 sub-indexes; I am sorry...)
- y_{ins}: response variable (choice). It takes the value of 1 when alternative i is chosen by individual n in choice situation s; 0 otherwise..

Random Utility Maximization (RUM)

Random Utility Maximization (RUM)

$$U_{ins} = V_{ins} + \varepsilon_{ins}$$

Random Utility Maximization (RUM)

$$U_{ins} = V_{ins} + \varepsilon_{ins}$$

= $\beta_{n,T} \times x_{ins,T} + \beta_{n,C} \times x_{ins,C} + \varepsilon_{ins}$

Random Utility Maximization (RUM)

$\begin{array}{c} \textbf{Utility} \longleftarrow U_{ins} = V_{ins} + \varepsilon_{ins} \\ = \beta_{n, T} \times x_{ins, T} + \beta_{n, C} \times x_{ins, C} + \varepsilon_{ins} \end{array}$

 $\begin{array}{c} \blacktriangleright \text{ Random Utility Maximization (RUM)} \\ & & & & \\ & & & \\ \text{Utility} \leftarrow & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ &$

Random Regret Minimization (RRM)

Random Regret Minimization (RRM)

$$RR_{ins} = R_{ins} + \varepsilon_{ins}$$

 $\begin{array}{c|c} \hline & \mathsf{Random Utility Maximization (RUM)} \\ & & & \mathsf{Systematic Utility} \\ & & & \mathsf{U}_{ins} = V_{ins} + \varepsilon_{ins} \rightarrow \mathsf{Error Term} \\ & & = \beta_{n,T} \times x_{ins,T} + \beta_{n,C} \times x_{ins,C} + \varepsilon_{ins} \end{array}$

Random Regret Minimization (RRM)

F

$$RR_{ins} = R_{ins} + \varepsilon_{ins}$$
$$= \sum_{j \neq i}^{J} R_{i \leftrightarrow jns, T} + \sum_{j \neq i}^{J} R_{i \leftrightarrow jns, C} + \varepsilon_{ins}$$

4 Zhu, Gutiérrez-Vargas & Vandebroek: Mixed random regret minimization models.

 $\begin{array}{c|c} \hline & \mathsf{Random Utility Maximization (RUM)} \\ & & & \mathsf{Systematic Utility} \\ & & & \mathsf{U}_{ins} = V_{ins} + \varepsilon_{ins} \rightarrow \mathsf{Error Term} \\ & & = \beta_{n,T} \times x_{ins,T} + \beta_{n,C} \times x_{ins,C} + \varepsilon_{ins} \end{array}$

Random Regret Minimization (RRM)

$$\begin{array}{c} \text{Regret} \leftarrow RR_{ins} = R_{ins} + \varepsilon_{ins} \\ = \sum_{j \neq i}^{J} R_{i \leftrightarrow jns, T} + \sum_{j \neq i}^{J} R_{i \leftrightarrow jns, C} + \varepsilon_{ins} \end{array}$$

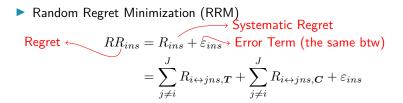
 $\begin{array}{c} \blacktriangleright \text{ Random Utility Maximization (RUM)} \\ \hline \text{Utility} & \overbrace{U_{ins} = V_{ins} + \varepsilon_{ins} \rightarrow \text{Error Term}}_{= \beta_{n,T} \times x_{ins,T} + \beta_{n,C} \times x_{ins,C} + \varepsilon_{ins}} \\ \end{array}$

► Random Regret Minimization (RRM) Systematic Regret Regret $RR_{ins} = R_{ins} + \varepsilon_{ins}$ $= \sum_{j \neq i}^{J} R_{i \leftrightarrow jns, T} + \sum_{j \neq i}^{J} R_{i \leftrightarrow jns, C} + \varepsilon_{ins}$

 $\begin{array}{c|c} \hline & \mathsf{Random Utility Maximization (RUM)} \\ & & & \mathsf{Systematic Utility} \\ & & & \mathsf{U}_{ins} = V_{ins} + \varepsilon_{ins} \rightarrow \mathsf{Error Term} \\ & & = \beta_{n,T} \times x_{ins,T} + \beta_{n,C} \times x_{ins,C} + \varepsilon_{ins} \end{array}$

► Random Regret Minimization (RRM) Regret $RR_{ins} = R_{ins} + \varepsilon_{ins}$ Error Term (the same btw) $= \sum_{j \neq i}^{J} R_{i \leftrightarrow jns, T} + \sum_{j \neq i}^{J} R_{i \leftrightarrow jns, C} + \varepsilon_{ins}$

 $\begin{array}{c} \blacktriangleright \text{ Random Utility Maximization (RUM)} \\ \hline \text{Utility} & \overbrace{U_{ins} = V_{ins} + \varepsilon_{ins} \rightarrow \text{Error Term}}_{= \beta_{n,T} \times x_{ins,T} + \beta_{n,C} \times x_{ins,C} + \varepsilon_{ins}} \\ \end{array}$



The notion of regret is characterized by the systematic regret R_{ins}.

 $\begin{array}{c|c} \hline & \mathsf{Random Utility Maximization (RUM)} \\ & & & \mathsf{Systematic Utility} \\ & & & \mathsf{U}_{ins} = V_{ins} + \varepsilon_{ins} \rightarrow \mathsf{Error Term} \\ & & = \beta_{n,T} \times x_{ins,T} + \beta_{n,C} \times x_{ins,C} + \varepsilon_{ins} \end{array}$

- ► Random Regret Minimization (RRM) Regret $RR_{ins} = R_{ins} + \varepsilon_{ins}$ Error Term (the same btw) $= \sum_{j \neq i}^{J} R_{i \leftrightarrow jns, T} + \sum_{j \neq i}^{J} R_{i \leftrightarrow jns, C} + \varepsilon_{ins}$
 - The notion of *regret* is characterized by the systematic regret *R*_{ins}.
 - R_{ins} is described in terms of *attribute level regret* $(R_{i \leftrightarrow jns,m})$.

1 The Attribute level regret $R_{i \leftrightarrow jns,m}$

► Using the same example as before:

altern	total_time	total_cost
First	23	6
Second	27	4
Third	35	3

1 The Attribute level regret $R_{i \leftrightarrow jns,m}$

Using the same example as before:

altern	total_time	total_cost
First	23	6
Second	27	4
Third	35	3

R_{i \leftarrow jns,m} corresponds to pairwise combination of regret for alternatives
 i and *j* for individual *n* on attribute *m* in choice situation *s*.

1 The Attribute level regret $R_{i \leftrightarrow jns,m}$

Using the same example as before:

altern	total_time	total_cost
First	23	6
Second	27	4
Third	35	3

R_{i \leftarrow jns,m} corresponds to pairwise combination of regret for alternatives
 i and *j* for individual *n* on attribute *m* in choice situation *s*.

$(x_{jns,m} - x_{ins,m})$	$Attribute \setminus Route$	j = 1	j = 2	j = 3
$(x_{jns,m} - x_{1ns,T})$	Travel Time	0	4	12
$(x_{jns,m} - x_{1ns,C})$	Travel Cost	0	-2	-3
$(x_{jns,m} - x_{2ns,T})$	Travel Time	-4	0	8
$(x_{jns,m} - x_{2ns,C})$	Travel Cost	2	0	-1
$(x_{jns,m} - x_{3ns,T})$	Travel Time	-12	-8	0
$(x_{jns,m} - x_{3ns,C})$	Travel Cost	3	1	0

1 The Attribute level regret $R_{i \leftrightarrow jns,m}$

Using the same example as before:

altern	total_time	total_cost	
First	23	6	
Second	27	4	
Third	35	3	

R_{i \leftarrow jns,m} corresponds to pairwise combination of regret for alternatives
 i and *j* for individual *n* on attribute *m* in choice situation *s*.

$(x_{jns,m} - x_{ins,m})$	$Attribute \setminus Route$	j = 1	j = 2	j = 3
$(x_{jns,m} - x_{1ns,T})$	Travel Time	0	4	12
$(x_{jns,m} - x_{1ns,C})$	Travel Cost	0	-2	-3
$(x_{jns,m} - x_{2ns,T})$	Travel Time	-4	0	8
$(x_{jns,m} - x_{2ns,C})$	Travel Cost	2	0	-1
$(x_{jns,m} - x_{3ns,T})$	Travel Time	-12	-8	0
$(x_{jns,m} - x_{3ns,C})$	Travel Cost	3	1	0

Takeaway: We will define $R_{i \leftrightarrow jns,m}$ in terms of the attribute differences.

5 Zhu, Gutiérrez-Vargas & Vandebroek: Mixed random regret minimization models.

Chorus, 2010) proposed the following attribute level regret:

$$R_{i\leftrightarrow jns,m} = \ln \left[1 + \exp \left\{ \beta_{n,m} \cdot \underbrace{(x_{jns,m} - x_{ins,m})}_{\text{Attribute differences!}} \right\} \right]$$

Chorus, 2010) proposed the following attribute level regret:

$$R_{i\leftrightarrow jns,m} = \ln \left[1 + \exp \left\{ \beta_{n,m} \cdot \underbrace{(x_{jns,m} - x_{ins,m})}_{\text{Attribute differences!}} \right\} \right]$$

As we saw, R_{i⇔jns,m} compares alternative i with alternative j in attribute m.

Chorus, 2010) proposed the following attribute level regret:

$$R_{i\leftrightarrow jns,m} = \ln \left[1 + \exp \left\{ \beta_{n,m} \cdot \underbrace{(x_{jns,m} - x_{ins,m})}_{\text{Attribute differences!}} \right\} \right]$$

As we saw, R_{i⇔jns,m} compares alternative i with alternative j in attribute m.

► $\sum_{j \neq i} R_{i \leftrightarrow jns,m}$ is the equivalent to $x_{ins,m} \times \beta_{n,m}$ in an utility model.

Chorus, 2010) proposed the following attribute level regret:

$$R_{i\leftrightarrow jns,m} = \ln \left[1 + \exp \left\{ \beta_{n,m} \cdot \underbrace{(x_{jns,m} - x_{ins,m})}_{\text{Attribute differences!}} \right\} \right]$$

- As we saw, R_{i⇔jns,m} compares alternative i with alternative j in attribute m.
- ► $\sum_{j \neq i} R_{i \leftrightarrow jns,m}$ is the equivalent to $x_{ins,m} \times \beta_{n,m}$ in an utility model.
- ln both cases, $\beta_{n,m}$ is the taste parameter of attribute m of individual n.

Chorus, 2010) proposed the following attribute level regret:

$$R_{i\leftrightarrow jns,m} = \ln \left[1 + \exp \left\{ \beta_{n,m} \cdot \underbrace{(x_{jns,m} - x_{ins,m})}_{\text{Attribute differences!}} \right\} \right]$$

- As we saw, R_{i⇔jns,m} compares alternative i with alternative j in attribute m.
- $\sum_{j \neq i} R_{i \leftrightarrow jns,m}$ is the equivalent to $x_{ins,m} \times \beta_{n,m}$ in an utility model.
- ln both cases, $\beta_{n,m}$ is the taste parameter of attribute m of individual n.

KU LEUVEN

However, they have drastically different interpretation

Chorus, 2010) proposed the following attribute level regret:

$$R_{i\leftrightarrow jns,m} = \ln \left[1 + \exp \left\{ \beta_{n,m} \cdot \underbrace{(x_{jns,m} - x_{ins,m})}_{\text{Attribute differences!}} \right\} \right]$$

- As we saw, R_{i⇔jns,m} compares alternative i with alternative j in attribute m.
- ► $\sum_{j \neq i} R_{i \leftrightarrow jns,m}$ is the equivalent to $x_{ins,m} \times \beta_{n,m}$ in an utility model.
- ln both cases, $\beta_{n,m}$ is the taste parameter of attribute m of individual n.
- However, they have drastically different interpretation(more on that later).

• (Chorus, 2010) proposed the following systematic regret:

$$R_{ins} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} R_{i \leftrightarrow jns,m} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} \ln\left[1 + \exp\left\{\beta_{n,m} \cdot (x_{jns,m} - x_{ins,m})\right\}\right]$$

• (Chorus, 2010) proposed the following systematic regret:

 ${}_{\ensuremath{\nwarrow}}$ Sum over alternatives.

$$R_{ins} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} R_{i \leftrightarrow jns,m} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} \ln\left[1 + \exp\left\{\beta_{n,m} \cdot (x_{jns,m} - x_{ins,m})\right\}\right]$$

• (Chorus, 2010) proposed the following systematic regret:

 $_{\ensuremath{\overline{0}}}$ Sum over alternatives.

$$R_{ins} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} R_{i \leftrightarrow jns,m} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} \ln\left[1 + \exp\left\{\beta_{n,m} \cdot (x_{jns,m} - x_{ins,m})\right\}\right]$$

Sum over attributes. 🗸

• (Chorus, 2010) proposed the following systematic regret:

Sum over alternatives. $R_{ins} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} R_{i \leftrightarrow jns,m} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} \ln \left[1 + \exp \left\{\beta_{n,m} \cdot (x_{jns,m} - x_{ins,m})\right\}\right]$ Sum over attributes.

• (Chorus, 2010) proposed the following systematic regret:

Sum over alternatives.

$$R_{ins} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} R_{i \leftrightarrow jns,m} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} \ln \left[1 + \exp \left\{\beta_{n,m} \cdot (x_{jns,m} - x_{ins,m})\right\}\right]$$

Sum over attributes.

• In our example: M = 2 (Time and Cost) and J = 3.

• (Chorus, 2010) proposed the following systematic regret:

$$R_{ins} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} R_{i \leftrightarrow jns,m} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} \ln \left[1 + \exp\left\{\beta_{n,m} \cdot (x_{jns,m} - x_{ins,m})\right\}\right]$$

Sum over attributes.

Cum aver alternatives

- In our example: M = 2 (Time and Cost) and J = 3.
- Regret of alternative 1 (R_{1ns}) will be given by:

• (Chorus, 2010) proposed the following systematic regret:

$$R_{ins} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} R_{i \leftrightarrow jns,m} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} \ln \left[1 + \exp\left\{\beta_{n,m} \cdot (x_{jns,m} - x_{ins,m})\right\}\right]$$

Sum over attributes.

Sum over alternatives

- In our example: M = 2 (Time and Cost) and J = 3.
- Regret of alternative 1 (R_{1ns}) will be given by:

$$R_{1ns} = \sum_{j \neq i}^{3} \sum_{m=1}^{M} \ln \left[1 + \exp \left\{ \beta_{n,m} (x_{jns,m} - x_{ins,m}) \right\} \right]$$

= $\ln \left[1 + \exp \left\{ \beta_{n,T} \left(x_{2ns,T} - x_{1ns,T} \right) \right\} \right] + \ln \left[1 + \exp \left\{ \beta_{n,c} \left(x_{2ns,C} - x_{1ns,C} \right) \right\} \right]$
+ $\ln \left[1 + \exp \left\{ \beta_{n,T} \left(x_{3ns,T} - x_{1ns,T} \right) \right\} \right] + \ln \left[1 + \exp \left\{ \beta_{n,C} \left(x_{3ns,C} - x_{1ns,C} \right) \right\} \right]$

1 Defining $RR_{ins} = R_{ins} + \varepsilon_{ins}$, where ε_{ins} is a type I Extreme Value i.i.d. error.

- 1 Defining $RR_{ins} = R_{ins} + \varepsilon_{ins}$, where ε_{ins} is a type I Extreme Value i.i.d. error.
- 2 Acknowledging that the minimization of the random regret is mathematically equivalent to maximizing the negative of the regret.

- 1 Defining $RR_{ins} = R_{ins} + \varepsilon_{ins}$, where ε_{ins} is a type I Extreme Value i.i.d. error.
- 2 Acknowledging that the minimization of the random regret is mathematically equivalent to maximizing the negative of the regret.
- 3 Hence, the probabilities can be derived using the Multinomial Logit:

- 1 Defining $RR_{ins} = R_{ins} + \varepsilon_{ins}$, where ε_{ins} is a type I Extreme Value i.i.d. error.
- 2 Acknowledging that the minimization of the random regret is mathematically equivalent to maximizing the negative of the regret.
- 3 Hence, the probabilities can be derived using the Multinomial Logit:

$$P_{ins} = \frac{\exp\left(-R_{ins}\right)}{\sum_{j=1}^{J} \exp\left(-R_{jns}\right)} \qquad \text{for } i = 1, \dots, J \tag{1}$$

- 1 Defining $RR_{ins} = R_{ins} + \varepsilon_{ins}$, where ε_{ins} is a type I Extreme Value i.i.d. error.
- 2 Acknowledging that the minimization of the random regret is mathematically equivalent to maximizing the negative of the regret.
- 3 Hence, the probabilities can be derived using the Multinomial Logit:

$$P_{ins} = \frac{\exp(-R_{ins})}{\sum_{j=1}^{J} \exp(-R_{jns})}$$
 for $i = 1, ..., J$ (1)

4 Consequently, the log-likelihood will be given by:

- 1 Defining $RR_{ins} = R_{ins} + \varepsilon_{ins}$, where ε_{ins} is a type I Extreme Value i.i.d. error.
- 2 Acknowledging that the minimization of the random regret is mathematically equivalent to maximizing the negative of the regret.
- 3 Hence, the probabilities can be derived using the Multinomial Logit:

$$P_{ins} = \frac{\exp(-R_{ins})}{\sum_{j=1}^{J} \exp(-R_{jns})}$$
 for $i = 1, ..., J$ (1)

4 Consequently, the log-likelihood will be given by:

$$\ln L = \sum_{n=1}^{N} \sum_{s=1}^{S} \sum_{i=1}^{J} y_{in} \times \ln (P_{ins})$$

2 Outline

Random Regret Minimization Models

2 Differences between RUM and RRM models. Taste Parameter Interpretation in RRM models

8 Mixed Random Regret Minimization Models

4 Individual Level Parameters

6 Implementation

6 Conclusions

9 Zhu, Gutiérrez-Vargas & Vandebroek: Mixed random regret minimization models.

RUM: parameters are interpreted as the change in utility caused by an increase of a particular attribute level.

- RUM: parameters are interpreted as the change in utility caused by an increase of a particular attribute level.
- RRM: parameters represent the *potential* change in regret caused by one unit increase in a particular attribute level in one of the non-chosen alternatives.

- RUM: parameters are interpreted as the change in utility caused by an increase of a particular attribute level.
- RRM: parameters represent the *potential* change in regret caused by one unit increase in a particular attribute level in one of the non-chosen alternatives.
 - For instance if $\widehat{\beta}_{n,m} > 0$

- RUM: parameters are interpreted as the change in utility caused by an increase of a particular attribute level.
- RRM: parameters represent the *potential* change in regret caused by one unit increase in a particular attribute level in one of the non-chosen alternatives.
 - For instance if $\hat{\beta}_{n,m} > 0$ suggests that regret increases as the level of that attribute increases in a non-chosen alternative, in comparison to the level of the same attribute in the chosen alternative

- RUM: parameters are interpreted as the change in utility caused by an increase of a particular attribute level.
- RRM: parameters represent the *potential* change in regret caused by one unit increase in a particular attribute level in one of the non-chosen alternatives.
 - For instance if β_{n,m} > 0 suggests that regret increases as the level of that attribute increases in a non-chosen alternative, in comparison to the level of the same attribute in the chosen alternative (e.g: Comfortable level).

- RUM: parameters are interpreted as the change in utility caused by an increase of a particular attribute level.
- RRM: parameters represent the *potential* change in regret caused by one unit increase in a particular attribute level in one of the non-chosen alternatives.
 - For instance if $\hat{\beta}_{n,m} > 0$ suggests that regret increases as the level of that attribute increases in a non-chosen alternative, in comparison to the level of the same attribute in the chosen alternative (e.g: Comfortable level).
 - For instance if $\hat{\beta}_{n,m} < 0$

- RUM: parameters are interpreted as the change in utility caused by an increase of a particular attribute level.
- RRM: parameters represent the *potential* change in regret caused by one unit increase in a particular attribute level in one of the non-chosen alternatives.
 - For instance if $\hat{\beta}_{n,m} > 0$ suggests that regret increases as the level of that attribute increases in a non-chosen alternative, in comparison to the level of the same attribute in the chosen alternative (e.g: Comfortable level).
 - For instance if $\widehat{\beta}_{n,m} < 0$ suggests that regret decreases as the level of that attribute increases in a non-chosen alternative, in comparison to the level of the same attribute in the chosen alternative

- RUM: parameters are interpreted as the change in utility caused by an increase of a particular attribute level.
- RRM: parameters represent the *potential* change in regret caused by one unit increase in a particular attribute level in one of the non-chosen alternatives.
 - For instance if $\hat{\beta}_{n,m} > 0$ suggests that regret increases as the level of that attribute increases in a non-chosen alternative, in comparison to the level of the same attribute in the chosen alternative (e.g: Comfortable level).
 - For instance if $\hat{\beta}_{n,m} < 0$ suggests that regret decreases as the level of that attribute increases in a non-chosen alternative, in comparison to the level of the same attribute in the chosen alternative (e.g: Total Time).

- RUM: parameters are interpreted as the change in utility caused by an increase of a particular attribute level.
- RRM: parameters represent the *potential* change in regret caused by one unit increase in a particular attribute level in one of the non-chosen alternatives.
 - For instance if $\hat{\beta}_{n,m} > 0$ suggests that regret increases as the level of that attribute increases in a non-chosen alternative, in comparison to the level of the same attribute in the chosen alternative (e.g: Comfortable level).
 - For instance if $\hat{\beta}_{n,m} < 0$ suggests that regret decreases as the level of that attribute increases in a non-chosen alternative, in comparison to the level of the same attribute in the chosen alternative (e.g: Total Time).
- All in all, the parameters in RUM and RRM, are expected to have the same sign, even though their interpretation is drastically different.

3 Outline

1 Random Regret Minimization Models

2 Differences between RUM and RRM models.

3 Mixed Random Regret Minimization Models

Individual Level Parameters

6 Implementation

6 Conclusions

Bibliography

11 Zhu, Gutiérrez-Vargas & Vandebroek: Mixed random regret minimization models.

Additional assumptions of the mode: Individual Level Parameters.

Additional assumptions of the mode: Individual Level Parameters.

• $\beta_n = (\beta_{n,1}, \dots, \beta_{n,m})$ follows a parametric distribution: $f(\beta|\varphi)$.

Additional assumptions of the mode: Individual Level Parameters.

▶ $\beta_n = (\beta_{n,1}, \dots, \beta_{n,m})$ follows a parametric distribution: $f(\beta|\varphi)$.

• φ are the parameters that describe the distribution (e.g., mean and variance of a Normal distribution)

Additional assumptions of the mode: Individual Level Parameters.

▶ $\beta_n = (\beta_{n,1}, \dots, \beta_{n,m})$ follows a parametric distribution: $f(\beta|\varphi)$.

- φ are the parameters that describe the distribution (e.g., mean and variance of a Normal distribution).
- We define the conditional probability (CP) of the observed sequence of choices of individual n (conditional on knowing β_n) as:

Additional assumptions of the mode: Individual Level Parameters.

▶ $\beta_n = (\beta_{n,1}, \dots, \beta_{n,m})$ follows a parametric distribution: $f(\beta|\varphi)$.

- $\blacktriangleright \varphi$ are the parameters that describe the distribution (e.g., mean and variance of a Normal distribution).
- We define the conditional probability (CP) of the observed sequence of choices of individual n (conditional on knowing β_n) as:

$$P_n(\boldsymbol{\beta}_n) = \prod_{s=1}^{S} \prod_{i=1}^{J} \{P_{ins}\}^{y_{ins}}$$
(2)

Additional assumptions of the mode: Individual Level Parameters.

▶ $\beta_n = (\beta_{n,1}, \dots, \beta_{n,m})$ follows a parametric distribution: $f(\beta|\varphi)$.

- $\blacktriangleright \varphi$ are the parameters that describe the distribution (e.g., mean and variance of a Normal distribution).
- We define the conditional probability (CP) of the observed sequence of choices of individual n (conditional on knowing β_n) as:

$$P_n(\boldsymbol{\beta}_n) = \prod_{s=1}^{S} \prod_{i=1}^{J} \{P_{ins}\}^{y_{ins}}$$
(2)

The unconditional probability of the observed sequence of choices is the CP integrated over the entire domain of the distribution of β

Additional assumptions of the mode: Individual Level Parameters.

▶ $\beta_n = (\beta_{n,1}, \dots, \beta_{n,m})$ follows a parametric distribution: $f(\beta|\varphi)$.

- $\blacktriangleright \varphi$ are the parameters that describe the distribution (e.g., mean and variance of a Normal distribution).
- We define the conditional probability (CP) of the observed sequence of choices of individual n (conditional on knowing β_n) as:

$$P_n(\boldsymbol{\beta}_n) = \prod_{s=1}^{S} \prod_{i=1}^{J} \{P_{ins}\}^{y_{ins}}$$
(2)

 \blacktriangleright The unconditional probability of the observed sequence of choices is the CP integrated over the entire domain of the distribution of β

$$\ln L(\boldsymbol{\beta}) = \sum_{n=1}^{N} \ln \left[\int_{\boldsymbol{\beta}} P_n(\boldsymbol{\beta}) f(\boldsymbol{\beta}|\varphi) \, d\boldsymbol{\beta} \right]$$
(3)

Given that equation (3) has no closed form we will approximate it using simulations (Train, 2009).

- Given that equation (3) has no closed form we will approximate it using simulations (Train, 2009).
- Hence, we will estimate the model using Maximum Simulated Likelihood where we will maximize the following simulated log-likelihood function:

- Given that equation (3) has no closed form we will approximate it using simulations (Train, 2009).
- Hence, we will estimate the model using Maximum Simulated Likelihood where we will maximize the following simulated log-likelihood function:

$$SLL(\beta) = \sum_{n=1}^{N} \ln \left\{ \frac{1}{R} \sum_{r=1}^{R} P_n(\boldsymbol{\beta}^r) \right\}$$
(4)

- Given that equation (3) has no closed form we will approximate it using simulations (Train, 2009).
- Hence, we will estimate the model using Maximum Simulated Likelihood where we will maximize the following simulated log-likelihood function:

$$SLL(\beta) = \sum_{n=1}^{N} \ln \left\{ \frac{1}{R} \sum_{r=1}^{R} P_n(\beta^r) \right\}$$
(4)

R is the number of draws and r is the r-th draw from $f(\beta|\varphi)$.

4 Outline

1 Random Regret Minimization Models

2 Differences between RUM and RRM models.

8 Mixed Random Regret Minimization Models

4 Individual Level Parameters

6 Implementation

6 Conclusions

Bibliography

14 Zhu, Gutiérrez-Vargas & Vandebroek: Mixed random regret minimization models.

• We can compute the mean $(\bar{\beta}_n)$ of the distribution of individuals that choose a given sequence of choices as:

• We can compute the mean $(\bar{\beta}_n)$ of the distribution of individuals that choose a given sequence of choices as:

$$\bar{\beta}_{n} = \frac{\int_{\beta} \beta \times P_{n}(\beta) f(\beta|\varphi) d\beta}{\int_{\beta} P_{n}(\beta) f(\beta|\varphi) d\beta}$$
(5)

• We can compute the mean $(\bar{\beta}_n)$ of the distribution of individuals that choose a given sequence of choices as:

$$\bar{\beta}_{n} = \frac{\int_{\beta} \beta \times P_{n}(\beta) f(\beta|\varphi) d\beta}{\int_{\beta} P_{n}(\beta) f(\beta|\varphi) d\beta}$$
(5)

Since the integrals of equation (5) do not have a close form solution.
 We will approximate β
_n by simulation using:

• We can compute the mean $(\bar{\beta}_n)$ of the distribution of individuals that choose a given sequence of choices as:

$$\bar{\beta}_{n} = \frac{\int_{\beta} \beta \times P_{n}(\beta) f(\beta|\varphi) d\beta}{\int_{\beta} P_{n}(\beta) f(\beta|\varphi) d\beta}$$
(5)

Since the integrals of equation (5) do not have a close form solution. We will approximate \(\bar{\var{\var{B}}}_n\) by simulation using:

$$\check{\boldsymbol{\beta}}_{n} = \sum_{r=1}^{R} \left(\frac{\boldsymbol{\beta}^{r} \times P_{n}(\boldsymbol{\beta}^{r})}{\sum_{r=1}^{R} P_{n}(\boldsymbol{\beta}^{r})} \right)$$
(6)

• We can compute the mean $(\bar{\beta}_n)$ of the distribution of individuals that choose a given sequence of choices as:

$$\bar{\beta}_{n} = \frac{\int_{\beta} \beta \times P_{n}(\beta) f(\beta|\varphi) d\beta}{\int_{\beta} P_{n}(\beta) f(\beta|\varphi) d\beta}$$
(5)

Since the integrals of equation (5) do not have a close form solution.
 We will approximate β
_n by simulation using:

$$\check{\boldsymbol{\beta}}_{n} = \sum_{r=1}^{R} \left(\frac{\boldsymbol{\beta}^{r} \times P_{n}(\boldsymbol{\beta}^{r})}{\sum_{r=1}^{R} P_{n}(\boldsymbol{\beta}^{r})} \right)$$
(6)

For this estimation we will use the command mixrbeta after estimating the population parameters using mixrandregret (Zhu, 2022).

5 Outline

1 Random Regret Minimization Models

2 Differences between RUM and RRM models.

8 Mixed Random Regret Minimization Models

Individual Level Parameters

Implementation Syntax Outputs

6 Conclusions

5 Syntax

mixrandregret (Zhu, 2022) is implemented as a Mata-based gf-0 ml evaluator. The command allows the inclusion of normally and log-normally distributed random parameters.

mixrandregret depvar [indepvars] [if] [in] group(varname)
alternative(varname) rand(varlist) [, id(varname)
basealternative(string) noconstant ln(string) nrep(string)
burn(string) robust cluster(varname) level(#) maximize_options]

5 Syntax

mixrandregret (Zhu, 2022) is implemented as a Mata-based gf-0 ml evaluator. The command allows the inclusion of normally and log-normally distributed random parameters.

mixrandregret depvar [indepvars] [if] [in] group(varname)
alternative(varname) rand(varlist) [, id(varname)
basealternative(string) noconstant ln(string) nrep(string)
burn(string) robust cluster(varname) level(#) maximize_options]

The command mixrbeta can be used after mixrandregret to calculate individual-level parameters corresponding to the variables in the specified *varlist* using equation (6).

```
mixrbeta varlist saving(filename) [, plot nrep(#) burn(#)]
```

▶ Data from van Cranenburgh (2018): Stated Choice (SC) experiment.

▶ Data from van Cranenburgh (2018): Stated Choice (SC) experiment.

. list id cs altern total_time total_cost choice in 1/6, sepby(cs) ab(10) noo

id	cs	altern	total_time	total_cost	choice
1	1	First	23	6	0
1	1	Second	27	4	0
1	1	Third	35	3	1
1	2	First	27	5	0
1	2	Second	35	4	1
1	2	Third	23	6	0

▶ Data from van Cranenburgh (2018): Stated Choice (SC) experiment.

. list id cs altern total_time total_cost choice in 1/6, sepby(cs) ab(10) noo

id	cs	altern	total_time	total_cost	choice
1	1	First	23	6	0
1	1	Second	27	4	0
1	1	Third	35	3	1
1	2	First	27	5	0
1	2	Second	35	4	1
1	2	Third	23	6	0

• Three unlabeled route alternatives (J = 3).

Data from van Cranenburgh (2018): Stated Choice (SC) experiment.

. list id cs altern total_time total_cost choice in 1/6, sepby(cs) ab(10) noo

id	cs	altern	total_time	total_cost	choice
1	1	First	23	6	0
1	1	Second	27	4	0
1	1	Third	35	3	1
1	2	First	27	5	0
1	2	Second	35	4	1
1	2	Third	23	6	0

- Three unlabeled route alternatives (J = 3).
- Described by total_time and total_cost (M = 2).

Data from van Cranenburgh (2018): Stated Choice (SC) experiment.

. list id cs altern total_time total_cost choice in 1/6, sepby(cs) ab(10) noo

id	cs	altern	total_time	total_cost	choice
1	1	First	23	6	0
1	1	Second	27	4	0
1	1	Third	35	3	1
1	2	First	27	5	0
1	2	Second	35	4	1
1	2	Third	23	6	0

- Three unlabeled route alternatives (J = 3).
- Described by total_time and total_cost (M = 2).
- Each respondent (id) answered a total of 10 choice situations.

Data from van Cranenburgh (2018): Stated Choice (SC) experiment.

. list id cs altern total_time total_cost choice in 1/6, sepby(cs) ab(10) noo

id	cs	altern	total_time	total_cost	choice
1	1	First	23	6	0
1	1	Second	27	4	0
1	1	Third	35	3	1
1	2	First	27	5	0
1	2	Second	35	4	1
1	2	Third	23	6	0

- Three unlabeled route alternatives (J = 3).
- Described by total_time and total_cost (M = 2).
- Each respondent (id) answered a total of 10 choice situations.
- Variables choice and altern allows us to identify each choice.

5 Fixed Parameter RRM model

First we estimate a fixed parameters RRM model.

19 Zhu, Gutiérrez-Vargas & Vandebroek: Mixed random regret minimization models.

5 Fixed Parameter RRM model

First we estimate a fixed parameters RRM model.

```
. randregret choice total_time total_cost , gr(cs) alt(altern) rrmfn(classic) ///
> nocons cluster(id) nolog
```

Fitting Classic RRM Model

RRM: Classic Random Regret Minimization Model								
Case ID variab	Case ID variable: cs Number of cases = 1060							
Alternative va	ariable: alter	n		Number of	obs	=	3180	
				Wald chi2	(2)	=	40.41	
Log likelihood	1 = -1118.4784	1		Prob > ch	i2	=	0.0000	
		(Std.	Err. ad	justed for	106	clust	ers in id)	
		Robust						
choice	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]	
RRM								
total_time	102813	.0182526	-5.63	0.000	1385	5874	0670386	
total_cost	417101	.068059	-6.13	0.000	5504	1943	2837078	

KU LEUVEN

. matrix b_rrm = e(b)

5 Fixed Parameter RRM model

First we estimate a fixed parameters RRM model.

```
. randregret choice total_time total_cost , gr(cs) alt(altern) rrmfn(classic) ///
> nocons cluster(id) nolog
```

Fitting Classic RRM Model

RRM: Classic Random Regret Minimization Model									
Case ID variab	Case ID variable: cs Number of cases = 1060								
Alternative va	ariable: alter	n		Number of	obs	=	3180		
				Wald chi2	(2)	=	40.41		
Log likelihood	1 = -1118.4784	ł		Prob > ch:	i2	=	0.0000		
		(Std.	Err. ad	justed for	106	cluste	ers in id)		
choice	Coef.	Robust Std. Err.	Z	P> z	[OF%	Conf	Intervall		
CHOICE	COEI.	Sta. Err.	Z	PPIZI	[95%	coni.	Intervalj		
RRM									
total_time	102813	.0182526	-5.63	0.000	1385	5874	0670386		
total_cost	417101	.068059	-6.13	0.000	5504	1943	2837078		

. matrix b_rrm = e(b)

As expected, both parameter estimates are negative.

▶ total_time assumed to be normally distributed: $\beta_T \sim \mathcal{N}(\mu_T, \sigma_T)$

- ▶ total_time assumed to be normally distributed: $\beta_T \sim \mathcal{N}(\mu_T, \sigma_T)$
- \blacktriangleright We estimate the two parameters of a normal distribution: μ_T and σ_T

▶ total_time assumed to be normally distributed: $\beta_T \sim \mathcal{N}(\mu_T, \sigma_T)$ ▶ We estimate the two parameters of a normal distribution: μ_T and σ_T

 mixrandregre nocons clust 						time) id(id) //, g
Case ID varia	ole: cs			Number o	f cases =	1060
Alternative va Random variabl						
		(Std.	Err. ad	justed fo	r 106 cluste	ers in id)
Mixed random 1	regret model				of obs =	3,180
Log likelihood	1 = -771.0573	1		Wald ch Prob >	12(2)	606.11 0.0000
		OPG				
choice	Coef.	Std. Err.	z	P> z	[95% Conf	Interval]
Mean						
total_cost	-1.102136	.0449727	-24.51	0.000	-1.190281	-1.013991
total_time	3580736	.0581449	-6.16	0.000	4720355	2441117
SD						
total_time	.5068268	.041366	12.25	0.000	.425751	.5879027

The sign of the estimated standard deviations is irrelevant: interpret them as being positive

. matrix b_mixrrm = e(b)

total_time assumed to be normally distributed: β_T ~ N(μ_T, σ_T)
 We estimate the two parameters of a normal distribution: μ_T and σ_T

 mixrandregre nocons clust 						ime) id(id) //.
Case ID variab				Number o	f cases =	1060
Alternative va Random variabl						
		(Std.	Err. ad	justed fo	r 106 cluste	ers in id)
Mixed random n	egret model				of obs =	0,100
				Wald ch	i2(2) =	606.11
Log likelihood	1 = -771.0573	L		Prob >	chi2 =	0.0000
		OPG				
choice	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
Mean						
total_cost	-1.102136	.0449727	-24.51	0.000	-1.190281	-1.013991
total_time	3580736	.0581449	-6.16	0.000	4720355	2441117
SD						
total_time	.5068268	.041366	12.25	0.000	.425751	.5879027

The sign of the estimated standard deviations is irrelevant: interpret them as being positive

. matrix b_mixrrm = e(b)

The mean of total_time is negative, as expected.

 We can compute the individual level parameters of Equation (6) using mixrbeta.

- We can compute the individual level parameters of Equation (6) using mixrbeta.
- mixrbeta creates a new data set with one observation per individual (id) and its corresponding parameters estimates.

- We can compute the individual level parameters of Equation (6) using mixrbeta.
- mixrbeta creates a new data set with one observation per individual (id) and its corresponding parameters estimates.

```
. preserve
```

- . /* Computing Individual Level Parameters */
- . qui mixrbeta total_time , nrep(500) replace saving("\${graphs_route}\mixRRM_normal_idl")

- . use "\${graphs_route}\mixRRM_normal_idl" , replace
- . list id total_time in 1/5

	id	total_time
1.	1	.37640482
3.	3	.37672848
4. 5.	4 5	.38495822 .37607978

- We can compute the individual level parameters of Equation (6) using mixrbeta.
- mixrbeta creates a new data set with one observation per individual (id) and its corresponding parameters estimates.

```
. preserve
```

- . /* Computing Individual Level Parameters */
- . qui mixrbeta total_time , nrep(500) replace saving("\${graphs_route}\mixRRM_normal_idl")

```
. use "${graphs_route}\mixRRM_normal_idl" , replace
```

```
. list id total_time in 1/5
```

	id	total_time
1.	1	.37640482
2.	2	05517462
з.	3	.37672848
4.	4	.38495822
5.	5	.37607978

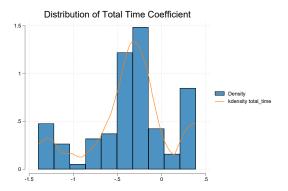
We observe that some of the individuals has a positive coefficient for Total Time (total_time).

5 Mixed RRM model: Individual Level Parameters

We can plot the individual level parameters for total_time when we assume it as Normally distributed.

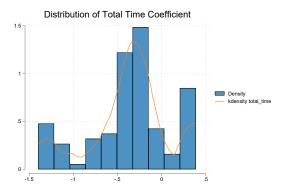
5 Mixed RRM model: Individual Level Parameters

We can plot the individual level parameters for total_time when we assume it as Normally distributed.



5 Mixed RRM model: Individual Level Parameters

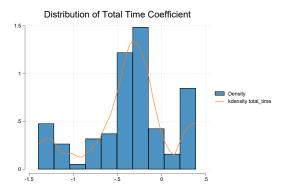
We can plot the individual level parameters for total_time when we assume it as Normally distributed.



We see some individuals with positive estimates.

5 Mixed RRM model: Individual Level Parameters

We can plot the individual level parameters for total_time when we assume it as Normally distributed.



- We see some individuals with positive estimates.
- To prevent this from happening we can use a bounded distribution...

▶ total_time assumed Log-normal: $\beta_T \sim -1 \times \exp\left(\mathcal{N}\left(\mu_T, \sigma_T\right)\right)$

► total_time assumed Log-normal: $\beta_T \sim -1 \times \exp\left(\mathcal{N}\left(\mu_T, \sigma_T\right)\right)$

Given that total_time is expected to be negative, we created (ntt=-total_time), since the log-normal distribution implies that the coefficient is positive.

▶ total_time assumed Log-normal: $\beta_T \sim -1 \times \exp\left(\mathcal{N}\left(\mu_T, \sigma_T\right)\right)$

Given that total_time is expected to be negative, we created (ntt=-total_time), since the log-normal distribution implies that the coefficient is positive.

```
. gen ntt = -1 * total_time
. mixrandregret choice total_cost , gr(cs) alt(altern) rand(ntt ) ln(1) id(id) ///
> nocons cluster(id) nrep(500) tech(bhhh) from(b_mixrrm) nolog
Case ID variable: cs
                                               Number of cases
                                                                          1060
                                                                  =
Alternative variable: altern
Random variable(s): ntt
                                 (Std. Err. adjusted for 106 clusters in id)
Mixed random regret model
                                                Number of obs
                                                                         3.180
                                                Wald chi2(2)
                                                                       1230 55
Log likelihood = -785,27671
                                                Prob > chi2
                                                                        0 0000
```

choice	Coef.	OPG Std. Err.	z	P> z	[95% Conf.	Interval]
Mean						
total_cost	-1.217682	.0442047	-27.55	0.000	-1.304321	-1.131042
ntt	-1.312285	.1562202	-8.40	0.000	-1.618471	-1.006099
SD						
ntt	1.363632	.1185994	11.50	0.000	1.131181	1.596082

The sign of the estimated standard deviations is irrelevant: interpret them as being positive

23 Zhu, Gutiérrez-Vargas & Vandebroek: Mixed random regret minimization models.

Similarly, we can compute the individual level parameters for the log-normally distributed variable tt using <u>mixrbeta</u>.

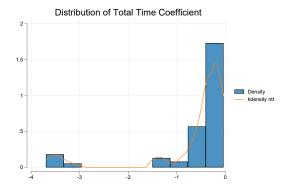
Similarly, we can compute the individual level parameters for the log-normally distributed variable tt using <u>mixrbeta</u>.

```
. /* Computing Individual Level Parameters */
. qui mixrbeta ntt , nrep(500) replace saving("${graphs_route}\mixRRM_ln_idl")
. use "${graphs_route}\mixRRM_ln_idl" , replace
. replace ntt = -1 * ntt /*reverse sign for graph*/
(106 real changes made)
```

. list id ntt in 1/5

	id	ntt
1.	1	04032598
2.	2	08142616
3.	3	04047817
4.	4	04110615
5.	5	04025335

Individual Level Parameters when total time is assumed to be Log-normally distributed.



Now we observe that the individual level parameters are all negative.

The parameters we estimated are the mean (β_T) and standard deviation (σ_T) of the natural logarithm of the total time coefficient.

- The parameters we estimated are the mean (β_T) and standard deviation (σ_T) of the natural logarithm of the total time coefficient.
- ► Hence, the mean, median and variance of log-normal distributed parameter are equal to $\exp(\beta_T)$, $\exp(\beta_T + \sigma_T/2)$ and $\exp(\beta_T + \sigma_T/2) \times \sqrt{\exp(\sigma_T^2) 1}$, respectively.

- The parameters we estimated are the mean (β_T) and standard deviation (σ_T) of the natural logarithm of the total time coefficient.
- ► Hence, the mean, median and variance of log-normal distributed parameter are equal to $\exp(\beta_T)$, $\exp(\beta_T + \sigma_T/2)$ and $\exp(\beta_T + \sigma_T/2) \times \sqrt{\exp(\sigma_T^2) 1}$, respectively.
- Finally, we can compute them using nlcom.

- The parameters we estimated are the mean (β_T) and standard deviation (σ_T) of the natural logarithm of the total time coefficient.
- ► Hence, the mean, median and variance of log-normal distributed parameter are equal to $\exp(\beta_T)$, $\exp(\beta_T + \sigma_T/2)$ and $\exp(\beta_T + \sigma_T/2) \times \sqrt{\exp(\sigma_T^2) 1}$, respectively.
- Finally, we can compute them using nlcom.

```
. nlcom ///
> (mean_time: -1*exp([Mean]_b[ntt]+0.5*[SD]_b[ntt]^2)) ///
> (med_time : -1*exp([Mean]_b[ntt])) ///
> (sd_time : exp([Mean]_b[ntt]+0.5*[SD]_b[ntt]^2)*sqrt(exp([SD]_b[ntt]^2)-1)))
mean_time: -1*exp([Mean]_b[ntt]+0.5*[SD]_b[ntt]^2)
med_time: -1*exp([Mean]_b[ntt])
sd_time: exp([Mean]_b[ntt]+0.5*[SD]_b[ntt]^2)*sqrt(exp([SD]_b[ntt]^2)-1))
```

choice	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
mean_time	682127	.1587961	-4.30	0.000	9933616	3708923
med_time	2692041	.0420551	-6.40	0.000	3516307	1867776
sd_time	1.588122	.6295756	2.52	0.012	.3541763	2.822067

6 Outline

1 Random Regret Minimization Models

2 Differences between RUM and RRM models.

8 Mixed Random Regret Minimization Models

4 Individual Level Parameters

6 Implementation

6 Conclusions

Bibliography

27 Zhu, Gutiérrez-Vargas & Vandebroek: Mixed random regret minimization models.

The mixrandregret (Zhu, 2022) command extends its predecessor randregret (Gutiérrez-Vargas et al., 2021) by allowing the inclusion of random coefficients in the regret functions.

- The mixrandregret (Zhu, 2022) command extends its predecessor randregret (Gutiérrez-Vargas et al., 2021) by allowing the inclusion of random coefficients in the regret functions.
- ▶ The parameters are estimated by Maximum Simulated Likelihood.

- The mixrandregret (Zhu, 2022) command extends its predecessor randregret (Gutiérrez-Vargas et al., 2021) by allowing the inclusion of random coefficients in the regret functions.
- The parameters are estimated by Maximum Simulated Likelihood.
- The random parameters can follow either a Normal or Log-normal distribution.

- The mixrandregret (Zhu, 2022) command extends its predecessor randregret (Gutiérrez-Vargas et al., 2021) by allowing the inclusion of random coefficients in the regret functions.
- ► The parameters are estimated by Maximum Simulated Likelihood.
- The random parameters can follow either a Normal or Log-normal distribution.
- Additionally, we can compute the individual level parameters using the mixrbeta command.

- The mixrandregret (Zhu, 2022) command extends its predecessor randregret (Gutiérrez-Vargas et al., 2021) by allowing the inclusion of random coefficients in the regret functions.
- ► The parameters are estimated by Maximum Simulated Likelihood.
- The random parameters can follow either a Normal or Log-normal distribution.
- Additionally, we can compute the individual level parameters using the mixrbeta command.
- The programs can be downloaded from Ziyue's Github account.

- The mixrandregret (Zhu, 2022) command extends its predecessor randregret (Gutiérrez-Vargas et al., 2021) by allowing the inclusion of random coefficients in the regret functions.
- ▶ The parameters are estimated by Maximum Simulated Likelihood.
- The random parameters can follow either a Normal or Log-normal distribution.
- Additionally, we can compute the individual level parameters using the mixrbeta command.
- ► The programs can be downloaded from Ziyue's Github account.
- The example code used in this presentation is available here.

7 Outline

1 Random Regret Minimization Models

2 Differences between RUM and RRM models.

8 Mixed Random Regret Minimization Models

Individual Level Parameters

6 Implementation

6 Conclusions

Bibliography

29 Zhu, Gutiérrez-Vargas & Vandebroek: Mixed random regret minimization models.

8 Bibliography

- Chorus, C. G. (2010). A new model of random regret minimization. European Journal of Transport and Infrastructure Research, 10(2):181–196.
- Gutiérrez-Vargas, A. A., Meulders, M., and Vandebroek, M. (2021). randregret: A command for fitting random regret minimization models using stata. *The Stata Journal*, 21(3):626–658.
- Train, K. E. (2009). Discrete Choice Methods with Simulation. Cambridge University Press, 2 edition.
- van Cranenburgh, S. (2018). Small value-of-time experiment, netherlands. 4TU.Centre for Research Data, Dataset https://doi.org/10.4121/uuid:1ccca375-68ca-4cb6-8fc0-926712f50404.
- Zhu, Z. (2022). mixrandregret: A command for fitting mixed random regret minimization models using Stata. Master's thesis, KU Leuven.

GitHub with Slides + Example code here:

Thanks