Yulia Marchenko

Executive Director of Statistics StataCorp LP

2017 UK Stata Users Group Meeting

- What is Bayesian analysis?
- Stata's Bayesian suite of commands
- Bayesian linear regression
- Postestimation
- Bayesian autoregressive models
- Bayesian multilevel models
- Bayesian survival models
- Concluding remarks
- References

Stata 15 provides a convenient and elegant way of fitting Bayesian regression models by prefixing your estimation command with bayes.

- You fit linear regression by typing
 - . regress y x

You can now fit Bayesian linear regression by typing

- . bayes: regress y x
- Default priors are provided for convenience; you should carefully think about the priors and often specify your own:
 - . bayes, prior(...) prior(...) ... : regress y x
- 45 estimation commands are supported including GLM, survival models, multilevel models, and more.
- All Bayesian postestimation features work after bayes: just like they do after bayesmh.

Classical linear regression

- Data: Math scores of pupils in the third and fifth years from 48 different schools in Inner London (Mortimore et al. 1988).
- Linear regression of five-year math scores (math5) on three-year math scores (math3).

Source	SS	df	MS	Number of obs F(1, 885)	=	887 341,40
Model Residual	10960.2737 28411.6181	1 885	10960.2737 32.1035233	Prob > F R-squared	=	0.0000 0.2784
Total	39371.8918	886	44.4378011	Adj R-squared Root MSE	=	0.2776 5.666
math5	Coef.	Std. Err.	t	P> t [95% C	onf.	Interval]
math3 _cons	.6081306 30.34656	.0329126 .1906157		0.000 .54353 0.000 29.972		.6727265 30.72067

. regress math5 math3

Bayesian linear regression

```
. set seed 15. bayes: regress math5 math3
```

Burn-in ... Simulation ... Model summary

```
Likelihood:
math5 ~ regress(xb_math5,{sigma2})
Priors:
{math5:math3 _cons} ~ normal(0,10000)
{sigma2} ~ igamma(.01,.01)
```

(1)

(1) Parameters are elements of the linear form xb_math5.

stata 15

Bayesian linear regression	MCMC iterations =	12,500
Random-walk Metropolis-Hastings sampling	Burn-in =	2,500
	MCMC sample size =	10,000
	Number of obs =	887
	Acceptance rate =	.3312
	Efficiency: min =	.1099
	avg =	.1529
Log marginal likelihood = -2817.2335	max =	.2356

		Mean	Std. Dev.	MCSE	Median	Equal- [95% Cred.	
math5 math _cor		.6070097 30.3462	.0323707 .1903067	.000976 .005658	.6060445 30.34904	.5440594 29.97555	.6706959 30.71209
sigma	2	32.17492	1.538155	.031688	32.0985	29.3045	35.38031

Note: Default priors are used for model parameters.

- bayes: regress is not regress!
- Let's review a few Bayesian concepts before we interpret results.

What is Bayesian analysis?

Bayesian analysis is a statistical paradigm that answers research questions about unknown parameters using probability statements.

- What is the probability that a person accused of a crime is guilty?
- What is the probability that treatment A is more cost effective than treatment B for a specific health care provider?
- What is the probability that the odds ratio is between 0.3 and 0.5?
- What is the probability that three out of five quiz questions will be answered correctly by students?
- And more.

You may be interested in Bayesian analysis if

- you have some prior information available from previous studies that you would like to incorporate in your analysis. For example, in a study of preterm birthweights, it would be sensible to incorporate the prior information that the probability of a mean birthweight above 15 pounds is negligible. Or,
- your research problem may require you to answer a question: What is the probability that my parameter of interest belongs to a specific range? For example, what is the probability that an odds ratio is between 0.2 and 0.5? Or,
- you want to assign a probability to your research hypothesis.
 For example, what is the probability that a person accused of a crime is guilty?
- And more.

Components of Bayesian analysis

Assumptions

- Observed data sample y is fixed and model parameters θ are random.
- y is viewed as a result of a one-time experiment.
- A parameter is summarized by an entire distribution of values instead of one fixed value as in classical frequentist analysis.

Components of Bayesian analysis

• There is some prior (before seeing the data!) knowledge about θ formulated as a **prior distribution** $p(\theta)$.

- After data y are observed, the information about θ is updated based on the **likelihood** $f(y|\theta)$.
- Information is updated by using the Bayes rule to form a posterior distribution p(θ|y):

$$p(\theta|y) = \frac{f(y|\theta)p(\theta)}{p(y)}$$

where p(y) is the marginal distribution of the data y.

Components of Bayesian analysis

Inference

- Estimating a posterior distribution $p(\theta|y)$ is at the heart of Bayesian analysis.
- Various summaries of this distribution are used for inference.
- Point estimates: posterior means, modes, medians, percentiles.
- Interval estimates: credible intervals (CrI)—(fixed) ranges to which a parameter is known to belong with a pre-specified probability.
- Monte-Carlo standard error (MCSE)—represents precision about posterior mean estimates.

Components of Bayesian analysis

- Hypothesis testing—assign probability to any hypothesis of interest.
- Model comparison: model posterior probabilities, Bayes factors.
- Predictions and model checking are based on a **posterior predictive distribution**:

$$p(y^{new}|y) = \int f(y^{new}|\theta)p(\theta|y)d\theta$$

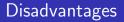
Advantages and disadvantages of Bayesian analysis

Advantages

Bayesian inference:

- is universal—it is based on the Bayes rule which applies equally to all models;
- incorporates prior information;
- provides the entire posterior distribution of model parameters;
- is exact, in the sense that it is based on the actual posterior distribution rather than on asymptotic normality in contrast with many frequentist estimation procedures; and
- provides straightforward and more intuitive interpretation of the results in terms of probabilities.

- Advantages and disadvantages of Bayesian analysis
 - Disadvantages



- Potential subjectivity in specifying prior information—noninformative priors or sensitivity analysis to various choices of informative priors.
- Computationally demanding—involves intractable integrals that can only be computed using intensive numerical methods such as Markov chain Monte Carlo (MCMC).

Stata's Bayesian suite of commands

Commands

Stata's Bayesian suite of commands

Command	Description
Estimation	
bayes:	Bayesian regression models using the bayes prefix (new in Stata 15)
bayesmh	General Bayesian models using MH
bayesmh evaluators	User-written Bayesian models using MH
Postestimation bayesgraph	Graphical convergence diagnostics
bayesstats ess bayesstats summary bayesstats ic	Effective sample sizes and more Summary statistics Information criteria and Bayes factors
bayestest model bayestest interval	Model posterior probabilities Interval hypothesis testing

Stata's Bayesian suite of commands

Built-in models and methods available in Stata

- Over 50 built-in likelihoods: normal, logit, ologit, Poisson, ...
- Many built-in priors: normal, gamma, Wishart, Zellner's g, ...
- Continuous, binary, ordinal, categorical, count, censored, truncated, zero-inflated, and survival outcomes.
- Univariate, multivariate, and multiple-equation models.
- Linear, nonlinear, generalized linear and nonlinear, sample-selection, panel-data, and multilevel models.
- Continuous univariate, multivariate, and discrete priors.
- User-defined models: likelihoods and priors.

MCMC methods:

- Adaptive MH.
- Adaptive MH with Gibbs updates-hybrid.
- Full Gibbs sampling for some models.

Stata's Bayesian suite of commands

General syntax

Built-in models

Fitting regression models

bayes: *stata_command* ...

Fitting general models

bayesmh ..., likelihood() prior() ...

User-defined models

Posterior evaluator

bayesmh ..., evaluator() ...

Likelihood evaluator with built-in priors bayesmh ..., llevaluator() prior() ...

Postestimation features are the same whether you use a built-in model or program your own!

Bayesian linear regression

- Recall our Bayesian linear regression of math5 on math3.
- Let's describe results in more detail.

```
. set seed 15
. bayes: regress math5 math3
Burn-in ...
Simulation ...
Model summary
Likelihood:
```

(1) Parameters are elements of the linear form xb_math5.

stata

Bayesian linear regression Random-walk Metropolis-Hastings sampling	MCMC iterations = Burn-in = MCMC sample size =	12,500 2,500 10,000
	Number of obs =	887
	Acceptance rate =	.3312
	Efficiency: min =	.1099
	avg =	.1529
Log marginal likelihood = -2817.2335	max =	.2356

	Mean	Std. Dev.	MCSE	Median	Equal- [95% Cred.	tailed Interval]
math5 math3 cons	.6070097 30.3462	.0323707	.000976	.6060445 30.34904	.5440594 29.97555	.6706959 30.71209
sigma2	32.17492	1.538155	.031688	32.0985	29.3045	35.38031

Note: Default priors are used for model parameters.

• The output from bayes: is the same as the output from bayesmh.

Default priors

Default priors

- Default priors are provided for convenience. For example, to specify your own priors, you need to know the names of parameters, and bayes: provides this information in the output.
- Normal priors with zero mean and variance 10,000 are used for regression coefficients and inverse-gamma priors with shape and scale parameters of 0.01 are used for variances.
- The priors are chosen to be fairly uninformative but may become informative for parameters of large magnitude.
- Default priors may not always be suitable for your particular model.
- You should always carefully evaluate the choice of priors and specify the priors that are appropriate for your model and research question.

Bayesian linear regression

-Custom priors

Custom priors

 Modify parameters of the default normal and inverse-gamma priors:

```
. set seed 15
. bayes, normalprior(10) igammaprior(1 2): regress math5 math3
Burn-in ...
Simulation ...
Model summary
Likelihood:
math5 ~ regress(xb_math5,{sigma2})
Priors:
{math5:math3_cons} ~ normal(0,100)
```

(1) Parameters are elements of the linear form xb_math5.

{sigma2} ~ igamma(1,2)

(1)

Custom priors

Bayesian linear regression	MCMC iterations =	12,500
Random-walk Metropolis-Hastings sampling	Burn-in =	2,500
	MCMC sample size =	10,000
	Number of obs =	887
	Acceptance rate =	.3503
	Efficiency: min =	.1189
	avg =	.1471
Log marginal likelihood = -2815.3081	max =	.2005

	Mean	Std. Dev.	MCSE	Median		tailed Interval]
math5						
math3	.6076875	.033088	.000948	.6076282	.5405233	.673638
_cons	30.326	.1931568	.005602	30.32804	29.93212	30.70529
sigma2	32.09694	1.530839	.034185	32.03379	29.27687	35.37723

Note: Default priors are used for model parameters.

-Custom priors

• Specify your own priors:

```
. set seed 15
. bayes, prior({math5:math3}, uniform(-1,1))
                                                111
         prior({math5:_cons}, uniform(-50,50)) ///
>
         prior({sigma2}, jeffreys): regress math5 math3
>
Burn-in ...
Simulation ...
Model summary
Likelihood:
  math5 ~ regress(xb_math5,{sigma2})
Priors:
  {math5:math3} ~ uniform(-1,1)
  {math5: cons} ~ uniform(-50.50)
       {sigma2} ~ jeffrevs
```

(1) Parameters are elements of the linear form xb_math5.

stata 15

(1)

(1)

Custom priors

Bayesian linear regression	MCMC iterations =	12,500
Random-walk Metropolis-Hastings sampling	Burn-in =	2,500
	MCMC sample size =	10,000
	Number of obs =	887
	Acceptance rate =	.3401
	Efficiency: min =	.1034
	avg =	.1405
Log marginal likelihood = -2806.8234	max =	.211

	Mean	Std. Dev.	MCSE	Median	Equal- [95% Cred.	tailed Interval]
math5						
math3	.6064431	.0306863	.000954	.6068399	.5455701	.6676897
_cons	30.34391	.1856718	.005676	30.3475	29.96434	30.71451
sigma2	32.15952	1.55488	.033853	32.10525	29.25887	35.33335

stata 15

Gibbs sampling

• Use more efficient Gibbs sampling:

. set seed 15		
. bayes, gibbs: regress math5 math3		
Bayesian linear regression	MCMC iterations =	12,500
Gibbs sampling	Burn-in =	2,500
	MCMC sample size =	10,000
	Number of obs =	887
	Acceptance rate =	1
	Efficiency: min =	1
	avg =	1

Log marginal likelihood = -2817.184

	Mean	Std. Dev.	MCSE	Median	Equal- [95% Cred.	
math5 math3	.6085104	.0333499	.000333	.6087819	.5426468	.6731657
_cons	30.34419	.1916673	.001917	30.34441	29.97587	30.72617
sigma2	32.16765	1.551119	.015511	32.10778	29.238	35.29901

Note: Default priors are used for model parameters.

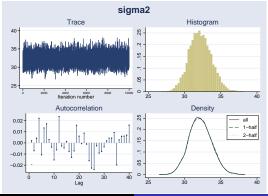
1

Yulia Marchenko (StataCorp)

max =

Postestimation

- All Bayesian postestimation features work after bayes: just like they do after bayesmh.
 - . bayesgraph diagnostics {sigma2}



Yulia Marchenko (StataCorp)

stata

Bayesian autoregressive models

Bayesian autoregressive models

- Although not as conveniently, we could already fit Bayesian linear regression using bayesmh.
- What we couldn't do, and still can't, is to use time-series operators with bayesmh.
- We can with bayes: regress!
- Let's use time-series operators to fit an autoregressive model.

Bayesian autoregressive models

- Data: Quarterly coal consumption (in millions of tons) in a given year in the United Kingdom from 1960 to 1986 (e.g., Harvey [1989]). (Variable lcoal is transformed using log(coal/1000).
- Bayesian AR(1) model:

. bayes: regress lcoal L.lcoal

Burn-in ... Simulation ... Model summary

```
Likelihood:

lcoal ~ regress(xb_lcoal,{sigma2})

Priors:

{lcoal:L.lcoal _cons} ~ normal(0,10000) (1)

{sigma2} ~ igamma(.01,.01)
```

(1) Parameters are elements of the linear form xb_lcoal.

stata

Bayesian autoregressive models

AR(1) model

MCMC iterations	=	12,500
pling Burn-in	=	2,500
MCMC sample size) =	10,000
Number of obs	=	107
Acceptance rate	=	.3285
Efficiency: min	1 =	.1199
avg	; =	.1448
09 max	=	.1905
	pling Burn-in MCMC sample size Number of obs Acceptance rate Efficiency: mir avg	MCMC sample size = Number of obs = Acceptance rate = Efficiency: min = avg =

		Mean	Std. Dev.	MCSE	Median	Equal- [95% Cred.	tailed Interval]
lcoal							
	lcoal L1.	.7143121	.0649968	.001877	.7123857	.5884089	.8436602
	_cons	6896604	.1561023	.004433	6935272	9970502	3879924
	sigma2	.1702592	.0243144	.000557	.1672834	.1299619	.2248287

Note: Default priors are used for model parameters.

• Store results for later comparison.

```
. bayes, saving(lag1_mcmc)
note: file lag1_mcmc.dta saved
. estimates store lag1
```


Bayesian autoregressive models

```
• Bayesian AR(2) model:
```

. bayes, saving(lag2_mcmc): regress lcoal L.lcoal L2.lcoal

```
Burn-in ...
Simulation ...
file lag2_mcmc.dta saved
Model summary
Likelihood:
    lcoal ~ regress(xb_lcoal,{sigma2})
Priors:
    {lcoal:L.lcoal L2.lcoal _cons} ~ normal(0,10000) (1)
        {sigma2} ~ igamma(.01,.01)
```

(1) Parameters are elements of the linear form xb_lcoal.

stata 15

Bayesian autoregressive models

AR(2) model

Bayesian linear regression Random-walk Metropolis-Hastings sampling	MCMC iterations = Burn-in =	12,500 2,500
	MCMC sample size =	10,000
	Number of obs =	106
	Acceptance rate =	.3614
	Efficiency: min =	.07552
	avg =	.1172
Log marginal likelihood = -82.507817	max =	.1966

_		Mean	Std. Dev.	MCSE	Median		tailed Interval]
lcoal							
	lcoal						
	L1.	.6954794	.0967804	.003522	.6958134	.5008727	.8832852
	L2.	.0372711	.0970813	.003091	.0350822	1491183	.2311099
	_cons	6414813	.1760301	.005622	6465191	9783713	2926136
	sigma2	.1727567	.0248036	.000559	.1701944	.1296203	.2264395

Note: Default priors are used for model parameters.

. estimates store lag2

Bayesian autoregressive models

AR(p) models

- Bayesian AR(3) model:
 - . bayes, saving(lag3_mcmc): regress lcoal L(1/3).lcoal
 - . estimates store lag3
- Bayesian AR(4) model:
 - . bayes, saving(lag4_mcmc): regress lcoal L(1/4).lcoal
 - . estimates store lag4
- Bayesian AR(5) model:
 - . bayes, saving(lag5_mcmc): regress lcoal L(1/5).lcoal
 - . estimates store lag5

Bayesian autoregressive models

-Model comparison

• Compute model posterior probabilities:

. bayestest model lag1 lag2 lag3 lag4 lag5

Bayesian model tests

	log(ML)	P(M)	P(M y)
lag1	-75.8897	0.2000	0.0000
lag2	-82.5078	0.2000	0.0000
lag3	-59.6688	0.2000	0.0000
lag4	-13.8944	0.2000	0.9990
lag5	-20.8194	0.2000	0.0010

Note: Marginal likelihood (ML) is computed using Laplace-Metropolis approximation.

Bayesian autoregressive models

Lag selection

• We can incorporate the estimation of a lag directly in our Bayesian model through prior distributions.

```
. bayes, prior({lcoal:L1.lcoal}, normal(0, cond({lag}>=1,100,0.01))) ///
          prior({lcoal:L2.lcoal}, normal(0, cond({lag}>=2,100,0.01))) ///
>
          prior({lcoal:L3.lcoal}, normal(0, cond({lag}>=3,100,0.01))) ///
>
>
          prior({lcoal:L4.lcoal}, normal(0, cond({lag}>=4,100,0.01))) ///
          prior({lcoal:L5.lcoal}, normal(0, cond({lag}>=5,100,0.01))) ///
>
                                                                       111
>
          prior({lag}, index(0.2,0.2,0.2,0.2,0.2)):
          regress lcoal L(1/5).lcoal
>
note: operator L1. is replaced with L. in parameter name L1.lcoal
Burn-in ...
Simulation ...
```

```
Model summary
```

```
Likelihood:
 lcoal ~ regress(xb_lcoal,{sigma2})
Priors
  {lcoal:L.lcoal} ~ normal(0,cond({lag}>=1,100,0.01))
                                                                            (1)
 {lcoal:L2.lcoal} ~ normal(0.cond({lag}>=2.100.0.01))
                                                                            (1)
  {lcoal:L3.lcoal} ~ normal(0.cond({lag}>=3.100.0.01))
                                                                            (1)
  {lcoal:L4.lcoal} ~ normal(0.cond({lag}>=4.100.0.01))
                                                                            (1)
 {lcoal:L5.lcoal} ~ normal(0.cond({lag}>=5.100.0.01))
                                                                            (1)
     {lcoal: cons} ~ normal(0,10000)
                                                                            (1)
          {sigma2} ~ igamma(.01..01)
Hyperprior:
  {lag} ~ index(0.2,0.2,0.2,0.2,0.2)
```

(1) Parameters are elements of the linear form xb_lcoal.

Bayesian autoregressive models

Lag selection

Bayesian linear regression	MCMC iterations =	12,500
Random-walk Metropolis-Hastings sampling	Burn-in =	2,500
	MCMC sample size =	10,000
	Number of obs =	103
	Acceptance rate =	.34
	Efficiency: min =	.002852
	avg =	.04431
Log marginal likelihood = -8.2084752	max =	.1716

		Mean	Std. Dev.	MCSE	Median	Equal- [95% Cred.	
lcoal							
	lcoal						
	L1.	.2062446	.0784492	.011311	.2050062	.0487352	.3605725
	L2.	0738366	.0588681	.002764	0739381	1877364	.0391768
	L3.	.100462	.0597828	.004398	.1003963	0142032	.2216838
	L4.	.7994076	.0606384	.006607	.8031808	.6651497	.910174
	L5.	0729926	.0698683	.009211	0708155	2074388	.060126
	_cons	1401982	.0812334	.015212	1438271	2877263	.0403175
	sigma2	.0343128	.0051157	.000123	.0338508	.0256253	.0456132
	lag	4.0194	.1379331	.004424	4	4	4

Note: Default priors are used for some model parameters.

Note: There is a high autocorrelation after 500 lags.

Yulia Marchenko (StataCorp)

35 / 52

Bavesian multilevel models

Random-intercept model

- Recall our earlier example of math scores. There are multiple observations for each school.
- Classical random-intercept model:

. mixed math5 math3 school:			
Mixed-effects ML regression	Number of obs	=	887
Group variable: school	Number of groups	=	48
	Wald chi2(1)	=	347.92
Log likelihood = -2767.8923	Prob > chi2	=	0.0000

Log likelihood = -2767.8923

math5	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
math3	.6088066	.0326392	18.65	0.000	.5448349	.6727783
_cons	30.36495	.3491544	86.97	0.000	29.68062	31.04928

Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
school: Identity var(_cons)	4.026853	1.189895	2.256545	7.186004
var(Residual)	28.12721	1.37289	25.5611	30.95094
LR test vs. linear model: chib	.38	Prob >= chibar		

Yulia Marchenko (StataCorp)

36 / 52

• Bayesian random-intercept model:

. bayes, melabel: mixed math5 math3 school:		
note: Gibbs sampling is used for regression coef	ficients and varian	ce
components		
Bayesian multilevel regression	MCMC iterations =	12,500
Metropolis-Hastings and Gibbs sampling	Burn-in =	2,500
	MCMC sample size =	10,000
Group variable: school	Number of groups =	48
	Number of obs =	887
	Acceptance rate =	.8091
	Efficiency: min =	.03366
	avg =	.3331
Log marginal likelihood	max =	.6298

	Mean	Std. Dev.	MCSE	Median	Equal- [95% Cred.	
math5 math3 _cons	.6087689 30.39202	.0326552 .3597873	.000436 .01961	.6087444 30.38687	.5450837 29.67802	.6729982 31.10252
school var(_cons)	4.272626	1.299061	.039697	4.122282	2.247659	7.220809
var(Residual)	28.23014	1.37812	.017365	28.18347	25.63394	31.04375

Note: Default priors are used for model parameters.

Bayesian multilevel models

Random-intercept model

• Default output (without option melabel):

. bayes Multilevel structure

school
 {U0}: random intercepts

Model summary

```
Likelihood:

math5 ~ normal(xb_math5,{e.math5:sigma2})

Priors:

{math5:math3 _cons} ~ normal(0,10000) (1)

{U0} ~ normal(0,{U0:sigma2}) (1)

{e.math5:sigma2} ~ igamma(.01,.01)

Hyperprior:

{U0:sigma2} ~ igamma(.01,.01)
```

(1) Parameters are elements of the linear form xb_math5.

Bayesian multilevel regression Metropolis-Hastings and Gibbs sampling Group variable: school	MCMC iterations = Burn-in = MCMC sample size = Number of groups =	12,500 2,500 10,000 48
	Obs per group: min = avg = max =	5 18.5 62
Log marginal likelihood	Number of obs = Acceptance rate = Efficiency: min = avg = max =	887 .8091 .03366 .3331 .6298

	Mean	Std. Dev.	MCSE	Median	Equal- [95% Cred.	
math5 math3 cons	.6087689	.0326552	.000436	.6087444	.5450837	.6729982
school U0:sigma2	4.272626	1.299061	.039697	4.122282	2.247659	7.220809
e.math5 sigma2	28.23014	1.37812	.017365	28.18347	25.63394	31.04375

Note: Default priors are used for model parameters.

• Display estimates of the first 12 "random effects":

						Equal-	tailed
		Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]
math5							
muono	math3	.6087689	.0326552	.000436	.6087444	.5450837	.6729982
	_cons	30.39202	.3597873	.01961	30.38687	29.67802	31.10252
U0[sch	1001]						
-	1	-2.685824	.9776969	.031227	-2.672364	-4.633162	7837494
	2	.015465	1.290535	.03201	.0041493	-2.560203	2.556316
	3	1.049006	1.401383	.033731	1.021202	-1.534088	3.84523
	4	-2.123055	.9921679	.028859	-2.144939	-4.069283	1507593
	5	1504003	.9650027	.033881	1468966	-2.093015	1.721503
	6	.5833945	1.192379	.032408	.5918357	-1.660335	3.049718
	7	1.490231	1.332917	.033846	1.481793	-1.095757	4.272903
	8	.4198105	.9783772	.031891	.4579817	-1.496317	2.403908
	9	-1.996105	1.02632	.035372	-2.001467	-4.037044	0296276
	10	.6736806	1.249238	.031114	.660939	-1.70319	3.179273
	11	5650109	.9926453	.031783	5839293	-2.646413	1.300388
	12	3620733	1.090265	.033474	3203626	-2.550097	1.717532
school							
U0:	sigma2	4.272626	1.299061	.039697	4.122282	2.247659	7.220809
e.math	15						
	sigma2	28.23014	1.37812	.017365	28.18347	25.63394	31.04375

. bayes, showreffects({U0[1/12]})

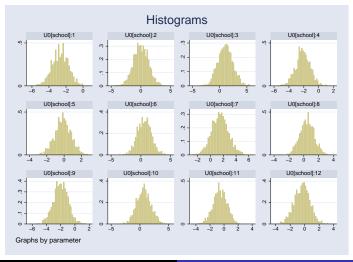
Note: Default priors are used for model parameters.

Bayesian multilevel models

Random-intercept model

• Posterior distributions of the first 12 "random effects":

. bayesgraph histogram {U0[1/12]}, byparm



Yulia Marchenko (StataCorp)

STATA 15

Bayesian multilevel models

Random-coefficient model

```
• Bayesian random-coefficient model:
```

. bayes: mixed math5 math3 || school: math3, covariance(unstructured) note: Gibbs sampling is used for regression coefficients and variance components

Burn-in 2500 aaaaaaaaa1000aaaaaaaa2000aaaaa done Simulation 100001000.......2000.......3000.......4000......5 > 000.......6000.......7000.......8000......9000......10000 done Multilevel structure

school

{U0}: random intercepts
{U1}: random coefficients for math3

Model summary

(1) Parameters are elements of the linear form xb_math5.

Yulia Marchenko (StataCorp)

42 / 52

Bayesian multilevel models

Random-coefficient model

Bayesian multilevel regression	MCMC iterations =	12,500
Metropolis-Hastings and Gibbs sampling	Burn-in =	2,500
	MCMC sample size =	10,000
Group variable: school	Number of groups =	48
	Number of obs =	887
	Acceptance rate =	.6985
	Efficiency: min =	.02935
	avg =	.1559
Log marginal likelihood	max =	.5316

Log marginal likelihood

	Mean	Std. Dev.	MCSE	Median		tailed Interval]
math5 math3	.6234197 30.34691	.0570746	.002699	.6228624	.5144913	.7365849
_cons school	4.527905	1.363492	.021356	4.345457	2,391319	7.765521
U:Sigma_1_1 U:Sigma_2_1 U:Sigma_2_2	4.527905 322247 .0983104	.1510543 .0280508	.046275 .004913 .000728	4.345457 3055407 .0941222	6683891 .0556011	0679181 .1649121
e.math5 sigma2	26.8091	1.34032	.018382	26.76549	24.27881	29.53601

Note: Default priors are used for model parameters.

Yulia Marchenko (StataCorp)

43 / 52

Bayesian survival models

- Data: Time to hip fracture adjusted for age and for wearing a hip-protective device.
- Bayesian exponential survival model:

(1) Parameters are elements of the linear form xb__t.

(1)

Bayesian survival models

Exponential model

Bayesian exponential PH regression Random-walk Metropolis-Hastings sampling	MCMC iterations = 12,500 Burn-in = 2,500 MCMC sample size = 10,000
No. of subjects = 148	Number of obs = 206
No. of failures = 37	
No. at risk = 1703	
	Acceptance rate = .1927
	Efficiency: min = .05694
	avg = .07511
Log marginal likelihood = -106.19703	max = .086

_t	Haz. Ratio	Std. Dev.	MCSE	Median	Equal- [95% Cred.	
protect	.1279039	.0447223	.001525	.1189394	.0616285	.2328919
age _cons	1.086308 .0043577	.0372036 .0352772	.001559 .001229	1.085883 .0002529	1.018374 2.05e-06	1.159326 .0224516

Note: _cons estimates baseline hazard. Note: Default priors are used for model parameters.

• Store results for later comparison:

```
. bayes, saving(exp_mcmc)
note: file exp_mcmc.dta saved
. estimates store exp
```

Yulia Marchenko (StataCorp)

Bayesian survival models

-Weibull model

• Bayesian Weibull model:

```
Likelihood:

_t ~ streg_weibull(xb__t,{ln_p})

Priors:

{_t:protect age _cons} ~ normal(0,10000) (1)

{ln_p} ~ normal(0,10000)
```

(1) Parameters are elements of the linear form xb__t.

Bayesian survival models

Weibull model

Bayesian Weibull PH regression Random-walk Metropolis-Hastings sampling	MCMC iterations =12,500Burn-in =2,500MCMC sample size =10,000	0
No. of subjects = 148 No. of failures = 37 No. at risk = 1703	Number of obs = 200	3
Log marginal likelihood = -107.88854	Acceptance rate = .360 Efficiency: min = .0557 avg = .0999 max = .176	1 4

		Haz. Ratio	Std. Dev.	MCSE	Median	Equal- [95% Cred.	
_t							
	protect	.0956023	.0338626	.001435	.0899154	.0463754	.1787249
	- age	1.103866	.0379671	.001313	1.102685	1.033111	1.180283
	_cons	.0075815	.0411427	.000979	.000567	4.02e-06	.0560771
	ln_p	.4473869	.1285796	.004443	.4493192	.1866153	.6912467

Note: Estimates are transformed only in the first equation.

Note: _cons estimates baseline hazard.

Note: Default priors are used for model parameters.

```
. estimates store weib
```

STATA 15

Bayesian survival models

Weibull model, group-specific shape parameters

Bayesian Weibull model with group-specific shape parameters:

{_t:protect age _cons} ~	normal(0,10000)	(1)
{ln_p:male _cons} ~	normal(0,10000)	(2)

(1) Parameters are elements of the linear form xb__t.

(2) Parameters are elements of the linear form xb_ln_p.

Bayesian survival models

Weibull model, group-specific shape parameters

Bayesian Weibull PH reg	MCMC iterations	=	12,500	
Random-walk Metropolis-	Hastings sampling	Burn-in	=	2,500
		MCMC sample size	=	10,000
No. of subjects =	148	Number of obs	=	206
No. of failures =	37			
No. at risk =	1703			
		Acceptance rate	=	.136
		Efficiency: min	=	.006093
		avg	=	.02061
Log marginal likelihood	A = -102.48	max	=	.03044

		Mean	Std. Dev.	MCSE	Median	Equal- [95% Cred.	
_t	protect	-2.108707	.3616945	.024969	-2.078421	-2.870089	-1.437823
	age	.0920509	.0330708	.001896	.0944527	.0324366	.1559498
	_cons	-9.881823	2.472154	.152612	-9.976053	-14.53088	-5.076762
ln_p	male	5933872	.2344015	.016873	5561411	-1.171869	247341
	_cons	.4002401	.1083398	.013879	.4053514	.1776803	.6014997

Note: Default priors are used for model parameters. Note: Adaptation tolerance is not met in at least one of the blocks.

. estimates store weib_anc

Yulia Marchenko (StataCorp)

Bayesian survival models

Model comparison

Model comparison using Bayes factors:

. bayesstats ic weib_anc exp weib

Bayesian information criteria

	DIC	log(ML)	log(BF)
weib_anc	147.9772	-102.48	
exp	171.2604	-106.197	-3.717029
weib	162.7683	-107.8885	-5.408532

Note: Marginal likelihood (ML) is computed using Laplace-Metropolis approximation.

 Weibull model with group-specific shape parameters is strongly preferable to the other models because log(BF)s are negative and |2 × log(BF)| > 6.

- As of Stata 15, you can use bayes: to fit Bayesian regression models more conveniently.
- You can continue using bayesmh for fitting more general Bayesian models or for programming your own.
- Unlike bayesmh, bayes: provides default priors. You should always evaluate the choice of priors and use the ones appropriate for your model and research question.
- All Bayesian postestimation features are available after bayes:.
- For a full list of commands supported by bayes:, see www.stata.com/features/overview/bayesian-estimation/
- See [BAYES] bayes and

www.stata.com/new-in-stata/bayes-prefix/ for more examples.

References

References

Harvey, A. C. 1989. Forecasting, Structural Time Series Models, and the Kalman Filter. Cambridge: Cambridge University Press.

Mortimore, P., P. Sammons, L. Stoll, D. Lewis, and R. Ecob. 1988. *School Matters: The Junior Years.* Wells, Somerset, UK: Open Books.

