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Introduction

Survival analysis studies the time until an event happens. It’s
applied to a large array of disciplines like social sciences, natural
sciences, engineering, medicine.



Discrete-data survival analysis refers to the case where data can
only take values over a discrete grid, e.g. 1,2,3....

In some cases, discrete data are “truly discrete”; the event can only
happen at discrete values of time (e.g., length of time that a party
remains is the government; change can only happen at the end of
one term 1).

In many cases, discrete data are the result of interval-censoring.
Events might happen in a continuous range of time, but they can
only be observed at discrete moments (e.g., “silent” heart-attacks
can be observed when patient visits the doctor), or are recorded on
discrete units (length of stay in a hospital is recorded in days).

1Allison,P. Discrete-Time Methods for the Analysis of Event Histories;
Sociological Methodology, Vol. 13, (1982), pp. 61-98



Outline:
I Brief review of main concepts in survival analysis
I Methods to deal with interval-censored and discrete data

I Method 1: using continuous methods for interval-censored data
I Method 2: using commands written specifically for

interval-censored data
I Method 3: Estimate the discrete hazard
I Using Method 3 for interval-censored data
I Some extension to method 3



Specific challenges of survival analysis

Some specific challenges of survival analysis:
I Usually, the observed data can’t be modeled by a Gaussian

distribution; therefore, other distributions need to be used
(e.g., in Stata, the streg command implements several
distribution suited for survival data)

I Data are often right-censored (and sometimes left-truncated)
I Functions of interest are mainly the survivor function and the

hazard function (not so much the density and the distribution)



The survivor and the hazard functions
In survival analysis, we are intersted in the survivor and the hazard
function:
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 based on mortality data : Spain 1910
Survivor function, (approximation)

S(t) = P(T > t) = 1− F (t)
e.g. what’s the probability of
surviving 20 years?
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hazard function, (approximation)

h(t) = f (t)
S(t)

(interpreted as “instant risk”)



Density versus hazard
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Right censoring, left truncation
Assume we want to study the lifespan in a certain population;
events would happen as follows:

1
2

3
4

1920 1960 1985 20701900 1950 2000 2050 2100

born died

Representation of lifetime of 4 individuals



However, we can only run a study for a certain amount of time.
Many studies come from interviewing/following-up a sample of
individuals (who are alive sometime during the study)
Let’s assume that our study went from 1980 to 2010:

study starts study ends

left-truncated rigt-censored

1
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3
4

1920 1960 1980 2010 20701900 1950 2000 2050 2100

born died

study period: 1980 2010
Representation of lifetime of 4 individuals



Our data would looks like follows:

study starts study ends

left-truncated rigt-censored

1
2

3
4

1920 1960 1980 2010 20701900 1950 2000 2050 2100

born died

study period: 1980 2010
Representation of lifetime of 4 individuals

. list id born study_starts enter last_time_obs died, abb(18)

id born study_starts enter last_time_observed died

1. 4 1985 1980 1985 2005 1
2. 3 1985 1980 1985 2010 0
3. 2 1920 1980 1980 2000 1



We use stset to tell Stata about this information:

. stset last_time_obs, failure(died) origin(born) enter(enter)

failure event: died != 0 & died < .
obs. time interval: (origin, last_time_observed]
enter on or after: time enter
exit on or before: failure

t for analysis: (time-origin)
origin: time born

3 total observations
0 exclusions

3 observations remaining, representing
2 failures in single-record/single-failure data

65 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 80



stset creates the “underscore” variables:

. list born enter last died _t0 _t _d _st

born enter last_t~d died _t0 _t _d _st

1. 1985 1985 2005 1 0 20 1 1
2. 1985 1985 2010 0 0 25 0 1
3. 1920 1980 2000 1 60 80 1 1

Variables _t0, _t, _d, _st are used for further estimations by
st commands



For example, streg fits several parametric distributions.
(Right-)censoring is handled as in intreg and tobit; and
(left-)truncation is handled as in truncreg, using the specified
distribution instead of the normal.
The syntax looks like follows:

. streg [covariates], distribution(dist_name)

Notice that we don’t include a dependent variable (this information
is taken from underscore variables)



The Nurses’ Health Study (NHS) 2 is a prospective study of
121,700 female nurses from 11. U.S. states. Participant were
enrolled in 1976, and followed-up for 30 years.
Let’s assume we have data for a similar study; we want to study
time to death in a population, for individuals who are already 30
years old (and we follow-up during 30 years).

2http://www.nurseshealthstudy.org/



Bao et al. 3 used data from the NHS to study the association of
nut consumption to mortality. We’ll use this concept to create a
very simplified dataset and model as an example, where we only
have a nuts dummy covariate, that indicates nut consumption over
a certain threshold.

3Ying Bao, Jiali Han, Frank B. Hu, Edward L. Giovannucci, Meir J.
Stampfer, Walter C. Willett, and Charles S. Fuchs. Association of Nut
Consumption with Total and Cause-Specific Mortality N Engl J Med 2013;
369:2001-2011



We fit a Weibull model to our fictitious dataset: (after stset):

. streg i.nuts, di(weibull) nolog nohr

failure _d: 1 (meaning all fail)
analysis time _t: t

Weibull regression -- log relative-hazard form

No. of subjects = 1,200 Number of obs = 1,200
No. of failures = 1,200
Time at risk = 56495.17541

LR chi2(1) = 9.43
Log likelihood = 60.966853 Prob > chi2 = 0.0021

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

1.nuts -.1777361 .0578383 -3.07 0.002 -.2910972 -.064375
_cons -19.83802 .455061 -43.59 0.000 -20.72993 -18.94612

/ln_p 1.621853 .02235 72.57 0.000 1.578047 1.665658

p 5.06246 .1131462 4.845485 5.289152
1/p .1975324 .0044149 .1890662 .2063777



The Weibull model implies the proportional-hazards assumption:
hnuts=1(t) = constant × hnuts=0(t) (and constant = exp(b1.nuts))
We can plot the predicted hazard curves with stcurve

. stcurve, hazard at1(nuts=0) at2(nuts=1)
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The constant (exp(b)) is called “hazards ratio”, and it’s displayed
by default by streg, di(weibull)

. streg i.nuts, di(weibull) nolog nohead

failure _d: 1 (meaning all fail)
analysis time _t: t

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

1.nuts .8371633 .0484201 -3.07 0.002 .747443 .9376533
_cons 2.42e-09 1.10e-09 -43.59 0.000 9.93e-10 5.91e-09

/ln_p 1.621853 .02235 72.57 0.000 1.578047 1.665658

p 5.06246 .1131462 4.845485 5.289152
1/p .1975324 .0044149 .1890662 .2063777

The hazard of dying at any given moment for somebody in group
nuts=1 is equal to .84 times the hazard of dying for somebody in
the group nuts = 0.



The Cox model makes the PH assumption without using any
parametric form for the hazard (i.e., the hazard can have any
shape).

. stcox i.nuts, nolog nohead

failure _d: 1 (meaning all fail)
analysis time _t: t

Cox regression -- no ties

No. of subjects = 1,200 Number of obs = 1,200
No. of failures = 1,200
Time at risk = 56495.17541

LR chi2(1) = 9.85
Log likelihood = -7307.6324 Prob > chi2 = 0.0017

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

1.nuts .8335557 .0483259 -3.14 0.002 .7440218 .933864



Interval-censored data
Let’s assume that we have a discrete version of the previous
dataset. We only have information from every year (or 2 years, or 5
years).

. use nuts_steps, clear

. list t t_1 t_5 in 1/10

t t_1 t_5

1. 58.50206 59 60
2. 58.85555 59 60
3. 48.10802 49 50
4. 45.56936 46 50
5. 41.07059 42 45

6. 65.36206 66 70
7. 69.26743 70 70
8. 48.6137 49 50
9. 32.39676 33 35

10. 57.54965 58 60



Method 1: treat the data as continuous
This is what we do most of the time, when we analyze “continuous”
data (there is always some level of discretization)

. streg i.nuts, di(weibull) nolog

failure _d: 1 (meaning all fail)
analysis time _t: t_one

Weibull regression -- log relative-hazard form

No. of subjects = 1,200 Number of obs = 1,200
No. of failures = 1,200
Time at risk = 57085

LR chi2(1) = 9.89
Log likelihood = 74.725844 Prob > chi2 = 0.0017

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

1.nuts .8335685 .0482189 -3.15 0.002 .7442217 .9336416
_cons 1.85e-09 8.55e-10 -43.63 0.000 7.52e-10 4.58e-09

/ln_p 1.632823 .0223395 73.09 0.000 1.589039 1.676608

p 5.118306 .1143406 4.899038 5.347388
1/p .1953771 .0043646 .1870072 .2041217



The following graph shows the predicted survival function obtained
by using streg with the original data, and then with discretizations
with grid size = 1 and 10. (predictions from a Weibull model
without covariates)
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For small differences, we might prefer to take advantage of the
flexibility (and features availables) for this this approach. For larger
differences, we might want to look for other approaches.



How do you know if the approximation is good enough?

You can generate artificial data for certain parameters and compare
the estimates (help statistical functions)

You can perform a simulation to study coverage (help simulate)



Method 2: use a command specific for interval-censored
data

These commands would use interval-censored data to estimate the
underlying continuous survival function.

Currently, this can be done by the J. Griffin’s (user-written)
command intcens4

Also, you can fit a lognormal distribution by transforming the
dependent variable and using intreg, for interval-censored
Gaussian data.

This approach can be used for interval-censored data in general,
i.e., intervals can be different for each individual, and there can be
right-censoring.

4Griffin, J. (2005) ’INTCENS’: module to perform interval-censored survival
analysis. package intcens from http://fmwww.bc.edu/RePEc/bocode/i



Method 3: Estimate the discrete hazard and distribution
function

This approach is appropriate for “truly discrete” data, but it can be
used by interval-censored data under certain conditions, and it must
be interpreted accordingly. Let’s start by assuming that we have

“truly discrete” data; e.g., we have a machine that produces
washers, and we count how many washers it produces before it
breaks.



In a discrete setting, for i = 1, . . . , the survivor function is defined
as

St = S(t) = P(T > t) = P(T ≥ t − 1)

and the hazard function is defined as

ht = h(t) = P(T = t|T ≥ t) = P(T = t|t > t − 1)

It can be proved that

St =
t∏

s=1

(1− hs)

therefore, if we have an estimate ĥt for ht , we will also have

Ŝt =
t∏

s=1

(1− ĥs)



An intuitive way to estimate the hazard would be:

ĥt =
# of individuals who failed at time t

# of individuals who have survived time t-1
(1)



For example, if we have the following small dataset:

input
id time failure
1 1 1
2 2 0
3 2 1
end

we can compute the empirical hazard as in the following table:
time # indiv. survived t − 1 # indiv. failed at t hazard
1 3 1 1/3
2 2 1 1/2



Estimations are simpler if we take advantage of stsplit.
We start by stset-ting our data as if continuous.

input
id time failure
1 1 1
2 2 0
3 2 1
end

. stset time, failure(failure) id(id)
(output omitted)

. list id time _t0 _t _st _d, sepby(id)

id time _t0 _t _st _d

1. 1 1 0 1 1 1

2. 2 2 0 2 1 0

3. 3 2 0 2 1 1



Then, we split the data at every integer number.

. stsplit x, every(1)
(2 observations (episodes) created)

. list id time _t0 _t _st _d, sepby(id)

id time _t0 _t _st _d

1. 1 1 0 1 1 1

2. 2 1 0 1 1 0
3. 2 2 1 2 1 0

4. 3 1 0 1 1 0
5. 3 2 1 2 1 1



To visualize our computation more easily, we sort by time:

. sort _t id

. list _t0 _t id _st _d, sepby(_t)

_t0 _t id _st _d

1. 0 1 1 1 1
2. 0 1 2 1 0
3. 0 1 3 1 0

4. 1 2 2 1 0
5. 1 2 3 1 1

Then:
I for every value of time t (_t), we have as many valid

observations as individuals survived t − 1 (_st = 1);
I from those, we need to compute the proportion that failed at t

(_d=1) (e.g. using proportion, tabulate, ratio, etc)



. proportion _d if _st==1, over(_t)

Proportion estimation Number of obs = 5

_prop_1: _d = 0
_prop_2: _d = 1

1: _t = 1
2: _t = 2

Over Proportion Std. Err. [95% Conf. Interval]

_prop_1
1 .6666667 .3333333 .0301335 .9922924
2 .5 .5 .0038613 .9961387

_prop_2
1 .3333333 .3333333 .0077076 .9698665
2 .5 .5 .0038613 .9961387

. . display _b[_prop_2:1]

.33333333

. . display _b[_prop_2:2]

.5



Applying method 3 to interval-censored data

For interval-censored data, if the censoring intervals are the same
for all observations, the observed data is discrete. What happens
when we apply Method 3 to this kind of interval-censored data?
The survivor underlying survival function will be correctly estimated
for the limits of the intervals.
Let’s assume that the interval length is 1; we’ll have, for example:
time observed value
0.3 1
2.5 2
47.8 48
t int(t) +1



Therefore, the survival function S̃(t) based on the discrete version
of the data, will be, for every integer value

S̃(k) = P(int(t) + 1) > k = P(t > k) = S(k)

Therefore, S̃(k) = S(k) for every integer k . (it’s OK to use Third
approach for interval-censored data, provided that results are
interpreted in the right units)
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To include covariates, we can fit a binary model for each group,
eventually constraining the parameter to be the same; this is
equivalent (from the log-likelihood point of view) to fit just one
binary model, for example:
. use nuts_steps, clear

. gen id = _n

. gen fail = 1

. stset t_5, id(id) failure(fail)

id: id
failure event: fail != 0 & fail < .

obs. time interval: (t_5[_n-1], t_5]
exit on or before: failure

1200 total observations
0 exclusions

1200 observations remaining, representing
1200 subjects
1200 failures in single-failure-per-subject data

59465 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 85



. stsplit x, every(5)
(10,693 observations (episodes) created)

.

. gen new_fail = _d

. gen new_time = _t



. cloglog new_fail nut i.new_time, nolog noomitted noemptycells vsquish
(output omitted)

new_fail Coef. Std. Err. z P>|z| [95% Conf. Interval]

nuts -.180724 .0587115 -3.08 0.002 -.2957965 -.0656515
new_time

15 -7.165722 1.241575 -5.77 0.000 -9.599165 -4.73228
20 -5.777303 .8896678 -6.49 0.000 -7.52102 -4.033586
25 -4.061683 .7661359 -5.30 0.000 -5.563282 -2.560084
30 -3.149577 .7485864 -4.21 0.000 -4.61678 -1.682375
35 -2.531663 .7432287 -3.41 0.001 -3.988364 -1.074961
40 -2.011277 .7407928 -2.72 0.007 -3.463204 -.5593497
45 -1.636863 .739931 -2.21 0.027 -3.087101 -.1866247
50 -1.065383 .7389674 -1.44 0.149 -2.513732 .3829669
55 -.62668 .7391177 -0.85 0.397 -2.075324 .8219641
60 -.2956231 .7405705 -0.40 0.690 -1.747115 1.155868
65 .0743624 .7446043 0.10 0.920 -1.385035 1.53376
70 .1550258 .7621283 0.20 0.839 -1.338718 1.64877
75 .2822172 .8197373 0.34 0.731 -1.324438 1.888873

_cons .1623849 .7361614 0.22 0.825 -1.280465 1.605235



To predict the hazard, you can use predict,pr with the binary
model
. predict hazard, pr

. keep if new_time>=20 & new_time <=80
(3,601 observations deleted)

. twoway line hazard new_time if nuts == 0 , sort connect(J) || ///
> line hazard new_time if nuts == 1 , sort c(J) ///
> legend(order( 1 "nuts = 0" 2 "nuts = 1")) ///
> title("discrete hazard function")
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Notes:

I Under the PH assumption for the underlying distribution, the
cloglog model estimates the log-hazard 5

I This method naturally accounts for left-truncation,
right-censoring, and time-varying covariates.

I For not-truncated data, you can fit random-effects/multilevel
models by using melogit, mecloglog, meprobit

5D. W. Hosmer, S.Lemeshow, and S. May. 2008. Applied Survival Analysis:
Regression Modeling of Time to Event Data, 2nd Edition Wiley.



Models can be more flexible; for example, we’ll estimate
time-specific coefficients using the promotion dataset 6 7

(the sample consists of 200 male biochemists who received Ph.D.’s
in the late 1950s or early 1960s)
The model if from Bauldry and Bollen. 8

covariates:
ungrad: a measure of the selectivity of the undergraduate
institution the individuals attended
phdmed: whether the individual earned his Ph.D. from a medical
school.
phdpres: prestige of the Ph.D. granting institution.
art1, .... art10: cumulative count of the number of articles
published by each individual for each year.

6Long, J. S., Allison, P. D., and MCGinnis, R. 1979 "Entrance into the
academic career." American Sociological Review 44:816-830.

7Rabe-Hesketh,S and Skrondal,A Multilevel and Longitudinal Modeling
Using Stata, Third Edition Stata Press, 2012

8Bauldry, S. and Bollen, K. Estimating Discrete-Time Survival Models as
Structural Equation Models 2009 Anual Meeting, Population Association of
America http://paa2009.princeton.edu/abstracts/90513.



. use promotion, clear

. stset dur, fail(event) id(id)

id: id
failure event: event != 0 & event < .

obs. time interval: (dur[_n-1], dur]
exit on or before: failure

301 total observations
0 exclusions

301 observations remaining, representing
301 subjects
217 failures in single-failure-per-subject data

1741 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 10



. stsplit x, every(1)
(1,440 observations (episodes) created)

.

.

. *** data comes in wide form; an art`i´ variable per year

. gen art = .
(1,741 missing values generated)

. forvalues i = 1(1)10{
2. qui replace art = art`i´ if _t ==`i´
3. }

We could fit
.logit _d i._t undgrad phdmed phdpres art

this would estimate a fixed parameter for a time-varying covariate;
but we estimate time-specific parameters for the art variable; we fit:
.logit _d i._t undgrad phdmed phdpres i._t#c.art



. logit _d i._t undgrad phdmed phdpres i._t#c.art, nolog nohead vsquish

_d Coef. Std. Err. z P>|z| [95% Conf. Interval]

_t
2 -1.388905 2.091031 -0.66 0.507 -5.487251 2.709441
3 1.249771 1.438497 0.87 0.385 -1.569632 4.069174
4 2.627005 1.408863 1.86 0.062 -.1343165 5.388327
5 3.270551 1.405798 2.33 0.020 .5152387 6.025864
6 3.403807 1.415779 2.40 0.016 .6289317 6.178682
7 3.639125 1.42877 2.55 0.011 .8387874 6.439462
8 2.853392 1.494764 1.91 0.056 -.0762922 5.783077
9 3.312974 1.501252 2.21 0.027 .3705744 6.255373

10 3.189993 1.613474 1.98 0.048 .0276423 6.352344
undgrad .1557172 .0621884 2.50 0.012 .0338301 .2776043
phdmed -.2408355 .171712 -1.40 0.161 -.5773848 .0957138

phdprest -.025635 .0896171 -0.29 0.775 -.2012813 .1500113
_t#c.art

1 -.2645596 .4702403 -0.56 0.574 -1.186214 .6570945
2 .102138 .1524217 0.67 0.503 -.1966031 .4008792
3 .1165234 .0347489 3.35 0.001 .0484169 .18463
4 .0825747 .028345 2.91 0.004 .0270196 .1381298
5 .0670765 .0253901 2.64 0.008 .0173127 .1168402
6 .0775953 .0273048 2.84 0.004 .0240789 .1311116
7 .0600786 .029941 2.01 0.045 .0013953 .1187619
8 .0976589 .0413054 2.36 0.018 .0167018 .178616
9 .0109346 .0422948 0.26 0.796 -.0719617 .0938309

10 .0032171 .0712058 0.05 0.964 -.1363437 .1427778
_cons -5.527617 1.429006 -3.87 0.000 -8.328418 -2.726817



The more information (i.e. number of obs) we have per group, the
more time-specific parameters we can experiment with.

For relatively few groups, we can represent this kind of model with
one equation per group (gsem), eventually setting constraints for
parameters that are constant across groups.

This allows us to extend the model to new situations, including
additional equations, and latent variables, taking advantage of
structural equation models; example: joint longitudinal and
discrete-survival models.


