Imperial College London

Ridit splines with applications to propensity weighting

Roger B. Newson r.newson@imperial.ac.uk http://www.imperial.ac.uk/nhli/r.newson/

Department of Primary Care and Public Health, Imperial College London

23rd UK Stata Users' Group Meeting, 7–8 September, 2017 Downloadable from the conference website at http://ideas.repec.org/s/boc/usug17.html

► The distribution of a random variable *X* can be specified by its **Bross ridit function**[2] $R_X(\cdot)$, defined by the formula

$$R_X(x) = \Pr(X < x) + \frac{1}{2}\Pr(X = x).$$

- ► *So*, ridits are like ranks, but expressed on a scale from 0 (below the bottom–ranking value) to 1 (above the top–ranking value).
- ► The word was chosen to be like logit and probit, as the prefix stands for "with respect to an identified distribution".
- ► The Brockett-Levene ridit function[1] R^{*}_X(·) is defined (on a scale from -1 to 1) as a *difference* between probabilities,

$$R_X^*(x) = \Pr(X < x) - \Pr(X > x),$$

and should always be used to calculate the Bross ridit function

$$R_X(x) = \frac{1}{2} [R_X^*(x) + 1] ,$$

avoiding the precision problems of adding tiny half–probabilities to huge probabilities.

► The distribution of a random variable X can be specified by its Bross ridit function[2] R_X(·), defined by the formula

$$R_X(x) = \Pr(X < x) + \frac{1}{2}\Pr(X = x).$$

- ► *So*, ridits are like ranks, but expressed on a scale from 0 (below the bottom–ranking value) to 1 (above the top–ranking value).
- ► The word was chosen to be like logit and probit, as the prefix stands for "with respect to an identified distribution".
- ► The Brockett-Levene ridit function[1] R^{*}_X(·) is defined (on a scale from -1 to 1) as a *difference* between probabilities,

$$R_X^*(x) = \Pr(X < x) - \Pr(X > x),$$

and should always be used to calculate the Bross ridit function

$$R_X(x) = \frac{1}{2} [R_X^*(x) + 1] ,$$

avoiding the precision problems of adding tiny half–probabilities to huge probabilities.

► The distribution of a random variable X can be specified by its Bross ridit function[2] R_X(·), defined by the formula

$$R_X(x) = \Pr(X < x) + \frac{1}{2}\Pr(X = x).$$

- ► *So*, ridits are like ranks, but expressed on a scale from 0 (below the bottom–ranking value) to 1 (above the top–ranking value).
- ► The word was chosen to be like logit and probit, as the prefix stands for "with respect to an identified distribution".
- ► The Brockett-Levene ridit function[1] R^{*}_X(·) is defined (on a scale from -1 to 1) as a *difference* between probabilities,

$$R_X^*(x) = \Pr(X < x) - \Pr(X > x),$$

and should always be used to calculate the Bross ridit function

$$R_X(x) = \frac{1}{2} [R_X^*(x) + 1] ,$$

avoiding the precision problems of adding tiny half-probabilities to huge probabilities.

► The distribution of a random variable X can be specified by its Bross ridit function[2] R_X(·), defined by the formula

$$R_X(x) = \Pr(X < x) + \frac{1}{2}\Pr(X = x).$$

- ► *So*, ridits are like ranks, but expressed on a scale from 0 (below the bottom–ranking value) to 1 (above the top–ranking value).
- ► The word was chosen to be like logit and probit, as the prefix stands for "with respect to an identified distribution".
- ► The Brockett-Levene ridit function[1] R^{*}_X(·) is defined (on a scale from -1 to 1) as a *difference* between probabilities,

$$R_X^*(x) = \Pr(X < x) - \Pr(X > x),$$

and should always be used to calculate the Bross ridit function

$$R_X(x) = \frac{1}{2} [R_X^*(x) + 1] ,$$

avoiding the precision problems of adding tiny half-probabilities to huge probabilities.

► The distribution of a random variable X can be specified by its Bross ridit function[2] R_X(·), defined by the formula

$$R_X(x) = \Pr(X < x) + \frac{1}{2}\Pr(X = x).$$

- ► *So*, ridits are like ranks, but expressed on a scale from 0 (below the bottom–ranking value) to 1 (above the top–ranking value).
- ► The word was chosen to be like logit and probit, as the prefix stands for "with respect to an identified distribution".
- ► The Brockett-Levene ridit function[1] R^{*}_X(·) is defined (on a scale from -1 to 1) as a *difference* between probabilities,

$$R_X^*(x) = \Pr(X < x) - \Pr(X > x),$$

and should always be used to calculate the Bross ridit function

$$R_X(x) = \frac{1}{2} [R_X^*(x) + 1] ,$$

avoiding the precision problems of adding tiny half-probabilities to huge probabilities.

- ► The SSC package wridit computes "folded" Brockett-Levene ridits or "unfolded" Bross ridits for a numeric Stata variable.
- These ridits may be on a reverse scale (using the reverse option) and/or on a percentage scale (using the percent option), as with the ridit module of Nick Cox's egenmore.
- ► *However*, wridit also allows weights, so the ridits can be with respect to the distribution of the variable in a **target population**.
- In particular, zero weights are allowed, so the user can define ridits for the zero-weighted observations with respect to the distribution of the variable in the nonzero-weighted observations.
- ► *For instance*, in the auto data, we can define ridits of length with respect to the length distribution in US cars by zero-weighting non-US cars, or *vice versa*.
- On the default Bross scale, these ridits may be 0 in the former case for non–US cars, or 1 in the latter case for US cars.

- ► The SSC package wridit computes "folded" Brockett-Levene ridits or "unfolded" Bross ridits for a numeric Stata variable.
- These ridits may be on a reverse scale (using the reverse option) and/or on a percentage scale (using the percent option), as with the ridit module of Nick Cox's egenmore.
- ► *However*, wridit also allows weights, so the ridits can be with respect to the distribution of the variable in a **target population**.
- In particular, zero weights are allowed, so the user can define ridits for the zero-weighted observations with respect to the distribution of the variable in the nonzero-weighted observations.
- ► *For instance*, in the auto data, we can define ridits of length with respect to the length distribution in US cars by zero-weighting non-US cars, or *vice versa*.
- On the default Bross scale, these ridits may be 0 in the former case for non–US cars, or 1 in the latter case for US cars.

- ► The SSC package wridit computes "folded" Brockett-Levene ridits or "unfolded" Bross ridits for a numeric Stata variable.
- These ridits may be on a reverse scale (using the reverse option) and/or on a percentage scale (using the percent option), as with the ridit module of Nick Cox's egenmore.
- ► *However*, wridit also allows weights, so the ridits can be with respect to the distribution of the variable in a **target population**.
- In particular, zero weights are allowed, so the user can define ridits for the zero-weighted observations with respect to the distribution of the variable in the nonzero-weighted observations.
- ► *For instance*, in the auto data, we can define ridits of length with respect to the length distribution in US cars by zero-weighting non-US cars, or *vice versa*.
- ► On the default Bross scale, these ridits may be 0 in the former case for non–US cars, or 1 in the latter case for US cars.

- ► The SSC package wridit computes "folded" Brockett-Levene ridits or "unfolded" Bross ridits for a numeric Stata variable.
- These ridits may be on a reverse scale (using the reverse option) and/or on a percentage scale (using the percent option), as with the ridit module of Nick Cox's egenmore.
- ► *However*, wridit also allows weights, so the ridits can be with respect to the distribution of the variable in a **target population**.
- In particular, zero weights are allowed, so the user can define ridits for the zero-weighted observations with respect to the distribution of the variable in the nonzero-weighted observations.
- ► *For instance*, in the auto data, we can define ridits of length with respect to the length distribution in US cars by zero-weighting non-US cars, or *vice versa*.
- ► On the default Bross scale, these ridits may be 0 in the former case for non–US cars, or 1 in the latter case for US cars.

- ► The SSC package wridit computes "folded" Brockett-Levene ridits or "unfolded" Bross ridits for a numeric Stata variable.
- These ridits may be on a reverse scale (using the reverse option) and/or on a percentage scale (using the percent option), as with the ridit module of Nick Cox's egenmore.
- ► *However*, wridit also allows weights, so the ridits can be with respect to the distribution of the variable in a **target population**.
- In particular, zero weights are allowed, so the user can define ridits for the zero-weighted observations with respect to the distribution of the variable in the nonzero-weighted observations.
- ► *For instance*, in the auto data, we can define ridits of length with respect to the length distribution in US cars by zero-weighting non-US cars, or *vice versa*.
- ► On the default Bross scale, these ridits may be 0 in the former case for non–US cars, or 1 in the latter case for US cars.

- ► The SSC package wridit computes "folded" Brockett-Levene ridits or "unfolded" Bross ridits for a numeric Stata variable.
- These ridits may be on a reverse scale (using the reverse option) and/or on a percentage scale (using the percent option), as with the ridit module of Nick Cox's egenmore.
- ► *However*, wridit also allows weights, so the ridits can be with respect to the distribution of the variable in a **target population**.
- In particular, zero weights are allowed, so the user can define ridits for the zero-weighted observations with respect to the distribution of the variable in the nonzero-weighted observations.
- ► For instance, in the auto data, we can define ridits of length with respect to the length distribution in US cars by zero-weighting non-US cars, or vice versa.
- ► On the default Bross scale, these ridits may be 0 in the former case for non–US cars, or 1 in the latter case for US cars.

- ► The SSC package wridit computes "folded" Brockett-Levene ridits or "unfolded" Bross ridits for a numeric Stata variable.
- These ridits may be on a reverse scale (using the reverse option) and/or on a percentage scale (using the percent option), as with the ridit module of Nick Cox's egenmore.
- ► *However*, wridit also allows weights, so the ridits can be with respect to the distribution of the variable in a **target population**.
- In particular, zero weights are allowed, so the user can define ridits for the zero-weighted observations with respect to the distribution of the variable in the nonzero-weighted observations.
- ► For instance, in the auto data, we can define ridits of length with respect to the length distribution in US cars by zero-weighting non-US cars, or vice versa.
- ➤ On the default Bross scale, these ridits may be 0 in the former case for non-US cars, or 1 in the latter case for US cars.

- A ridit spline in a variable X is a spline in the ridit–transformed variable $R_X(X)$.
- If the user has installed the SSC packages bspline[3] and polyspline[4] as well as wridit, then the user can compute an unrestricted reference-spline basis in the ridit of an X-variable.
- This spline basis will have the advantage that the corresponding parameters of a fitted model will be values of the ridit spline at a list of values on the ridit scale, ranging from 0 to 1 (such as 0, 0.25, 0.50, 0.75 and 1).
- ► These fitted parameters will be mean values of the outcome variable, corresponding to *X*-values equal to percentiles of *X* (such as the minimum, median, maximum, and 25th and 75th percentiles).
- ▶ This is because percentiles are defined as inverse ridits.

- ► A ridit spline in a variable *X* is a spline in the ridit–transformed variable $R_X(X)$.
- If the user has installed the SSC packages bspline[3] and polyspline[4] as well as wridit, then the user can compute an unrestricted reference-spline basis in the ridit of an *X*-variable.
- This spline basis will have the advantage that the corresponding parameters of a fitted model will be values of the ridit spline at a list of values on the ridit scale, ranging from 0 to 1 (such as 0, 0.25, 0.50, 0.75 and 1).
- ► These fitted parameters will be mean values of the outcome variable, corresponding to *X*-values equal to percentiles of *X* (such as the minimum, median, maximum, and 25th and 75th percentiles).
- ► This is because percentiles are defined as inverse ridits.

- A ridit spline in a variable X is a spline in the ridit-transformed variable $R_X(X)$.
- If the user has installed the SSC packages bspline[3] and polyspline[4] as well as wridit, then the user can compute an unrestricted reference-spline basis in the ridit of an *X*-variable.
- This spline basis will have the advantage that the corresponding parameters of a fitted model will be values of the ridit spline at a list of values on the ridit scale, ranging from 0 to 1 (such as 0, 0.25, 0.50, 0.75 and 1).
- ► These fitted parameters will be mean values of the outcome variable, corresponding to *X*-values equal to percentiles of *X* (such as the minimum, median, maximum, and 25th and 75th percentiles).
- ► This is because percentiles are defined as inverse ridits.

- A ridit spline in a variable X is a spline in the ridit-transformed variable $R_X(X)$.
- If the user has installed the SSC packages bspline[3] and polyspline[4] as well as wridit, then the user can compute an unrestricted reference-spline basis in the ridit of an *X*-variable.
- ► This spline basis will have the advantage that the corresponding parameters of a fitted model will be values of the ridit spline at a list of values on the ridit scale, ranging from 0 to 1 (such as 0, 0.25, 0.50, 0.75 and 1).
- ► These fitted parameters will be mean values of the outcome variable, corresponding to *X*-values equal to percentiles of *X* (such as the minimum, median, maximum, and 25th and 75th percentiles).
- ► This is because percentiles are defined as inverse ridits.

- A ridit spline in a variable X is a spline in the ridit-transformed variable $R_X(X)$.
- If the user has installed the SSC packages bspline[3] and polyspline[4] as well as wridit, then the user can compute an unrestricted reference-spline basis in the ridit of an *X*-variable.
- ► This spline basis will have the advantage that the corresponding parameters of a fitted model will be values of the ridit spline at a list of values on the ridit scale, ranging from 0 to 1 (such as 0, 0.25, 0.50, 0.75 and 1).
- ► These fitted parameters will be mean values of the outcome variable, corresponding to X-values equal to percentiles of X (such as the minimum, median, maximum, and 25th and 75th percentiles).
- ▶ This is because percentiles are defined as inverse ridits.

- ► A ridit spline in a variable *X* is a spline in the ridit–transformed variable $R_X(X)$.
- ► If the user has installed the SSC packages bspline[3] and polyspline[4] as well as wridit, then the user can compute an unrestricted reference-spline basis in the ridit of an *X*-variable.
- ► This spline basis will have the advantage that the corresponding parameters of a fitted model will be values of the ridit spline at a list of values on the ridit scale, ranging from 0 to 1 (such as 0, 0.25, 0.50, 0.75 and 1).
- ► These fitted parameters will be mean values of the outcome variable, corresponding to X-values equal to percentiles of X (such as the minimum, median, maximum, and 25th and 75th percentiles).
- ► This is because percentiles are defined as inverse ridits.

- ▶ We will demonstrate our methods in the auto data, with 1 observation for each of 74 car models.
- We will regress fuel efficiency in US/Imperial miles per gallon with respect to a ridit spline in car length in US/Imperial inches.
- We will use wridit to define the ridits of car length, and polyspline[4] to define an unrestricted cubic reference-spline basis in the ridits.
- We will then use rcentile[4] to estimate the percentiles corresponding to the reference ridits.
- ▶ We will then fit the regression model for fuel efficiency with respect to car length, with 1 parameter for each of 5 length percentiles (0, 25, 50, 75 and 100).
- ► Finally, we will plot the results.

- ► We will demonstrate our methods in the auto data, with 1 observation for each of 74 car models.
- We will regress fuel efficiency in US/Imperial miles per gallon with respect to a ridit spline in car length in US/Imperial inches.
- We will use wridit to define the ridits of car length, and polyspline[4] to define an unrestricted cubic reference—spline basis in the ridits.
- ▶ We will then use rcentile[4] to estimate the percentiles corresponding to the reference ridits.
- ▶ We will then fit the regression model for fuel efficiency with respect to car length, with 1 parameter for each of 5 length percentiles (0, 25, 50, 75 and 100).
- ► Finally, we will plot the results.

- ► We will demonstrate our methods in the auto data, with 1 observation for each of 74 car models.
- We will regress fuel efficiency in US/Imperial miles per gallon with respect to a ridit spline in car length in US/Imperial inches.
- We will use wridit to define the ridits of car length, and polyspline[4] to define an unrestricted cubic reference-spline basis in the ridits.
- We will then use rcentile[4] to estimate the percentiles corresponding to the reference ridits.
- ▶ We will then fit the regression model for fuel efficiency with respect to car length, with 1 parameter for each of 5 length percentiles (0, 25, 50, 75 and 100).
- ► Finally, we will plot the results.

- ► We will demonstrate our methods in the auto data, with 1 observation for each of 74 car models.
- We will regress fuel efficiency in US/Imperial miles per gallon with respect to a ridit spline in car length in US/Imperial inches.
- ► We will use wridit to define the ridits of car length, and polyspline[4] to define an unrestricted cubic reference—spline basis in the ridits.
- ► We will then use rcentile[4] to estimate the percentiles corresponding to the reference ridits.
- ▶ We will then fit the regression model for fuel efficiency with respect to car length, with 1 parameter for each of 5 length percentiles (0, 25, 50, 75 and 100).
- ► Finally, we will plot the results.

- ► We will demonstrate our methods in the auto data, with 1 observation for each of 74 car models.
- We will regress fuel efficiency in US/Imperial miles per gallon with respect to a ridit spline in car length in US/Imperial inches.
- ► We will use wridit to define the ridits of car length, and polyspline[4] to define an unrestricted cubic reference-spline basis in the ridits.
- ► We will then use rcentile[4] to estimate the percentiles corresponding to the reference ridits.
- ▶ We will then fit the regression model for fuel efficiency with respect to car length, with 1 parameter for each of 5 length percentiles (0, 25, 50, 75 and 100).
- ► Finally, we will plot the results.

- ► We will demonstrate our methods in the auto data, with 1 observation for each of 74 car models.
- ► We will regress fuel efficiency in US/Imperial miles per gallon with respect to a ridit spline in car length in US/Imperial inches.
- We will use wridit to define the ridits of car length, and polyspline[4] to define an unrestricted cubic reference-spline basis in the ridits.
- We will then use rcentile[4] to estimate the percentiles corresponding to the reference ridits.
- ▶ We will then fit the regression model for fuel efficiency with respect to car length, with 1 parameter for each of 5 length percentiles (0, 25, 50, 75 and 100).
- ► Finally, we will plot the results.

- ► We will demonstrate our methods in the auto data, with 1 observation for each of 74 car models.
- ► We will regress fuel efficiency in US/Imperial miles per gallon with respect to a ridit spline in car length in US/Imperial inches.
- ► We will use wridit to define the ridits of car length, and polyspline[4] to define an unrestricted cubic reference-spline basis in the ridits.
- We will then use rcentile[4] to estimate the percentiles corresponding to the reference ridits.
- ▶ We will then fit the regression model for fuel efficiency with respect to car length, with 1 parameter for each of 5 length percentiles (0, 25, 50, 75 and 100).
- ► Finally, we will plot the results.

Computing ridits using wridit

After loading the auto data, we use wridit to generate a new variable lengthridit, containing ridits (on a percentage scale) for the variable length:

```
. wridit length, percent generate(lengthridit);
. lab var lengthridit "Ridit (%) of Length (in.)";
. desc lengthridit, fu;
storage display value
variable name type format label variable label
lengthridit double %10.0g Ridit (%) of Length (in.)
. summ lengthridit;
Variable | Obs Mean Std. Dev. Min Max
lengthridit | 74 50 29.04986 .6756757 99.32432
```

Note that the Bross ridits (on a percentage scale) are *strictly* bounded between 0 and 100 percent, and have a mean of *exactly* 50 percent.

Computing a cubic ridit spine basis in length

We use the SSC package polyspline[4] to generate a basis of 5 cubic reference splines rs_1 to rs_5 in the ridit variable, corresponding to percentages of 0, 25, 50, 75 and 100, respectively:

. polyspline lengthridit, power(3) refpts(0(25)100) gene(rs_) labprefix(Percent@); 5 reference splines generated of degree: 3

. desc rs_*, fu;

variable name	storage type	display format	value label	variable label
rs_1 rs_2	float float	%8.4f %8.4f		Percent@0 Percent@25
rs_3	float	%8.4f		Percent@50
rs_4	float	%8.4f		Percent@75
rs_5	float	%8.4f		Percent@100

Note that we have labelled them using the labprefix() option of polyspline.

Percentiles corresponding to the 5 reference percentage ridits

To estimate the inverse ridits (also known as percentiles) corresponding to our 5 reference percentage ridits, we use the SSC package rcentile[4] to compute percentile car lengths in inches:

```
. rcentile length, centile(0(25)100) transf(asin);
Percentile(s) for variable: length
Mean sign transformation: Daniels' arcsine
Valid observations: 74
95% confidence interval(s) for percentile(s)
 Percent Centile Minimum Maximum
             142 -9.0e+307
                              142
      0
     25
        170
                     164 174
     50
        192.5 179 198
     75
          204 200
                              212
    100
          233
                233 9.0e+307
```

Percentiles 0 and 100 are estimated as the minimum and maximum lengths, respectively, with lower and upper confidence limits (respectively) equal to minus and plus infinity (respectively). *However*, we are not really interested in confidence limits here, because...

Mean mileages corresponding to the 5 reference percentage ridits

... length is the X-variable, and we are really interested in the *conditional* means of the Y-variable mpg, corresponding to our 5 *sample* percentile lengths. We estimate these using regress:

. regress mpg rs_*, noconst vce(robust);								
Linear regress	tion			Number of F(5, 69) Prob > F R-squared Root MSE	=	74 757.73 0.0000 0.9778 3.4072		
 mpg	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]		
rs_1 rs_2 rs_3 rs_4 rs_5	29.2563 25.66597 19.43958 18.01778 12.68334	2.17573 .9778877 .6659589 .5218036 1.043106	13.45 26.25 29.19 34.53 12.16	0.000 0.000 0.000 0.000 0.000	24.91584 23.71514 18.11103 16.97681 10.6024	33.59677 27.6168 20.76813 19.05875 14.76427		

These estimates and confidence limits are expressed in miles per gallon, and in an alien–looking format. *However* ...

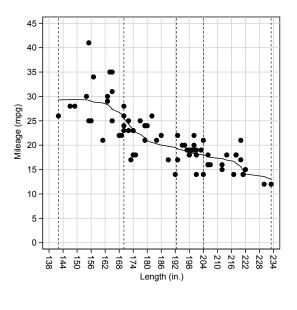
Percentile lengths and mean mileages corresponding to the 5 reference percentage ridits

... if we collect the percentiles in an output dataset (or resultsset) using xsvmat, and collect the estimated mean mileages in a second resultsset using parmest, and reconstruct the Percent variable in the second resultsset using factext, and merge the 2 resultssets by Percent to form a single resultsset in memory, then we can list the percents, percentile lengths, and conditional mean mileages as follows:

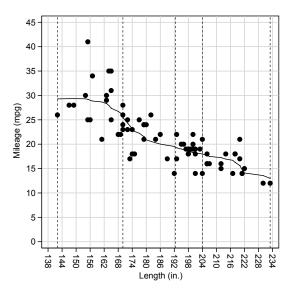
. li:	st	Percent	Centile par	m estir	nate min* ma	ax*, abbi	r(32);
	+-	 Percent	Centile	parm	estimate	 min95	+ max95
	- I -						
1.	1	0	142	rs_1	29.26	24.92	33.60
2.		25	170	rs_2	25.67	23.72	27.62
з.		50	192.5	rs_3	19.44	18.11	20.77
4.		75	204	rs_4	18.02	16.98	19.06
5.		100	233	rs_5	12.68	10.60	14.76
	+-						+

This format is easier to understand. However ...

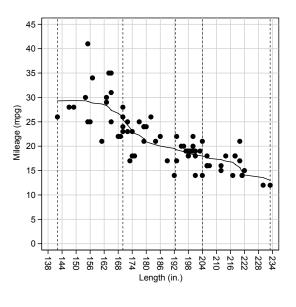
- ... we can be even more informative if we append the resultsset to the original dataset and create some graphics.
- Here, we have scatter-plotted the observed mileages, and line-plotted the fitted mileages, against car length.
- The horizontal–axis reference lines show the positions of car length percentiles 0, 25, 50, 75 and 100.



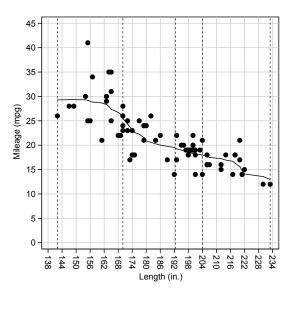
- ... we can be even more informative if we append the resultsset to the original dataset and create some graphics.
- Here, we have scatter-plotted the observed mileages, and line-plotted the fitted mileages, against car length.
- The horizontal–axis reference lines show the positions of car length percentiles 0, 25, 50, 75 and 100.



- ... we can be even more informative if we append the resultsset to the original dataset and create some graphics.
- Here, we have scatter-plotted the observed mileages, and line-plotted the fitted mileages, against car length.
- The horizontal–axis reference lines show the positions of car length percentiles 0, 25, 50, 75 and 100.

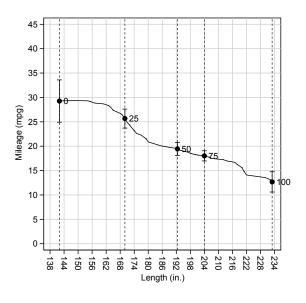


- ... we can be even more informative if we append the resultsset to the original dataset and create some graphics.
- Here, we have scatter-plotted the observed mileages, and line-plotted the fitted mileages, against car length.
- ► The horizontal-axis reference lines show the positions of car length percentiles 0, 25, 50, 75 and 100.



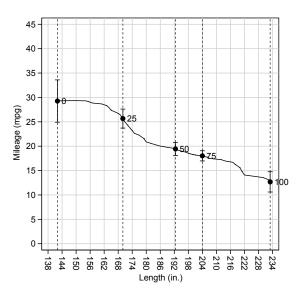
Plot of fitted and length-percentile mean car mileages against car length

- Alternatively, we can leave out the observed values, and show confidence intervals for the fitted values at the 5 car length percentiles, labelled with their percents.
- These are the fitted parameters of the ridit-spline model for mileage.
- Note that a ridit spline is less smooth than a spline, as a *sample* ridit function is non–smooth.



Plot of fitted and length-percentile mean car mileages against car length

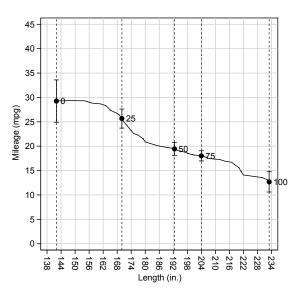
- Alternatively, we can leave out the observed values, and show confidence intervals for the fitted values at the 5 car length percentiles, labelled with their percents.
- These are the fitted parameters of the ridit-spline model for mileage.
- Note that a ridit spline is less smooth than a spline, as a *sample* ridit function is non-smooth.



Plot of fitted and length-percentile mean car mileages against car length

- Alternatively, we can leave out the observed values, and show confidence intervals for the fitted values at the 5 car length percentiles, labelled with their percents.
- These are the fitted parameters of the ridit-spline model for mileage.
- Note that a ridit spline is less smooth than a spline, as a *sample* ridit function is non–smooth.

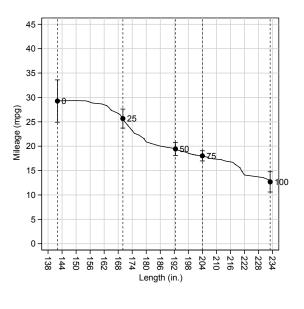
Ridit splines with applications to propensity weighting



Frame 12 of 21 《ロト 《 @ ト 《 差 ト 《 差 ト 差 の へ @

Plot of fitted and length-percentile mean car mileages against car length

- Alternatively, we can leave out the observed values, and show confidence intervals for the fitted values at the 5 car length percentiles, labelled with their percents.
- These are the fitted parameters of the ridit-spline model for mileage.
- Note that a ridit spline is less smooth than a spline, as a *sample* ridit function is non-smooth.



- ▶ In an observational study, a **propensity score** typically measures the odds of a subject being allocated to Treatment *A* instead of to Treatment *B*.
- ► It is typically computed using a logit regression model of treatment allocation with respect to a list of **confounders**.
- ► The propensity score can then be used to calculate **propensity** weights.
- These are used to standardize directly from the sampled population to a fantasy target population, with a real-world distribution of confounders (and therefore of the propensity score), but with no treatment-confounder association.
- The causal effect of treatment allocation on an outcome is then estimated as the difference, in that fantasy target population, between the mean outcome for subjects on Treatment A and the mean outcome for subjects on Treatment B.

- ► In an observational study, a **propensity score** typically measures the odds of a subject being allocated to Treatment *A* instead of to Treatment *B*.
- ► It is typically computed using a logit regression model of treatment allocation with respect to a list of **confounders**.
- ► The propensity score can then be used to calculate **propensity** weights.
- These are used to standardize directly from the sampled population to a fantasy target population, with a real-world distribution of confounders (and therefore of the propensity score), but with no treatment-confounder association.
- The causal effect of treatment allocation on an outcome is then estimated as the difference, in that fantasy target population, between the mean outcome for subjects on Treatment A and the mean outcome for subjects on Treatment B.

- ► In an observational study, a **propensity score** typically measures the odds of a subject being allocated to Treatment *A* instead of to Treatment *B*.
- ► It is typically computed using a logit regression model of treatment allocation with respect to a list of **confounders**.
- ► The propensity score can then be used to calculate **propensity** weights.
- These are used to standardize directly from the sampled population to a fantasy target population, with a real-world distribution of confounders (and therefore of the propensity score), but with no treatment-confounder association.
- The causal effect of treatment allocation on an outcome is then estimated as the difference, in that fantasy target population, between the mean outcome for subjects on Treatment A and the mean outcome for subjects on Treatment B.

- ► In an observational study, a **propensity score** typically measures the odds of a subject being allocated to Treatment *A* instead of to Treatment *B*.
- ► It is typically computed using a logit regression model of treatment allocation with respect to a list of **confounders**.
- ► The propensity score can then be used to calculate **propensity** weights.
- These are used to standardize directly from the sampled population to a fantasy **target population**, with a real–world distribution of confounders (and therefore of the propensity score), but with no treatment–confounder association.
- The causal effect of treatment allocation on an outcome is then estimated as the difference, in that fantasy target population, between the mean outcome for subjects on Treatment A and the mean outcome for subjects on Treatment B.

- ► In an observational study, a **propensity score** typically measures the odds of a subject being allocated to Treatment *A* instead of to Treatment *B*.
- ► It is typically computed using a logit regression model of treatment allocation with respect to a list of **confounders**.
- ► The propensity score can then be used to calculate **propensity** weights.
- These are used to standardize directly from the sampled population to a fantasy target population, with a real-world distribution of confounders (and therefore of the propensity score), but with no treatment-confounder association.
- ► The **causal effect** of treatment allocation on an outcome is then estimated as the difference, in that fantasy target population, between the mean outcome for subjects on Treatment *A* and the mean outcome for subjects on Treatment *B*.

- ► In an observational study, a **propensity score** typically measures the odds of a subject being allocated to Treatment *A* instead of to Treatment *B*.
- ► It is typically computed using a logit regression model of treatment allocation with respect to a list of **confounders**.
- ► The propensity score can then be used to calculate **propensity** weights.
- These are used to standardize directly from the sampled population to a fantasy target population, with a real-world distribution of confounders (and therefore of the propensity score), but with no treatment-confounder association.
- ► The causal effect of treatment allocation on an outcome is then estimated as the difference, in that fantasy target population, between the mean outcome for subjects on Treatment A and the mean outcome for subjects on Treatment B.

- ► Unfortunately, once the propensity weights are calculated from the model, we may find that some of these weights are *extremely* large.
- ► These weights belong to subjects with an *extremely* atypical confounder profile for the treatment group (*A* or *B*) to which they were allocated in the real world.
- Such outlying weights may imply that the propensity weights do not do a very good job of balancing out the confounders, and/or that the variance of the estimated causal effect is inflated.
- A possible solution is to compute a secondary propensity score (and a secondary propensity weight) from a second logit model, regressing treatment allocation with respect to a ridit spline in the primary propensity score.
- ► This secondary model might be less likely to generate outlying propensity weights than the primary model, as the ridit function is strictly bounded between 0 and 1.

- ► Unfortunately, once the propensity weights are calculated from the model, we may find that some of these weights are *extremely* large.
- ► These weights belong to subjects with an *extremely* atypical confounder profile for the treatment group (*A* or *B*) to which they were allocated in the real world.
- Such outlying weights may imply that the propensity weights do not do a very good job of balancing out the confounders, and/or that the variance of the estimated causal effect is inflated.
- A possible solution is to compute a secondary propensity score (and a secondary propensity weight) from a second logit model, regressing treatment allocation with respect to a ridit spline in the primary propensity score.
- ► This secondary model might be less likely to generate outlying propensity weights than the primary model, as the ridit function is strictly bounded between 0 and 1.

- ► Unfortunately, once the propensity weights are calculated from the model, we may find that some of these weights are *extremely* large.
- ► These weights belong to subjects with an *extremely* atypical confounder profile for the treatment group (*A* or *B*) to which they were allocated in the real world.
- Such outlying weights may imply that the propensity weights do not do a very good job of balancing out the confounders, and/or that the variance of the estimated causal effect is inflated.
- A possible solution is to compute a secondary propensity score (and a secondary propensity weight) from a second logit model, regressing treatment allocation with respect to a ridit spline in the primary propensity score.
- ► This secondary model might be less likely to generate outlying propensity weights than the primary model, as the ridit function is strictly bounded between 0 and 1.

- ► Unfortunately, once the propensity weights are calculated from the model, we may find that some of these weights are *extremely* large.
- ► These weights belong to subjects with an *extremely* atypical confounder profile for the treatment group (*A* or *B*) to which they were allocated in the real world.
- Such outlying weights may imply that the propensity weights do not do a very good job of balancing out the confounders, and/or that the variance of the estimated causal effect is inflated.
- A possible solution is to compute a secondary propensity score (and a secondary propensity weight) from a second logit model, regressing treatment allocation with respect to a ridit spline in the primary propensity score.
- ► This secondary model might be less likely to generate outlying propensity weights than the primary model, as the ridit function is strictly bounded between 0 and 1.

- ► Unfortunately, once the propensity weights are calculated from the model, we may find that some of these weights are *extremely* large.
- ► These weights belong to subjects with an *extremely* atypical confounder profile for the treatment group (*A* or *B*) to which they were allocated in the real world.
- Such outlying weights may imply that the propensity weights do not do a very good job of balancing out the confounders, and/or that the variance of the estimated causal effect is inflated.
- A possible solution is to compute a secondary propensity score (and a secondary propensity weight) from a second logit model, regressing treatment allocation with respect to a ridit spline in the primary propensity score.
- ► This secondary model might be less likely to generate outlying propensity weights than the primary model, as the ridit function is strictly bounded between 0 and 1.

- ► Unfortunately, once the propensity weights are calculated from the model, we may find that some of these weights are *extremely* large.
- ► These weights belong to subjects with an *extremely* atypical confounder profile for the treatment group (*A* or *B*) to which they were allocated in the real world.
- Such outlying weights may imply that the propensity weights do not do a very good job of balancing out the confounders, and/or that the variance of the estimated causal effect is inflated.
- ► A possible solution is to compute a secondary propensity score (and a secondary propensity weight) from a second logit model, regressing treatment allocation with respect to a ridit spline in the primary propensity score.
- ► This secondary model might be less likely to generate outlying propensity weights than the primary model, as the ridit function is strictly bounded between 0 and 1.

- ▶ This example uses data from 2 British National Health Service databases, the Central Practice Research Datalink (CPRD) and the Hospital Episodes System (HES).
- ► We followed up 190,137 Type 2 diabetics in 490 English general practices, computing adverse event counts and 15 binary treatment indicators (9 prescribed drugs and 6 target achievements) for each of 10,135,062 patient-months.
- ► The aim was to assess the **average treatment effect in the treated (ATET)**, defined as a treated–untreated difference in adverse event counts per 1,000 patient–years.
- ▶ We used a list of patient—month—specific confounders to define a primary propensity score and propensity weight for each of the 15 treatment indicators, and also a secondary propensity score and propensity weight, using a logit model of the treatment with respect to a ridit spline in the primary propensity score.

- ► This example uses data from 2 British National Health Service databases, the Central Practice Research Datalink (CPRD) and the Hospital Episodes System (HES).
- We followed up 190,137 Type 2 diabetics in 490 English general practices, computing adverse event counts and 15 binary treatment indicators (9 prescribed drugs and 6 target achievements) for each of 10,135,062 patient-months.
- ► The aim was to assess the **average treatment effect in the treated (ATET)**, defined as a treated–untreated difference in adverse event counts per 1,000 patient–years.
- ► We used a list of patient-month-specific confounders to define a primary propensity score and propensity weight for each of the 15 treatment indicators, and also a secondary propensity score and propensity weight, using a logit model of the treatment with respect to a ridit spline in the primary propensity score.

- ► This example uses data from 2 British National Health Service databases, the Central Practice Research Datalink (CPRD) and the Hospital Episodes System (HES).
- ➤ We followed up 190,137 Type 2 diabetics in 490 English general practices, computing adverse event counts and 15 binary treatment indicators (9 prescribed drugs and 6 target achievements) for each of 10,135,062 patient-months.
- ► The aim was to assess the **average treatment effect in the treated (ATET)**, defined as a treated–untreated difference in adverse event counts per 1,000 patient–years.
- ► We used a list of patient—month—specific confounders to define a primary propensity score and propensity weight for each of the 15 treatment indicators, and also a secondary propensity score and propensity weight, using a logit model of the treatment with respect to a ridit spline in the primary propensity score.

- ► This example uses data from 2 British National Health Service databases, the Central Practice Research Datalink (CPRD) and the Hospital Episodes System (HES).
- ➤ We followed up 190,137 Type 2 diabetics in 490 English general practices, computing adverse event counts and 15 binary treatment indicators (9 prescribed drugs and 6 target achievements) for each of 10,135,062 patient-months.
- ► The aim was to assess the **average treatment effect in the treated (ATET)**, defined as a treated–untreated difference in adverse event counts per 1,000 patient–years.
- ► We used a list of patient—month—specific confounders to define a primary propensity score and propensity weight for each of the 15 treatment indicators, and also a secondary propensity score and propensity weight, using a logit model of the treatment with respect to a ridit spline in the primary propensity score.

- ► This example uses data from 2 British National Health Service databases, the Central Practice Research Datalink (CPRD) and the Hospital Episodes System (HES).
- ➤ We followed up 190,137 Type 2 diabetics in 490 English general practices, computing adverse event counts and 15 binary treatment indicators (9 prescribed drugs and 6 target achievements) for each of 10,135,062 patient-months.
- ► The aim was to assess the **average treatment effect in the treated (ATET)**, defined as a treated–untreated difference in adverse event counts per 1,000 patient–years.
- ► We used a list of patient-month-specific confounders to define a primary propensity score and propensity weight for each of the 15 treatment indicators, and also a secondary propensity score and propensity weight, using a logit model of the treatment with respect to a ridit spline in the primary propensity score.

- ► To choose a propensity score for use in the final analysis, we used the methods of Newson (2016)[5].
- Predictive power was measured using the unweighted Somers' D of the propensity score with respect to the treatment indicator.
- Balancing power was measured using Somers' *D* of the propensity score with respect to the treatment indicator, weighted using the appropriate propensity weight.
- Costs of propensity weights were measured using variance and standard error (SE) inflation factors for the average treatment effect.

► To choose a propensity score for use in the final analysis, we used the methods of Newson (2016)[5].

- Predictive power was measured using the unweighted Somers' D of the propensity score with respect to the treatment indicator.
- Balancing power was measured using Somers' *D* of the propensity score with respect to the treatment indicator, weighted using the appropriate propensity weight.
- Costs of propensity weights were measured using variance and standard error (SE) inflation factors for the average treatment effect.

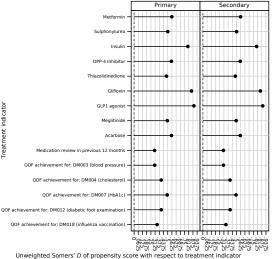
- ► To choose a propensity score for use in the final analysis, we used the methods of Newson (2016)[5].
- Predictive power was measured using the unweighted Somers' D of the propensity score with respect to the treatment indicator.
- Balancing power was measured using Somers' *D* of the propensity score with respect to the treatment indicator, weighted using the appropriate propensity weight.
- Costs of propensity weights were measured using variance and standard error (SE) inflation factors for the average treatment effect.

- ► To choose a propensity score for use in the final analysis, we used the methods of Newson (2016)[5].
- Predictive power was measured using the unweighted Somers' D of the propensity score with respect to the treatment indicator.
- Balancing power was measured using Somers' D of the propensity score with respect to the treatment indicator, weighted using the appropriate propensity weight.
- Costs of propensity weights were measured using variance and standard error (SE) inflation factors for the average treatment effect.

- ► To choose a propensity score for use in the final analysis, we used the methods of Newson (2016)[5].
- Predictive power was measured using the unweighted Somers' D of the propensity score with respect to the treatment indicator.
- Balancing power was measured using Somers' D of the propensity score with respect to the treatment indicator, weighted using the appropriate propensity weight.
- Costs of propensity weights were measured using variance and standard error (SE) inflation factors for the average treatment effect.

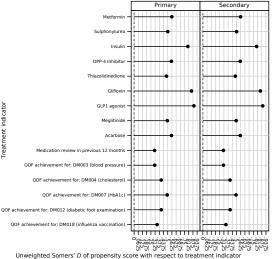
reatment indicator

- ► The unweighted
- ► The left and right panels
- ► Values for the same



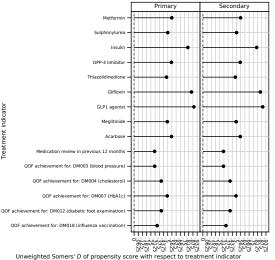
reatment indicator

- ► The unweighted Somers' D values measure the power of propensity scores to predict the 15 treatments.
- ► The left and right panels
- ► Values for the same



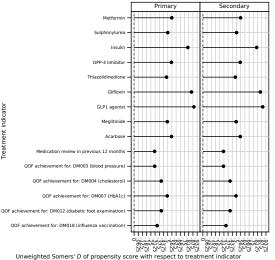
reatment indicator

- ► The unweighted Somers' D values measure the power of propensity scores to predict the 15 treatments.
- ► The left and right panels show them for primary and secondary propensity scores, respectively.
- ► Values for the same

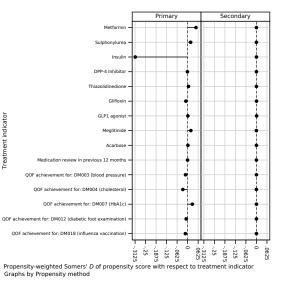


reatment indicator

- ► The unweighted Somers' D values measure the power of propensity scores to predict the 15 treatments.
- ► The left and right panels show them for primary and secondary propensity scores, respectively.
- ► Values for the same treatment are practically identical between the two propensity methods.

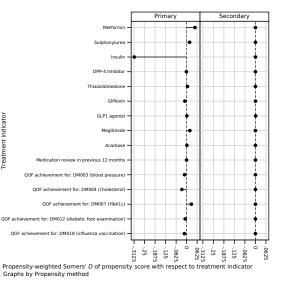


- The propensity-weighted Somers' D values should be zero, if the weights standardize out the propensity-treatment association.
- The values for primary propensity scores are near zero for most treatments, but spectacularly nonzero for a few treatments.
- However, the values for secondary propensity scores are very nearly zero for all treatments.



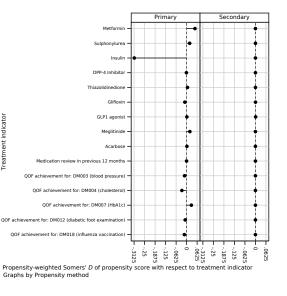
reatment indicator

- The propensity-weighted Somers' D values should be zero, *if* the weights standardize out the propensity-treatment association.
- ▶ The values for primary
- ► *However*, the values for



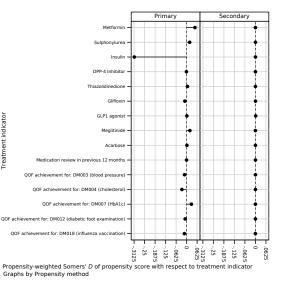
reatment indicator

- The propensity-weighted Somers' D values should be zero, *if* the weights standardize out the propensity-treatment association.
- ► The values for primary propensity scores are near zero for most treatments. but spectacularly nonzero for a few treatments.
- ► *However*, the values for

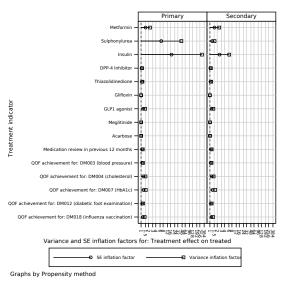


reatment indicator

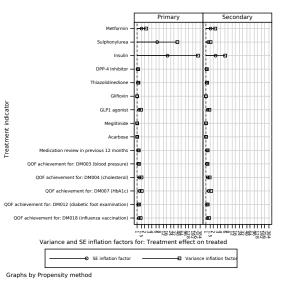
- The propensity-weighted Somers' D values should be zero, *if* the weights standardize out the propensity-treatment association.
- ► The values for primary propensity scores are near zero for most treatments. but spectacularly nonzero for a few treatments.
- ► *However*, the values for secondary propensity scores are very nearly zero for all treatments.



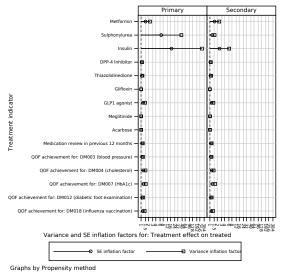
- Variance and standard error inflation factors for the ATET are shown on a binary log scale.
- Both types of propensity weights may inflate the variance.
- However, the primary propensity weights (unlike the secondary propensity weights) may inflate it by orders of magnitude for some treatments.



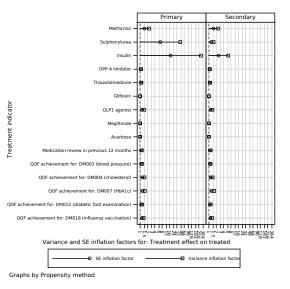
- Variance and standard error inflation factors for the ATET are shown on a binary log scale.
- Both types of propensity weights may inflate the variance.
- However, the primary propensity weights (unlike the secondary propensity weights) may inflate it by orders of magnitude for some treatments.



- Variance and standard error inflation factors for the ATET are shown on a binary log scale.
- Both types of propensity weights may inflate the variance.
- However, the primary propensity weights (unlike the secondary propensity weights) may inflate it by orders of magnitude for some treatments.



- Variance and standard error inflation factors for the ATET are shown on a binary log scale.
- Both types of propensity weights may inflate the variance.
- However, the primary propensity weights (unlike the secondary propensity weights) may inflate it by orders of magnitude for some treatments.



- The secondary propensity scores (computed using a ridit spline) lost no predictive power, compared to the primary propensity scores.
- ► *However*, the secondary propensity weights were more reliable than the primary propensity weights for standardizing out the treatment–propensity associations.
- ► *And*, they *sometimes* caused *much* less variance inflation.
- So, the ridit spline seemed to be a good tool for stabilizing propensity weights, and was used in the final analysis to estimate the treatment effects.

- The secondary propensity scores (computed using a ridit spline) lost no predictive power, compared to the primary propensity scores.
- ► *However*, the secondary propensity weights were more reliable than the primary propensity weights for standardizing out the treatment–propensity associations.
- ► *And*, they *sometimes* caused *much* less variance inflation.
- So, the ridit spline seemed to be a good tool for stabilizing propensity weights, and was used in the final analysis to estimate the treatment effects.

- The secondary propensity scores (computed using a ridit spline) lost no predictive power, compared to the primary propensity scores.
- ► *However*, the secondary propensity weights were more reliable than the primary propensity weights for standardizing out the treatment–propensity associations.
- ► *And*, they *sometimes* caused *much* less variance inflation.
- So, the ridit spline seemed to be a good tool for stabilizing propensity weights, and was used in the final analysis to estimate the treatment effects.

- The secondary propensity scores (computed using a ridit spline) lost no predictive power, compared to the primary propensity scores.
- ► *However*, the secondary propensity weights were more reliable than the primary propensity weights for standardizing out the treatment-propensity associations.
- ► And, they sometimes caused much less variance inflation.
- So, the ridit spline seemed to be a good tool for stabilizing propensity weights, and was used in the final analysis to estimate the treatment effects.

- The secondary propensity scores (computed using a ridit spline) lost no predictive power, compared to the primary propensity scores.
- ► *However*, the secondary propensity weights were more reliable than the primary propensity weights for standardizing out the treatment-propensity associations.
- ► And, they sometimes caused much less variance inflation.
- ► *So*, the ridit spline seemed to be a good tool for stabilizing propensity weights, and was used in the final analysis to estimate the treatment effects.

References

- [1] Brockett, P. L., and Levene, A. 1977. On a characterization of ridits. *The Annals of Statistics* **5(6)**: 1245–1248.
- [2] Bross, I. D. J. 1958. How to use ridit analysis. *Biometrics* 14(1): 18–38.
- [3] Newson, R. B. 2012. Sensible parameters for univariate and multivariate splines. *The Stata Journal* **12(3)**: 479–504.
- [4] Newson, R. B. 2014. Easy-to-use packages for estimating rank and spline parameters. Presented at the 20th UK Stata User Meeting, 11–12 September, 2014. Downloadable from the conference website at http://ideas.repec.org/p/boc/usug14/01.html
- [5] Newson, R. B. 2016. The role of Somers' *D* in propensity modelling. Presented at the 22nd UK Stata User Meeting, 08–09 September, 2016. Downloadable from the conference website at http://ideas.repec.org/p/boc/usug16/01.html

This presentation, and the do-file producing the auto data examples, can be downloaded from the conference website at *http://ideas.repec.org/s/boc/usug17.html*

The packages used in this presentation can be downloaded from SSC, using the ssc command.