Econometric analysis of dynamic panel-data models using Stata

David M. Drukker

StataCorp

Summer North American Stata Users Group meeting July 24-25, 2008

3 The Arellano-Bover/Blundell-Bond estimator

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ⊙

Introduction

• We are interested in estimating the parameters of models of the form

$$y_{it} = y_{it-1}\gamma + \mathbf{x}_{it}\beta + u_i + \epsilon_{it}$$

for $i = \{1, \dots, N\}$ and $t = \{1, \dots, T\}$ using datasets with large N and fixed T

- By construction, y_{it-1} is correlated with the unobserved individual-level effect u_i
- Removing u_i by the within transform (removing the panel-level means) produces an inconsistent estimator with T fixed
- First difference both sides and look for instrumental-variables (IV) and generalized method-of-moments (GMM) estimators

The Arellano-Bond estimator I

• First differencing the model equation yields

$$\Delta y_{it} = \Delta y_{it-1}\gamma + \Delta \mathbf{x}_{it}\beta + \Delta \epsilon_{it}$$

- The u_i are gone, but the y_{it-1} in Δy_{it-1} is a function of the ε_{it-1} which is also in Δε_{it}
 So Δy_{it-1} is correlated with Δε_{it} by construction
- [Anderson and Hsiao(1981)] suggested a 2SLS estimator based on further lags of Δy_{it} as instruments for Δy_{it-1}
 - For instance, if ε_{it} is IID over i and t, Δy_{it-2} would be a valid instrument for Δy_{it-1}
- [Anderson and Hsiao(1981)] also suggested suggested a 2SLS estimator based on lagged levels of Δy_{it} as instruments for Δy_{it-1}
 - For instance, if ϵ_{it} is IID over *i* and *t*, y_{it-2} would be a valid instrument for Δy_{it-1}

The Arellano-Bond estimator II

- [Holtz-Eakin et al.(1988)Holtz-Eakin, Newey, and Rosen] and [Arellano and Bond(1991)] showed how to construct estimators based on moment equations constructed from further lagged levels of y_{it} and the first-differenced errors
 - We are creating moment conditions using lagged levels of the dependent variable with first differences of the errors ϵ_{it}
 - First-differences of strictly exogenous covariates are also used to create moment conditions
- Assume that ϵ_{it} are IID over *i* and *t*, i.e. no serial correlation in the errors
 - We will drop this assumption later
- We have more instruments than parameters, so use GMM framework

Strict Exogeneity

- If the regressors are strictly exogenous, \(\epsilon_{it}\) cannot affect \(\mathbf{x}_{is}\) for any s or t
- If the regressors are predetermined, ϵ_{it} may affect \mathbf{x}_{is} for s > t
- Dynamic panel-data estimators allow for predetermined regressors

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

How strict is strict exogeneity?

- Strict exogeneity rules out any feedback from the idiosyncratic shock at time t to a regressor at time s > t
- Consider the following model ln(income_{it}) = α + education_{it} β_1 + married_{it} β_2 + ν_i + ϵ_{it}
 - where we are modeling the log of income as a function of years of education and an indicator for whether or not person *i* is married at time *t*
 - Strict exogeneity requires that ϵ_{it} be unrelated to married_{is} for s > t, which rules out negative-economic shocks from causing divorces in the future

The Arellano-Bond estimator III

- The moment conditions formed by assuming that particular lagged levels of the dependent variable are orthogonal to the differenced disturbances are known as GMM-type moment conditions
 - Sometimes they are called sequential moment conditions
- The moment conditions formed using the strictly exogenous covariates are just standard IV moment conditions, so they are called standard moment conditions
- The dynamic panel-data estimators in Stata report which transforms of which variables were used as instruments

GMM

- In GMM estimators, we weight the vector of sample-average moment conditions by the inverse of a positive definite matrix
- When that matrix is the covariance matrix of the moment conditions, we have an efficient GMM estimator
- In the case of nonidentically distributed disturbances, we can use a two-step GMM estimator that estimates the covariance matrix of the moment conditions using the first-step residuals
- Although the large-sample robust variance-covariance matrix of the two-step estimator does not depend on the fact that estimated residuals were used, simulation studies have found that that Windmejier's bias-corrected estimator performs much better

xtabond

• xtabond depvar indepvars [if] [in], [, options]

. use dpdcrime . describe									
Contains data from dpdcrime.dta									
obs:	8,000								
vars:	7			24 May 2008 17:44					
size: 4	16,000 (99.2% of me	emory free)	(_dta has notes)					
	storage	display	value						
variable name	type	format	label	variable label					
id	float	%9.0g							
t	float	%9.0g							
policepc	double	%10.0g		police officers per thousand					
arrestp	double	%10.0g		arrests/crimes					
convictp	double	%10.0g		convictions/arrests					
legalwage	double	%10.0g		legal wage index 0-1 scale					
crime	double	%10.0g		property-crime index 0-50 scale					

Sorted by: id t

xtabond ||

. xtabond crim	ne legalwage p	olicepc, no	cons				
Arellano-Bond	dynamic panel	-data estim	ation	Number of d	obs	=	6000
Group variable: id				Number of g	groups	=	1000
Time variable:	t						
				Obs per gro	oup:	min =	6
						avg =	6
						max =	6
Number of inst	ruments =	23		Wald chi2(3	3)	=	15463.20
				Prob > chi2	2	=	0.0000
One-step resul	ts						
crime	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
crime							
L1.	.6517166	.011831	55.09	0.000	.6285	5283	.674905
legalwage	7046974	.0272204	-25.89	0.000	7580	0483	6513464
policepc	-1.657297	.0178262	-92.97	0.000	-1.692	2236	-1.622358

Instruments for differenced equation GMM-type: L(2/.).crime Standard: D.legalwage D.policepc

. estimates store ab1

Where did all the instruments come from?

- legalwage policepc are modeled as strictly exogenous, and each contribute 1 instrument
- The remaining 21 instruments come from the p-2 instruments available in periods p = 3, 4, 5, 6, 7, 8
 - In period 3, y_{i1} is a valid instrument for Δy_{i3}
 - In period 4, y_{i1} and y_{i2} are valid instruments for Δy_{i4}
 - In period 5, y_{i1} , y_{i2} and y_{i3} are valid instruments for Δy_{i5}
 - In period 6, y_{i1} , y_{i2} , y_{i3} and y_{i4} are valid instruments for Δy_{i6}
 - and so on
- So in a model with one lag of the dependent variable, k strictly exogenous variables and p = T 2 periods from which to from moment equations, there are k + p * (p + 1)/2 moment conditions.

• 2 + 6 * 7/2 = 23 for the example above

Postestimation specification tests

• Use estat sargan to get the Sargan test of the null hypothesis that model and overidentifying conditions are correct specified

```
. quietly xtabond crime legalwage policepc, nocons
. estimates store ab1
. estat sargan
Sargan test of overidentifying restrictions
H0: overidentifying restrictions are valid
chi2(20) = 46.05784
Prob > chi2 = 0.0008
```

• Use estat abond to get the Arellano-Bond test that there is no serial correlation in the first-differenced disturbances

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

. estat abond Arellano-Bond test for zero autocorrelation in first-differenced errors

Order	z	Prob > z
1	-15.906	0.0000
2	-3.4158	0.0006

HO: no autocorrelation

The two-step estimator

. xtabond crim Arellano-Bond Group variable Time variable:	dynamic panel a: id	ation N	-		=	6000 1000	
			0	bs per gr	oup:	min =	6
						avg =	6
						max =	6
Number of inst	ruments =	23	W	ald chi2(3)	=	8739.60
				rob > chi	2	=	0.0000
Two-step resul	lts						
crime	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
crime L1. legalwage policepc	.6509223 7079127	.0220091 .0269015 .0273474	29.58 -26.32 -60.82	0.000 0.000 0.000	.6077 7606 -1.71	5386	.6940594 6551868 -1.60955

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Warning: gmm two-step standard errors are biased; robust standard errors are recommended. Instruments for differenced equation

GMM-type: L(2/.).crime Standard: D.legalwage D.policepc

The two-step estimator with robust standard-errors

- Specifying vce(robust) produces an estimated VCE that is robust to heteroskedasticity
- There is a result in the large-sample theory for GMM which states that the VCE of the two-step estimator does not depend on the fact that it uses the residuals from the first step
- For some problems, simulation studies have found that the IID and robust large-sample estimators of the VCE of the two-step GMM estimator have large finite-sample biases

These finite-sample bias cause large differences between the size and rejection rates of Wald tests

• [Windmeijer(2005)] derives an estimate of this finite-sample bias and uses it to bias correct the robust estimator of the VCE of the two-step GMM estimator

The Arellano-Bond estimator

The two-step estimator with robust standard-errors II

. xtabond crime legalwage policepc, nocons twostep vce(robust) Arellano-Bond dynamic panel-data estimation Number of obs = 6000 Group variable: id Number of groups = 1000								
Time variable:		Obs per gr	oup:	min = avg =	6			
Number of inst Two-step resul		Wald chi2(Prob > chi		max = = =	1000.00			
		WC-Robust						
crime	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]	
crime L1. legalwage policepc	.6509223 7079127 -1.66315		27.68 -25.55 -58.12	0.000		8321 2164 9239	.6970126 653609 -1.607061	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Instruments for differenced equation GMM-type: L(2/.).crime Standard: D.legalwage D.policepc

The two-step estimator with robust standard-errors II

- The distribution of the Sargan test is not known when the disturbances are heteroskedastic, so estat sargan is not available after specifying vce(robust)
- A robust version of the Arellano-Bond test for serial correlation is produced after specifying vce(robust)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

. estat abond

Arellano-Bond test for zero autocorrelation in first-differenced errors

Order	z	Prob > z
1	-12.269	0.0000
2	-2.9051	0.0037

H0: no autocorrelation

- Thus far we assumed that the variables in x_{it} are strictly exogenous,
 i.e. E[x_{is} ǫ_{it}] = 0 for all s and t
- If instead, if we have $E[\mathbf{x}_{is}\epsilon_{it}] = \mathbf{0}$ for $s \leq t$ but allow $E[\mathbf{x}_{is}\epsilon_{it}] \neq \mathbf{0}$ for
 - s > t, the variables are said to be predetermined
 - Suppose that a positive shock to the crime rate today caused an increase in the police per capita tomorrow
- When the variables are predetermined, it means that we cannot include the whole vector of differences of observed **x**_{it} into the instrument matrix
- We just include the levels of x_{it} for those time periods that are assumed to be unrelated to Δe_{it}

Predetermined variables II

. xtabond crim	ne legalwage	, twostep vo	e(robus	<pre>t) pre(pol</pre>	icepc)		
Arellano-Bond	dynamic panel	l-data estim	ation	Number of	obs	=	6000
Group variable	e: id			Number of	groups	=	1000
Time variable:	t						
				Obs per gr	oup:	min =	6
						avg =	6
						max =	6
Number of inst	ruments =	50		Wald chi2(3)	=	8368.10
				Prob > chi	2	=	0.0000
Two-step resul	lts						
		WC-Robust					
crime	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
crime							
L1.	.6206864	.010649	58.29	0.000	. 5998	3148	.641558
policepc	-1.099586	.0440954	-24.94	0.000	-1.186	5012	-1.013161

-27.94

76.14

0.000

0.000

-1.077665

41.53148

-.9363673

43,7261

.036046

.559864

Instruments for differenced equation GMM-type: L(2/.).crime L(1/.).policepc Standard: D.legalwage Instruments for level equation Standard: _cons

-1.007016

42.62879

legalwage

cons

Arellano-Bover/Blundell-Bond estimator

- The Arellano-Bond estimator formed moment conditions using lagged-levels of the dependent variable and the predetermined variables with first-differences of the disturbances
- [Arellano and Bover(1995)] and [Blundell and Bond(1998)] found that if the autoregressive process is too persistent, then the lagged-levels are weak instruments
- These authors proposed using additional moment conditions in which lagged differences of the dependent variable are orthogonal to levels of the disturbances
 - To get these additional moment conditions, they assumed that panel-level effect is unrelated to the first observable first-difference of the dependent variable

• Use xtdpdsys to estimate parameters using the Arellano-Bover/Blundell-Bond estimator

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

has syntax similar to xtabond

xtdpdsys II

. xtdpdsys cri	ime legalwage	, twostep v	ce(robus	t) pre(poli	cepc)		
System dynamic	; panel-data e	estimation	N	umber of ob	s	=	7000
Group variable	e: id		N	umber of gr	oups	=	1000
Time variable:	t						
			0	bs per grou	p:	min =	7
						avg =	7
						max =	7
Number of instruments = 63			W	ald chi2(3)		=	11746.19
			P	rob > chi2		=	0.0000
Two-step resul	lts						
		WC-Robust					
crime	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
crime							
L1.	.6239032	.0089022	70.08	0.000	.606	4553	.6413511

L1. .6239032 .0089022 70.08 0.000 .6064553 policepc -1.07781.0280265 -38.460.000 -1.132741-1.022879legalwage -1.035179.032075 -32.270.000 -1.098045-.972313542.78394 .5334199 80.21 0.000 41.73845 43.82942 _cons

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

-

Instruments for differenced equation GMM-type: L(2/.).crime L(1/.).policepc Standard: D.legalwage Instruments for level equation GMM-type: LD.crime D.policepc Standard: _cons

xtdpd

- xtabond and xtdpdsys determine which instruments to create based on the assumption of no serial correlation the model you specify
- xtabond and xtdpdsys allow you to place limits on the number of lags used as instruments, but these commands are designed to do the work for you
- When you need to estimate the parameters of a model under weaker conditions, you need to create the instruments for your model yourself
- Use xtdpd for this case
 - xtdpd has a more complicated syntax that allows you more flexibility
- The next example uses xtdpd to produce the same estimates using xtdpdsys

xtdpd II

	<pre>. xtdpd L(0/1).crime legalwage policepc, > dgmmiv(crime) dgmmiv(policepc, lag(1 .))</pre>						
0							/
							7000
· ·	- J I					=	
Group variable				Number of gro	ups	=	1000
Time variable:	t						
				Obs per group	:	min =	7
						avg =	7
						max =	7
Number of inst	ruments =	63		Wald chi2(3)		=	11746.19
				Prob > chi2		=	0.0000
Two-step resul	lts						
crime	Coef.	WC-Robust Std. Err.	z	P> z	۲ <u>م</u> ۶۷	Conf	Interval]
CIIME	coer.	Dua. DII.	~	12121	L00%	. 1000	THOCLAGE

crime						
L1.	.6239032	.0089022	70.08	0.000	.6064553	.6413511
legalwage	-1.035179	.032075	-32.27	0.000	-1.098045	9723135
policepc	-1.07781	.0280265	-38.46	0.000	-1.132741	-1.022879
_cons	42.78394	.5334199	80.21	0.000	41.73845	43.82942

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ⊙

Instruments for differenced equation GMM-type: L(2/.).crime L(1/.).policepc Standard: D.legalwage Instruments for level equation GMM-type: LD.crime D.policepc Standard: _cons

- The flexibility of xtdpd allows you to estimate the parameters of models that xtabond and xtdpdsys cannot estimate
 - Models with predetermined or endogenous variables that do not have a lagged dependent variable

Models containing moving-average serial correlation in the residuals

The Arellano-Bover/Blundell-Bond estimator

Predetermined variable, no lagged dependent variable

<pre>. xtdpd crime legalwage policepc, /// > dgmmiv(policepc, lag(1 .)) lgmmiv(policepc, lag(0)) /// > div(legalwage) twostep vce(robust)</pre>								
Dynamic panel-	data estimati	on		Number of	obs	=	8000	
Group variable	e: id			Number of	groups	=	1000	
Time variable:	t				•••			
				Obs per gr	oup:	min =	8	
						avg =	8	
						max =	8	
Number of inst	ruments =	37		Wald chi2(2)	=	494.14	
				Prob > chi2 =			0.0000	
Two-step resul	lts							
crime	Coef.	WC-Robust Std. Err.	z	P> z	[95%	Conf.	Interval]	
legalwage policepc _cons	-1.936197 .8066107 36.07915	.0905709 .08572 1.547977	-21.38 9.41 23.31		-2.113 .6386 33.04	5026	-1.758681 .9746188 39.11313	

Instruments for differenced equation GMM-type: L(1/.).policepc Standard: D.legalwage Instruments for level equation GMM-type: D.policepc Standard: _cons

Instruments for a model with MA(1) errors II

• Consider a model with MA(1) errors

$$y_{it} = \alpha y_{it-1} + \beta x_{it} + \nu_i + \epsilon_{it} + \gamma \epsilon_{it-1}$$

where the ϵ_{it} are assumed to be IID and x_{it} is assumed to strictly exogenous.

- Because the composite error, $\epsilon_{it} + \gamma \epsilon_{it-1}$, is MA(1), only lags two or higher of Δy_{it} are valid instruments for the level equation, assuming the initial condition that $E[\nu_i \Delta n_{i2}] = 0$.
 - Lagging the above equation two periods shows that ϵ_{it-2} and ϵ_{it-3} appear in the equation for y_{it-2}
 - Because the ε_{it} are IID, Δy_{it-2} is a valid instrument for the level equation with errors ν_i + ε_{it} + γε_{it-1} (y_{it-2} will be correlated with y_{it-1} but uncorrelated with the errors ν_i + ε_{it} + γε_{it-1}.
 An analogous argument works for higher lags.

Instruments for a model with MA(1) errors II

• First-differencing the model equation yields

$$\Delta y_{it} = \alpha \Delta y_{it-1} + \beta \Delta x_{it} + \Delta \epsilon_{it} + \gamma \Delta \epsilon_{it-1}$$

- Because ϵ_{it-2} is the farthest lag of ϵ_{it} that appears in the differenced equation, lags three or higher are valid instruments for the differenced composite errors
 - Lagging the level equation three periods shows that only ϵ_{it-3} and ϵ_{it-4} appear in the equation for y_{it-3}
 - So n_{it-3} is a valid instrument for the current differenced equation

• An analogous argument works for higher lags.

xtdpd V

<pre>. xtdpd L(0/1).crime legalwage policepc, // > dgmmiv(crime, lag(3)) dgmmiv(policepc, lag(2 .)) // > lgmmiv(crime) lgmmiv(policepc, lag(1)) div(legalwage)</pre>								
Dynamic panel-		ion		Number of o		=	7000	
Group variable: id			Number of g	roups	=	1000		
Time variable:	t			Obs per gro		min =	7	
				ops ber Bro	up.	avg =	7	
						max =	7	
Number of inst	ruments =	50		Wald chi2(3)	=	21227.62	
				Prob > chi2		=	0.0000	
One-step resul	ts							
crime	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]	
crime								
L1.	.6593019	.0079458	82.97	0.000	.643	7283	.6748754	
legalwage	-1.053813		-30.22		-1.122		9854736	
policepc	-1.064979	.0291366	-36.55		-1.122		-1.007873	
_cons	42.79815	.5834091	73.36	0.000	41.6	5469	43.94161	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Instruments for differenced equation GMM-type: L(3/.).crime L(2/.).policepc Standard: D.legalwage Instruments for level equation GMM-type: LD.crime LD.policepc Standard: _cons

$\tt xtdpd \ VI$

• The Sargan statistic no longer rejects the model

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

. estat sargan Sargan test of overidentifying restrictions H0: overidentifying restrictions are valid chi2(46) = 74.18845 Prob > chi2 = 0.0053

Bibilography

- Anderson, T., and C. Hsiao. 1981.
 Estimation of Dynamic Models with Error components.
 Journal of the American Statistical Association 76(375): 598–606.
- Arellano, M., and S. Bond. 1991.
 Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations.
 Review of Economic Studies 58: 277–297.
- 👔 Arellano, M., and O. Bover. 1995.

Another look at instrumental variables estimation of error-component models.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Journal of Econometrics 68: 29-51.

Blundell, R., and S. Bond. 1998. Initial conditions and moment restrictions in dynamic panel-data models.

Journal of Econometrics 87: 115–143.

Holtz-Eakin, D., W. Newey, and H. S. Rosen. 1988. Estimating Vector Autoregressions with Panel data. *Econometrica* 56(6): 1371–1395.

Windmeijer, F. 2005.

A finite sample correction for the variance of linear efficient two-step GMM estimators.

Journal of Econometrics 126(1): 25–51.

xtdpd III

- dgmmiv(varlist [, lagrange(flag [llag])]) specifies GMM-type instruments for the differenced equation. Levels of the variables are used to form GMM-type instruments for the difference equation.
- lgmmiv(varlist [, lag(#)]) specifies GMM-type instruments for the level equation. Differences of the variables are used to form GMM-type instruments for the level equation.
- iv(varlist [, nodifference]) specifies standard instruments for both the differenced and level equations.
- div(varlist [, nodifference]) specifies additional standard instruments for the differenced equation.
- liv(*varlist*) specifies additional standard instruments for the level equation.

xtdpd IV

- dgmmiv(varlist [, <u>l</u>agrange(flag [llag])]) All possible lags are used, unless lagrange(flag llag) restricts the lags to begin with flag and end with llag.
- lgmmiv(varlist [, lag(#)]) The first lag of the differences is used unless lag(#) specifies that #th lag of the differences should be used.
- iv(varlist [, nodifference]) Differences of the variables are used as instruments for the differenced equations, unless nodifference is specified, which requests that levels are to be used. Levels of the variables are used as instruments for the level equations.
- div(varlist [, nodifference])
 Differences of the variables are used, unless nodifference is specified which requests that levels of the variables are to be used as instruments for the differenced equation.
- Iiv(varlist)

^{32 / 32} Levels of the variables are used as instruments for the level equation.