New meta-analysis features in Stata 18

Gabriela Ortiz

StataCorp LLC

2023 Spanish Stata Conference October 19, 2023

Copyright ©2023 StataCorp LLC

New meta-analysis features in Stata 18

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Introduction

Meta-analysis for prevalence Multilevel meta-analysis Conclusion

Introduction

STATA 18

æ

New meta-analysis features in Stata 18

- Meta-analysis for prevalence
 - Stata's meta suite of commands now supports one-sample binary data, allowing you to estimate an overall proportion or prevalence of a symptom, disease, infection, or some other event
- Multilevel meta-analysis
 - You can now perform meta-analysis with effect sizes that are nested within higher-level groupings, such as regions or schools

Overview

- Meta-analysis for prevalence
 - Effect-size computation
 - Summarizing meta-analysis data
- Multilevel meta-analysis
 - Meta-regression
 - Exploring heterogeneity at different levels
 - Sensitivity analysis

What is meta-analysis?

- This is a statistical technique for combining the results from several similar studies.
- The goal is to provide a single estimate of the effect of interest.
- If results vary widely across studies, the goal is then to understand the inconsistencies in the results.

Introduction

Meta-analysis for prevalence Multilevel meta-analysis Conclusion

Chronic kidney disease

	Number of			Proportion	Weight
Study	events	Total		with 95% CI	(%)
Study 1	208	1,200		0.17 [0.15, 0.20]	6.70
Study 2	277	1,125		0.25 [0.22, 0.27]	6.70
Study 3	54	1,000	-	0.05 [0.04, 0.07]	6.69
Study 4	80	670		0.12 [0.10, 0.15]	6.64
Study 5	47	650		0.07 [0.05, 0.09]	6.63
Study 6	23	520		0.04 [0.03, 0.06]	6.60
Study 7	25	840	-	0.03 [0.02, 0.04]	6.67
Study 8	128	820		0.16 [0.13, 0.18]	6.67
Study 9	9	500	E.	0.02 [0.01, 0.03]	6.59
Study 10	57	2,000		0.03 [0.02, 0.04]	6.74
Study 11	118	915		0.13 [0.11, 0.15]	6.68
Study 12	401	1,600		0.25 [0.23, 0.27]	6.72
Study 13	89	740		0.12 [0.10, 0.14]	6.65
Study 14	65	465		0.14 [0.11, 0.17]	6.58
Study 15	528	2,260	-	0.23 [0.22, 0.25]	6.74
Overall			-	0.11 [0.07, 0.15]	
		0.0	0 0.10 0.20 0	0.30	

New meta-analysis features in Stata 18

চানান 18 ≣ ৩৭৫

Meta-analysis goals

- The department of health needs to know the prevalence of chronic kidney disease (CKD) because it is a risk factor for cardiovascular disease
- Our goal is to report a single estimate of the prevalence of CKD
 We assume that the effect sizes are independent across studies.
- If we observe substantial variation across the studies, we instead focus on trying to explain this variation
- Perhaps the age of study participants or some other study-level covariates can explain the discrepancies

・ 同 ト ・ ヨ ト ・ ヨ ト

Meta-analysis for prevalence

< ロ > < 回 > < 回 > < 回 > < 回 >

STATA 18

æ

Fictional chronic kidney disease (CKD) data

- . use extremeprop
- . describe

Contains da Observatio Variabl	ta from ext: ons: .es:	remeprop.dt 15 5	a	5 Jul 2023 10:32
Variable	Storage	Display	Value	Variable label
name	type	format	label	
author	str20	%20s		Author
year	float	%9.0g		Year
mean_age	float	%9.0g		Mean age of participants
ssize	float	%9.0g		Sample size
events	float	%9.0g		Number of participants with CKD

Sorted by:

New meta-analysis features in Stata 18

< ロ > < 同 > < 三 > < 三 >

Meta-analysis data

. list author year events ssize

		author	year	events	ssize
1.	Ortiz	et al.	1975	0	300
2.	Reynolds	et al.	2001	1	800
з.	Medina	et al.	1980	2	840
4.	Krasinsky	et al.	2002	16	520
5.	Cusack	et al.	2000	4	105
6.	Kaling	et al.	1995	47	650
7.	Johnson	et al.	1992	80	670
8.	Villanueva	et al.	1992	89	740
9.	Rogen	et al.	2004	226	915
10.	Yeun	et al.	2008	161	465
11.	Baldwin	et al.	2011	348	820
12.	Andrews	et al.	2012	72	150
13.	Simone	et al.	2007	197	200
14.	Barker	et al.	2016	219	220
15.	Young	et al.	2004	299	300

New meta-analysis features in Stata 18

Random effects meta-analysis model

K independent studies; each reports the number of events observed and the sample size of the study, allowing us to compute the following:

- an estimate, $\hat{\theta}_j$, of the true (unknown) effect size θ_j
- an estimate, $\hat{\sigma}_j$, of its standard error

$$\hat{\theta}_j = \theta + u_j + \epsilon_j$$

for j = 1, 2, ..., K, where $\epsilon_j \sim \mathcal{N}(0, \hat{\sigma}_j^2)$ and $u_j \sim \mathcal{N}(0, \tau^2)$. The ϵ_j s are the sampling errors and the u_j s are the random effects

• The estimate of the overall effect size is the mean of the distribution of effect sizes, $\theta_{pop} = \mathbb{E}(\theta_j)$.

イロト イポト イラト イラト

Random-effects meta-analysis

- For each study, we'll compute an estimate of the proportion, $\hat{\theta}_j$, and an estimate, $\hat{\sigma}_j$, of its standard error
- The overall estimate of the prevalence is a weighted average of the study-specific estimates

$$\hat{\theta}^* = \frac{\sum_{j=1}^{K} w_j \hat{\theta}_j}{\sum_{j=1}^{K} w_j}$$

where $w_j = rac{1}{\hat{\sigma}_j^2 + \hat{ au}^2}$ and $\hat{ au}^2$ is the variance of the random effects

Effect sizes for a proportion

Effect size	Estimate	Variance
Raw proportion	$\hat{p} = \frac{e}{n}$	$rac{\hat{p}(1-\hat{p})}{n}$
Freeman–Tukey	$\hat{p}_{FT} = \arcsin(\sqrt{\frac{e}{n+1}}) + \arcsin(\sqrt{\frac{e+1}{n+1}})$	$\frac{1}{n+0.5}$
Logit	$logit(\hat{p}) = ln(rac{\hat{p}}{1-\hat{p}})$	$\frac{1}{n\hat{p}} + \frac{1}{n-n\hat{p}}$

New meta-analysis features in Stata 18

イロト イ団ト イヨト イヨト

Summary

- We are now familiar with
 - the random-effects meta-analysis model
 - how the overall estimate is computed (weighted average of the study-specific estimates)
 - effect sizes for proportions
- We can now begin working with our data

Declare meta-analysis data

```
. meta esize events ssize
Meta-analysis setting information
Study information
    No. of studies: 15
       Study label: Generic
        Study size: _meta_studysize
      Summary data: events ssize
       Effect size
              Type: ftukeyprop
             Label: Freeman-Tukey's p
          Variable: _meta_es
         Precision
         Std. err.: meta se
                CI: [_meta_cil, _meta_ciu]
          CI level: 95%
  Model and method
             Model: Random effects
            Method: REML
```

New meta-analysis features in Stata 18

< ロ > < 同 > < 三 > < 三 >

System variables

. describe

Contains data f	rom extr	emeprop.dt	a	
Observations:		15		
Variables:		12		5 Jul 2023 10:32
Variable S	torage	Display	Value	
name	type	format	label	Variable label
author	str20	%20s		Author
year	float	%9.0g		Year
mean_age	float	%9.0g		Mean age of participants
ssize	float	%9.0g		Sample size
events	float	%9.0g		Number of participants with CKD
_meta_id	byte	%9.0g		Study ID
_meta_studyla~l	str8	%9s		Study label
_meta_es	double	%10.0g		Freeman-Tukey's p
_meta_se	double	%10.0g		Std. err. for Freeman-Tukey's p
_meta_cil	double	%10.0g		95% lower CI limit for Freeman-Tukey's p
_meta_ciu	double	%10.0g		95% upper CI limit for Freeman-Tukey's p
_meta_studysize	e int	%9.0g		Sample size per study

Sorted by:

Note: Dataset has changed since last saved.

・ロト ・四ト ・ヨト ・ヨト

STATA 18

э

Summary of meta-analysis data

. meta summarize

Effect-size label: Freeman-Tukey's p Effect size: _meta_es Std. err.: _meta_se

Meta-analysis summary Random-effects model Method: REML Number of studies = 15 Heterogeneity: tau2 = 1.0909

- I2 (%) = 99.82
 - H2 = 549.89

Effect size: Freeman-Tukey's p

Study	Effect size	[95% conf.	interval]	% weight
Study 1	0.058	-0.055	0.171	6.66
Study 2	0.085	0.016	0.155	6.68
Study 3	0.109	0.041	0.176	6.68
Study 4	0.358	0.272	0.444	6.67
Study 5	0.414	0.224	0.605	6.63
(output on	itted)			
Study 11	1.419	1.351	1.488	6.68
Study 12	1.531	1.371	1.691	6.64
Study 13	2.878	2.739	3.016	6.65
Study 14	2.979	2.847	3.111	6.66
Study 15	3.002	2.889	3.115	6.66
theta	1.139	0.610	1.669	

Test of theta = 0: z = 4.01

Test of homogeneity: Q = chi2(14) = 5004.80

Prob > |z| = 0.0001Prob > 0 = 0.0000 > $\langle \overline{a} \rangle$ > $\langle \overline{a} \rangle$ > $\langle \overline{a} \rangle$ STATA 18

New meta-analysis features in Stata 18

Summary of meta-analysis data

. meta summarize, proportion Effect-size label: Freeman-Tukey's p Effect size: _meta_es Std. err.: _meta_se

Meta-analysis summary Random-effects model Method: REML Number of studies = 15 Heterogeneity: tau2 = 1.0909 I2 (%) = 99.82 H2 = 549.89

Study	Proportion	[95% conf.	interval]	% weight
Study 1	0.000	0.000	0.006	6.66
Study 2	0.001	0.001	0.005	6.68
Study 3	0.002	0.000	0.007	6.68
Study 4	0.031	0.017	0.048	6.67
Study 5	0.038	0.008	0.085	6.63
(output omi	tted)			
Study 11	0.424	0.391	0.458	6.68
Study 12	0.480	0.400	0.560	6.64
Study 13	0.985	0.962	0.998	6.65
Study 14	0.995	0.981	0.997	6.66
Study 15	0.997	0.986	0.997	6.66
invftukey(theta)	0.290	0.089	0.549	
Test of theta = 0: z	= 4.01		Prob > z	= 0.0001
Test of homogeneity:	0 = chi2(14) = 0	5004.80	Prob > 0	= 0.0000

STATA 18

nomogeneity. Q chiz(14) 0004.00 1

New meta-analysis features in Stata 18

< □ > < 同 > < 回 > < 回 > < □ > <

Freeman–Tukey-transformed proportions

- Freeman–Tukey-transformed proportions have two advantages:
 - The back-transformed CIs are guaranteed to be in the [0,1] range
 - The variance does not depend on the number of events, which means it will not assign artificially large or small weights to studies with \hat{p} close to 0 or 1

Declare meta-analysis data

• Compute effect sizes

meta esize events samplesize [, model esize(estype) zerocells(spec)]
model: random, common, or fixed
estype: raw proportion, Freeman-Tukey-transformed proportion,
logit-transformed proportion

Raw proportions

```
. meta esize events ssize, esize(proportion)
Meta-analysis setting information
 Study information
    No. of studies: 15
       Study label: Generic
        Study size: _meta_studysize
      Summary data: events ssize
       Effect size
              Type: proportion
             Label: Proportion
          Variable: meta es
   Zero-cells adj.: 0.5, only0
         Precision
         Std. err.: _meta_se
                CI: [ meta cil. meta ciu]
          CI level: 95%
  Model and method
             Model: Random effects
            Method: REML
```

New meta-analysis features in Stata 18

< ロ > < 同 > < 三 > < 三 >

Effect sizes for a proportion

Effect size	Estimate	Variance
Raw proportion	$\hat{p} = \frac{e}{n}$	$rac{\hat{p}(1-\hat{p})}{n}$
Freeman–Tukey	$\hat{p}_{FT} = \arcsin(\sqrt{\frac{e}{n+1}}) + \arcsin(\sqrt{\frac{e+1}{n+1}})$	$\frac{1}{n+0.5}$
Logit	$logit(\hat{p}) = ln(rac{\hat{p}}{1-\hat{p}})$	$\frac{1}{n\hat{p}} + \frac{1}{n-n\hat{p}}$

New meta-analysis features in Stata 18

イロト イ団ト イヨト イヨト

Cls for raw proportions

. meta summarize, level(97) Effect-size label: Proportion Effect size: _meta_es Std. err.: _meta_se Meta-analysis summary

Random-effects model Method: REML Number of studies = 15 Heterogeneity: tau2 = 0.1435 I2 (%) = 99.99 H2 = 9871.81

Study	Proportion	[97% conf.	interval]	% weight
Study 1	0.002	-0.003	0.007	6.68
Study 2	0.001	-0.001	0.004	6.68
Study 3	0.002	-0.001	0.006	6.68
Study 4	0.031	0.014	0.047	6.68
Study 5	0.038	-0.002	0.079	6.66
(output or	itted)			
Study 11	0.424	0.387	0.462	6.66
Study 12	0.480	0.391	0.569	6.60
Study 13	0.985	0.966	1.000	6.67
Study 14	0.995	0.986	1.000	6.68
Study 15	0.997	0.989	1.000	6.68
theta	0.324	0.112	0.536	
est of theta = 0:	z = 3.31		Prob > z	= 0.0009
est of homogeneit	y: Q = chi2(14) =	1.3e+05	Prob > Q	= 0.0000

STATA 18

< 注 → < 注 → ...

Effect sizes for a proportion

Logit transformation

- Like the Freeman–Tukey transformation, guarantees that back-transformed confidence intervals will be in the [0, 1] range
- $\bullet\,$ However, it assigns small weights to studies with \hat{p} close to 0 or 1 for common-effect models
- Raw proportions
 - Can produce confidence limits outside the [0,1] range
 - $\bullet\,$ Tends to assign large weights to studies with \hat{p} close to 0 or 1 for common-effect models
- Freeman–Tukey-transformed proportions solve both of these problems; they are variance stabilizing and produce a reasonable CI range

- 4 同 ト 4 ヨ ト 4 ヨ ト

Fictional CKD data

- Let's continue with a modified version of the CKD data with less extreme values for the proportions
 - . use myprop1, clear
 - . list author ssize events mean_age

	author	ssize	events	mean_age
1.	Andrews & Thompson	1200	208	37.2
2.	Barker et al.	1125	277	57.4
з.	Cusack & Golds	1000	54	30.1
4.	Johnson & Johnson	670	80	35.3
5.	Kaling et al.	650	47	32.4
6.	Krasinsky & Blunt	520	23	28.2
7.	Medina et al.	840	25	26.5
8.	Ortiz & Baldwin	820	128	36.5
9.	Ortiz et al.	500	9	26.1
10.	Reynolds et al.	2000	57	24.5
11.	Rogen et al.	915	118	36.2
12.	Simone et al.	1600	401	48.6
13.	Villanueva & Blunt	740	89	34.7
14.	Yeun et al.	465	65	37.3
15.	Young et al.	2260	528	62.6

(日)

Computing Freeman–Tukey-transformed proportions

Let's compute Freeman–Tukey-transformed proportions

```
. meta esize events ssize
Meta-analysis setting information
Study information
    No. of studies: 15
      Study label: Generic
        Study size: _meta_studysize
      Summary data: events ssize
       Effect size
              Type: ftukeyprop
            Label: Freeman-Tukey's p
          Variable: _meta_es
         Precision
         Std. err.: _meta_se
                CI: [ meta cil, meta ciu]
          CI level: 95%
 Model and method
            Model: Random effects
            Method: REML
```

< ロ > < 同 > < 三 > < 三 >

Forest plot

Number of Proportion Weight successes Total with 95% CI (%) Study Study 1 208 1.200 0.17 [0.15, 0.20] 6.70 277 1,125 0.25 [0.22, 0.27] 6.70 Study 2 Study 3 54 1.000 0.05 [0.04. 0.07] 6.69 Study 4 80 670 0.12 [0.10, 0.15] 6.64 Study 5 47 650 0.07 [0.05, 0.09] 6.63 Study 6 23 520 0.04 [0.03, 0.06] 6.60 Study 7 25 840 0.03 [0.02, 0.04] 6.67 Study 8 128 820 0.16 [0.13, 0.18] 6.67 Study 9 9 500 0.02 [0.01, 0.03] 6.59 Study 10 57 2,000 0.03 [0.02, 0.04] 6.74 Study 11 118 915 0.13 [0.11, 0.15] 6.68 Study 12 401 1,600 0.25 [0.23, 0.27] 6.72 Study 13 89 740 0.12 [0.10, 0.14] 6.65 Study 14 65 465 0.14 [0.11, 0.17] 6.58 528 Study 15 2.260 0.23 [0.22, 0.25] 6.74 Overall 0.11 [0.07, 0.15] Heterogeneity: $\tau^2 = 0.07$, $I^2 = 98.53\%$, $H^2 = 67.86$ Test of $\theta_i = \theta_i$: Q(14) = 1136.27, p = 0.00 Test of θ = 0; z = 9.50, p = 0.00 0.00 0.10 0.20 0.30

. meta forestplot, proportion

Random-effects REML model

New meta-analysis features in Stata 18

イロト イヨト イヨト

Cls for individual studies

- By default, meta summarize and meta forestplot compute Wald intervals for the proportion of each individual study
- However, it has been argued that the coverage probability of the Wald interval does not meet the nominal level for extreme values of the proportion and for small sample sizes

Alternative CIs for individual studies

- Alternative CI computations include the Clopper-Pearson, Wilson, Agresti-Coull, and Jeffreys and can be obtained with the citype() option
- Brown, Cai, and DasGupta (2001) recommend either the Wilson or Jeffreys interval for a sample size of 40 or less
- For sample sizes greater than 40, they found the Wilson, Jeffreys, and Agresti-Coull intervals to behave similarly

Forest plot with alternative CI

. meta forestplot, proportion citype(agresti)

	Number of							Proportion	Weight
Study	successes	Total					v	vith Agresti–Coull 95% CI	(%)
Study 1	208	1,200			-			0.17 [0.15, 0.20]	6.70
Study 2	277	1,125				-	-	0.25 [0.22, 0.27]	6.70
Study 3	54	1,000			F .			0.05 [0.04, 0.07]	6.69
Study 4	80	670						0.12 [0.10, 0.15]	6.64
Study 5	47	650		-	-			0.07 [0.05, 0.09]	6.63
Study 6	23	520		-	-			0.04 [0.03, 0.07]	6.60
Study 7	25	840		-				0.03 [0.02, 0.04]	6.67
Study 8	128	820			-	-		0.16 [0.13, 0.18]	6.67
Study 9	9	500		-				0.02 [0.01, 0.03]	6.59
Study 10	57	2,000						0.03 [0.02, 0.04]	6.74
Study 11	118	915			-			0.13 [0.11, 0.15]	6.68
Study 12	401	1,600				-	-	0.25 [0.23, 0.27]	6.72
Study 13	89	740			-			0.12 [0.10, 0.15]	6.65
Study 14	65	465			-	_		0.14 [0.11, 0.17]	6.58
Study 15	528	2,260						0.23 [0.22, 0.25]	6.74
Overall								0.11 [0.07, 0.15]	
Heteroger	neity: $\tau^2 = 0.0$	7, I ² = 98	53%, H ² = 67.86						
Test of θ _i = θ _j : Q(14) = 1136.27, p = 0.00									
Test of θ =	= 0: z = 9.50,	p = 0.00							
				0.00	0.10	0.20	0.30		

Random-effects REML model

New meta-analysis features in Stata 18

(日)

Customizing the forest plot

. meta forestplot, prevalence

<u>.</u>	Number of	.							Prevalence	Weight
Study	successes	i otai							With 95% CI	(%)
Study 1	208	1,200					-		0.17 [0.15, 0.20]	6.70
Study 2	277	1,125						-	0.25 [0.22, 0.27]	6.70
Study 3	54	1,000			-				0.05 [0.04, 0.07]	6.69
Study 4	80	670			-	-			0.12 [0.10, 0.15]	6.64
Study 5	47	650			-				0.07 [0.05, 0.09]	6.63
Study 6	23	520		- 4	-				0.04 [0.03, 0.06]	6.60
Study 7	25	840			F.				0.03 [0.02, 0.04]	6.67
Study 8	128	820				-	F		0.16 [0.13, 0.18]	6.67
Study 9	9	500		-					0.02 [0.01, 0.03]	6.59
Study 10	57	2,000							0.03 [0.02, 0.04]	6.74
Study 11	118	915				-			0.13 [0.11, 0.15]	6.68
Study 12	401	1,600					-	-	0.25 [0.23, 0.27]	6.72
Study 13	89	740			1.1	-			0.12 [0.10, 0.14]	6.65
Study 14	65	465					_		0.14 [0.11, 0.17]	6.58
Study 15	528	2,260					-	-	0.23 [0.22, 0.25]	6.74
Overall									0.11 [0.07, 0.15]	
Heterogen	eity: τ ² = 0.0	7, I ² = 98	.53%, H ² = 67.86							
Test of θ _i =	= θ _j : Q(14) =	1136.27	p = 0.00							
Test of θ =	0: z = 9.50,	p = 0.00								
				0.00	0.	10	0.20	0.	30	

Random-effects REML model

New meta-analysis features in Stata 18

イロト イヨト イヨト

Customizing the forest plot

. meta forestplot, columnopts(_e, title("patients with CKD"))

transform("No. of CKD patients per 1000": invftukey, scale(1000))

	Number of					I	No. of CKD patients per 1000	Weight
Study	patients with CKD	Total					with 95% CI	(%)
Study 1	208	1,200			-		173.33 [152.42, 195.29]	6.70
Study 2	277	1,125			-	-	246.22 [221.47, 271.84]	6.70
Study 3	54	1,000	-				54.00 [40.79, 68.92]	6.69
Study 4	80	670		-			119.40 [95.89, 145.10]	6.64
Study 5	47	650	-	-			72.31 [53.57, 93.57]	6.63
Study 6	23	520					44.23 [28.07, 63.75]	6.60
Study 7	25	840					29.76 [19.24, 42.43]	6.67
Study 8	128	820		-	-		156.10 [132.03, 181.77]	6.67
Study 9	9	500					18.00 [7.91, 31.80]	6.59
Study 10	57	2,000					28.50 [21.63, 36.27]	6.74
Study 11	118	915		-			128.96 [107.99, 151.49]	6.68
Study 12	401	1,600			-	-	250.62 [229.68, 272.16]	6.72
Study 13	89	740					120.27 [97.77, 144.74]	6.65
Study 14	65	465		-	_		139.78 [109.67, 172.87]	6.58
Study 15	528	2,260			-		233.63 [216.41, 251.30]	6.74
Overall				-			109.00 [71.27, 153.52]	
Heterogen	eity: $\tau^2 = 0.07$, $I^2 = 9$	8.53%, H ² = 67.86						
Test of θ_i =	= θ _j : Q(14) = 1136.27	7, p = 0.00						
Test of θ =	0: z = 9.50, p = 0.0	0						
			0.00 1	100.00	200.00	300.0	0	

Random-effects REML model

Prediction interval

- In addition to the CI for the estimate of the overall proportion, we can also compute the prediction interval
- The prediction interval estimates a plausible range for the proportion in a future study by incorporating the uncertainty of the between-study variance

Prediction interval and Agresti–Coull Cl

. meta summarize, proportion citype(agresti) predinterval Effect-size label: Freeman-Tukey's p Effect size: _meta_es Std. err.: _meta_se

Meta-analysis summary Random-effects model Method: REML

Number of studies	= 15
tau2 :	= 0.0668
I2 (%) :	= 98.53
H2 =	= 67.86

		Agresti	-Coull	
Study	Proportion	[95% conf.	interval]	% weight
Study 1	0.173	0.153	0.196	6.70
Study 2	0.246	0.222	0.272	6.70
Study 3	0.054	0.042	0.070	6.69
Study 4	0.119	0.097	0.146	6.64
Study 5	0.072	0.055	0.095	6.63
(output on	itted)			
Study 11	0.129	0.109	0.152	6.68
Study 12	0.251	0.230	0.272	6.72
Study 13	0.120	0.099	0.146	6.65
Study 14	0.140	0.111	0.174	6.58
Study 15	0.234	0.217	0.252	6.74
invftukey(theta)	0.109	0.071	0.154	

New meta-analysis features in Stata 18

Exploring heterogeneity

- With meta summarize we can estimate the overall proportion and with meta forestplot we can see how effect sizes vary around the overall estimate
- We can also perform meta-regression to investigate whether between-study heterogeneity can be explained by one or more moderators

Random-effects meta-regression

Random-effects meta-regression model:

$$\hat{ heta}_j = x_jeta + \epsilon_j^* = x_jeta + u_j + \epsilon_j$$

where $\epsilon_j^* \sim \mathcal{N}(0, \, \hat{\sigma}_j^2 + au^2)$

New meta-analysis features in Stata 18

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Meta-regression

. meta regress	mean_age					
Effect-size Effect Std.	label: Freema size: _meta_ err.: _meta_	n-Tukey's p es se				
Random-effects	meta-regress	ion		Numb	er of obs =	15
Method: REML	-			Resi	dual heteroge	eneity:
					tau2	= .01087
					I2 (%)	= 91.14
					H2	= 11.28
				R	-squared (%)	= 83.72
				Wald	chi2(1) =	66.74
				Prob	> chi2 =	0.0000
_meta_es	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
mean_age	.0208473	.0025518	8.17	0.000	.0158459	.0258487
_cons	1068683	.1001801	-1.07	0.286	3032177	.0894812
Test of residu	al homogeneit	y: Q_res =	chi2(13)	= 179.99	Prob > Q_res	= 0.0000

STATA [18]

æ

< ロ > < 回 > < 回 > < 回 > < 回 >

Subgroup-analysis forest plot

. meta forestplot, proportion subgroup(agegroup) ...

Study	Number of patients with CKD	Total	No. of CKD patients per 1000 with 95% CI	Weigh (%)
Mean age < 30				
Study 3	54	1,000	54.00 [40.79, 68.92]	6.69
Study 6	23	520	44.23 [28.07, 63.75]	6.60
Study 7	25	840	29.76 [19.24, 42.43]	6.67
Study 9	9	500	- 18.00 [7.91, 31.80]	6.59
Study 10	57	2,000	28.50 [21.63, 36.27]	6.74
			 33.98 [23.01, 46.95] 	
30 <= Mean age < 40				
Study 4	80	670		6.64
Study 5	47	650		6.63
Study 8	128	820		6.67
Study 11	118	915		6.68
Study 13	89	740		6.65
			118.31 [92.38, 146.95]	
40 <= Mean age				
Study 1	208	1,200	- 173.33 [152.42, 195.29]	6.70
Study 2	277	1,125	- 246.22 [221.47, 271.84]	6.70
Study 12	401	1,600		6.72
Study 14	65	465	139.78 [109.67, 172.87]	6.58
Study 15	528	2,260	233.63 [216.41, 251.30]	6.74
			208.31 [166.88, 253.02]	
Overall			109.00 [71.27, 153.52]	
		0.	00 100.00 200.00 300.00	

Random-effects REML model

< ロ > < 同 > < 三 > < 三 >

Subgroup meta-analysis

. meta summarize, subgroup(agegroup) prop noheader nometashow

(output omitted)

Heterogeneity summary

Group	df	Q	P > Q	tau2	% I2	H2
Mean age < 30	4	18.40	0.001	0.004	79.43	4.86
30 <= Mean ~40	4	26.68	0.000	0.008	85.69	6.99
40 <= Mean age	4	51.69	0.000	0.014	94.54	18.31
Overall	14	1136.27	0.000	0.067	98.53	67.86

Test of group differences: Q_b = chi2(2) = 92.60

 $Prob > Q_b = 0.000$

Multilevel meta-analysis

< ロ > < 回 > < 回 > < 回 > < 回 >

STATA 18

æ

Multilevel data

- In our previous example, we performed a standard random-effects meta-analysis in which we assumed that the effect sizes were independent across studies
- However, if your data have a multilevel (hierarchical) structure, you can perform multilevel meta-analysis to account for the correlation between effect sizes in the same group

Standard meta-analysis as a two-level model

- Consider a series of studies that examined whether students performed better under a modified school calendar, with frequent breaks, as opposed to the traditional schedule (Cooper et al. 2003).
- Each study was performed in a different school
- The effect size is the standardized mean difference in performance, with positive values indicating that students on the modified calendar performed better than students on the traditional calendar

Standard meta-analysis as a two-level model

• Here we see the effect size reported by each study

Three-level model

- Now suppose that multiple studies belong to the same district
- Schools belonging to the same district will be more similar in terms of demographics and socioeconomical factors, resulting in a correlation between results within a district

• Here we see how studies are grouped by district

Modified school calendar data

·	use	scho	olcal2, c	lear					
(1	Effec	t of	modified	school	calendar	on	student	achievement)	

. describe

Contains data from schoolcal2.dta

Observations:	56	Effect of modified school calendar on student achievement
Variables:	9	5 Jul 2023 11:06
		(_dta has notes)

Variable name	Storage type	Display format	Value label	Variable label
district	int	%12.0g		District ID
school	byte	%9.0g		School ID
study	byte	%12.0g		Study ID
stdmdiff	double	%10.0g		Standardized difference in means of achievement test scores
var	double	%10.0g		Within-study variance of stdmdiff
year	int	%12.0g		Year of the study
se	double	%10.0g		Within-study standard-error of stdmdiff
year_c	byte	%9.0g		Year of the study centered around 1990
mean_exp	float	%9.0g		Mean teacher experience

Sorted by: district

New meta-analysis features in Stata 18

イロト イヨト イヨト イヨト

Modified school calendar data

. list district school study stdmdiff mean_exp in 1/11, sepby(district)

	district	school	study	stdmdiff	mean_exp
1.	11	1	1	18	6.394918
2.	11	2	2	22	1.820014
3.	11	3	3	.23	7.86858
4.	11	4	4	3	8.369441
5.	12	1	5	.13	10.48499
6.	12	2	6	26	10.73829
7.	12	3	7	.19	2.892403
8.	12	4	8	.32	6.689758
9.	18	1	9	.45	5.5483
10.	18	2	10	. 38	13.40538
11.	18	3	11	. 29	3.927117

・ 同 ト ・ ヨ ト ・ ヨ ト

Multilevel meta-analysis model

By performing a multilevel meta-analysis, we can

- estimate the effect size more precisely by accounting for the dependence between observations within a group
- assess the heterogeneity between schools within a district and between districts
- estimate how each district varies from the overall mean
 - This will help us decide whether the modified calendar should be applied to some districts and not others

Multilevel meta-analysis model

We'll fit a three-level random-intercepts model

$$\hat{\theta}_{jk} = \theta + u_j^{(3)} + u_{jk}^{(2)} + \epsilon_{jk}$$

where $u_j^{(3)} \sim \mathcal{N}(0, \tau_3^2)$, $u_{jk}^{(2)} \sim \mathcal{N}(0, \tau_2^2)$, and $\epsilon_{jk} \sim \mathcal{N}(0, \hat{\sigma}_{jk}^2)$. Note that *j* represents the third level (district), *k* represents the second level (school within district), and ϵ_{jk} represents the sampling errors.

Three-level meta-analysis

. meta multilevel stdmdiff, relevels(district school) essevariable(se) nolog Multilevel REML meta-analysis Number of obs = 56

Grouping information

Group variable	No. of	Obser	vations per	group
	groups	Minimum	Average	Maximum
district	11	3	5.1	11
school	56	1	1.0	1

Wald chi2(0) = Prob > chi2 =

Log restricted-likelihood = -7.9587239

stdmdiff	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
_cons	.1847132	.0845559	2.18	0.029	.0189866	.3504397

Test of homogeneity: Q_M = chi2(55) = 578.86

 $Prob > Q_M = 0.0000$

Random-effects p	Estimate .2550724	
district: Identity sd(_cons)		
school: Identity	sd(_cons)	.1809324

Assess variability among effect sizes

```
. estat heterogeneity
Method: Cochran
Joint:
    I2 (%) = 90.50
Method: Higgins-Thompson
district:
    I2 (%) = 63.32
school:
    I2 (%) = 31.86
Total:
    I2 (%) = 95.19
```

New meta-analysis features in Stata 18

< ロ > < 同 > < 回 > < 回 > .

Fit a two-level model

- We want to test whether there is a nonnegligible amount of heterogeneity between the schools within a district
- First, we store our results from the previous model
 - . meta multilevel stdmdiff, ///

relevels(district school) essevariable(se)

- . estimates store full_model
- We now fit a two-level model with district as the second level
 - . meta multilevel stdmdiff, ///

relevels(district) essevariable(se)

. estimates store school_effect

・ 同 ト ・ ヨ ト ・ ヨ ト

Likelihood-ratio test

. lrtest full_model school_effect Likelihood-ratio test Assumption: school_effect nested within full_model LR chi2(1) = 48.52 Prob > chi2 = 0.0000 Note: The reported degrees of freedom assumes the null hypothesis is not on the boundary of the parameter space. If this is not true, then the reported test is conservative. Note: LR tests based on REML are valid only when the fixed-effects specification is identical for both models.

New meta-analysis features in Stata 18

<ロト < 同ト < ヨト < ヨト

Sensitivity analysis

- Suppose we're interested in exploring how different magnitudes of the school-level variation impact our estimates of the overall standardized mean difference and the district-level variation
- To answer this question, we'll refit our model, each time setting the random-effects standard deviations for the school level to a different value

Random-intercepts standard deviations

- . meta multilevel stdmdiff, ///
- relevels(district school, sd(. 0.01)) esse(se)
- . estimates store fixsd1
- . meta multilevel stdmdiff, ///
- relevels(district school, sd(. 0.18)) esse(se)
- . estimates store fixsd2
- . meta multilevel stdmdiff, ///
 relevels(district school, sd(. 0.60)) esse(se)
- . estimates store fixsd3

< ロ > < 同 > < 回 > < 回 >

Comparing effect sizes

. estimates table _all, stats(sd2) keep(stdmdiff:_cons) b(%8.3f) se(%8.3f)

Variable	fixsd1	fixsd2	fixsd3
_cons	0.196 0.090	0.185 0.085	0.123 0.083
sd2	0.010	0.180	0.600

Legend: b/se

New meta-analysis features in Stata 18

<ロト < 同ト < ヨト < ヨト

Comparing random-effects standard deviations for districts

. estimates table _all, stats(sd2) keep(lns1_1_1:_cons) b(%8.3f) eform

Variable	fixsd1	fixsd2	fixsd3
_cons	0.288	0.255	0.000
sd2	0.010	0.180	0.600

< ロ > < 同 > < 回 > < 回 > .

Predictions of random effects

- . qui: meta multilevel stdmdiff, relevels(district school) esse(se)
- . predict double u3 u2, reffects reses(se_u3 se_u2, diagnostic)
- . by district, sort: generate tolist = (_n==1)
- . list district u3 se_u3 if tolist

	district	u3	se_u3
1.	11	18998596	.07071817
5.	12	08467077	.13168501
9.	18	.1407273	.11790486
12.	27	.24064814	.13641505
16.	56	1072942	.13633364
20.	58	23650899	.15003184
31.	71	.53427781	.12606072
34.	86	2004695	.1499012
42.	91	.05711692	.14284823
48.	108	14168396	.13094894
53.	644	01215679	.10054689

< ロ > < 同 > < 三 > < 三 >

Normal quantile plot

- . generate double ustan3 = u3/se_u3
- . qnorm ustan3 if tolist, mlabel(district)

New meta-analysis features in Stata 18

Models with random slopes

- meta multilevel allows us to fit random-intercepts meta-analysis models
 - . meta multilevel stdmdiff, relevels(district school) esse(se)
- We can also fit this model as follows:
 - . meta meregress stdmdiff || district: || school:, esse(se)
- If we wish to include random slopes, we can instead use meta meregress
 - . meta meregress stdmdiff x1 || district: x1 || school:, esse(se)
 - The me in meregress refers to mixed effects

< ロ > < 同 > < 回 > < 回 >

Three-level meta-regression with random slopes

. meta meregress stdmdiff mean_exp ///

- > || district: mean_exp ///
- > || school:, essevariable(se) nolog nogroup

Multilevel REML meta-regression

Log restricted-likelihood = -3.3635425

Number of obs = 56Wald chi2(1) = 8.37Prob > chi2 = 0.0038

stdmdiff	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
mean_exp	0262054	.009058	-2.89	0.004	0439587	0084521
_cons	.3580009	.0981127	3.65	0.000	.1657036	.5502982

Test of homogeneity: Q_M = chi2(54) = 558.47

 $Prob > Q_M = 0.0000$

くロ と く 同 と く ヨ と 一

Random-effects]	Estimate	
district: Independent sd(mean_exp) sd(_cons)		.0156308 .2605429
school: Identity	sd(_cons)	.146955

Display variance components

. estat sd, variance

Random-effects parameters	Estimate
district: Independent var(mean_exp) var(_cons)	.0002443
school: Identity var(_cons)	.0215958

New meta-analysis features in Stata 18

(日)

Conclusion

STATA 18

æ

Summary

- Today, we learned how to do the following in Stata:
 - Compute different effect sizes for meta-analysis of prevalence.
 - Summarize meta-analysis data in both a table and a graph.
 - Perform meta-regression with effect sizes that have hierarchical structures.
 - Assess heterogeneity at different levels of the hierarchy.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Overview of meta-analysis features in Stata
- Video tutorial on performing meta-analysis in Stata
- Stata Meta-Analysis Reference Manual

References

Barker, T. H., C. B. Migliavaca, C. Stein, V. Colpani, M. Falavigna, E. Aromataris, and Z. Munn. 2021. Conducting proportional meta-analysis in different types of systematic reviews: A guide for synthesisers of evidence. BMC Medical Research Methodology 21.

Berkey, C. S., D. C. Hoaglin, F. Mosteller, and G. A. Colditz. 1995. A random effects regression model for meta analysis. *Statistics in Medicine* 14: 395–411.

Borenstein, M., L. V. Hedges, J. P. T. Higgins, and H. R. Rothstein. 2009. Introduction to Meta-Analysis. Chichester, UK: Wiley.

Brown, L. D., T. T. Cai, and A. DasGupta. 2001. Interval estimation for a binomial proportion. *Statistical Science* 16: 101–133.

Colditz, G. A., T. F. Brewer, C. S. Berkey, M. E. Wilson, E. Burdick, H. V. Fineberg, and F. Mosteller. 1994. Efficacy of BCG vaccine in the prevention of tuberculosis: Meta analysis of the published literature. *Journal of the American Medical Association* 271: 698–702.

Glass, G. V. 1976. Primary, secondary, and meta-analysis of research. Educational Researcher 5: 3-8.

Hill, N. R., S. T. Fatoba, J. L. Oke, J. A. Hirst, C. A. O'Callaghan, D. S. Lasserson, and F. D. R. Hobbs. 2016. Global prevalence of chronic kidney disease - A systematic review and meta-analysis. *PLoS One* 11(7).

Moore, R. A., M. R. Tramèr, D. Carroll, P. J. Wiffen, and H. J. McQuay. 1998. Quantitative systematic review of topically applied non-steroidal anti-inflammatory drugs. *British Medical Journal* 316: 333–338.

Rabe-Hesketh, S., and A. Skrondal. 2022. *Multilevel and longitudinal modeling using Stata*. 4th ed. College Station, TX: Stata Press.

< ロ > < 同 > < 三 > < 三 >