Motivation	Two-stage estimation	Stata syntax	Example	Conclusion
000	O	00	000000000000	00

xtseqreg: Sequential (two-stage) estimation of linear panel data models and some pitfalls in the estimation of dynamic panel models

Sebastian Kripfganz

University of Exeter Business School, Department of Economics, Exeter, UK

23rd UK Stata Users Group Meeting

London, September 7, 2017

net install xtseqreg, from(http://www.kripfganz.de/stata/) Or ssc install xtseqreg

- In many applications, important determinants of the outcome variable can be time invariant.
 - Education, gender, nationality, ethnic and religious background, and other individual-specific characteristics play important roles in the determination of labor market or health outcomes.
 - Institutional, socio-economic, and geographic factors matter in convergence models of economic growth, and they are key variables in gravity models of international trade and investment flows.
- A researcher might be particularly interested in their effects. Yet, traditional "fixed-effects" procedures (xtreg, fe) wipe out all time-invariant variables from the model.

- To identify the coefficients of time-invariant regressors, the assumption that a sufficient number of regressors (or excluded instrumental variables) is uncorrelated with the unit-specific error component cannot be avoided.
- Identification strategies for static panel models include:
 - Classical "random-effects" model: xtreg, re,
 - "Correlated random-effects" (Mundlak, 1978; Chamberlain, 1982) or "hybrid" models (Allison, 2009; Schunck, 2013): xthybrid (Schunck and Perales, 2017),
 - Hausman and Taylor (1981) model: xthtaylor,
 - Other instrumental variables strategies: xtivreg.

- In the context of dynamic panel models, generalized method of moments (GMM) estimators (Arellano and Bover, 1995; Blundell and Bond, 1998) are frequently employed: xtdpd, xtdpdsys, and xtabond2 (Roodman, 2009).
- Incorrect assumptions about the exogeneity of some variables may cause inconsistency of all coefficient estimates.
- A sequential procedure can provide partial robustness to such misspecification. In a first stage, only the coefficients of time-varying regressors are estimated. In a second stage, the coefficients of time-invariant regressors are recovered.
- \Rightarrow New Stata command: xtseqreg

• Linear panel data model with time-invariant regressors and error-components structure:

$$y_{it} = \mathbf{x}'_{it}\boldsymbol{\beta} + \mathbf{f}'_i\boldsymbol{\gamma} + u_i + e_{it}$$

• Sequential estimation procedure:

Estimation of the coefficients of time-varying regressors:

$$y_{it} = \mathbf{x}'_{it}\boldsymbol{\beta} + \tilde{u}_i + e_{it}, \quad \tilde{u}_i = \mathbf{f}'_i\boldsymbol{\gamma} + u_i$$

Stimation of the coefficients of time-invariant regressors:

$$y_{it} - \mathbf{x}'_{it}\hat{\boldsymbol{\beta}} = \mathbf{f}'_i \boldsymbol{\gamma} + u_i + \tilde{e}_{it}, \quad \tilde{e}_{it} = e_{it} - \mathbf{x}'_{it}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})$$

- Conventional standard errors at the second stage are incorrect and often far too small.
- \Rightarrow xtseqreg computes proper standard errors with the analytical correction term derived by Kripfganz and Schwarz (2015).

Motivation 000	Two-stage estimation O	Example 000000000000	Conclusion
-			

Stata syntax of the xtseqreg command

Syntax

xtseqreg depvar [(indepvars1)] [indepvars2] [if] [in] [, options]

options	Description
Model	
<pre>first(first_spec)</pre>	specify first-stage estimation results
both	estimate both stages
nocommonesample	do not restrict estimation samples to be the same
iv(iv_spec)	standard instruments; can be specified more than once
<pre>gmmiv(gmmiv_spec)</pre>	GMM-type instruments; can be specified more than once
wmatrix(wmat spec)	specify initial weighting matrix
twostep	compute two-step instead of one-step estimator
teffects	add time effects to the model
noconstant	suppress constant term
SE/Robust	
vce (vcetype)	vcetype may be conventional, ec, or robust
Reporting	
combine	combine the estimation results for both equations
level(#)	set confidence level; default is level(95)
noheader	suppress output header
notable	suppress coefficient table
noomitted	suppress omitted variables

Stata syntax of xtseqreg postestimation commands

Syntax for predict

predict [type] newvar [if] [in] [, xb stdp ue xbu u e equation(eqno)]

predict [type] {stub* newvar1 ... newvarq} [if] [in] , scores

Syntax for estat

Arellano-Bond test for autocorrelated residuals

estat serial [, ar(numlist)]

Hansen's J-test of overidentifying restrictions

estat overid

Difference-in-Hansen test of overidentifying restrictions

estat overid name

Generalized Hausman test for model misspecification

estat hausman name [(varlist)] [, df(#) nonested]

where *name* is a name under which estimation results were stored via estimates store.

Empirical example: distance and FDI

- Estimation of a gravity model for U.S. outward FDI.
- Annual data, 1989–1999, for 341 bilateral industry-level relationships, compiled by Egger and Pfaffermayr (2004).

describe

obs: vars: size:	2,767 13 118,981			Egger and Pfaffermayr (2004, JAE) 8 Aug 2003 03:39
	storage	display	value	
variable name	type	format	label	variable label
ind	byte	%9.0g		industry identifier
codeim	int	%8.0g		country identifier
year	int	%9.0g		year
lrfdi	float	%9.0g		log real outward foreign direct investment
lgdt	float	%9.0g		log bilateral gross domestic product
lsimi	float	%9.0g		log similarity in country size
lrk	float	%9.0g		log relative physical capital endowment
lrh	float	%9.0g		log relative human capital endowment
lrl	float	%9.0g		log relative labor endowment
ldist	float	%9.0g		log geographical distance
lkgdt	float	%9.0g		= lgdt * abs(lrk)
lkldist	float	%9.0g		= ldist * (lrk - lrl)
id	int	%9.0a		group (codeim ind)

Sorted by: id year

Motivation	Two-stage estimation	Stata syntax	Example	Conclusion
000	O	00	○● ○○ ○○○○○○○○○	00

First-stage system GMM estimation

. xtseqreg L(0/1).lrfdi lkldist lgdt lkgdt lsimi lrk lrh lrl, twostep vce(robust) ///

- > gmmiv(L.lrfdi, lag(1 5) collapse model(difference)) ///
- > gmmiv(lkldist lgdt lkgdt lsimi lrk lrh lrl, lag(0 4) collapse model(difference)) ///
- > iv(L.lrfdi, difference model(level)) ///

> iv(lkldist lgdt lkgdt lsimi lrk lrh lrl, difference model(level))

Group variable: id	Number of obs	=	2198
Time variable: year	Number of groups		337
	Obs per group:	min = avg = max =	1 6.522255 10

Number of instruments = 49

(Std. Err. adjusted for clustering on id)

lrfdi	Coef.	WC-Robust Std. Err.	z	₽> z	[95% Conf.	Interval]
lrfdi						
L1.	.8956164	.063313	14.15	0.000	.7715252	1.019708
lkldist	0978499	.1490779	-0.66	0.512	3900371	.1943374
lgdt	1502013	.2320426	-0.65	0.517	6049964	. 3045939
lkgdt	.0072154	.0053281	1.35	0.176	0032276	.0176584
lsimi	.3100215	.2370884	1.31	0.191	1546632	.7747062
lrk	.7471581	1.291878	0.58	0.563	-1.784877	3.279193
lrh	0897363	.1311771	-0.68	0.494	3468386	.1673661
lrl	8973519	1.30242	-0.69	0.491	-3.450048	1.655344
cons	4.926161	5.971464	0.82	0.409	-6.777694	16.63002

. estimates store gmm1

Motivation	Two-stage estimation	Stata syntax	Example	Conclusion
000	O	00	○●●○○○○○○○○	00
First-stage	system GMM e	stimation		

. estat serial, ar(1/3)

Arellano-Bond test for au	tocorrelation	of the first-di	fferenced residual	ls
H0: no autocorrelation of	order 1:	z = -7.3012	Prob > z =	0.0000
H0: no autocorrelation of	f order 2:	z = -0.0535	Prob > z =	0.9573
H0: no autocorrelation of	f order 3:	z = -0.3725	Prob > z =	0.7095

. estat overid

Hansen's J-test	chi2(40)	=	45.7042
H0: overidentifying restrictions are valid	Prob > chi2	=	0.2471

Replication with xtabond2:

```
. xtabond2 L(0/1).lrfdi lkldist lqdt lkqdt lsimi lrk lrh lrh, twostep robust ar(3) ///
> gmm(lrfdi, lag(2 6) collapse equation(diff)) ///
> gmm(lkldist lgdt lkgdt lsimi lrk lrh lrl, lag(0 4) collapse equation(diff)) ///
> iv(LD.lrfdi, equation(level) mz) ///
> iv(D.lkldist D.lgdt D.lkgdt D.lsimi D.lrk D.lrh D.lrl, equation(level) mz)
```

```
Arellano-Bond test for AR(1) in first differences: z = -6.69 Pr > z = 0.000 Arellano-Bond test for AR(2) in first differences: z = -0.05 Pr > z = 0.957 Arellano-Bond test for AR(3) in first differences: z = -0.37 Pr > z = 0.792 Pr
```

```
Sargan test of overid. restrictions: chi2(40) = 80.12 Prob > chi2 = 0.000
(Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(40) = 45.70 Prob > chi2 = 0.247
(Robust, but weakened by many instruments.)
```


• The first two specifications yield identical estimation results. The results from the last specification differ (but should not):

```
. xtseqreg 1(0/1).lrfdi lkldist lgdt lsimi lrk lrh lrl, twostep vce(robust) ///
> gmmiv(lkldist lgdt lkgdt lsimi lrk lrh lrl, lag(0 4) collapse model(difference)) ///
> iv(L.lrfdi, difference model(level)) ///
> iv(lkldist lgdt lkgdt lsimi lrk lrh lrl, difference model(level))

. xtabond2 L(0/1).lrfdi lkldist lgdt lkgdt lsimi lrk lrh lrl, twostep robust ar(3) ///
> gmm(lrfdi, lag(2 6) collapse equation(diff)) ///
> gmm(lrfdi,st lgdt lsimi lrk lrh lrl, lag(0 4) collapse equation(diff)) ///
> iv(D.lrfdi, equation(level) mz) ///
> iv(D.lkldist D.lgdt D.lkgdt D.lsimi D.lrk D.lrh D.lrl, equation(level) mz)
```

- . xtabond2 L(0/1).lrfdi lkldist lgdt lkgdt lsimi lrk lrh lrl, twostep robust ar(3) ///
- > gmm(L.lrfdi, lag(1 5) collapse equation(diff)) ///
- > gmm(lkldist lgdt lkgdt lsimi lrk lrh lrl, lag(0 4) collapse equation(diff)) ///
- > iv(LD.lrfdi, equation(level) mz) ///
- > iv(D.lkldist D.lgdt D.lkgdt D.lsimi D.lrk D.lrh D.lrl, equation(level) mz)

Motivation	Two-stage estimation	Stata syntax	Example	Conclusion
000	0	00	00000000000	00

Second-stage 2SLS estimation

. xtseqreg lrfdi (L.lrfdi lkldist lgdt lkgdt lsimi lrk lrh lrl) ldist, vce(robust) ///
> first(gmm1. nocons) iv(lsimi lrh)

Group variable: id Time variable: year		Number of obs Number of groups	=	2198 337	
 Equation _first			Equation _second		
Number of obs	=	2198	Number of obs	=	2198
Number of groups	=	337	Number of groups	=	337
Obs per group:	min =	1	Obs per group: 1	nin =	1
	avg =	6.522255		vg =	6.522255
	max =	10	I	nax =	10
Number of instrum	ments =	49	Number of instrumer	nts =	3

(Std. Err. adjusted for clustering on id)

lrfdi	Coef.	Robust Std. Err.	z	₽> z	[95% Conf.	Interval]
first						
lrfdi						
L1.	.8956164	.063313	14.15	0.000	.7715252	1.019708
lkldist	0978499	.1490779	-0.66	0.512	3900371	.1943374
lgdt	1502013	.2320426	-0.65	0.517	6049964	. 3045939
lkgdt	.0072154	.0053281	1.35	0.176	0032276	.0176584
lsimi	.3100215	.2370884	1.31	0.191	1546632	.7747062
lrk	.7471581	1.291878	0.58	0.563	-1.784877	3.279193
lrh	0897363	.1311771	-0.68	0.494	3468386	.1673661
lrl	8973519	1.30242	-0.69	0.491	-3.450048	1.655344
second						
- ldist	1213967	.5854263	-0.21	0.836	-1.268811	1.026018
_cons	5.966496	8.5777	0.70	0.487	-10.84549	22.77848

Motivation 000	Two-stage estimation 0	Stata syntax 00	Example ○○○○○○○○○○○○○	Conclusion 00
Second-	stage 2SLS estin	nation		
	. estat overid			
	Hansen's J-test for equation H0: overidentifying restricti		chi2(40) = 45.7042 Prob > chi2 = 0.2471	

Hansen's J-test for equation _second	chi2(1) =	1.1989
H0: overidentifying restrictions are valid	Prob > chi2 =	0.2735

• Replication with ivregress (incorrect standard errors):

. quietly estimates restore gmm1

. quietly predict residuals, ue

. ivregress 2sls residuals (ldist = lsimi lrh), vce(cluster id)

Instrumental variables (2SLS) regression

Number of obs	=	2,198
Wald chi2(1)	=	2.15
Prob > chi2	=	0.1422
R-squared	=	0.0107
Root MSE	=	.46723

(Std. Err. adjusted for 337 clusters in id)

residuals	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
ldist _cons	1213967 1.040335	.0827107 .7110881	-1.47 1.46	0.142 0.143	2835066 3533725	.0407132 2.434042
Instrumented: Instruments:	ldist lsimi lrh					

Motivation	Two-stage estimation	Stata syntax	Example	Conclusion
000		00	00000000000	00

One-stage GMM estimation

. xtseqreg L(0/1).lrfdi lkldist lgdt lkgdt lsimi lrk lrh lrl ldist, twostep vce(robust) ///

- > gmmiv(L.lrfdi, lag(1 5) collapse model(difference)) ///
- > gmmiv(lkldist lgdt lkgdt lsimi lrk lrh lrl, lag(0 4) collapse model(difference)) ///
- > iv(L.lrfdi, difference model(level)) ///
- > iv(lkldist lgdt lkgdt lsimi lrk lrh lrl, difference model(level)) ///
- > iv(lsimi lrh)

Group variable: id	Number of obs	=	2198
Time variable: year	Number of groups		337
	Obs per group:	min = avg = max =	1 6.522255 10

Number of instruments = 51

(Std. Err. adjusted for clustering on id)

lrfdi	Coef.	WC-Robust Std. Err.	z	₽> z	[95% Conf.	Interval]
lrfdi						
L1.	.874835	.0658537	13.28	0.000	.7457641	1.003906
lkldist	0894573	.1552895	-0.58	0.565	3938191	.2149044
lgdt	100095	.2389068	-0.42	0.675	5683437	.3681537
lkgdt	.0103749	.0053781	1.93	0.054	000166	.0209159
lsimi	.3735686	.2467129	1.51	0.130	1099798	.857117
lrk	.6246915	1.349609	0.46	0.643	-2.020494	3.26987
lrh	0007819	.1125051	-0.01	0.994	2212878	.219724
lrl	7648876	1.37943	-0.55	0.579	-3.468521	1.938746
ldist	0825973	.1385583	-0.60	0.551	3541665	.1889719
_cons	4.320648	6.06585	0.71	0.476	-7.5682	16.2095

. estat hausman gmml (L.lrfdi lkldist lgdt lkgdt lsimi lrk lrh lrl)

Generalized Hausman test	chi2(1) =	4.4792
H0: coefficients do not systematically diffe	er Prob > chi2 =	0.0343

- Instruments for the first-differenced equation are uncorrelated with time-invariant variables by construction, first-differenced instruments for the level equation by assumption.
- ⇒ Difference-in-Hansen tests might be based on asymptotically incorrect (or at least debatable) degrees of freedom:

```
. xtabond2 1(0/1).lrfdi lkldist lqdt lkqdt lsimi lrk lrh lrh lrh ldist, twostep robust ///
> gmm(lrfdi, lag(2 6) collapse equation(diff)) ///
> gmm(lkldist lgdt lsimi lrk lrh lrl, lag(0 4) collapse equation(diff)) ///
> iv(D.lrfdi, equation(level) mz) ///
> iv(D.lrfdist D.lgdt D.lkgdt D.lsimi D.lrk D.lrh D.lrh, equation(level) mz) ///
> iv(lsimi lrh, equation(level) mz)
```

```
iv(lsimi lrh, mz eq(level))
Hansen test excluding group: chi2(39) = 45.95 Prob > chi2 = 0.206
Difference (null H = exogenous): chi2(2) = 2.44 Prob > chi2 = 0.295
```

	first stars ONAL	and the start		
Motivation 000	Two-stage estimation 0	Stata syntax 00	Example 000000000000	Conclusion 00
			-	

Alternative first-stage QML estimator

• First-stage QML estimator of Hsiao et al. (2002):

. quietly xtdpdqml lrfdi lkldist lgdt lkgdt lsimi lrk lrh lrl, fe mlparam vce(robust)

. xtseqreg lrfdi (L.1rfdi lkldist lgdt lkgdt lsimi lrk lrh lrl) ldist, vce(robust) /// > first(, nocons) iv(lsimi lrh) noheader

note: first-stage variable names do not match with coefficient list from xtdpdgml note: dependent variable D.lrfdi from xtdpdgml does not match with lrfdi

lrfdi	Coef.	Robust Std. Err.	z	₽> z	[95% Conf.	Interval
first						
lrfdi						
L1.	.8000757	.0539962	14.82	0.000	. 6942451	. 905906
lkldist	7160072	.5053811	-1.42	0.157	-1.706536	.274521
lqdt	.4346637	.1907476	2.28	0.023	.0608052	.808522
lkqdt	.0028906	.0068807	0.42	0.674	0105954	.016376
lsimi	.3172032	.3605734	0.88	0.379	3895076	1.02391
lrk	6.152142	4.400668	1.40	0.162	-2.473009	14.7772
lrh	.0758457	.0869135	0.87	0.383	0945017	.246193
lrl	-5.60704	4.175718	-1.34	0.179	-13.7913	2.57721
second						
ldist	2.41061	2.285819	1.05	0.292	-2.069514	6.89073
_cons	-31.43894	21.15977	-1.49	0.137	-72.91133	10.0334

(Std. Err. adjusted for clustering on id)

. estat overid

Hansen's J-test for	equation _second	chi2(1) =	0.8358
H0: overidentifying	restrictions are valid	Prob > chi2 =	0.3606

Motivation 000	Two-stage estimation O	Stata syntax 00	Example ○○○○○○○○○●○○○	Conclusion

Alternative first-stage GMM estimator

• First-stage GMM estimator of Ahn and Schmidt (1995):

- . quietly xtdpdgmm L(0/1).lrfdi lkldist lgdt lkgdt lsimi lrk lrh lrl, twostep noserial ///
- > vce(robust) aux gmmiv(L.lrfdi, lag(1 5) collapse model(difference)) ///

> gmmiv(lkldist lgdt lkgdt lsimi lrk lrh lrl, lag(0 4) collapse model(difference))

- . xtseqreg lrfdi (L.lrfdi lkldist lgdt lkgdt lsimi lrk lrh lrl) ldist, vce(robust) ///
- > first(, copy) iv(lsimi lrh) noheader

note: first-stage standard errors may not be robust

(Std. Err. adjusted for clustering on id)

lrfdi	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval
first						
lrfdi						
L1.	.8017069	.1204806	6.65	0.000	.5655692	1.03784
lkldist	2290635	.7040092	-0.33	0.745	-1.608896	1.15076
lgdt	0748559	.2905325	-0.26	0.797	6442891	.494577
lkgdt	0186638	.0112666	-1.66	0.098	0407459	.003418
lsimi	.0212282	.3722118	0.06	0.955	7082936	.7507
lrk	1.784527	6.101738	0.29	0.770	-10.17466	13.7437
lrh	.0299533	.1551918	0.19	0.847	2742171	.334123
1r1	-1.580551	6.123368	-0.26	0.796	-13.58213	10.4210
_cons	3.642671	7.335562	0.50	0.619	-10.73477	18.0201
second						
ldist	.3209373	1.580573	0.20	0.839	-2.776928	3.41880
_cons	-2.761592	13.56865	-0.20	0.839	-29.35565	23.8324

. estat overid

Hansen's	J-test for	equation _se	cond	
H0: overi	dentifying	restrictions	are	valid

chi2(1) = 2.7079 Prob > chi2 = 0.0999

Motivation	Two-stage estimation	Stata syntax	Example	Conclusion
000	O	00	○○○○○○○○○○○○○○	00
Time of	facto			

l ime effects

. xtsegreg L(0/1).lrfdi, teffects twostep vce(robust) ///

> gmmiv(L.lrfdi, lag(1 5) collapse model(difference)) iv(L.lrfdi, difference model(level))

Group variable: id	Number of obs	=	2198
Time variable: year	Number of groups		337
	Obs per group:	min = avg = max =	1 6.522255 10

Number of instruments = 16

(Std. Err. adjusted for clustering on id)

lrfdi	Coef.	WC-Robust Std. Err.	z	P> z	[95% Conf.	Interval]
lrfdi						
L1.	1.015676	.0727146	13.97	0.000	.8731579	1.158194
year						
1991	0975429	.0419594	-2.32	0.020	1797819	0153039
1992	0670002	.0476785	-1.41	0.160	1604484	.0264479
1993	0945048	.0457007	-2.07	0.039	1840766	0049331
1994	0644637	.0701426	-0.92	0.358	2019406	.0730132
1995	0513381	.0426408	-1.20	0.229	1349125	.0322363
1996	0605227	.0481965	-1.26	0.209	1549861	.0339408
1997	1211606	.0594696	-2.04	0.042	2377189	0046024
1998	1699316	.0552347	-3.08	0.002	2781895	0616736
1999	1261552	.0830178	-1.52	0.129	2888672	.0365568
_cons	.0937689	.3189754	0.29	0.769	5314114	.7189492

. estat overid

Hansen's J-test	chi2(5) =	13.2885
H0: overidentifying restrictions are valid	Prob > chi2 =	0.0208

Motivatio	on Two-stage estimation	Stata syntax	Example	Conclusion
	O	00	○○○○○○○○○○○○	00
1.1		10 D		

How (not) to do xtabond2: Beware of the dummy trap!

. xtabond2 L(0/1).lrfdi i.year, twostep robust ///

- > gmm(lrfdi, lag(2 6) collapse equation(diff)) iv(LD.lrfdi, equation(level) mz) ///
- > iv(i.year, equation(level))

lrfdi	Coef.	Corrected Std. Err.	Z	₽> z	[95% Conf	. Interval]
lrfdi						
L1.	1.015676	.0727146	13.97	0.000	.8731579	1.158194
year						
1989	0	(empty)				
1990	.0644637	.0701426	0.92	0.358	0730132	.2019406
1991	0330792	.0597255	-0.55	0.580	150139	.0839805
1992	0025366	.0513121	-0.05	0.961	1031064	.0980333
1993	0300412	.0579887	-0.52	0.604	1436969	.0836146
1994	0	(omitted)				
1995	.0131256	.0551362	0.24	0.812	0949394	.1211905
1996	.003941	.055217	0.07	0.943	1042823	.1121643
1997	056697	.0504278	-1.12	0.261	1555337	.0421398
1998	1054679	.04837	-2.18	0.029	2002714	0106643
1999	0616915	.0540627	-1.14	0.254	1676525	.0442694
_cons	.0293052	. 3703467	0.08	0.937	696561	.7551714

Hansen test of overid. restrictions: chi2(3) = 13.29 Prob > chi2 = 0.004
(Robust, but weakened by many instruments.)

- Instruments for the time dummies should only be included for the level equation. Asymptotically, the additional instruments for the first-differenced equation are redundant.
- \Rightarrow Hansen's J-test is based on incorrect degrees of freedom:

```
. xtabond2 L(0/1).lrfdi i.year, twostep robust ///
> gmm(lrfdi, lag(2 6) collapse equation(diff)) iv(LD.lrfdi, equation(level) mz) ///
> iv(i.year, equation(diff)) iv(i.year, equation(level))
Hansen test of overid. restrictions: chi2(12) = 14.82 Prob > chi2 = 0.252
(Robust, but weakened by many instruments.)
```

 Never use the iv() option without suboption equation()! It is not equivalent to the joint specification of iv(, equation(diff)) and iv(, equation(level)):

```
. xtabond2 L(0/1).lrfdi i.year, twostep robust ///
> gmm(lrfdi, lag(2 6) collapse equation(diff)) iv(LD.lrfdi, equation(level) mz) ///
> iv(i.year)
Hansen test of overid. restrictions: chi2(3) = 10.79 Prob > chi2 = 0.013
```

```
(Robust, but weakened by many instruments.)
```


- Sequential estimation can provide partial robustness to model misspecification.
- Is is important to compute corrected standard errors at the second stage that account for the first-stage estimation error.
- The new xtseqreg Stata command implements this standard error correction for two-stage linear panel data models.
- The two-stage procedure is particularly relevant in the presence of time-invariant regressors, but it can be easily applied to more general settings.

Kripfganz, S., and C. Schwarz (2015). Estimation of linear dynamic panel data models with time-invariant regressors. *ECB Working Paper 1838.* European Central Bank.

```
net install xtseqreg, from(http://www.kripfganz.de/stata/) Of ssc install xtseqreg
help xtseqreg
help xtseqreg postestimation
```

Motivation	Two-stage estimation	Stata syntax	Example	Conclusion
000	O	00	000000000000	○●
References	5			

- Ahn, S. C., and P. Schmidt (1995). Efficient estimation of models for dynamic panel data. Journal of Econometrics 68(1): 5–27.
- Allison, P. D. (2009). Fixed effects regression models. Quantitative applications in the social sciences 160. Thousand Oaks: SAGE Publications.
- Arellano, M., and O. Bover (1995). Another look at the instrumental variable estimation of error-components models. *Journal of Econometrics 68(1)*: 29–51.
- Blundell, R., and S. R. Bond (1991). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics 87(1): 115–143.
- Chamberlain, G. (1982). Multivariate regression models for panel data. Journal of Econometrics 18(1), 5–46.
- Egger, P., and M. Pfaffermayr (2004). Distance, trade and FDI: A Hausman-Taylor SUR approach. Journal of Applied Econometrics 19(2), 227-246; data set available from the JAE data archive: http://qed.econ.queensu.ca/jae/2004-v19.2/egger-pfaffermayr/.
- Hausman, J. A., and W. E. Taylor (1981). Panel data and unobservable individual effects. *Econometrica* 49(6), 1377–1398.
- Hsiao, C., M. H. Pesaran, and A. K. Tahmiscioglu (2002). Maximum likelihood estimation of fixed effects dynamic panel data models covering short time periods. *Journal of Econometrics 109(1)*: 107–150.
- Kripfganz, S., and C. Schwarz (2015). Estimation of linear dynamic panel data models with time-invariant regressors. ECB Working Paper 1838. European Central Bank.
- Mundlak, Y. (1978). On the pooling of time series and cross section data. Econometrica 46(1), 69–85.
- Roodman, D. (2009). How to do xtabond2: An introduction to difference and system GMM in Stata. Stata Journal 9(1): 86–136.
- Schunck, D. (2013). Within and between estimates in random-effects models: Advantages and drawbacks of correlated random effects and hybrid models. Stata Journal 13(1): 65–76.
- Schunck, D., and F. Perales (2017). Within- and between-cluster effects in generalized linear mixed models: A discussion of approaches and the xthybrid command. Stata Journal 17(1): 89–115.

22/22