Interactive network regression graphs with Stata

Cristina Calvo (cristinacalvolopez@usal.es)

Departament of Sociology and Communication G.A.S.

2023 Spanish Stata Conference University of Salamanca

Madrid, 19 october de 2023

Networks

What is a network? Set of points linked by lines

• A graph \mathcal{G} is a collection of points or vertices x_1, x_2, \dots, x_n (denoted by the set \mathcal{N}), and a collection of lines $l_1, l_2, ..., l_m$ (denoted by the set \mathcal{L}) joining all or some of these points. Graph \mathcal{G} is then fully described and denoted by the doublet $(\mathcal{N}, \mathcal{L})$. (Christofides, 1975)

- This doublet $(\mathcal{N}, \mathcal{L})$ can be represented just by a $n \times n$ matrix **C** whose elements m_{jk} represent the (strength of) connection of point x_j to point x_k .
- There are, however, two other ways of storing graphs:
 - Adjacency list where *n* rows are points, and columns are only neighboring points
 - Edge list where rows are *m* connections with a first column indicating the source point and a second indicating the target point. (Mihura, 2011:7)

6/30

Graphs

Network input structures

Disposition examples

Adjacency matrix					Adjaceno	cy list	Edge list	_
	X_1	Xo	X3	XA	Nodes	Neighbors	Source	Target
	Ā	B	Č	D	Α	CCD	A	С
<i>x</i> 1 A	_				В	ССD	С	А
$x_2 B$	0	_			С	D	В	С
$x_2 C$	2	2	_				С	В
x₄ D	1	1	1	_			С	D
.42	-	-	-				А	D
							В	D

Graphs

Graph representation Its elements (A, B, C, D) and its links (AC AC BC BC CD AD BD) represented

Graphs

Graphs in social research Examples of graphs

Coincidence analysis

Definition

- Coincidence analysis is a set of techniques whose object is to detect which J categories, people, subjects, objects, attributes or events tend to appear at the same time in different delimited spaces.
- These delimited spaces are called *n* scenarios, and are considered as units of analysis (*i*).
- In each scenario a number of J events X_j may occur (1) or may not
 (0) occur.
- We call incidence matrix (**X**) an $n \times J$ matrix composed by 0 and 1, according to the incidence or not of every event X_{j} .
- This incidence matrix is converted into a J × J coincidence matrix
 (C) in whose cells appear frequencies or normalized residuals, which, if significant, represent the adjacencies of the graphs among the events or categories.

coin What is it?

- coin is an ado program published in the *Stata Journal*, which is capable of performing coincidence analysis.
- Its input is a dataset with scenarios as rows and events as columns.
- Its outputs are:
 - Different matrices (frequencies, percentages, residuals (3), distances, adjacencies and edges).
 - Several bar graphs, network graphs (circle, mds, pca, ca, biplot) and dendrograms (single, average, waverage, complete, wards, median, centroid).
 - Measures of centrality (degree, closeness, betweenness, information) (eigenvector and power)
 - Options to export to excel and .csv files.
- Its syntax is simple, but flexible. Many options such as output, bonferroni, p value, minimum, special event, graph controls, ...

Command coin

coin varlist [if] [in] [weight] [, options]

Options can be classified into the following groups:

- **Outputs**: f, g, v, h, e, r, s, n, ph, o, po, pf, t, a, d, l, c, all, x, xy.
- Controls: head(varlist), variable(varname), ascending, descending, minimum (#), support(#), pvalue(#), levels(# # #), bonferroni, lminimum(#), iterations(#).
- Plots
 - Bar: bar, cbar(*varname*)
 - Graph: plot(circle|mds|ca|pca|biplot)
 - Dendrograms: dendrogram(single|complete|average|wards)

12 / 30

coin Coincidence matrix

Table: Coincidence matrix

. coin i.gender i.ager i.ideology i.religion i.intencionr, f

22777 scenarios. 56 probable coincidences amongst 17 events. Density: 0.41. Components: 1.

17 events(n>=5): 1.gender 2.gender 1.ager 2.ager 3.ager 4.ager 1.ideology 2.ideology 3.ideology 1.religion 2.religion 3.religion 1.intencionr > onr 8995.intencionr

		1.	2.	1.	2.	з.	4.	1.	2.	3.	1.	2.	з.	1.	2.	з.	21.	899
	Frequencies	gen~r	gen~r	ager	ager	ager	ager	ide~y	ide~y	ide~y	rel~n	rel~n	rel~n	in~nr	in~nr	in~nr	in~nr	in~n
Gender																		
	Male	11966																
	Female	0	10811															
ager																		
0	18-34	2194	1768	3962														
	35-49	3372	2826	0	6198													
	50-64	3647	3503	0	0	7150												
	>65	2753	2714	0	0	0	5467											
Ideology																		
	Left	5109	4921	2031	2663	3060	2276	10030										
	Center	3571	2619	807	1852	2174	1357	0	6190									
	Right	3286	3271	1124	1683	1916	1834	0	0	6557								
Religion																		
	Practicing	1828	2470	423	917	1233	1725	736	1189	2373	4298							
No	n-practicing	4577	4191	1143	2355	3145	2125	2832	2999	2937	0	8768						
	Others	5561	4150	2396	2926	2772	1617	6462	2002	1247	0	0	9711					
Voting int	ention																	
	PSOE	3251	3745	1041	1474	2294	2187	5240	1253	503	840	2696	3460	6996				
	PP	3737	3651	980	1941	2433	2034	236	3185	3967	2412	3570	1406	0	7388			
	VOX	1707	809	616	923	672	305	69	715	1732	675	1188	653	0	0	2516		
	Sumar	1872	1615	872	1151	976	488	3116	230	141	125	552	2810	0	0	0	3487	
	Others	1399	991	453	709	775	453	1369	807	214	246	762	1382	0	0	0	0	239

13 / 30

- netcoin is a new ado command in its development phase, which is capable of create interactive graphs in html format.
- Its input is a dataset with scenarios as rows and events as columns.
- It can also use another dataset with the characteristics of the events
- Its output is an interactive graph in html format.
- Its syntax is very simple as it uses coin to calculate its statistics.

Command netcoin

netcoin varlist [if] [in] [weight] [using filename] [, options]
Options can be classified into the following groups:

- **Controls**: <u>min</u>imum(#) <u>dir</u>ectory(*dirname*) language(en|es|ca)
- **Outputs** (only if using): <u>name(varname) label(varname)</u> <u>size(varname) color(varname) shape(varname)</u> <u>image(varname)</u>

netCoin _{Graph}

Process From Stata to D3-JavaScript-html

From coincidences to regressions

Differences between them

- In the analysis of coincidences we have seen how adjacencies between categories of variables were determined by the standardized residuals. Moreover, all categories have a similar status: they are categories and there is no difference between dependent and dependent.
- In regression analysis we find a dependence model in which there are dependent variables (or categories) and independent variables (or categories) due to the fact that these variables can be numerical or categorical (factor variables).
- Therefore the two most important differences between coincidence and regression are:
 - The model of the relationship between the variables must be specified in advance in case of regression.
 - Instead of standardized residuals, the marginal effects with their corresponding one-sided significance will be used.

Regression procedure With marginal effects

- A way to make regression graphs would be through marginal effects.
- Marginal effects in regression refer to the change in the dependent or response variable for a small change in one of the independent variables, holding other variables constant.
- An ado has been written to obtain these marginal effects while generating two matrices: that of nodes (variables or categories) and that of links (marginal effects) positive and significant.
- These matrices are stored in the return list, and are the input for the netreg command.

Multiple regression

p(PP) on gender, age, religion and ideology

Table: Multiple regression of voting PP on gender, age, religion and ideology

. regress pPP i.gender age i.religion i.ideology

Source		SS	df MS			Number	of obs	=	27,805	
						F(6, 27	798)	=	3436.96	
Model	1	169294.931	6	282	215.8219	Prob > F		=	0.0000	
Residual	1	228208.808	27,798 8		20954055	R-squar	ed	=	0.4259	
						Adj R-s	quared	=	0.4258	
Total	:	397503.739	27,804 14.2		. 2966386	Root MSE		=	2.8652	
pI	PP	Coefficient	Std. e	rr.	t	P> t	[95%	conf.	interval]	
gende	ər									
Female	Э	.0654696	.03469	46	1.89	0.059	0025	5335	.1334727	
aį	ge	0056908	.00109	27	-5.21	0.000	0078	3326	003549	
religio	on									
Non-practicing	τ	6920244	.0502462		-13.77	0.000790		5095	5935393	
Others		-1.840955	.05388	55	-34.16	0.000 -1.94		6573	-1.735337	
ideolog	gy									
Center		3.344857	.0423155		79.05	0.000	3.261	L916	3.427797	
Right		4.890855	.04663	69	104.87	0.000	4.799	9445	4.982266	
_cons		2.696335	.0855	01	31.54	0.000	2.528	3748	2.863921	

NOTE:

Regression general mean contrasts p(PP) on gender, age, religion and ideology

Table: Contrasts (marginal effects) of voting PP on gender, religion and ideology

. contrast gw.gender gw.religion gw.ideology, nowald Contrasts of marginal linear predictions

	Contrast	Std. err.	[95% conf.	interval]
gender				
(Male vs mean)	0315563	.0167228	0643338	.0012211
(Female vs mean)	.0339133	.0179718	0013124	.0691389
religion				
(Practicing vs mean)	1.067551	.0393402	.9904426	1.14466
(Non-practicing vs mean)	.375527	.0224017	.3316186	.4194354
(Others vs mean)	7734034	.0218841	8162973	7305096
ideology				
(Left vs mean)	-2.296222	.0214	-2.338167	-2.254277
(Center vs mean)	1.048635	.0261675	.9973453	1.099925
(Right vs mean)	2.594634	.0308719	2.534123	2.655144

21/30

Command dime

- dime sureg (depvar1 varlist1) (depvar2 varlist2) ... (depvarN varlistN) [if]
 [in] [weight] [, options]
- It has three kinds of options:
 - vce(vcetype) specifies the type of standard error reported.
 - export(filename.suffix) to export the table to a file.
 - graph, pvalue, bonferroni, and linkbipolar are for network graphs.

dime mlogit depvar varlist [if] [in] [weight] [, options] It as the same options as dime sureg.

Regression marginal effects p(PP) on gender, age, religion and ideology

Table: Margins and marginal effects of voting PP

. dime sureg (pPP i.gender age i.religion i.ideology) Table of marginals and global mean differences

	Total		PP	
Total	(27,805)	3.7		
Male	(14,403)	3.6	-0.0	
Female	(13, 402)	3.7	0.0	
Age	(29,201)	3.7	-0.0	***
Practicing	(5,067)	4.7	1.1	***
Non-practicing	(10,598)	4.0	0.4	***
Others	(12, 140)	2.9	-0.8	***
Left	(12,056)	1.4	-2.3	***
Center	(8,525)	4.7	1.0	***
Right	(7, 224)	6.3	2.6	***
R2		0.43		

*** p<.001, ** p<.01, * p<.05

Regression marginal effects

p(PP PSOE VOX Sumar) on gender, age, religion and ideology

Table: Margins and marginal effects of p(voting)

. dime sureg (pPP i.gender age i.religion i.ideology)(pPSOE)(pVOX)(pSumar), all graph export(regresion.xlsx, replace)

	Total		PP	PSOE	VOX	Sumar
Total	(27,713)	3.7		4.2	2.0	2.5
Male	(14, 364)	3.6 -	-0.0	3.9 -0.3 ***	* 2.3 0.3 ***	* 2.4 -0.1 ***
Female	(13, 349)	3.7	0.0	4.6 0.4 ***	× 1.7 -0.3 ***	* 2.7 0.1 ***
Age	(29,201)	3.7 -	-0.0 ***	4.3 0.0 ***	* 2.0 -0.0 ***	* 2.5 0.0 ***
Practicing	(5,027)	4.7	1.1 ***	3.9 -0.4 ***	2.6 0.5 ***	* 1.9 -0.6 ***
Non-practicing	(10,569)	4.0	0.4 ***	4.4 0.2 ***	* 2.2 0.2 ***	* 2.1 -0.4 ***
Others	(12, 117)	2.9 -	-0.8 ***	4.2 -0.0	1.6 -0.4 ***	* 3.1 0.6 ***
Left	(12,029)	1.4 -	-2.3 ***	6.6 2.3 ***	• 0.3 -1.7 ***	* 4.3 1.8 ***
Center	(8,505)	4.7	1.1 ***	3.2 -1.1 ***	2.0 0.0	1.3 -1.3 ***
Right	(7,179)	6.3	2.6 ***	1.6 -2.7 ***	4.9 2.8 ***	* 0.9 -1.6 ***
R2		0.43		0.32	0.37	0.41

Table of marginals and global mean differences

*** p<.001, ** p<.01, * p<.05
(collection netmlogit exported to file regression.xlsx)</pre>

24 / 30

Regression graph Regression of p(voting) on gender, age, religion and ideology

Graph

Multinomial marginal effects

Voting on gender, age, religion and ideology

Table: Margins and marginal effects of voting

. dime mlogit intencionr i.gender age i.religion i.ideology, graph

Table of marginals and global mean differences

	Total		PSOE			PP			VOX			Sumar		()ther:	s
Total	(22,777)	30.7			32.4			11.0			15.3			10.5		
Male	(11,966)	27.7	-3.0	***	31.4	-1.0	**	14.0	3.0	***	15.5	0.1		11.4	0.9	***
Female	(10,811)	34.1	3.4	***	33.5	1.1	**	7.7	-3.4	***	15.2	-0.1		9.5	-1.0	***
Age	(29,201)	31.1	0.4	***	32.5	0.1	***	10.8	-0.3	***	15.2	-0.1	***	10.4	-0.0	***
Practicing	(4,298)	32.8	2.1	**	38.9	6.5	***	12.1	1.0	*	6.8	-8.5	***	9.4	-1.1	
Non-practicing	(8,768)	35.8	5.1	***	34.6	2.1	***	11.4	0.4		8.5	-6.8	***	9.7	-0.8	*
Others	(9,711)	31.1	0.3		24.3	-8.1	***	10.3	-0.8	*	21.1	5.8	***	13.2	2.7	***
Left	(10,030)	56.4	25.7	***	3.2	-29.3	***	0.9	-10.2	***	25.8	10.5	***	13.8	3.3	***
Center	(6,190)	21.2	-9.6	***	49.3	16.9	***	11.2	0.2		4.4	-10.9	***	13.9	3.4	***
Right	(6,557)	8.8	-21.9	***	56.4	24.0	***	26.9	15.9	***	3.6	-11.8	***	4.2	-6.3	***

*** p<.001, ** p<.01, * p<.05 Pseudo R2: 0.279; Nagelkerke's R2: 0.596; chi2: 19033.47; p: 0

Multinomial graph

Multinomial regression of voting on gender, age, religion and ideology

NAMES OF

Some proposals

- Network coincidence and regression graphs are proposed as a visual analytic framework.
 - Coincidence graphs are employed mainly for interdependent categorical variables.
 - Regression graphs are employed to represent models of dependence between variables and categories.
- Represent the size of nodes by their importance.
 - Frequency (or percentages) for the categorical variables.
 - Distance of the mean from the minimum value for numerical variables.
- Represent the width of links by the association between categories or variables.
 - Normalized residuals in case of coincidence analysis.
 - Marginal effects in case of regression graphs.
- And express only positive associations.

References caring

References on Classsification & Regression Interactive Netgraphs

- Escobar, M. (2009). Redes semánticas en textos periodísticos: propuestas técnicas para su representación. *Empiria*, 17, 13-39.
- Escobar, M., y Gómez Isla, J. (2015). "La expresión de la identidad a través de la imagen: los archivos fotográficos de Miguel de Unamuno y Joaquín Turina". *Revista Española de Investigaciones Sociológicas*, 152, 23-46.
- Escobar, M. (2015). "Studying Coincidences with Network Analysis and Other Multivariate Tools". *The Stata Journal*, 15(4), 1118-1156.
- Escobar, M. (2016). "Ensayo sobre las coincidencias". En A. Almarcha, P. González, y L. Román (Eds.), *Donde la Sociología te lleve*. A Coruña: Universidad de A Coruña.
- Escobar, M., y C. Tejero (2018). "El análisis reticular de coincidencias". *Empiria*, 39, 129-148.
- Escobar, M. y L. Martínez (2020) "Network Coincidence Analysis: the netCoin R Package". *International Journal of Software*, 93, 11.

Last slide Acknowledgment

Thank you very much for your attention! cristinacalvolopez@usal.es

This work has been partially supported by the Spanish Government with the project Análisis de Coincidencias (PGC2018-093755-B-I00) and the FPI pre-doctoral scholarship number PRE2019-088733.

