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1 What is Regret and how to use it for Choice Modeling?

▶ From Utility to Regret.

▶ Regret: Situation where a non-chosen alternative ends up being more
attractive than the chosen one for some of the attributes.

▶ Individuals are assumed to minimize regret.
▶ Consider this hypothetical situation:

altern total_time total_cost

First 23 6
Second 27 4
Third 35 3

If we chose alternative 2:
▶ Alternative 1 is faster...
▶ Alternative 3 is cheaper...

⇒ Regret models will (formalize and) minimize this notion of regret!
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1 Formalization of the previous example.

Some (unavoidable) notation for the rest of the presentation:

id cs altern total_time total_cost choice

1 1 First 23 6 0
1 1 Second 27 4 0
1 1 Third 35 3 1

1 2 First 27 5 0
1 2 Second 35 4 1
1 2 Third 23 6 0

▶ Individuals (id) are referred to by n answer s choice situations (cs).
▶ They decide among J alternatives (altern) (referred to by i or j).
▶ Alternatives are described by M attributes referred to by m

(total time and total cost).
▶ xins,m: value of attribute m of alternative i for individual n in choice

situation s. (yes, 4 sub-indexes; I am sorry...)
▶ yins: response variable (choice). It takes the value of 1 when

alternative i is chosen by individual n in choice situation s; 0 otherwise..
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1 RUM vs RRM

▶ Random Utility Maximization (RUM)

Uins = Vins + εins

= βn,T × xins,T + βn,C × xins,C + εins

Utility
Systematic Utility

Error Term

▶ Random Regret Minimization (RRM)

RRins = Rins + εins

=
J∑

j ̸=i

Ri↔jns,T +
J∑

j ̸=i

Ri↔jns,C + εins

Regret
Systematic Regret
Error Term (the same btw)

• The notion of regret is characterized by the systematic regret Rins.
• Rins is described in terms of attribute level regret (Ri↔jns,m).
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1 The Attribute level regret Ri↔jns,m

▶ Using the same example as before:

altern total_time total_cost

First 23 6
Second 27 4
Third 35 3

▶ Ri↔jns,m corresponds to pairwise combination of regret for alternatives
i and j for individual n on attribute m in choice situation s.

(xjns,m − xins,m) Attribute \ Route j = 1 j = 2 j = 3

(xjns,m − x1ns,T ) Travel Time 0 4 12
(xjns,m − x1ns,C) Travel Cost 0 -2 -3

(xjns,m − x2ns,T ) Travel Time -4 0 8
(xjns,m − x2ns,C) Travel Cost 2 0 -1

(xjns,m − x3ns,T ) Travel Time -12 -8 0
(xjns,m − x3ns,C) Travel Cost 3 1 0

▶ Takeaway: We will define Ri↔jns,m in terms of the attribute differences.
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Third 35 3
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1 Classical RRM (Chorus, 2010)

▶ (Chorus, 2010) proposed the following attribute level regret:

Ri↔jns,m = ln

1 + exp

βn,m · (xjns,m − xins,m)︸ ︷︷ ︸
Attribute differences!




▶ As we saw, Ri↔jns,m compares alternative i with alternative j in
attribute m.

▶
∑

j ̸=i Ri↔jns,m is the equivalent to xins,m × βn,m in an utility model.

▶ In both cases, βn,m is the taste parameter of attribute m of individual
n.

▶ However, they have drastically different interpretation(more on that
later).
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1 Classical RRM (Chorus, 2010)

• (Chorus, 2010) proposed the following systematic regret:

Rins =
J∑

j ̸=i

M∑
m=1

Ri↔jns,m =
J∑

j ̸=i

M∑
m=1

ln [1 + exp {βn,m · (xjns,m − xins,m)}]

Sum over alternatives.

Sum over attributes.

Attribute level regret.

• In our example: M = 2 (Time and Cost) and J = 3.

• Regret of alternative 1 (R1ns) will be given by:

R1ns =
3∑

j ̸=i

M∑
m=1

ln [1 + exp {βn,m(xjns,m − xins,m)}]

= ln [1 + exp {βn,T (x2ns,T − x1ns,T )}] + ln [1 + exp {βn,c (x2ns,C − x1ns,C)}]
+ ln [1 + exp {βn,T (x3ns,T − x1ns,T )}] + ln [1 + exp {βn,C (x3ns,C − x1ns,C)}]
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1 Classical RRM (Chorus, 2010):Towards the log-likelihood.

1 Defining RRins = Rins + εins, where εins is a type I Extreme Value
i.i.d. error.

2 Acknowledging that the minimization of the random regret is
mathematically equivalent to maximizing the negative of the regret.

3 Hence, the probabilities can be derived using the Multinomial Logit:

Pins = exp (−Rins)∑J
j=1 exp (−Rjns)

for i = 1, . . . , J (1)

4 Consequently, the log-likelihood will be given by:

ln L =
N∑

n=1

S∑
s=1

J∑
i=1

yin × ln (Pins)
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2 Taste Parameter Interpretation in RRM models

▶ RUM: parameters are interpreted as the change in utility caused by an
increase of a particular attribute level.

▶ RRM: parameters represent the potential change in regret caused by
one unit increase in a particular attribute level in one of the non-chosen
alternatives.

• For instance if β̂n,m > 0
suggests that regret increases as the level of that attribute increases in a
non-chosen alternative, in comparison to the level of the same attribute
in the chosen alternative (e.g: Comfortable level).

• For instance if β̂n,m < 0
suggests that regret decreases as the level of that attribute increases in a
non-chosen alternative, in comparison to the level of the same attribute
in the chosen alternative (e.g: Total Time).

▶ All in all, the parameters in RUM and RRM, are expected to have the
same sign, even though their interpretation is drastically different.
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3 Mixed Random Regret Minimization Models

Additional assumptions of the mode: Individual Level Parameters.

▶ βn = (βn,1, . . . , βn,m) follows a parametric distribution: f (β|φ).

▶ φ are the parameters that describe the distribution (e.g., mean and
variance of a Normal distribution).

▶ We define the conditional probability (CP) of the observed sequence of
choices of individual n (conditional on knowing βn) as:

Pn(βn) =
S∏

s=1

J∏
i=1

{Pins}yins (2)
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3 Mixed Random Regret Minimization Models

▶ Given that equation (3) has no closed form we will approximate it using
simulations (Train, 2009).

▶ Hence, we will estimate the model using Maximum Simulated Likelihood
where we will maximize the following simulated log-likelihood function:

SLL (β) =
N∑

n=1
ln
{

1
R

R∑
r=1

Pn(βr)
}

(4)

▶ R is the number of draws and r is the r-th draw from f (β|φ).
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4 Individual Level Parameters

▶ We can compute the mean (β̄n) of the distribution of individuals that
choose a given sequence of choices as:

β̄n =
∫

β
β × Pn(β)f(β|φ)dβ∫
β

Pn(β)f(β|φ)dβ
(5)

▶ Since the integrals of equation (5) do not have a close form solution.
We will approximate β̄n by simulation using:

β̌n =
R∑

r=1

(
βr × Pn(βr)∑R

r=1 Pn(βr)

)
(6)

▶ For this estimation we will use the command mixrbeta after estimating
the population parameters using mixrandregret (Zhu, 2022).
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5 Syntax

mixrandregret (Zhu, 2022) is implemented as a Mata-based gf-0 ml eval-
uator. The command allows the inclusion of normally and log-normally dis-
tributed random parameters.

mixrandregret depvar
[

indepvars
] [

if
] [

in
]

group(varname)
alternative(varname) rand(varlist)

[
, id(varname)

basealternative(string) noconstant ln(string) nrep(string)

burn(string) robust cluster(varname) level(#) maximize options
]

The command mixrbeta can be used after mixrandregret to calculate
individual-level parameters corresponding to the variables in the specified varlist
using equation (6).

mixrbeta varlist saving(filename)
[

, plot nrep(#) burn(#)
]
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5 The Data

▶ Data from van Cranenburgh (2018): Stated Choice (SC) experiment.

. list id cs altern total_time total_cost choice in 1/6, sepby(cs) ab(10) noo

id cs altern total_time total_cost choice

1 1 First 23 6 0
1 1 Second 27 4 0
1 1 Third 35 3 1

1 2 First 27 5 0
1 2 Second 35 4 1
1 2 Third 23 6 0

• Three unlabeled route alternatives (J = 3).
• Described by total time and total cost (M = 2).

▶ Each respondent (id) answered a total of 10 choice situations.

▶ Variables choice and altern allows us to identify each choice.
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5 Fixed Parameter RRM model

▶ First we estimate a fixed parameters RRM model.

. randregret choice total_time total_cost , gr(cs) alt(altern) rrmfn(classic) ///
> nocons cluster(id) nolog

Fitting Classic RRM Model

RRM: Classic Random Regret Minimization Model
Case ID variable: cs Number of cases = 1060
Alternative variable: altern Number of obs = 3180

Wald chi2(2) = 40.41
Log likelihood = -1118.4784 Prob > chi2 = 0.0000

(Std. Err. adjusted for 106 clusters in id)

Robust
choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

RRM
total_time -.102813 .0182526 -5.63 0.000 -.1385874 -.0670386
total_cost -.417101 .068059 -6.13 0.000 -.5504943 -.2837078

. matrix b_rrm = e(b)

▶ As expected, both parameter estimates are negative.
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5 Mixed RRM model: Normal Distribution

▶ total time assumed to be normally distributed: βT ∼ N (µT , σT )

▶ We estimate the two parameters of a normal distribution: µT and σT

. mixrandregret choice total_cost , gr(cs) alt(altern) rand(total_time) id(id) ///
> nocons cluster(id) nrep(500) from(init_mix_rrm) tech(bhhh) nolog
Case ID variable: cs Number of cases = 1060
Alternative variable: altern
Random variable(s): total_time

(Std. Err. adjusted for 106 clusters in id)
Mixed random regret model Number of obs = 3,180

Wald chi2(2) = 606.11
Log likelihood = -771.05731 Prob > chi2 = 0.0000

OPG
choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

Mean
total_cost -1.102136 .0449727 -24.51 0.000 -1.190281 -1.013991
total_time -.3580736 .0581449 -6.16 0.000 -.4720355 -.2441117

SD
total_time .5068268 .041366 12.25 0.000 .425751 .5879027

The sign of the estimated standard deviations is irrelevant: interpret them as
being positive
. matrix b_mixrrm = e(b)

▶ The mean of total time is negative, as expected.
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5 Mixed RRM model: Normal Distribution

▶ We can compute the individual level parameters of Equation (6) using
mixrbeta.

▶ mixrbeta creates a new data set with one observation per individual
(id) and its corresponding parameters estimates.

. preserve

. /* Computing Individual Level Parameters */

. qui mixrbeta total_time , nrep(500) replace saving("${graphs_route}\mixRRM_normal_idl")

. use "${graphs_route}\mixRRM_normal_idl" , replace

. list id total_time in 1/5

id total_time

1. 1 .37640482
2. 2 -.05517462
3. 3 .37672848
4. 4 .38495822
5. 5 .37607978

▶ We observe that some of the individuals has a positive coefficient for
Total Time (total time).
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▶ mixrbeta creates a new data set with one observation per individual
(id) and its corresponding parameters estimates.
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5 Mixed RRM model: Individual Level Parameters

▶ We can plot the individual level parameters for total time when we
assume it as Normally distributed.
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▶ We see some individuals with positive estimates.
▶ To prevent this from happening we can use a bounded distribution...
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5 Mixed RRM model: Log-normal Distribution

▶ total time assumed Log-normal: βT ∼ −1 × exp (N (µT , σT ))

▶ Given that total time is expected to be negative, we created
(ntt=-total time), since the log-normal distribution implies that the
coefficient is positive.

. gen ntt = -1 * total_time

. mixrandregret choice total_cost , gr(cs) alt(altern) rand(ntt ) ln(1) id(id) ///
> nocons cluster(id) nrep(500) tech(bhhh) from(b_mixrrm) nolog
Case ID variable: cs Number of cases = 1060
Alternative variable: altern
Random variable(s): ntt

(Std. Err. adjusted for 106 clusters in id)
Mixed random regret model Number of obs = 3,180

Wald chi2(2) = 1230.55
Log likelihood = -785.27671 Prob > chi2 = 0.0000

OPG
choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

Mean
total_cost -1.217682 .0442047 -27.55 0.000 -1.304321 -1.131042

ntt -1.312285 .1562202 -8.40 0.000 -1.618471 -1.006099

SD
ntt 1.363632 .1185994 11.50 0.000 1.131181 1.596082

The sign of the estimated standard deviations is irrelevant: interpret them as
being positive
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5 Mixed RRM model: Log-normal Distribution

▶ Similarly, we can compute the individual level parameters for the
log-normally distributed variable tt using mixrbeta.

. /* Computing Individual Level Parameters */

. qui mixrbeta ntt , nrep(500) replace saving("${graphs_route}\mixRRM_ln_idl")

. use "${graphs_route}\mixRRM_ln_idl" , replace

. replace ntt = -1 * ntt /*reverse sign for graph*/
(106 real changes made)
. list id ntt in 1/5

id ntt

1. 1 -.04032598
2. 2 -.08142616
3. 3 -.04047817
4. 4 -.04110615
5. 5 -.04025335
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5 Mixed RRM model: Log-normal Distribution

▶ Individual Level Parameters when total time is assumed to be
Log-normally distributed.
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▶ Now we observe that the individual level parameters are all negative.
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5 Mixed RRM model: Log-normal Distribution

▶ The parameters we estimated are the mean (βT ) and standard deviation
(σT ) of the natural logarithm of the total time coefficient.

▶ Hence, the mean, median and variance of log-normal distributed
parameter are equal to exp(βT ), exp(βT + σT /2) and
exp(βT + σT /2) ×

√
exp(σ2

T ) − 1, respectively.
▶ Finally, we can compute them using nlcom.

. nlcom ///
> (mean_time: -1*exp([Mean]_b[ntt]+0.5*[SD]_b[ntt]ˆ2)) ///
> (med_time : -1*exp([Mean]_b[ntt])) ///
> (sd_time : exp([Mean]_b[ntt]+0.5*[SD]_b[ntt]ˆ2)*sqrt(exp([SD]_b[ntt]ˆ2)-1))

mean_time: -1*exp([Mean]_b[ntt]+0.5*[SD]_b[ntt]ˆ2)
med_time: -1*exp([Mean]_b[ntt])
sd_time: exp([Mean]_b[ntt]+0.5*[SD]_b[ntt]ˆ2)*sqrt(exp([SD]_b[ntt]ˆ2)-1)

choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

mean_time -.682127 .1587961 -4.30 0.000 -.9933616 -.3708923
med_time -.2692041 .0420551 -6.40 0.000 -.3516307 -.1867776
sd_time 1.588122 .6295756 2.52 0.012 .3541763 2.822067
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6 Conclusions

▶ The mixrandregret (Zhu, 2022) command extends its predecessor
randregret (Gutiérrez-Vargas et al., 2021) by allowing the inclusion of
random coefficients in the regret functions.

▶ The parameters are estimated by Maximum Simulated Likelihood.

▶ The random parameters can follow either a Normal or Log-normal
distribution.

▶ Additionally, we can compute the individual level parameters using the
mixrbeta command.

▶ The programs can be downloaded from Ziyue’s Github account.

▶ The example code used in this presentation is available here.
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GitHub with Slides + Example code here:
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