| Introduction | Group Sequential Design Theory | Commands | Discussion |
|--------------|--------------------------------|----------|------------|
| 000          | 0000                           | 00000    | 00         |
|              |                                |          |            |

# Group Sequential Clinical Trial Designs for Normally Distributed Outcome Variables

#### Michael Grayling James Wason Adrian Mander

Hub for Trials Methodology Research MRC Biostatistics Unit Cambridge, UK

Stata UK Users Group Meeting, September 2017

| Introduction | Group Sequential Design Theory | Commands | Discussion |
|--------------|--------------------------------|----------|------------|
| 000          |                                | 00000    | 00         |
| Outline      |                                |          |            |



2 Group Sequential Design Theory





| Introduction | Group Sequential Design Theory | Commands<br>00000 | Discussion<br>00 |
|--------------|--------------------------------|-------------------|------------------|
| Outline      |                                |                   |                  |



2 Group Sequential Design Theory





| Introduction<br>●○○ | Group Sequential Design Theory | Commands<br>00000 | Di |
|---------------------|--------------------------------|-------------------|----|
| <b>D</b> 1 1        |                                |                   |    |

## Randomised Controlled Trial Design

- Choose a sample size that provides some level of statistical power for a target treatment effect.
- Recruit the number of patients required.
- Perform an analysis after all patients have been assessed.
- Design, analysis, and reporting of such trials well characterised.
- Incredibly effective way to assess the efficacy of a treatment.
- But is this the best we can do?

| Introduction | Group Sequential Design Theory | Commands | Disc |
|--------------|--------------------------------|----------|------|
| •୦୦          | 0000                           | 00000    | 00   |
|              |                                |          |      |

## Randomised Controlled Trial Design

- Choose a sample size that provides some level of statistical power for a target treatment effect.
- Recruit the number of patients required.
- Perform an analysis after all patients have been assessed.
- Design, analysis, and reporting of such trials well characterised.
- Incredibly effective way to assess the efficacy of a treatment.
- But is this the best we can do?

| Introduction | Group Sequential Design Theory | Commands | Discuss |
|--------------|--------------------------------|----------|---------|
| •••          |                                | 00000    | 00      |
| Randomised ( | Controlled Trial Design        |          |         |

- Choose a sample size that provides some level of statistical power for a target treatment effect.
  - Recruit the number of patients required.
  - Perform an analysis after all patients have been assessed.
  - Design, analysis, and reporting of such trials well characterised.
  - Incredibly effective way to assess the efficacy of a treatment.
  - But is this the best we can do?

| Introduction | Group Sequential Design Theory | Commands | Discuss |
|--------------|--------------------------------|----------|---------|
| •••          | 0000                           | 00000    | 00      |
| Randomised ( | Controlled Trial Design        |          |         |

- Choose a sample size that provides some level of statistical power for a target treatment effect.
- Recruit the number of patients required.
- Perform an analysis after all patients have been assessed.
- Design, analysis, and reporting of such trials well characterised.
- Incredibly effective way to assess the efficacy of a treatment.
- But is this the best we can do?

| Introduction | Group Sequential Design Theory | Commands | Discussi |
|--------------|--------------------------------|----------|----------|
| •••          |                                | 00000    | 00       |
| Randomised C | Controlled Trial Design        |          |          |

- Choose a sample size that provides some level of statistical power for a target treatment effect.
- Recruit the number of patients required.
- Perform an analysis after all patients have been assessed.
- Design, analysis, and reporting of such trials well characterised.
- Incredibly effective way to assess the efficacy of a treatment.
- But is this the best we can do?

| Introduction | Group Sequential Design The | ory    | Commands | Discussio |
|--------------|-----------------------------|--------|----------|-----------|
| •୦୦          | 0000                        |        | 00000    | 00        |
| Randomised C | ontrolled Trial             | Design |          |           |

- Choose a sample size that provides some level of statistical power for a target treatment effect.
- Recruit the number of patients required.
- Perform an analysis after all patients have been assessed.
- Design, analysis, and reporting of such trials well characterised.
- Incredibly effective way to assess the efficacy of a treatment.
- But is this the best we can do?

| Introduction   | Group Sequential Design Theory | Commands | Discussion |
|----------------|--------------------------------|----------|------------|
| •••            |                                | 00000    | 00         |
| Adaptive Trial | Design                         |          |            |

- Trials gather a lot of data during their progress!
- What if we are unsure about the sample size to use?
- What if the new treatment is harmful?
- What if the new treatment works only in a subset of patients?
- This is where adaptive trial design comes in.
- Here discuss group sequential trials.

| Introduction   | Group Sequential Design Theory | Commands | Discussion |
|----------------|--------------------------------|----------|------------|
| ○●○            |                                | 00000    | 00         |
| Adaptive Trial | Design                         |          |            |

- Trials gather a lot of data during their progress!
- What if we are unsure about the sample size to use?
- What if the new treatment is harmful?
- What if the new treatment works only in a subset of patients?
- This is where adaptive trial design comes in.
- Here discuss group sequential trials.

| Introduction   | Group Sequential Design Theory | Commands | Discussion |
|----------------|--------------------------------|----------|------------|
| ○●○            |                                | 00000    | 00         |
| Adaptive Trial | Design                         |          |            |

- Trials gather a lot of data during their progress!
- What if we are unsure about the sample size to use?
- What if the new treatment is harmful?
- What if the new treatment works only in a subset of patients?
- This is where adaptive trial design comes in.
- Here discuss group sequential trials.

| Introduction   | Group Sequential Design Theory | Commands | Discussion |
|----------------|--------------------------------|----------|------------|
| •••            |                                | 00000    | 00         |
| Adaptive Trial | Design                         |          |            |

- Trials gather a lot of data during their progress!
- What if we are unsure about the sample size to use?
- What if the new treatment is harmful?
- What if the new treatment works only in a subset of patients?
- This is where adaptive trial design comes in.
- Here discuss group sequential trials.

| Introduction   | Group Sequential Design Theory | Commands | Discussion |
|----------------|--------------------------------|----------|------------|
| •••            |                                | 00000    | 00         |
| Adaptive Trial | Design                         |          |            |

- Trials gather a lot of data during their progress!
- What if we are unsure about the sample size to use?
- What if the new treatment is harmful?
- What if the new treatment works only in a subset of patients?
- This is where adaptive trial design comes in.
- Here discuss group sequential trials.

| Introduction   | Group Sequential Design Theory | Commands | Discussion |
|----------------|--------------------------------|----------|------------|
| •••            |                                | 00000    | 00         |
| Adaptive Trial | Design                         |          |            |

- Trials gather a lot of data during their progress!
- What if we are unsure about the sample size to use?
- What if the new treatment is harmful?
- What if the new treatment works only in a subset of patients?
- This is where adaptive trial design comes in.
- Here discuss group sequential trials.

| ntroduction   | Group Sequential Design Theory | Commands | Discussion |
|---------------|--------------------------------|----------|------------|
|               | 0000                           | 00000    | 00         |
| Group Sequent | ial Trials                     |          |            |

- Can bring substantial administrative, ethical, monetary advantages.
- Origins in industrial sampling and Wald's SPRT.
- First proposals were fully sequential, but this proved to be impractical.
- Idea therefore is to conduct analyses after particular landmark numbers of patients recruited.
- Trial may be stopped early to accept or reject null hypotheses.
- Expected sample size typically reduced.

| Introduction  | Group Sequential Design Theory | Commands | Discussion |
|---------------|--------------------------------|----------|------------|
| ○○●           | 0000                           | 00000    | 00         |
| Group Sequent | ial Trials                     |          |            |

- Can bring substantial administrative, ethical, monetary advantages.
- Origins in industrial sampling and Wald's SPRT.
- First proposals were fully sequential, but this proved to be impractical.
- Idea therefore is to conduct analyses after particular landmark numbers of patients recruited.
- Trial may be stopped early to accept or reject null hypotheses.
- Expected sample size typically reduced.

| Introduction  | Group Sequential Design Theory | Commands | Discussion |
|---------------|--------------------------------|----------|------------|
| 000           | 0000                           | 00000    | 00         |
| Group Sequent | ial Trials                     |          |            |

- Can bring substantial administrative, ethical, monetary advantages.
- Origins in industrial sampling and Wald's SPRT.
- First proposals were fully sequential, but this proved to be impractical.
- Idea therefore is to conduct analyses after particular landmark numbers of patients recruited.
- Trial may be stopped early to accept or reject null hypotheses.
- Expected sample size typically reduced.

| Introduction  | Group Sequential Design Theory | Commands | Discussion |
|---------------|--------------------------------|----------|------------|
| 00•           |                                | 00000    | 00         |
| Group Sequent | ial Trials                     |          |            |

- Can bring substantial administrative, ethical, monetary advantages.
- Origins in industrial sampling and Wald's SPRT.
- First proposals were fully sequential, but this proved to be impractical.
- Idea therefore is to conduct analyses after particular landmark numbers of patients recruited.
- Trial may be stopped early to accept or reject null hypotheses.
- Expected sample size typically reduced.

| Introduction  | Group Sequential Design Theory | Commands | Discussion |
|---------------|--------------------------------|----------|------------|
| 00•           |                                | 00000    | 00         |
| Group Sequent | ial Trials                     |          |            |

- Can bring substantial administrative, ethical, monetary advantages.
- Origins in industrial sampling and Wald's SPRT.
- First proposals were fully sequential, but this proved to be impractical.
- Idea therefore is to conduct analyses after particular landmark numbers of patients recruited.
- Trial may be stopped early to accept or reject null hypotheses.
- Expected sample size typically reduced.

| Introduction | Group Sequential Design Theory | Commands | Discussion |
|--------------|--------------------------------|----------|------------|
| 00•          |                                | 00000    | 00         |
| Group Sequen | tial Trials                    |          |            |

- Can bring substantial administrative, ethical, monetary advantages.
- Origins in industrial sampling and Wald's SPRT.
- First proposals were fully sequential, but this proved to be impractical.
- Idea therefore is to conduct analyses after particular landmark numbers of patients recruited.
- Trial may be stopped early to accept or reject null hypotheses.
- Expected sample size typically reduced.

| Introduction | Group Sequential Design Theory | Commands | Discussion |
|--------------|--------------------------------|----------|------------|
| 000          |                                | 00000    | 00         |
| Outline      |                                |          |            |



### 2 Group Sequential Design Theory





| Introduction | Group Sequential Design Theory | Commands | Discussion |
|--------------|--------------------------------|----------|------------|
| 000          | ●000                           | 00000    | 00         |
| Overview     |                                |          |            |

- Focus on the design of a two-arm group sequential trial testing for superiority, with normally distributed outcomes.
- Assume a maximum of L analysis planned, and that analysis  $l = 1, \ldots, L$  takes place after  $n_{0l} = ln$  and  $n_{1l} = rln$  patients evaluated in arms 0 and 1 respectively.
- Suppose that  $Y_{dli} \sim N(\mu_d, \sigma_d^2)$  for d = 0, 1.
- Defining  $au = \mu_1 \mu_0$ , interest is in testing

$$H_0: \tau \le 0, \qquad H_1: \tau > 0.$$

• Want overall type-I error-rate when  $\tau = 0$  of  $\alpha$ , and power of  $1 - \beta$  when  $\tau = \delta > 0$ .

| Introduction | Group Sequential Design Theory | Commands | Discussion |
|--------------|--------------------------------|----------|------------|
| 000          | ●000                           | 00000    | 00         |
| Overview     |                                |          |            |

- Focus on the design of a two-arm group sequential trial testing for superiority, with normally distributed outcomes.
- Assume a maximum of L analysis planned, and that analysis  $l = 1, \ldots, L$  takes place after  $n_{0l} = ln$  and  $n_{1l} = rln$  patients evaluated in arms 0 and 1 respectively.
- Suppose that  $Y_{dli} \sim N(\mu_d, \sigma_d^2)$  for d = 0, 1.
- Defining  $au = \mu_1 \mu_0$ , interest is in testing

$$H_0: \tau \le 0, \qquad H_1: \tau > 0.$$

• Want overall type-I error-rate when  $\tau = 0$  of  $\alpha$ , and power of  $1 - \beta$  when  $\tau = \delta > 0$ .

| Introduction | Group Sequential Design Theory | Commands | Discussion |
|--------------|--------------------------------|----------|------------|
| 000          | •000                           | 00000    | 00         |
| Overview     |                                |          |            |

- Focus on the design of a two-arm group sequential trial testing for superiority, with normally distributed outcomes.
- Assume a maximum of L analysis planned, and that analysis  $l = 1, \ldots, L$  takes place after  $n_{0l} = ln$  and  $n_{1l} = rln$  patients evaluated in arms 0 and 1 respectively.
- Suppose that  $Y_{dli} \sim N(\mu_d, \sigma_d^2)$  for d = 0, 1.

• Defining  $au = \mu_1 - \mu_0$ , interest is in testing

 $H_0: \tau \le 0, \qquad H_1: \tau > 0.$ 

• Want overall type-I error-rate when  $\tau = 0$  of  $\alpha$ , and power of  $1 - \beta$  when  $\tau = \delta > 0$ .

| Introduction | Group Sequential Design Theory | Commands | Discussion |
|--------------|--------------------------------|----------|------------|
| 000          | •000                           | 00000    | 00         |
| Overview     |                                |          |            |

- Focus on the design of a two-arm group sequential trial testing for superiority, with normally distributed outcomes.
- Assume a maximum of L analysis planned, and that analysis  $l = 1, \ldots, L$  takes place after  $n_{0l} = ln$  and  $n_{1l} = rln$  patients evaluated in arms 0 and 1 respectively.
- Suppose that  $Y_{dli} \sim N(\mu_d, \sigma_d^2)$  for d = 0, 1.
- Defining  $au = \mu_1 \mu_0$ , interest is in testing

$$H_0: \tau \le 0, \qquad H_1: \tau > 0.$$

• Want overall type-I error-rate when  $\tau = 0$  of  $\alpha$ , and power of  $1 - \beta$  when  $\tau = \delta > 0$ .

| Introduction | Group Sequential Design Theory | Commands | Discussion |
|--------------|--------------------------------|----------|------------|
| 000          | ●000                           | 00000    | 00         |
| Overview     |                                |          |            |

- Focus on the design of a two-arm group sequential trial testing for superiority, with normally distributed outcomes.
- Assume a maximum of L analysis planned, and that analysis  $l = 1, \ldots, L$  takes place after  $n_{0l} = ln$  and  $n_{1l} = rln$  patients evaluated in arms 0 and 1 respectively.
- Suppose that  $Y_{dli} \sim N(\mu_d, \sigma_d^2)$  for d = 0, 1.
- Defining  $au = \mu_1 \mu_0$ , interest is in testing

$$H_0: \tau \le 0, \qquad H_1: \tau > 0.$$

• Want overall type-I error-rate when  $\tau = 0$  of  $\alpha$ , and power of  $1 - \beta$  when  $\tau = \delta > 0$ .

| Introduction | Group Sequential Design Theory | Commands | Discussion |
|--------------|--------------------------------|----------|------------|
| 000          | ○●○○                           | 00000    | 00         |
| Analysis     |                                |          |            |

• To test  $H_0$ , the following test statistic is used after analysis  $l=1,\ldots,L$ 

$$Z_{l} = \left(\frac{1}{n_{1l}}\sum_{j=1}^{l}\sum_{i=1}^{rn}Y_{1jl} - \frac{1}{n_{0l}}\sum_{j=1}^{l}\sum_{i=1}^{n}Y_{0jl}\right)I_{l}^{1/2},$$
$$I_{l} = \left(\frac{\sigma_{0}^{2}}{n_{0l}} + \frac{\sigma_{1}^{2}}{n_{1l}}\right)^{-1}.$$

• Importantly  $(Z_1, \ldots, Z_L)$  is multivariate normal with

$$\mathbb{E}(Z_l) = \tau I_l^{1/2}, \qquad l = 1, \dots, L,$$
$$Cov(Z_l, Z_k) = (I_l/I_k)^{1/2}, \qquad 1 \le l \le k \le L.$$

• Means operating characteristics can be calculated analytically...

| Introduction | Group Sequential Design Theory | Commands | Discussion |
|--------------|--------------------------------|----------|------------|
| 000          | ○●○○                           | 00000    | 00         |
| Analysis     |                                |          |            |

• To test  $H_0,$  the following test statistic is used after analysis  $l=1,\ldots,L$ 

$$Z_{l} = \left(\frac{1}{n_{1l}}\sum_{j=1}^{l}\sum_{i=1}^{rn}Y_{1jl} - \frac{1}{n_{0l}}\sum_{j=1}^{l}\sum_{i=1}^{n}Y_{0jl}\right)I_{l}^{1/2},$$
$$I_{l} = \left(\frac{\sigma_{0}^{2}}{n_{0l}} + \frac{\sigma_{1}^{2}}{n_{1l}}\right)^{-1}.$$

• Importantly  $(Z_1,\ldots,Z_L)$  is multivariate normal with

$$\mathbb{E}(Z_l) = \tau I_l^{1/2}, \qquad l = 1, \dots, L,$$
$$\mathsf{Cov}(Z_l, Z_k) = (I_l / I_k)^{1/2}, \qquad 1 \le l \le k \le L.$$

• Means operating characteristics can be calculated analytically...

| Introduction | Group Sequential Design Theory | Commands | Discussion |
|--------------|--------------------------------|----------|------------|
| 000          |                                | 00000    | 00         |
| Analysis     |                                |          |            |

• To test  $H_0,$  the following test statistic is used after analysis  $l=1,\ldots,L$ 

$$Z_{l} = \left(\frac{1}{n_{1l}}\sum_{j=1}^{l}\sum_{i=1}^{rn}Y_{1jl} - \frac{1}{n_{0l}}\sum_{j=1}^{l}\sum_{i=1}^{n}Y_{0jl}\right)I_{l}^{1/2},$$
$$I_{l} = \left(\frac{\sigma_{0}^{2}}{n_{0l}} + \frac{\sigma_{1}^{2}}{n_{1l}}\right)^{-1}.$$

• Importantly  $(Z_1,\ldots,Z_L)$  is multivariate normal with

$$\begin{split} \mathbb{E}(Z_l) &= \tau I_l^{1/2}, \qquad l = 1, \dots, L, \\ \mathsf{Cov}(Z_l, Z_k) &= (I_l/I_k)^{1/2}, \qquad 1 \leq l \leq k \leq L. \end{split}$$

• Means operating characteristics can be calculated analytically...

| Introduction   | Group Sequential Design Theory | Commands | Discussion |
|----------------|--------------------------------|----------|------------|
| 000            |                                | 00000    | 00         |
| Stopping Rules | 5                              |          |            |

- ...given choices for  $f_1, \ldots, f_L$  and  $e_1, \ldots, e_L$ . Use these in the following stopping rules at analysis  $l = 1, \ldots, L$ 
  - If  $Z_l \ge e_l$  stop and reject  $H_0$ .
  - If  $Z_l < f_l$  stop and accept  $H_0$ .
  - otherwise continue to stage l + 1.

$$\begin{split} \mathbb{P}(\mathsf{Reject}\ H_0 \mid \tau) &= \sum_{l=1}^{L} \mathbb{P}(\mathsf{Reject}\ H_0 \text{ at stage } l \mid \tau), \\ &= \mathbb{P}(Z_1 \geq e_1 \mid \tau) \\ &+ \sum_{l=2}^{L} \mathbb{P}(f_1 \leq Z_1 < e_1, \dots, f_{l-1} \leq Z_{l-1} < e_{l-1}, Z_l \geq e_l \mid \tau). \end{split}$$

- Similar formulae for  $\mathbb{E}(N \mid \tau)$ .
- Evaluate these formulae using mvnormal\_mata().

| Introduction   | Group Sequential Design Theory | Commands | Discussion |
|----------------|--------------------------------|----------|------------|
| 000            |                                | 00000    | 00         |
| Stopping Rules | 5                              |          |            |

- ...given choices for  $f_1, \ldots, f_L$  and  $e_1, \ldots, e_L$ . Use these in the following stopping rules at analysis  $l = 1, \ldots, L$ 
  - If  $Z_l \ge e_l$  stop and reject  $H_0$ .
  - If  $Z_l < f_l$  stop and accept  $H_0$ .
  - otherwise continue to stage l + 1.

$$\begin{split} \mathbb{P}(\mathsf{Reject}\ H_0 \mid \tau) &= \sum_{l=1}^{L} \mathbb{P}(\mathsf{Reject}\ H_0 \text{ at stage } l \mid \tau), \\ &= \mathbb{P}(Z_1 \geq e_1 \mid \tau) \\ &+ \sum_{l=2}^{L} \mathbb{P}(f_1 \leq Z_1 < e_1, \dots, f_{l-1} \leq Z_{l-1} < e_{l-1}, Z_l \geq e_l \mid \tau). \end{split}$$

- Similar formulae for  $\mathbb{E}(N \mid \tau)$ .
- Evaluate these formulae using mvnormal\_mata().

| Introduction   | Group Sequential Design Theory | Commands | Discussion |
|----------------|--------------------------------|----------|------------|
| 000            |                                | 00000    | 00         |
| Stopping Rules | 5                              |          |            |

- ...given choices for  $f_1, \ldots, f_L$  and  $e_1, \ldots, e_L$ . Use these in the following stopping rules at analysis  $l = 1, \ldots, L$ 
  - If  $Z_l \ge e_l$  stop and reject  $H_0$ .
  - If  $Z_l < f_l$  stop and accept  $H_0$ .
  - otherwise continue to stage l + 1.
- Then

$$\begin{split} \mathbb{P}(\mathsf{Reject}\ H_0 \mid \tau) &= \sum_{l=1}^{L} \mathbb{P}(\mathsf{Reject}\ H_0 \text{ at stage } l \mid \tau), \\ &= \mathbb{P}(Z_1 \geq e_1 \mid \tau) \\ &+ \sum_{l=2}^{L} \mathbb{P}(f_1 \leq Z_1 < e_1, \dots, f_{l-1} \leq Z_{l-1} < e_{l-1}, Z_l \geq e_l \mid \tau). \end{split}$$

- Similar formulae for  $\mathbb{E}(N \mid \tau)$ .
- Evaluate these formulae using mvnormal\_mata().

| Introduction   | Group Sequential Design Theory | Commands | Discussion |
|----------------|--------------------------------|----------|------------|
| 000            | ○○●○                           | 00000    | 00         |
| Stopping Rules | 5                              |          |            |

- ...given choices for  $f_1, \ldots, f_L$  and  $e_1, \ldots, e_L$ . Use these in the following stopping rules at analysis  $l = 1, \ldots, L$ 
  - If  $Z_l \ge e_l$  stop and reject  $H_0$ .
  - If  $Z_l < f_l$  stop and accept  $H_0$ .
  - otherwise continue to stage l + 1.

$$\begin{split} \mathbb{P}(\mathsf{Reject}\ H_0 \mid \tau) &= \sum_{l=1}^{L} \mathbb{P}(\mathsf{Reject}\ H_0 \text{ at stage } l \mid \tau), \\ &= \mathbb{P}(Z_1 \geq e_1 \mid \tau) \\ &+ \sum_{l=2}^{L} \mathbb{P}(f_1 \leq Z_1 < e_1, \dots, f_{l-1} \leq Z_{l-1} < e_{l-1}, Z_l \geq e_l \mid \tau). \end{split}$$

- Similar formulae for  $\mathbb{E}(N \mid \tau)$ .
- Evaluate these formulae using mvnormal\_mata().

| Introduction   | Group Sequential Design Theory | Commands | Discussion |
|----------------|--------------------------------|----------|------------|
| 000            |                                | 00000    | 00         |
| Stopping Rules | 5                              |          |            |

- ...given choices for  $f_1, \ldots, f_L$  and  $e_1, \ldots, e_L$ . Use these in the following stopping rules at analysis  $l = 1, \ldots, L$ 
  - If  $Z_l \ge e_l$  stop and reject  $H_0$ .
  - If  $Z_l < f_l$  stop and accept  $H_0$ .
  - otherwise continue to stage l + 1.

$$\begin{split} \mathbb{P}(\mathsf{Reject}\ H_0 \mid \tau) &= \sum_{l=1}^{L} \mathbb{P}(\mathsf{Reject}\ H_0 \text{ at stage } l \mid \tau), \\ &= \mathbb{P}(Z_1 \geq e_1 \mid \tau) \\ &+ \sum_{l=2}^{L} \mathbb{P}(f_1 \leq Z_1 < e_1, \dots, f_{l-1} \leq Z_{l-1} < e_{l-1}, Z_l \geq e_l \mid \tau). \end{split}$$

- Similar formulae for  $\mathbb{E}(N \mid \tau)$ .
- Evaluate these formulae using mvnormal\_mata().

| Introduction   | Group Sequential Design Theory | Commands | Discussion |
|----------------|--------------------------------|----------|------------|
| 000            |                                | 00000    | 00         |
| Stopping Rules | 5                              |          |            |

- ...given choices for  $f_1, \ldots, f_L$  and  $e_1, \ldots, e_L$ . Use these in the following stopping rules at analysis  $l = 1, \ldots, L$ 
  - If  $Z_l \ge e_l$  stop and reject  $H_0$ .
  - If  $Z_l < f_l$  stop and accept  $H_0$ .
  - otherwise continue to stage l + 1.

$$\begin{split} \mathbb{P}(\mathsf{Reject}\ H_0 \mid \tau) &= \sum_{l=1}^{L} \mathbb{P}(\mathsf{Reject}\ H_0 \text{ at stage } l \mid \tau), \\ &= \mathbb{P}(Z_1 \geq e_1 \mid \tau) \\ &+ \sum_{l=2}^{L} \mathbb{P}(f_1 \leq Z_1 < e_1, \dots, f_{l-1} \leq Z_{l-1} < e_{l-1}, Z_l \geq e_l \mid \tau). \end{split}$$

• Similar formulae for  $\mathbb{E}(N \mid \tau)$ .

• Evaluate these formulae using mvnormal\_mata().

| Introduction   | Group Sequential Design Theory | Commands | Discussion |
|----------------|--------------------------------|----------|------------|
| 000            |                                | 00000    | 00         |
| Stopping Rules | 5                              |          |            |

- ...given choices for  $f_1, \ldots, f_L$  and  $e_1, \ldots, e_L$ . Use these in the following stopping rules at analysis  $l = 1, \ldots, L$ 
  - If  $Z_l \ge e_l$  stop and reject  $H_0$ .
  - If  $Z_l < f_l$  stop and accept  $H_0$ .
  - otherwise continue to stage l + 1.

$$\begin{split} \mathbb{P}(\mathsf{Reject}\ H_0 \mid \tau) &= \sum_{l=1}^{L} \mathbb{P}(\mathsf{Reject}\ H_0 \text{ at stage } l \mid \tau), \\ &= \mathbb{P}(Z_1 \geq e_1 \mid \tau) \\ &+ \sum_{l=2}^{L} \mathbb{P}(f_1 \leq Z_1 < e_1, \dots, f_{l-1} \leq Z_{l-1} < e_{l-1}, Z_l \geq e_l \mid \tau). \end{split}$$

- Similar formulae for  $\mathbb{E}(N \mid \tau)$ .
- Evaluate these formulae using mvnormal\_mata().

| Introduction | Group Sequential Design Theory | Commands | Discussion |
|--------------|--------------------------------|----------|------------|
| 000          |                                | 00000    | 00         |
| Boundaries   |                                |          |            |

- Functional form assumed, then search to find group size and exact values for correct operating characteristics.
- For example

$$e_l = C_e (l/L)^{\Omega - 1/2},$$
  
 $f_l = \delta I_l^{1/2} - C_f (l/L)^{\Omega - 1/2}.$ 

- Then take  $I_L^{1/2} = (C_e + C_f)/\delta$ , to ensure  $e_L = f_L$ .
- Search over  $C_e$  and  $C_f$  using optimize().

| Introduction | Group Sequential Design Theory | Commands | Discussion |
|--------------|--------------------------------|----------|------------|
| 000          |                                | 00000    | 00         |
| Boundaries   |                                |          |            |

- Functional form assumed, then search to find group size and exact values for correct operating characteristics.
- For example

$$e_l = C_e (l/L)^{\Omega - 1/2},$$
  
 $f_l = \delta I_l^{1/2} - C_f (l/L)^{\Omega - 1/2}.$ 

- Then take  $I_L^{1/2} = (C_e + C_f)/\delta$ , to ensure  $e_L = f_L$ .
- Search over  $C_e$  and  $C_f$  using optimize().

| Introduction | Group Sequential Design Theory | Commands | Discussion |
|--------------|--------------------------------|----------|------------|
| 000          |                                | 00000    | 00         |
| Boundaries   |                                |          |            |

- Functional form assumed, then search to find group size and exact values for correct operating characteristics.
- For example

$$e_l = C_e (l/L)^{\Omega - 1/2},$$
  
 $f_l = \delta I_l^{1/2} - C_f (l/L)^{\Omega - 1/2}.$ 

• Then take  $I_L^{1/2} = (C_e + C_f)/\delta$ , to ensure  $e_L = f_L$ .

• Search over  $C_e$  and  $C_f$  using optimize().

| Introduction | Group Sequential Design Theory | Commands | Discussion |
|--------------|--------------------------------|----------|------------|
| 000          |                                | 00000    | 00         |
| Boundaries   |                                |          |            |

- Functional form assumed, then search to find group size and exact values for correct operating characteristics.
- For example

$$e_l = C_e (l/L)^{\Omega - 1/2},$$
  
 $f_l = \delta I_l^{1/2} - C_f (l/L)^{\Omega - 1/2}.$ 

- Then take  $I_L^{1/2} = (C_e + C_f)/\delta$ , to ensure  $e_L = f_L$ .
- Search over  $C_e$  and  $C_f$  using optimize().

| Introduction | Group Sequential Design Theory | Commands | Discussion |
|--------------|--------------------------------|----------|------------|
| 000          |                                | 00000    | 00         |
| Outline      |                                |          |            |



2 Group Sequential Design Theory





| Introduction | Group Sequential Design Theory | Commands | Discussion |
|--------------|--------------------------------|----------|------------|
| 000          |                                | ●○○○○    | 00         |
| Commands     |                                |          |            |

- Six commands in total. Four for two-sided tests, and two for one-sided tests as discussed here.
- One-sided tests as follows

| Introduction | Group Sequential Design Theory | Commands | Discussion |
|--------------|--------------------------------|----------|------------|
| 000          |                                | ●0000    | 00         |
| Commands     |                                |          |            |

- Six commands in total. Four for two-sided tests, and two for one-sided tests as discussed here.
- One-sided tests as follows

| Introduction   | Group Sequential Design Theory | Commands | Discussion |
|----------------|--------------------------------|----------|------------|
| 000            |                                | 00000    | 00         |
| Example Output | ut                             |          |            |

. powerFamily, l(3) alpha(0.05) beta(0.2) delta(0.2) sigma(1, 2) omega(-0.5) r(2)

3-stage Group Sequential Trial Design

The hypotheses to be tested are as follows:

H0: tau <= 0 H1: tau > 0,

with the following error constraints:

P(Reject H0 | tau = 0) = .05, P(Reject H0 | tau = .2) = 1 - .2.

Power family boundaries selected with Omega = -.5... ...now determining design..... ...output from optimize() to follow..... Iteration 0: f(p) = .01419449 Iteration 1: f(p) = .00121018 Iteration 2: f(p) = .00105648

| Introduction | Group Sequential Design Theory | Commands | Discussion |
|--------------|--------------------------------|----------|------------|
| 000          |                                | 00●00    | 00         |
| Example Outp | ut                             |          |            |

Iteration 15: f(p) = 1.956e-08 ...design determined. Returning the results...... ...Exact required group size n determined to be:

#### 159.

... Efficacy boundaries e determined to be:

(4.87,2.44,1.62).

...Futility boundaries f determined to be:

(-1.24,.71,1.62).

... Operating characteristics of the design are:

| P(Reject H0 | tau = 0)          | = | .0499,  |
|-------------|-------------------|---|---------|
| P(Reject H0 | tau = <b>.2</b> ) | = | .7999,  |
| E(N   tau = | 0)                | = | 1013,   |
| E(N   tau = | .2)               | = | 1218.2, |
| max_tau E(N | tau)              | = | 1241.3, |
| max N       |                   | = | 1431.4. |

| Introduction | Group Sequential Design Theory | Commands | Discussion |
|--------------|--------------------------------|----------|------------|
| 000          | 0000                           | 000●0    | 00         |
| Example: Cor | nparison                       |          |            |

```
. qui powerFamily, l(3) alpha(0.1) beta(0.1) delta(0.25) sigma(1, 2) omega(-0.25)
> r(2) perf saving(gsdesign1) nodraw title(Power family with {&Omega} = -0.25)
> scale(0.75)
```

```
. qui powerFamily, l(3) alpha(0.1) beta(0.1) delta(0.25) sigma(1, 2) omega(0) r(2
> ) perf saving(gsdesign2) nodraw title(Power family with {&Omega} = 0) scale(0.7
> 5)
```

. qui powerFamily, l(3) alpha(0.1) beta(0.1) delta(0.25) sigma(1, 2) omega(0.25) > r(2) perf saving(gsdesign3) nodraw title(Power family with {&Omega} = 0.25) sca > le(0.75)

. qui triangular, l(3) alpha(0.1) beta(0.1) delta(0.25) sigma(1, 2) r(2) perf sav > ing(gsdesign4) nodraw title(Triangular test) scale(0.75)

. graph combine gsdesign1.gph gsdesign2.gph gsdesign3.gph gsdesign4.gph, ycommon

| Introduction<br>000 | ı |   | Group Sequential Design Theory | Commands<br>0000● | Discussion<br>00 |
|---------------------|---|---|--------------------------------|-------------------|------------------|
| -                   |   | C |                                |                   |                  |

## Example: Comparison



| Introduction | Group Sequential Design Theory | Commands | Discussion |
|--------------|--------------------------------|----------|------------|
| 000          |                                | 00000    | 00         |
| Outline      |                                |          |            |



2 Group Sequential Design Theory





| Introduction | Group Sequential Design Theory | Commands | Discussion |
|--------------|--------------------------------|----------|------------|
| 000          | 0000                           | 00000    | ●○         |
| Discussion   |                                |          |            |

- Group sequential designs provide gains in efficiency, easy to find (at least in this case).
- Key commands working.
- Only considered design so far.
- Only considered two-arm; multi-arm multi-stage designs of increasing interest.
- An option to use simulation instead of integration would also be a good step.

| Introduction | Group Sequential Design Theory | Commands | Discussion |
|--------------|--------------------------------|----------|------------|
| 000          | 0000                           | 00000    | ●0         |
| Discussion   |                                |          |            |

- Group sequential designs provide gains in efficiency, easy to find (at least in this case).
- Key commands working.
- Only considered design so far.
- Only considered two-arm; multi-arm multi-stage designs of increasing interest.
- An option to use simulation instead of integration would also be a good step.

| Introduction | Group Sequential Design Theory | Commands | Discussion |
|--------------|--------------------------------|----------|------------|
| 000          |                                | 00000    | ●0         |
| Discussion   |                                |          |            |

- Group sequential designs provide gains in efficiency, easy to find (at least in this case).
- Key commands working.
- Only considered design so far.
- Only considered two-arm; multi-arm multi-stage designs of increasing interest.
- An option to use simulation instead of integration would also be a good step.

| Introduction | Group Sequential Design Theory | Commands | Discussion |
|--------------|--------------------------------|----------|------------|
| 000          | 0000                           | 00000    | ●0         |
| Discussion   |                                |          |            |

- Group sequential designs provide gains in efficiency, easy to find (at least in this case).
- Key commands working.
- Only considered design so far.
- Only considered two-arm; multi-arm multi-stage designs of increasing interest.
- An option to use simulation instead of integration would also be a good step.

| Introduction | Group Sequential Design Theory | Commands | Discussion |
|--------------|--------------------------------|----------|------------|
| 000          |                                | 00000    | ●0         |
| Discussion   |                                |          |            |

- Group sequential designs provide gains in efficiency, easy to find (at least in this case).
- Key commands working.
- Only considered design so far.
- Only considered two-arm; multi-arm multi-stage designs of increasing interest.
- An option to use simulation instead of integration would also be a good step.

| Introduction | Group Sequential Design Theory | Commands | Discussion |
|--------------|--------------------------------|----------|------------|
| 000          |                                | 00000    | O          |
| References   |                                |          |            |

- Jennison C, Turnbull BW (2000) Group Sequential Methods with Applications to Clinical Trials. Boca Raton, FL: Chapman & Hall/CRC.
- Pampallona S, Tsiatis AA (1994) Group sequential designs for one-sided and two-sided hypothesis testing with provision for early stopping in favor of the null hypothesis. *Journal of Statistical Planning and Inference* 42(1-2):19-35.
- Whitehead J (1997) The Design and Analysis of Sequential Clinical Trials. Revised 2nd ed. Chichester: John Wiley & Sons.