Five ways to detect correlation in panels

Jesse Wursten¹

¹jesse.wursten@kuleuven.be Faculty of Economics and Business KU Leuven

23rd London Stata User Group Meeting, September 2017

Jesse Wursten (KUL)

Five panel correlation tests

SUGM 2017 1 / 15

• = • •

Introduction

Get to know your data (and regressions)

- Sometimes difficult to get a grip on larger panels
- 5 new commands to get to know your data (and your regressions)
 - xtqptest, xthrtest and xtistest test for correlation over time (serial correlation)
 - pwcorrf and xtcdf test for correlation across panel units (cross sectional dependence)
- Bonus: might indicate you don't need cluster-robust standard errors (useful if you don't have 20+ clusters)

Serial Correlation

Is your data correlated over time?

- To keep things real, imagine you have a panel of calories consumption for 3 individuals (N) over 365 days (T) [sysuse xtline1.dta]
- Is calorie consumption in each day a random draw, or is it correlated over time?
- Does my fixed/random effects model for calorie consumption produce a relatively decent fit?
- Three new commands which improve on current industry standard (i.e. xtserial & abar)
 - More flexible: not limited to respectively 1st order serial correlation and GMM postestimation
 - More robust: better power and size in various scenarios

Serial Correlation - Overview

Four pictures say more than a thousand words

< ∃ >

Serial Correlation - Q(p) test

A true jack of all trades

- Syntax: xtqptest [varlist], lags(p)
- Tests for serial correlation **up to** order *p*
- Best size/power results in Monte Carlo

Bias-corrected Born	and Breitung	(2016)	Q(p)-test	on	variables	calories	
Panelvar: person							
Timevar: day							
p (lags): 2							
							_

Variable	Q(p)-stat	p-value	N	maxT	balance?
calories -	- 15.84	0.000 -	- 3	365 -	- balanced

Notes: Under H0, Q(p) ~ chi2(p) H0: No serial correlation up to order p. Ha: Some serial correlation up to order p.

• Test indicates there might be some serial correlation up to the 2nd order

Serial Correlation - LM(k) test

Focus on a specific order

- Syntax: xtqptest [varlist], order(k)
- Tests for serial correlation of order k
- Sometimes more informative than the Q(p) test

Bias-corrected Born and Breitung (2016) LM(k)-test on variables calories Panelvar: person Timevar: day k (order): 2

Variable	LM(k)-stat	p-value	N	maxT	balance?
calories	1.63	0.103 -	- 3	365 -	- balanced -

Notes: Under H0, LM(k) ~ N(0,1) H0: No serial correlation of order k. Ha: Some serial correlation of order k.

• Test indicates data might be free of 2nd order serial correlation

E 5 4

Serial Correlation - HR test

When there's the occasional storm

- Syntax: xthrtest [varlist]
- Tests for first order serial correlation
- Specialised in situations where the variance changes over time (e.g. stock markets)
- Boils down to regressing forwards demeaned values on lagged backwards demeaned values

Heteroskedasticity-robust Born and Breitung (2016) HR-test on calories Panelvar: person

Timevar: day

Variable	HR-stat	p-value	N	maxT	balance?
calories	- 1.65	0.099 -	- 3	365 -	- balanced -

```
Notes: Under H0, HR ~ N(0,1)
```

H0: No first-order serial correlation.

Ha: Some first order serial correlation.

• Test indicates data might be free of 1st order serial correlation

Jesse Wursten (KUL)

Serial Correlation - IS test

In cases of severe amnesia

- Syntax: xtistest [varlist], lags(p)
- Tests for serial correlation **up to** order *p*
- Accepts any kind of unbalanced data (including gaps)

Inoue and Solo (2006) LM-test Panelvar: person Timevar: day p (lags): 2	on variables	calories				
Variable	IS-stat	p-value	N	maxT	balance?	
calories calories: N(3) is smaller that	3.00 n the dimens	1.000 - ion of H0(72	3 7), results	365 unrel	balanced - iable. Consider x	tqptest.

Notes: Under H0, LM ~ chi2(p*T-p(p+1)/2)

H0: No auto-correlation of any order.

Ha: Auto-correlation up to order 2.

• Test only works when $N > p^*T$

Cross sectional dependence

Is your data correlated across panel units?

- Remember our panel of three individuals and their eating habits
- Does their calorie intake spike and drop together? (e.g. Sunday Roast)
- Did my fixed/random effects model properly control for unobserved similarities between the individuals (which might otherwise bias the results)?
- Two new commands which improve performance of existing code (i.e. pwcorr & xtcd/xtcd2)
 - More flexible: can test multiple variables, which do not need to be mean-zero
 - More efficient: faster than existing commands

★ 3 > < 3 >

Cross sectional dependence - pwcorrf

The f stands for fast

 Syntax: pwcorrf varname, reshape Calculates correlations between panel units More convenient and faster than first reshaping and then using pwcorr 	Variable(s): calories Panel var: person corrMatrix[3,3] 1 2 3 1 1 0 0 2 .72879721 1 0 3 .77735323 .90375738 1
 Syntax: pwcorrf varlist Calculates correlations between variables Faster than pwcorr if varlist is long 	Variable(s): calories day corrMatrix[2,2] calories day calories 1 0 day .152202 1

Image: A match a ma

Cross sectional dependence - xtcdf

xtdvdf didn't have the same ring to it

- Syntax: xtcdf varlist
- CD-test boils down to verifying whether sum of correlations between panel units is equal to zero

xtcd test on variables calories

Panelvar: person Timevar: dav

Variable	CD-test	p-value	average joint T	mean p	mean abs(p)
calories -	- 26.582	0.000	365.00 -	- 0.80	0.80

Notes: Under the null hypothesis of cross-section independence, CD \sim N(0,1) P-values close to zero indicate data are correlated across panel groups.

- Test strongly indicates calorie intake is correlated across individuals
- This is not the first command to perform the CD-test, but ...
 - xtcsd can only be used as postestimation command
 - xtcd is slow in larger datasets and reports the wrong number of joint observations
 - xtcd2 assumes mean-zero variables (residuals) and only takes a single variable at the time

Jesse Wursten (KUL)

Conclusion

This slide is redundant, yet somehow essential

- Introduced 3 commands to test for correlation over time: xtqptest, xthrtest and xtistest
- ... and two to test for correlation between panel units: pwcorrf and xtcdf
- They are more convenient/flexible/efficient than existing commands
- More info can be found in the Econometrics papers
 - xtqptest, xthrtest: Born and Breitung (2016)
 - xtistest: Inoue and Solon (2006)
 - xtcdf: Pesaran (2004)
- Any questions?

A B A A B A

- Born, Benjamin, and Jörg Breitung. 2016. "Testing for Serial Correlation in Fixed-Effects Panel Data Models." <u>Econometric Reviews</u>, 35(7): 1290–1316.
- Inoue, Atsushi, and Gary Solon. 2006. "A Portmanteau Test for Serially Correlated Errors in Fixed Effects Models." <u>Econometric Theory</u>, 22(5): 835–851.
- **Pesaran, M. Hashem.** 2004. "General Diagnostic Tests for Cross Section Dependence in Panels." CESifo Group Munich CESifo Working Paper Series 1229.

• • = • • = •

Bonus slide: send to smartphone

sendtoslack command in Stata

. sysuse auto, clear

(1978 Automobile Data)

. reg price mpg

Source	SS	df	MS	Numb	er of obs	3 =	74
Model Residual	139449474 495615923	1 72	139449474 6883554.48	- F(1, Prob R-sq	72) > F uared	= = =	20.26 0.0000 0.2196
Total	635065396	73	8699525.9	Adj Root	Adj R-squared Root MSE		0.2087 2623.7
price	Coef.	Std. Err.	t	P> t	[95% C	Conf.	Interval]
mpg _cons	-238.8943 11253.06	53.07669 1170.813	-4.50 9.61	0.000	-344.70 8919.0	008 088	-133.0879 13587.03

. mat results = r(table)

- . mat b mpg = results["b", "mpg"]
- . local b_mpg = round(b_mpg[1,1], 0.001)
- . mat p_mpg = results["pvalue", "mpg"]

```
. local p_mpg = round(p_mpg[1, 1], 0.001)
```

. sendtoslack, message(MPG: `b_mpg' (p: `p_mpg')) url(https://hooks.slack.com/services/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) Message sent: MPG: -238.894 (p: 0)

イロト イポト イヨト イヨト 二日

Bonus slide: send to smartphone

Slack app on smartphone

Five panel correlation tests

・ 同 ト ・ 三 ト ・ 三 ト