Kernel matching with automatic bandwidth selection

Ben Jann

University of Bern, ben.jann@soz.unibe.ch

2017 London Stata Users Group meeting London, September 7–8, 2017

Ben Jann (University of Bern)

Contents

Background

- What is Matching?
- Multivariate Distance Matching (MDM)
- Propensity Score Matching (PSM)
- Matching Algorithms
- "Why PSM Should Not Be Used for Matching"

The kmatch command

- Features
- Examples
- Some Simulation Results

Conclusions

What is Matching?

- Matching is an approach to "condition on X" between a treatment group and a control group.
- Basic idea:
 - 1. For each observation in the treatment group, find "statistical twins" in the control group with the same (or at least very similar) *X* values.
 - 2. The *Y* values of these matching observations are then used to compute the counterfactual outcome without treatment for the observation at hand.
 - An estimate for the average treatment effect can be obtained as the mean of the differences between the observed values and the "imputed" counterfactual values over all observations.

What is Matching?

• Formally:

$$\widehat{ATT} = \frac{1}{N^{T=1}} \sum_{i|T=1} \left[Y_i - \widehat{Y}_i^0 \right] \quad \text{with} \quad \widehat{Y}_i^0 = \sum_{j|T=0} w_{ij} Y_j$$
$$\widehat{ATC} = \frac{1}{N^{T=0}} \sum_{i|T=0} \left[\widehat{Y}_i^1 - Y_i \right] \quad \text{with} \quad \widehat{Y}_i^1 = \sum_{j|T=1} w_{ij} Y_j$$
$$\widehat{ATE} = \frac{N^{T=1}}{N} \cdot \widehat{ATT} + \frac{N^{T=0}}{N} \cdot \widehat{ATC}$$

• Different matching algorithms use different definitions of w_{ij} .

ATE: average treatment effect; ATT: a.t.e. on the treated; ATC: a.t.e. on the untreated T: treatment indicator (0/1)

Y: observed outcome; Y¹; potential outcome with treatment; Y⁰: p.o. without treatment

Exact Matching

• Exact matching:

$$w_{ij} = \begin{cases} 1/k_i & \text{if } X_i = X_j \\ 0 & \text{else} \end{cases}$$

with k_i as the number of observations for which $X_i = X_j$ applies.

- The result equivalent to "perfect stratification" or "subclassification" (see, e.g., Cochran 1968).
- Problem: If X contains several variables there is a large probability that no exact matches can be found for many observations (the "curse of dimensionality").

Multivariate Distance Matching (MDM)

- An alternative is to match based on a distance metric that measures the proximity between observations in the multivariate space of *X*.
- The idea then is to use observations that are "close", but not necessarily equal, as matches.
- A common approach is to use

$$MD(X_i, X_j) = \sqrt{(X_i - X_j)'\Sigma^{-1}(X_i - X_j)}$$

as distance metric, where Σ is an appropriate scaling matrix.

- Mahalanobis matching: Σ is the covariance matrix of X.
- Euclidean matching: Σ is the identity matrix.
- Mahalanobis matching is equivalent to Euclidean matching based on standardized and orthogonalized X.

Propensity Score Matching (PSM)

- (Y⁰, Y¹) ⊥⊥ T | X implies (Y⁰, Y¹) ⊥⊥ T | π(X), where π(X) is the treatment probability conditional on X (the "propensity score") (Rosenbaum and Rubin 1983).
- This simplifies the matching task as we can match on one-dimensional π(X) instead of multi-dimensional X.
- Procedure
 - Step 1: Estimate the propensity score, e.g. using a Logit model.
 - Step 2: Apply a matching algorithm using differences in the propensity score, | π̂(X_i) − π̂(X_j)|, instead of multivariate distances.
- PSM is very popular
 - https://scholar.google.ch/scholar?q="propensity+score"+AND+ (matching+OR+matched+OR+match)

Matching Algorithms

- Various matching algorithms can be used to find potential matches based on MD or $\hat{\pi}(X)$ and determine the matching weights w_{ij} .
- Pair matching (one-to-one matching without replacement)
 - For each observation in the treatment group find the closest observation in the control group. Each control is only used once.
- Nearest-neighbor matching (with replacement)
 - ► For each observation in the treatment group find the k closest observations in the control group. A single control can be used multiple times. In case of ties, use all ties as matches. k is set by the researcher.
- Caliper matching
 - Like nearest-neighbor matching, but only use controls with a distance smaller than some threshold c.

Matching Algorithms

- Radius matching
 - Use *all* controls with a distance smaller than some threshold *c*.
- Kernel matching
 - Like radius matching, but give larger weight to controls with smaller distances (using some kernel function such as, e.g., the Epanechnikov kernel).
- Optional: remove remaining imbalance after matching using regression adjustment (a.k.a. "bias correction" in the context of nearest-neighbor matching).

"Why PSM Should Not Be Used for Matching"

- The message of a recent paper by Gary King and Richard Nielsen is: Do not use PSM, it is really, really bad.
 - The paper: http://j.mp/1sexgVw
 - Slides: https://gking.harvard.edu/presentations/ why-propensity-scores-should-not-be-used-matching-6
 - Watch it: https://www.youtube.com/watch?v=rBv39pK1iEs
- Their argument goes about as follows:
 - ► In experimental language, PSM approximates *complete randomization*.
 - Other methods such as MDM approximate *fully blocked* randomization.
 - A fully blocked design is more efficient. It leads to less data imbalance and less "model dependence" (dependence of results on modeling decisions by the researcher).
 - ► Hence, procedures such as MDM dominate PSM.
 - King and Nielsen provide evidence suggesting that PSM performs shockingly bad.

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

→ Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600% smaller!

Goal of Each Matching Method (in Observational Data)

- PSM: complete randomization
- Other methods: *fully blocked*
- Other matching methods dominate PSM (wait, it gets worse)

Best Case: Mahalanobis Distance Matching

slides by King and Nielsen)

Best Case: Mahalanobis Distance Matching

Ben Jann (University of Bern)

Best Case: Propensity Score Matching is Suboptimal

15/23

"Why PSM Should Not Be Used for Matching"

- Are King and Nielsen right?
 - For a given sample size (as in an experiment with fixed budget), fully blocked randomization is more efficient than complete randomization. Things are less clear if blocking reduces the sample size, as in matching.
 - ► The complete randomization analogy only works for *observations with the same propensity score.* If *X* has a strong effect on *T*, there is a lot of blocking also in PSM.
 - King and Nielson's examples illustrating the bad performance of PSM seem to be based on *pair matching without replacement*. Pair matching throws away a lot of data. For PSM, pair matching is particularly bad because a lot of good data (i.e. observations with the same PS) is thrown away ("random pruning").
 - The performance of PSM should be alright for matching algorithms that do not engage in random pruning, such as radius or kernel matching.

The kmatch command

- New matching software for Stata.
- Partly written in response to the paper by King and Nielsen.
- Available from SSC (ssc install kmatch).

Key Features

- Type of matching
 - Multivariate Distance Matching (MDM)
 - Propensity Score Matching (PSM)
 - MDM combined with PSM
 - MDM and PSM combined with exact matching
- Matching algorithms
 - Kernel matching, including ridge and local-linear matching
 - Nearest-neighbor matching, optionally with caliper
 - Optional regression adjustment
- Several automatic bandwidth selectors for kernel matching
- Joint analysis of multiple subgroups and multiple outcome variables
- Various post-estimation commands for balancing and common-support diagnostics
- Computationally efficient

Examples: Mahalanobis-Distance Kernel Matching

 Estimation of the "effect" of union membership on wages using the NLSW 1988 data.

```
. sysuse nlsw88, clear
(NLSW, 1988 extract)
. drop if industry==2
(4 observations deleted)
. kmatch md union collgrad ttl_exp tenure i.industry i.race south ///
      (wage), nate att
>
(computing bandwidth ... done)
Multivariate-distance kernel matching
                                                 Number of obs
                                                                   =
                                                                          1,853
                                                 Kernel
                                                                           epan
                                                                   =
Treatment : union = 1
          · mahalanohis
Metric
Covariates: collgrad ttl_exp tenure i.industry i.race south
Matching statistics
```


 Matched Yes
 Controls Used
 Controls

 Treated
 432
 25
 457
 1105
 291
 1396

Treatment-effects estimation

wage	Coef.	
ATT NATE	.6059013 1.432913	

Band-

width

1.3394

Examples: Balancing Statistics

. kmatch summarize

(refitting the model using the generate() option)

Means	Treated	Raw Untrea~d	StdDif	M Treated	latched(ATT) Untrea~d	StdDif
collgrad	.321663	.224212	.219912	.319444	.319444	0
ttl_exp	13.2685	12.7323	.117584	13.3205	13.1425	.039036
tenure	7.89205	6.17658	. 29735	7.91744	7.58347	.057888
industry	.006565	.012178	058246	.00463	.00463	0
4.industry	.183807	.166905	.044425	. 185185	.185185	0
5.industry	.105033	.027937	.312944	.085648	.085648	0
6.industry	.045952	.169771	407129	.048611	.048611	0
7.industry	.019694	.102436	350657	.020833	.020833	0
8.industry	.017505	.035817	113785	.009259	.009259	0
9.industry	.010941	.040115	185669	.011574	.011574	0
10.industry	.004376	.008596	052551	.002315	.002315	0
11.industry	.479212	.356734	.250073	.506944	.506944	0
12.industry	.122538	.07235	.169707	. 12037	. 12037	0
2.race	.330416	. 244986	.189418	. 3125	.3125	0
3.race	.017505	.011461	.050566	.006944	.006944	0
south	.297593	.466332	352408	.291667	.291667	0
				1		

		Raw		M	atched(ATT)	
Variances	Treated	Untrea~d	Ratio	Treated	Untrea~d	Ratio
	040074	171000	4 05 000	047004	047004	
collgrad	.218674	.174066	1.25628	.217904	.217904	1
ttl_exp	20.5898	21.0001	.980459	19.8177	18.2323	1.08696
tenure	37.2044	29.3629	1.26706	37.0399	34.9543	1.05966
industry	.006536	.012038	.542928	.004619	.004619	1
industry	.150351	.139148	1.08052	.151242	.151242	1
5.industry	.094207	.027176	3.46656	.078494	.078494	1
6.industry	.043936	.14105	.311496	.046355	.046355	1
7.industry	.019348	.092008	.210287	.020447	.020447	1
8.industry	.017237	.034559	.498769	.009195	.009195	1
Q inductory	0109/5	039533	091///5	011467	011/67	1
Ben Jann (Universitv c	of Bern)		Kern	el matching	

Examples: Make a Graph of the Balancing Statistics

```
. mat M = r(M)
```

```
. mat V = r(V)
```

```
. coefplot matrix(M[,3]) matrix(M[,6]) || matrix(V[,3]) matrix(V[,6]) || , ///
```

```
> bylabels("Std. mean difference" "Variance ratio") ///
```

```
> noci nolabels byopts(xrescale)
```

```
. addplot 1: , xline(0) norescaling legend(order(1 "Raw" 2 "Matched"))
```

```
. addplot 2: , xline(1) norescaling
```


Examples: Propensity-Score Kernel Matching

Matching statistics

	М	atched			Controls		Band-
	Yes	No	Total	Used	Unused	Total	width
Treated	431	26	457	1214	182	1396	.00188

wage	Coef.	
ATT NATE	.3887224 1.432913	

Examples: Density Balancing Plot

. kmatch density, lw(*6 *2) lc(*.5 *1) (refitting the model using the generate() option) (applying 0-1 boundary correction to density estimation of propensity score) (bandwidth for propensity score = .06803989)

Examples: Cumulative Distribution Balancing Plot

. kmatch cumul, $lw(*6\ *2)\ lc(*.5\ *1)$ (refitting the model using the generate() option)

Examples: Balancing Box Plot

. kmatch box (refitting the model using the generate() option)

Examples: Standard Errors

. kmatch md union collgrad ttl_exp tenure i.industry i.race south /// (wage), nate ate att atc vce(bootstrap) > (computing bandwidth for treated ... done) (computing bandwidth for untreated ... done) (running kmatch on estimation sample) Bootstrap replications (50) --- 3 ----- 4 ----- 5 - 2 -50 Multivariate-distance kernel matching Number of obs 1.853 = Replications 50 = Kernel epan = Treatment : union = 1

Metric : mahalanobis Covariates: collgrad ttl_exp tenure i.industry i.race south

Matching statistics

	Yes	Matched No	Total	Used	Controls Unused	Total	Band- width
Treated Untreated Combined	432 1386 1818	25 10 35	457 1396 1853	1105 455 1560	291 2 293	1396 457 1853	1.3394 3.3975

wage	Observed Coef.	Bootstrap Std. Err.	z	P> z	Normal [95% Conf.	-based Interval]
ATE ATT	.4095729	.1920853 .2472069	2.13 2.45	0.033	.0330928	.7860531
ATC NATE	.3483797 1.432913	. 1893653 . 2333282	1.84 6.14	0.066 0.000	0227695 .9755981	.7195289 1.890228

Examples: Postestimation Tests

. lincom ATT-NATE

(1) ATT - NATE = 0

wage	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
(1)	8270117	.1810415	-4.57	0.000	-1.181847	4721768

. test ATT = ATC

(1) ATT - ATC = 0 chi2(1) = 2.42 Prob > chi2 = 0.1200

Examples: Nearest-Neighbor Matching (1 Neighbor)

. kmatch md union collgrad ttl_exp tenure i.industry i.race south (wage), att nn Multivariate-distance nearest-neighbor matching

Number	of	obs		=	1,853
Neighbo	ors:		min	=	1
			max	=	1

```
Treatment : union = 1
Metric : mahalanobis
```

Covariates: collgrad ttl_exp tenure i.industry i.race south

Matching statistics

	Yes	Matched No	Total	Used	Controls Unused	Total	Band- width
Treated	457	0	457	328	1068	1396	

Treatment-effects estimation

wage	Coef.	
ATT	.7246969	

. teffects nnmatch (wage collgrad ttl_exp tenure i.industry i.race south) (union), atet

Treatment-effect	s estimation	Number of obs	=	1,853
Estimator :	nearest-neighbor matching	Matches: requested	=	1
Outcome model :	matching	min	=	1
Distance metric:	Mahalanobis	max	=	1

wage	Coef.	AI Robust Std. Err.	z	P> z	[95% Conf.	Interval]
ATET						
union						
(union vs nonunion)	.7246969	.2942952	2.46	0.014	. 147889	1.301505

Examples: Nearest-Neighbor Matching (5 Neighbors)

. kmatch md union collgrad ttl_exp tenure i.industry i.race south (wage), att nn(5) Multivariate-distance nearest-neighbor matching

Number of ob:	s =	1,853
Neighbors:	min =	5
	max =	5

```
Treatment : union = 1
Metric : mahalanobis
```

Covariates: collgrad ttl_exp tenure i.industry i.race south

Matching statistics

	Yes	Matched No	Total	Used	Controls Unused	Total	Band- width
Treated	457	0	457	870	526	1396	

Treatment-effects estimation

wage	Coef.	
ATT	. 5590823	

. teffects nnmatch (wage collgrad ttl_exp tenure i.industry i.race south) (union), atet nn(5)

Treatment-effect	s estimation	Number of obs	=	1,853
Estimator	nearest-neighbor matching	Matches: requested	=	5
Outcome model :	matching	min	=	5
Distance metric:	Mahalanobis	max	=	6

wage	Coef.	AI Robust Std. Err.	z	P> z	[95% Conf.	Interval]
ATET						
union						
(union vs nonunion)	.5590823	.2381752	2.35	0.019	.0922675	1.025897

Examples: Regression Adjustment

. kmatch md union collgrad ttl_exp tenure i.industry i.race south ///
> (wage = collgrad ttl_exp tenure i.industry i.race south), att nn(5)

Multivariate-distance nearest-neighbor matching

			Number of obs		=	1,853	
			Neighbors:	min	=	5	
reatment	:	union = 1		max	=	5	
etric	:	mahalanobis					

Covariates: collgrad ttl_exp tenure i.industry i.race south

Matching statistics

М

	Matched				Band-		
	Yes	No	Total	Used	Unused	Total	width
Treated	457	0	457	870	526	1396	

Treatment-effects estimation

wage	Coef.	
ATT	.5288023	

adjusted for collgrad ttl_exp tenure i.industry i.race south

. teffects nnmatch (wage collgrad ttl_exp tenure i.industry i.race south) ///

> (union), atet nn(5) biasadj(collgrad ttl_exp tenure i.industry i.race south)

Treatment-effect	s estimation	Number of obs	=	1,853
Estimator :	nearest-neighbor matching	Matches: requested	=	5
Outcome model :	matching	min	=	5
Distance metric:	Mahalanobis	max	=	6

wage	Coef.	AI Robust Std. Err.	z	P> z	[95% Conf.	Interval]
ATET						
union						
(union vs nonunion)	. 5288023	.2420635	2.18	0.029	.0543666	1.003238

Kernel matching

Examples: MDM and PSM combined

Matching statistics

	Matched				Band-		
	Yes	No	Total	Used	Unused	Total	width
Treated	439	18	457	1258	138	1396	.83886

wage	Coef.	
ATT	.6408443	

Examples: MDM with Exact Matching

Metric : mahalanobis Covariates: collgrad ttl_exp tenure Exact : industry race south

Matching statistics

	Yes	Matched No	Total	Used	Controls Unused	Total	Band- width
Treated	432	25	457	1103	293	1396	1.3013

wage	Coef.	
ATT	.6047374	

• Default: 1.5 times the 90% quantile of the (non-zero) distances in pair matching with replacement (Huber et al. 2013, 2015).

```
. kmatch md union collgrad ttl_exp tenure i.industry i.race south (wage), ///
> att bwidth(pm)
(computing bandwidth ... done)
Multivariate-distance kernel matching Number of obs = 1,853
Kernel = epan
Treatment : union = 1
Metric : mahalanobis
Covariates: collgrad ttl_exp tenure i.industry i.race south
Vetables estations
```

Matching	statistics
----------	------------

	Matched				Band-		
	Yes	No	Total	Used	Unused	Total	width
Treated	432	25	457	1105	291	1396	1.3394

wage	Coef.	
ATT	.6059013	

• Cross validation with respect to the means of X.

	Matched				Band-		
	Yes	No	Total	Used	Unused	Total	width
Treated	448	9	457	1184	212	1396	1.8888

wage	Coef.	
ATT	.6651578	

. kmatch cvplot, ms(o) index mlabposition(1) sort

• Cross validation with respect to Y (Frölich 2004, 2005).

	Matched				Band-		
	Yes	No	Total	Used	Unused	Total	width
Treated	453	4	457	1289	107	1396	2.433

wage	Coef.	
ATT	.6928956	

. kmatch cvplot, ms(o) index mlabposition(1) sort

• Weighted cross validation with respect to Y (Galdo et al. 2008, Section 4.2).

Matching statistics

	Matched				Band-		
	Yes	No	Total	Used	Unused	Total	width
Treated	455	2	457	1356	40	1396	2.7626

wage	Coef.	
ATT	.7308166	

. kmatch cvplot, ms(o) index mlabposition(1) sort

Examples: Common Support Diagnostics

. kmatch md union collgrad ttl_exp tenure i.industry i.race south (wage), ///
> att bwidth(0.5)

Multivariate-distance kernel	matching	Number of	obs	=	1,853
		Kernel		=	epan

```
Treatment : union = 1
```

```
Metric : mahalanobis
Covariates: collgrad ttl_exp tenure i.industry i.race south
```

Matching statistics

	Matched Yes No Total		Used	Controls Used Unused Total			
Treated	366	91	457	701	695	1396	.5

Treatment-effects estimation

wage	Coef.	
ATT	.3303161	

. kmatch csummarize

(refitting the model using the generate() option)

Moong	Common	support (t	reated)	Standardized difference			
rieans	Matcheu	Unmatte~u	IOUAL	(1)=(3)	(2)=(3)	(1)=(2)	
collgrad	.322404	.318681	.321663	.001585	006376	.007962	
ttl_exp	13.3929	12.7682	13.2685	.027413	110253	.137666	
tenure	8.12614	6.95055	7.89205	.038378	154356	. 192734	
industry	.002732	.021978	.006565	047404	.190657	238061	
4.industry	. 191257	.153846	. 183807	.019212	077269	.096481	
5.industry	.062842	.274725	.105033	137462	.552867	690329	
6.industry	.057377	0	.045952	.054507	219225	.273732	
7.industry	.019126	.021978	.019694	004083	.016423	020506	
8.industry	.005464	.065934	.017505	091714	.368871	460585	
9.industry	.010929	.010989	.010941	000115	.000462	000577	
10.industry	0	.021978	.004376	066227	.266363	332589	
11.industry	.554645	.175824	.479212	. 15083	606636	.757467	
12.industry	.092896	.241758	. 122538	090299	.363181	45348	
2.race	.243169	.681319	.330416	185284	.745209	930494	
3.race	.002732	.076923	.017505	112525	.452572	565097	
south	. 29235	.318681	.297593	011456	.046074	05753	
			N				

Examples: Make a Graph of Common Support Statistics

```
. mat M = r(M)
```

```
. coefplot matrix(M[,4]), noci nolabels xline(0) ///
```

```
> title("Std. difference between matched and original")
```


Examples: Multiple Outcome Variables

. kmatch md union collgrad ttl_exp tenure i.industry i.race south ///
> (wage hours), nate att
(computing bandwidth ... done)
Multivariate-distance kernel matching Number of obs = 1,852
Kernel = epan
Treatment : union = 1
Metric : mahalanobis
Covariates: collgrad ttl_exp tenure i.industry i.race south
Matching statistics

	Matched					Band-	
	Yes	No	Total	Used	Unused	Total	width
Treated	432	25	457	1104	291	1395	1.3392

		Coef.	
wage			
	ATT	.6021049	
	NATE	1.430823	
hours			
	ATT	1.263759	
	NATE	1.450303	

Examples: Varying Regression-Adjustment Equations

. kmatch md union collgrad ttl_exp tenure i.industry i.race south /// (wage = collgrad ttl_exp tenure) /// > > (hours = i.industry i.race), nate att (computing bandwidth ... done) Multivariate-distance kernel matching Number of obs 1,852 = Kernel epan = Treatment : union = 1 Metric · mahalanobis Covariates: collgrad ttl_exp tenure i.industry i.race south Matching statistics

Matched Controls Band-Yes No Total Used Unused Total width Treated 432 25 457 1104 291 1395 1 3392

Treatment-effects estimation

		Coef.	
wage			
	ATT	.5152752	
	NATE	1.430823	
hours			
	ATT	1.263759	
	NATE	1.450303	

wage: adjusted for collgrad ttl_exp tenure hours: adjusted for i.industry i.race

Examples: Treatment Effects by Subpopulation

. kmatch md union collgrad ttl_exp tenure i.industry i.race (wage), ///

Multivariate-distance kernel matching	Number of obs	-	1,853
	Replications	-	50
	Kernel	-	epar
Treatment : union = 1			

Metric : mahalanobis Covariates: collgrad ttl_exp tenure i.industry i.race

0: south = 0

1: south = 1

Matching statistics

		Ma Yes	tched No	Total	Used	Controls Unused	Total	Band- width
0	Treated	306	15	321	625	120	745	1.3199
1	Treated	126	10	136	473	178	651	1.3398

Treatment-effects estimation

	wage	Observed Coef.	Bootstrap Std. Err.	z	P> z	Normal [95% Conf	l-based Interval]
0							
	ATT	.4586332	.2808206	1.63	0.102	0917652	1.009032
1	ATT	.9518705	. 334356	2.85	0.004	. 2965449	1.607196

. test [0]ATT = [1]ATT

(1) [0]ATT - [1]ATT = 0

chi2(1) = 1.36

Prob > chi2 = 0.2433

. lincom [1]ATT - [0]ATT

(1) - [0]ATT + [1]ATT = 0

wage	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
(1)	. 4932373	.4227171	1.17	0.243	335273	1.321748

Ben Jann (University of Bern)

Simulation

- Population data from Swiss census of 2000.
- Outcome: Treiman occupational prestige (recoded from ISCO codes of the current job using command iskotrei by Hendrickx 2002) (values from 6 to 78; mean 44).
- Estimand: ATT of nationality on occupational prestige, with resident aliens as the treatment group and Swiss nationals as the control group.
- Control variables: gender, age, and highest educational degree.
- Population restricted to people between 24 to 60 years old who are working.
- 2'308'006 individuals, of which 17.5% belong to the treatment group.
- Draw random samples (N = 500 or 5000) from population and compute various matching estimators.

Simulation

- Substantial differences between resident aliens and Swiss nationals on all three covariates.
- Propensity score in population (computed from fully stratified data)

• McFadden
$$R^2 = 0.121$$

Simulation

- Raw mean difference in occupational prestige (NATE): -4.79
- Population ATT (computed from fully stratified data): -3.96
- There is some treatment effect heterogeneity (ATE = -3.51, ATC = -3.41)

Results: Variance

In this slide we can see that for the same algorithm PSM typically is somewhat less efficient than MDM, but that across algorithms PSM can also be much more efficient than MDM. For example, kernel matching PSM has a much smaller variance than 1-nearest-neighbor MDM. That is, the choice of algorithm matters much more than the choice between PSM and MDM.

For kernel matching the efficiency differences between PSM and MDM are only small; additional post-matching regression adjustment further reduces the differences.

Results: Bias reduction (in percent)

Ben Jann (University of Bern)

Kernel matching

nel matching The kmatch command └─Some Simulation Results

Here we see that PSM has a bias that does not vanish as the sample size increases. The reason is that the same propensity-score model specification is used for both sample sizes. The model is rather simple (linear effect of age, no interactions) and due to the specific pattern of the data (in particular, the sharp drop in the outcome variable after propensity score 0.3) small imprecisions can have substantial effects on the results. In practice, one would probably use a more refined specification in the large-sample situation, which would reduce bias.

The bias also vanishes once post-matching regression adjustment is applied.

Ben Jann (University of Bern)

Kernel matching

London, 07.09.2017 47

Results: Relative standard error

Ben Jann (University of Bern)

Here we can observe the well-known result that bootstrap standard errors are biased (too large) for nearest-neighbor matching.

In small samples, also the teffects standard errors seem to be slightly off (too low) for PSM and for MDM with bias-correction.

For kernel matching, bootstrap standard standard errors are often somewhat too large, especially in the small sample. The bias is most pronounced for the estimates using the pair-matching bandwidth selector. Results are better if the bandwidth is selected by cross-validation.

Ben Jann (University of Bern)

Coverage of teffects Cls is a bit too low for PSM (and for MDM with bias-correction in the small sample).

Bootstrap CIs are too conservative for nearest-neighbor matching.

For kernel matching, coverage is mostly okay, being a bit too conservative in case of the pair-matching bandwidth selector and considerably off (anti-conservative) for the PSM estimates without bias-correction (due to the pronounced bias in these estimates).

Conclusions

- Overall, I agree with King and Nielsen that MDM has some advantages over PSM, but it also has some disadvantages. In applied research the choice may not be that clear.
 - MDM leaves less scope for bias due to post-matching modeling decisions.
 - Theoretical results (see, e.g., Frölich 2007) suggest that MDM will generally tend to outperform PSM in terms of efficiency (but differences are likely to be small).
 - $m \ref{Less}$ Less restrictions in terms of possible post-matching analyses.
 - Choice of scaling matrix largely arbitrary.
 - Computational complexity.
- One clear conclusion we can draw, however, is:

Do not use propensity scores for pair matching! (But don't use pair matching anyhow.)

Conclusions

- Some additional conclusions from the simulation
 - For PSM, application of regression-adjustment seems like a great idea (reduction of bias and variance); for MDM the advantages of regression-adjustment are less clear.
 - Bootstrap standard error/confidence interval estimation seems to be mostly ok for kernel/ridge matching; this is in contrast to nearest-neighbor matching, where bootstrap standard errors are clearly biased.

To do

- Run some more simulations.
- Variance estimation based on influence functions?
- Better (and faster) bandwidth selection algorithms?
- Explore potential of adaptive bandwidths?

References I

- Cochran, W.G. 1968. The Effectiveness of Adjustment by Subclassification in Removing Bias in Observational Studies. *Biometrics* 24(2):295–313.
- Frölich, M. 2004. Finite-sample properties of propensity-score matching and weighting estimators. *The Review of Economics and Statistics* 86(1):77–90.
- Frölich, M. 2005. Matching estimators and optimal bandwidth choice. *Statistics and Computing* 15:197-215.
- Frölich, M. 2007. On the inefficiency of propensity score matching *AStA* 91:279–290.
- Galdo, J.C., J. Smith, D. Black. 2008. Bandwidth selection and the estimation of treatment effects with unbalanced data. *Annales d'Économie et de Statistique* 91/92:89-216.

References II

- Hendrickx, J. 2002. ISKO: Stata module to recode 4 digit ISCO-88 occupational codes. Statistical Software Components S425802, Boston College Department of Economics.
- Huber, M., M. Lechner, A. Steinmayr. 2015. Radius matching on the propensity score with bias adjustment: tuning parameters and finite sample behaviour. *Empirical Economics* 49:1-31.
- Huber, M., M. Lechner, C. Wunsch. 2013. The performance of estimators based on the propensity score. *Journal of Econometrics* 175:1-21.
- King, G., R. Nielsen. 2016. Why Propensity Scores Should Not Be Used for Matching. Working Paper. Available from http://j.mp/1sexgVw.
- Rosenbaum, P.R., D.B. Rubin. 1983. The Central Role of the Propensity Score in Observational Studies for Causal Effects. *Biometrika* 70:41–55.