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Simulating data for our models
Simulating data is a powerful tool to understand the model we
want to fit, and also to spot identification issues.
Let’s start by fitting a linear model on the homework dataset1

use homework
regress math homework

The same coefficients can be obtained by using xtmixed
. xtmixed math homework, nolog noheader

math Coef. Std. Err. z P>|z| [95% Conf. Interval]

homework 3.126375 .2860801 10.93 0.000 2.565668 3.687081
_cons 45.56015 .7055719 64.57 0.000 44.17726 46.94305

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

sd(Residual) 9.661575 .2998812 9.09134 10.26758

1Kreft, I.G.G and de J. Leeuw. 1998. Introducing Multilevel Modeling. Sage.
Rabe-Hesketh, S. and A. Skrondal. 2008. Multilevel and Longitudinal Modeling
Using Stata, Second Edition. Stata Press



Simulating data for this model is very simple
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x = weekly hours spent on Math homework

(artificial data)
Linear Model (OLS)

. gen x = 8*runiform()

. gen y1 = 3.13*x + 45.56 + 9.66*rnormal()

(Notice that I should use the saved results instead of copying them from the screen;

I’m just doing this for didactic purposes)



Random-effect models
Random intercept only: we are assuming that the intercept varies
randomly across schools
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xb
school1: xb + re
school2: xb + re
school3: xb + re
school4: xb + re

school1: y
school2: y
school3: y
school4: y

(artificial data)
Model with random intercept

The syntax to fit this model would be:
xtmixed math homework || schid:



Random intercept and random slope: we are assuming that both,
intercept and slope, vary randomly across schools)
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x = weekly hours spent on Math homework

(artificial data)
Model with random intercept and random coefficient

xtmixed math homework || schid: homework



. xtmixed math homework || schid: homework, nolog noheader nolrtest

math Coef. Std. Err. z P>|z| [95% Conf. Interval]

homework 1.974516 .8314652 2.37 0.018 .3448746 3.604158
_cons 46.46441 1.608962 28.88 0.000 43.3109 49.61792

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

schid: Independent
sd(homework) 3.709275 .6847578 2.58316 5.326314

sd(_cons) 7.12292 1.255007 5.042925 10.06082

sd(Residual) 7.34461 .2419451 6.88539 7.834457

. est store original1



Simulating data for one-level random-effects models

math coef
homework 1.974516

_cons 46.46441
schid Estimate

sd(homework) 3.709275
sd(_cons) 7.12292

sd(Residual) 7.34461

set seed 1357
set sortseed 159
set obs 100 // 100 schools
generate schid = _n // school identifier
generate nu0 = 7.12*rnormal() // random intercept per school
generate nu1 = 3.709*rnormal() // random slope per school
expand 200 // 200 students per school
generate stud_id = _n // student identifier
generate homework = 8*runiform() // indep. variable
generate residual = 7.34*rnormal() // residuals
generate math = 1.97*homework + 46.46 + nu0 + nu1*homework + residual
xtmixed math homework || schid: homework, nolog noheader nolrtest
est store simulated1



. estimates table original1 simulated1

Variable original1 simulated1

math
homework 1.9745165 1.8530287

_cons 46.464411 46.569009

lns1_1_1
_cons 1.3108365 1.3818598

lns1_1_2
_cons 1.9633177 1.8942815

lnsig_e
_cons 1.9939667 1.9986072



We have assumed that the slope and the intercept are independent.
We could have assumed that there was a correlation among them.

. xtmixed math homew || schid: homew, cov(unstructured) var nolo nolr nohead

math Coef. Std. Err. z P>|z| [95% Conf. Interval]

homework 1.980164 .9284486 2.13 0.033 .160438 3.799889
_cons 46.32561 1.758934 26.34 0.000 42.87816 49.77305

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

schid: Unstructured
var(homework) 17.72652 6.260285 8.871839 35.41875

var(_cons) 62.42455 21.38154 31.90093 122.1539
cov(homework,_cons) -27.59391 10.56626 -48.3034 -6.884412

var(Residual) 53.29462 3.465962 46.91658 60.53972

. est store original2



Simulating data for one-level models with correlated random effects
math coef

homework 1.980164
_cons 46.32561
schid Estimate

var(homework) 17.72652
var(_cons) 62.42455

cov(homework,_cons) -27.59391
var(Residual) 53.29462

clear
set seed 1357
set sortseed 159
set obs 100 // 100 schools
generate schid = _n // school identifier
matrix a = (17.73, -27.59 \ -27.59, 62.42)
drawnorm nu1 nu0, cov(a) // random slope and intercept
expand 200 // 200 students per school
generate stud_id = _n // student identifier
generate homework = 8*runiform() // indep. variable
generate residual = sqrt(53.29)*rnormal() // residuals
generate math = 1.98*homework + 46.33 + nu0 + nu1*homework + residual
xtmixed math homework || schid: homework, ///

cov(unstructured) var nolog noheader nolrtest
est store original2



. xtmixed math homework || schid: homework, cov(unstructured) var
(output omitted)
. est store simulated2

. est table original2 simulated2

Variable original2 simulated2

math
homework 1.9801637 2.1013484

_cons 46.325606 45.970628

lns1_1_1
_cons 1.4375308 1.4200276

lns1_1_2
_cons 2.0669793 2.0222833

atr1_1_1_2
_cons -1.1865765 -1.1093948

lnsig_e
_cons 1.9879177 1.9931474



Multilevel nested models

Often, researchers tend to model the "natural" nesting structure.
For example, schools are naturally nested within regions, because a
school can’t be in two regions.
xtmixed assumes, by default, that consecutive levels are nested.

. xtmixed math homework || region: ||schid:

This specification assumes that I have a random intercept for each
region, and also one random intercept for each school.



Meaning of "nested"

xtmixed assumed that schools on different regions are different, no
matter if we repeat the identificators across regions. If we code:

region schid
1 1
1 2
1 3
2 1
2 2
2 3

xtmixed will interpret that (the effect of) school 1 from region 1
and (the effect of) school 1 from region 2 are different.



Simulating data for nested random-effects models

set seed 1357
set sortseed 713
scalar sd_int_region = 5
scalar sd_int_school = 7
scalar sd_res = 1
qui set obs 20 // number of region
gen region = _n // region identifier
gen int_region = sd_int_region*rnormal()
expand 100 // number of schools per region
sort region
gen schoolid = _n // school identifier
gen int_school = sd_int_school*rnormal()
qui expand 100 // number of students per school
gen res = rnormal() // residuals
gen homework = 8*runiform() // indep. variable
gen y = 2*homework +46 + int_region + int_school + res



. xtmixed y homework || region: ||school:, nolog nolr nohead

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

homework 2.000976 .0009745 2053.38 0.000 1.999067 2.002886
_cons 46.19403 .8541039 54.08 0.000 44.52002 47.86805

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

region: Identity
sd(_cons) 3.753788 .6304813 2.700866 5.217188

schoolid: Identity
sd(_cons) 7.060727 .1122247 6.844161 7.284145

sd(Residual) .998948 .0015874 .9958415 1.002064



Crossed effects

Sometimes we don’t want to consider nested-effect models, but
crossed-effect models, i.e., models where levels that are not nested.
For example, in the pig dataset, we have the dependent variable
weight and information on the week and the id.
We may think that each individual pig has some random departure
from the line:

xtmixed weight week ||id:

or instead, that each week determines some departure from this
line:

xtmixed weigh week || week:

What if we want both? We don’t want to consider these effects as
"nested" How do we simulate data for this model?



Simulating data for crossed-effects models

set seed 1357
set sortseed 793
scalar sd_re_week = 1
scalar sd_re_id = 3.5
scalar sd_res = 2
set obs 50 //number of pigs
gen id = _n // pig identifier
gen re_id = sd_re_id*rnormal() // random intercept, pig level
expand 20 // number of weeks
bysort id: gen week = _n // week identifier; these repeat across pigs
gen re_week = sd_re_week*rnormal() // random effect, week
bysort week: replace re_week = re_week[1] // needs to be unique per week
gen res = sd_res*rnormal()
gen weight = 6*week + 19 + re_id + re_week + res



We can estimate the model with the following syntax:

. xtmixed weigh week || _all:R.week || id:, nolog nolr nohead

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

week 6.003322 .0415515 144.48 0.000 5.921882 6.084761
_cons 19.41274 .6880104 28.22 0.000 18.06426 20.76121

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

_all: Identity
sd(R.week) 1.033334 .1851922 .7272604 1.468221

id: Identity
sd(_cons) 3.358588 .3453138 2.745619 4.108404

sd(Residual) 2.004485 .0464529 1.915476 2.097631

Stata tip: always use the R. notation for the level with less
categories.



What does exactly, the _all:R.var notation do?

It creates a level "_all" containing all the observations in one
category; At this level, a set of covariates is included, consisting of
dummies for the categories of var, while constraining the variances
to be the same.
That is:

xtmixed weight week || _all:R.week

Is the same as

generate one = 1
tab id, gen(week_dummy)
xtmixed weight week || one: week_dummy*, cov(identity) nocons

Which is just an inefficient way to fit the model:

xtmixed weight week || week:



Naturally-nested vs model-nested models

Let’s assume that we have data on return on assets for a set of
firms, which belong to different industries and different countries.
Industries and countries are naturally crossed. We can model them
as they are:

. xtmixed asset || _all: R.country ||industry:

We might think, instead, that each industry behaves differently for
each country, i.e., we can create a "virtual" level, country-industry.

. use asset2, clear

. xtmixed asset || country: || industry:



Application: Dyadic data analysis

This area is becoming increasingly popular among social scientists,
and consists of statistical techniques to study data comprised by
pairs of correlated individuals.

Some examples are member of a couple, parent and child,
individuals matched in an experimental design, etc.

The main tools used for these problems are multilevel models and
structural equation models (implemented in the sem command).



Kenny et al.2 used an hypothetical dyadic study predicting
likelihood of marriage.

The variables of interest were
I the dependent variable: likelihood of marriage within 5 years,

as perceived by each member of the couple.
I the main predictor: a composite score measuring the

contribution made by each member to the household
I two more covariates:

I gender (women = -1, men = 1)
I culture (Asian = -1, American = 1).

Notice the particular coding used for binary variables. It is done to
interpret the coefficients as differences from the grand mean.

2Kenny, D., D. Kashi and W. Cook. 2006. Dyadic Data Analysis. The
Guilford Press



The dataset looks like this:

+----------------------------------------------------------+
| dyad person future contribution gender culture |
|----------------------------------------------------------|

1. | 1 1 75 -10 -1 1 |
2. | 1 2 90 -5 1 1 |

|----------------------------------------------------------|
3. | 2 1 55 0 -1 1 |
4. | 2 2 75 10 1 1 |

|----------------------------------------------------------|
5. | 3 1 45 -10 -1 1 |
6. | 3 2 33 -15 1 1 |

|----------------------------------------------------------|
7. | 4 1 70 5 -1 1 |
8. | 4 2 75 15 1 1 |

|----------------------------------------------------------|
9. | 5 1 50 0 -1 1 |

10. | 5 2 40 -5 1 1 |
(...)



The authors fit the following model:

gen contrib_cult = contribution*culture

. xtmixed future contribution culture contrib_cult || dyad: , ///
> reml var nolog noheader

future Coef. Std. Err. z P>|z| [95% Conf. Interval]

contribution .8447885 .255653 3.30 0.001 .3437178 1.345859
culture -9.032817 4.469649 -2.02 0.043 -17.79317 -.272466

contrib_cult .4872612 .255653 1.91 0.057 -.0138095 .988332
_cons 71.83089 4.469649 16.07 0.000 63.07054 80.59124

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

dyad: Identity
var(_cons) 176.4304 102.5106 56.49412 550.9898

var(Residual) 43.75333 21.43787 16.74738 114.3077

LR test vs. linear regression: chibar2(01) = 8.44 Prob >= chibar2 = 0.0018



The postestimation command estat icc computes the intraclass
correlation, which in this case is the proportion of the total variance
due to variation between couples.

. estat icc

Residual intraclass correlation

Level ICC Std. Err. [95% Conf. Interval]

dyad .8012872 .1274283 .4565605 .9508703



Categorical variables in this dataset are manually coded to obtain
the difference from the grand mean. This kind of coding can be
tricky when there are more than two categories, or with unbalanced
data.

In Stata you don’t need to do that; you can use the factor variable
notation, and there is a battery of post estimation commands that
will compute all the effects that you need (see contrast, margins,
marginsplot).



Here is how to fit the previous model using the factor variable
notation.

. gen cult2 = cult == 1

. xtmixed future i.cult2##c.contrib || dyad: , reml var nolog noheader nolr
--------------------------------------------------------------------------------------

future | Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------------------+----------------------------------------------------------------

1.cult2 | -18.06563 8.939298 -2.02 0.043 -35.58634 -.544932
contribution | .3575272 .2322398 1.54 0.124 -.0976544 .8127089

|
cult2#c.contribution |

1 | .9745225 .5113061 1.91 0.057 -.027619 1.976664
|

_cons | 80.86371 6.307358 12.82 0.000 68.50151 93.2259
--------------------------------------------------------------------------------------

------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

-----------------------------+------------------------------------------------
dyad: Identity |

var(_cons) | 176.4304 102.5106 56.49412 550.9898
-----------------------------+------------------------------------------------

var(Residual) | 43.75333 21.43787 16.74738 114.3077
------------------------------------------------------------------------------



The differences from the grand mean can be computed and tested
with contrast.

. contrast g.cult2 g.cult2#c.contrib

Contrasts of marginal linear predictions

Margins : asbalanced

(output omitted)
----------------------------------------------------------------------

| Contrast Std. Err. [95% Conf. Interval]
---------------------+------------------------------------------------
future |

cult2 |
(0 vs mean) | 9.032817 4.469649 .272466 17.79317
(1 vs mean) | -9.032817 4.469649 -17.79317 -.272466

|
cult2#c.contribution |

(0 vs mean) | -.4872612 .255653 -.988332 .0138095
(1 vs mean) | .4872612 .255653 -.0138095 .988332

----------------------------------------------------------------------



Final remarks

I xtmixed is a versatile command that allows us to fit a variety
of models.

I Understanding the mechanics of each piece in the syntax
allows us to fit very sophisticated models.

I Simulating data allows us to get a deeper insight on multilevel
models, to understand the particular specification we want to
use, and eventually spot identification problems.

I xtmixed also allows us to specify different structures for the
errors, feature not covered in this talk. This feature opens a
new array of models, including more sophisticated models with
multivariate response.

I The sem command can also be used to fit multilevel models.
The choice of the command will depend on convenience (data
setting) and on the particular model.


