Analyzing spatial autoregressive models using Stata

David M. Drukker

StataCorp

Summer North American Stata Users Group meeting July 24-25, 2008

Part of joint work with Ingmar Prucha and Harry Kelejian of the University of Maryland Funded in part by NIH grants 1 R43 AG027622-01 and 1 R43 AG027622-02.

1 What is spatial data and why is it special?

What is spatial data and why is it special?

What is spatial data?

• Spatial data contains information on the location of the observations, in addition to the values of the variables

イロト 不得 トイヨト イヨト 二日

Columbus, Ohio 1980 neighorhood data Source: Anselin (1988)

Correcting for Spatial Correlation

- Correct for correlation in unobservable errors
 - Efficiency and consistent standard errors
- Correct for outcome in place *i* depending on outcomes in nearby places
 - Also known as state dependence or spill-over effects
 - Correction required for consistent point estimates
- Correlation is more complicated than time-series case
 - There is no natural ordering in space as there is in time
 - Space has, at least, two dimensions instead of one
 - Working on random fields complicates large-sample theory
- Models use a-priori parameterizations of distance
 - Spatial-weighting matrices parameterize Tobler's first law of geography [Tobler(1970)]

"Everything is related to everything else, but near things are more related than distant things."

Managing spatial data

• Much spatial data comes in the form of shapefiles

- US Census distributes shapefiles for the US at several resolutions as part of the TIGER project
 - State level, zip-code level, and other resolutions are available
- Need to translate shapefile data to Stata data
- User-written (Crow and Gould) shp2dta command
- Mapping spatial data
 - Mauricio Pisati wrote spmap
 - http://www.stata.com/support/faqs/graphics/spmap.html gives a great example of how to translate shapefiles and map data
- Need to create spatial-weighting matrices that parameterize distance

Shapefiles

- Much spatial data comes in the form of ESRI shapefiles
 - Environmental Systems Research Institute (ESRI), Inc. (http://www.esri.com/) make geographic information system (GIS) software
 - The ESRI format for spatial data is widely used
 - The format uses three files
 - The .shp and the .shx files contain the map information
 - The .dbf information contains observations on each mapped entity
 - shp2dta translates ESRI shapefiles to Stata format
 - Some data is distributed in the MapInfo Interchange Format
 - User-written command (Crow and Gould) mif2dta translates MapInfo files to Stata format

The Columbus dataset

- [Anselin(1988)] used a dataset containing information on property crimes in 49 neighborhoods in Columubus, Ohio in 1980
- Anselin now distributes a version of this dataset in ESRI shapefiles over the web
 - There are three files columbus.shp, columbus.shx, and columbus.dbf in the current working directory
 - To translate this data to Stata I used

```
. shp2dta using columbus, database(columbusdb) coordinates(columbuscoor) ///
> genid(id) replace
```

- The above command created columbusdb.dta and columbuscoor.dta
 - columbusdb.dta contains neighborhood-level data
 - columbuscoor.dta contains the coordinates for the neighborhoods in the form required spmap the user-written command by Maurizio Pisati
 - See also

http://econpapers.repec.org/software/bocbocode/s456812.htm

Columbus data part II

. use columbusdb, clear					
. describe id crime hoval inc					
variable name	storage type	display format	value label	variable label	
id	byte	%12.0g		neighorhood id	
crime	double	%10.0g		residential burglaries and vehicle thefts per 1000 households	
hoval	double	%10.0g		housing value (in \$1,000)	
inc	double	%10.0g		household income (in \$1,000)	
. list id crim	ne hoval :	inc in 1/5			

	id	crime	hoval	inc
1.	1	15.72598	80.467003	$19.531 \\ 21.232 \\ 15.956 \\ 4.477 \\ 11.252$
2.	2	18.801754	44.567001	
3.	3	30.626781	26.35	
4.	4	32.38776	33.200001	
5.	5	50.73151	23.225	

Visualizing spatial data

spmap is an outstanding user-written command for exploring spatial data

3 K K 3 K

3

Columbus, Ohio 1980 neighorhood data Source: Anselin (1988)

Modeling spatial data

- Cliff-Ord type models used in many social-sciences
 - So named for [Cliff and Ord(1973), Cliff and Ord(1981), Ord(1975)]
 - The model is given by

$$\mathbf{y} = \lambda \mathbf{W} \mathbf{y} + \mathbf{X} \boldsymbol{\beta} + \mathbf{u}$$

 $\mathbf{u} =
ho \mathbf{M} \mathbf{u} + \boldsymbol{\epsilon}$

where

- **y** is the $N \times 1$ vector of observations on the dependent variable
- **X** is the $N \times k$ matrix of observations on the independent variables
- W and M are $N \times N$ spatial-weighting matrices that parameterize the distance between neighborhoods
- **u** are spatially correlated residuals and ϵ are independent and identically distributed disturbances
- λ and ρ are scalars that measure, respectively, the dependence of y_i on nearby y and the spatial correlation in the errors

Cliff-Ord models II

 $\mathbf{y} = \lambda \mathbf{W} \mathbf{y} + \mathbf{X} \boldsymbol{\beta} + \mathbf{u}$ $\mathbf{u} = \rho \mathbf{M} \mathbf{u} + \boldsymbol{\epsilon}$

- Relatively simple, tractable model
- Allows for correlation among unobservables
 - Each *u_i* depends on a weighted average of other observations in **u**
 - Mu is known as a spatial lag of u
- Allows for y_i to depend on nearby y
 - Each y_i depends on a weighted average of other observations in **y**
 - Wy is known as a spatial lag of y
- Growing amount of statistical theory for variations of this model

Spatial-weighting matrices

- Spatial-weighting matrices parameterize Tobler's first law of geography [Tobler(1970)]
 "Everything is related to everything else, but near things are more related than distant things."
- Inverse-distance matrices and contiguity matrices are common parameterizations for the spatial-weighting matrix
 - In an inverse-distance matrix W, $w_{ij} = 1/D(i,j)$ where D(i,j) is the distance between places i and j
 - In a contiguity matrix W,

$$w_{i,j} = \left\{ egin{array}{cc} d_{i,j} & ext{if } i ext{ and } j ext{ are neighbors} \\ 0 & ext{otherwise} \end{array}
ight.$$

where $d_{i,j}$ is a weight

Spatial-weighting matrices parameterize dependence

- The spatial-weighting matrices parameterize the spatial dependence, up to estimable scalars
- If there is too much dependence, existing statistical theory is not applicable
- $\bullet\,$ Older literature used a version of "stationarity", newer literature uses easier to interpret restrictions on W and M
 - The row and column sums must be finite, as the number of places grows to infinity
- Restricting the number of neighbors that affect any given place reduces dependence
- Restricting the extent to which neighbors affect any given place reduces dependence

Spatial-weighting matrices parameterize dependence II

- Contiguity matrices only allow contiguous neighbors to affect each other
 - This structure naturally yields spatial-weighting matrices with limited dependence
- Inverse-distance matrices sometimes allow for all places to affect each other
 - These matrices are normalized to limit dependence
 - Sometimes places outside a given radius are specified to have zero affect, which naturally limits dependence

Normalizing spatial-weighting matrices

- In practice, inverse-distance spatial-weighting matrices are usually normalized
 - Row normalized, $\widetilde{\mathbf{W}}$ has element $\widetilde{w}_{i,j} = (1/\sum_{j=1}^{N} |w_{i,j}|) w_{i,j}$
 - Minmax normalized, \mathbf{W} has element $\widetilde{w}_{i,j} = (1/f)w_{i,j}$ where f is min (s_r, s_c) and s_r is the largest row sum and s_c is the largest column sum of \mathbf{W}
 - Spectral normalized, $\widetilde{\mathbf{W}}$ has element $\widetilde{w}_{i,j} = (1/|v_|)w_{i,j}$ where |v| is the modulus of the largest eigenvalue of \mathbf{W}

Creating and Managing spatial weighting matrices in Stata

- There is a forthcoming user-written command by David Drukker called spmat for creating spatial weighting matrices
 - spmat uses variables in the dataset to create a spatial-weighting matrix
 - spmat can create inverse-distance spatial-weighting matrices and contiguity spatial-weighting matrices
 - spmat can also save spatial-weighting matrices to disk and read them in again
 - spmat can also import spatial-weighting matrices from text files
- In the examples below, we create a contiguity matrix and two inverse-distance matrices that differ only in the normalization
 - . spmat contiguity idmat_c using columbuscoor, p(id)
 - . spmat idistance idmat_row, p(id) pinformation(x y) normalize(row)
 - . spmat idistance idmat_mmax, p(id) pinformation(x y) normalize(spectral)

Some underlying statistical theory

Recall the model

 $\mathbf{y} = \lambda \mathbf{W} \mathbf{y} + \mathbf{X} \boldsymbol{\beta} + \mathbf{u}$ $\mathbf{u} = \rho \mathbf{M} \mathbf{u} + \boldsymbol{\epsilon}$

- The model specifies that a set of N simultaneous equations for y and for u
- Two identification assumptions require that we can solve for ${\bf u}$ and ${\bf y}$
- Solving for **u** yields

$$\mathbf{u} = (\mathbf{I} - \rho \mathbf{M})^{-1} \boldsymbol{\epsilon}$$

If ε is IID with finite variance σ², the spatial correlation among the errors is given by

$$\mathbf{\Omega}_{u} = E[\mathbf{u}\mathbf{u}'] = \sigma^{2}(I - \rho\mathbf{M})^{-1}(I - \rho\mathbf{M}')^{-1}$$

Some underlying statistical theory II

Solving for y yields

$$\mathbf{y} = (I - \lambda \mathbf{W})^{-1} \mathbf{X} \boldsymbol{\beta} + (I - \lambda \mathbf{W})^{-1} (I - \rho \mathbf{M})^{-1} \boldsymbol{\epsilon}$$

• Wy is not an exogenous variable Using the above solution for y we can see that

$$E[(\mathbf{W}\mathbf{y})\mathbf{u}'] = \mathbf{W}(I - \lambda \mathbf{W})^{-1}\mathbf{\Omega}_u \neq 0$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Maximum likelihood estimator

- The above solution for **y** permits the derivation of the log-likelihood function
- In practice, we use the concentrated log-likelihood function

$$\ln L_2^*(\lambda,\rho) = -\frac{n}{2} \left(\ln(2\pi) + 1 + \ln \widehat{\sigma}^2(\lambda,\rho) \right) + \ln ||\mathbf{I} - \lambda \mathbf{W}|| + \ln ||\mathbf{I} - \rho \mathbf{M}||$$

where

$$\begin{aligned} \widehat{\sigma}^{2}(\lambda,\rho) &= \frac{1}{n} \mathbf{y}_{*}^{*}(\lambda,\rho)' \left[\mathbf{I} - \mathbf{X}_{*}(\rho) \left[\mathbf{X}_{*}(\rho)' \mathbf{X}_{*}(\rho) \right]^{-1} \mathbf{X}_{*}(\rho)' \right] \mathbf{y}_{*}^{*}(\lambda,\rho) \\ \mathbf{y}_{*}^{*}(\lambda) &= (\mathbf{I} - \lambda \mathbf{W}) \mathbf{y}, \\ \mathbf{y}_{*}^{*}(\lambda,\rho) &= (\mathbf{I} - \rho \mathbf{M}) \mathbf{y}^{*}(\lambda) = (\mathbf{I} - \rho \mathbf{M}) (\mathbf{I} - \lambda \mathbf{W}) \mathbf{y}, \\ \mathbf{X}_{*}(\rho) &= (\mathbf{I} - \rho \mathbf{M}) \mathbf{X}, \end{aligned}$$

Pluggin the values $\hat{\lambda}$ and $\hat{\rho}$ that maximize the above concentrated log-likelihood function into equation $\hat{\sigma}^2(\lambda, \rho)$ produces the ML estimate of σ^2 .

Maximum likelihood estimator II

• Pluggin the values $\hat{\lambda}$ and $\hat{\rho}$ that maximize the above concentrated log-likelihood function into

$$\widehat{oldsymbol{eta}}(\lambda,
ho) = \left[\mathbf{X}_*(
ho)' \mathbf{X}_*(
ho)
ight]^{-1} \mathbf{X}_*(
ho)' \mathbf{y}_*^*(\lambda,
ho)$$

・ロト・4回ト・4回ト・4回ト 回・900

produces the ML estimate of β .

Maximum likelihood estimator III

- Three types problems remain
 - Numerical
 - Lack of general statistical theory
 - Quasi-maximum likelihood theory does not apply

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Numerical problems with ML estimator

- The ML estimator requires computing the determinants $|\mathbf{I} \lambda \mathbf{W}|$ and $|\mathbf{I} \rho \mathbf{M}|$ for each iteration
- [Ord(1975)] showed $|I \rho \mathbf{W}| = \prod_{i=1}^{n} (1 \rho v_i)$ where $(v_1, v_2, ..., v_n)$ are the eigenvalues of \mathbf{W}
 - This reduces, but does not remove, the problem
 - For instance, with zip-code-level data, this would require obtaining the eigenvalues of a 32,000 by 32,000 square matrix

Lack of general statistical theory

- There is still no large-sample theory for the distribution of the ML for the Cliff-Ord model
- Special cases covered by [Lee(2004)]
 - Allows for spatially correlated errors, but no spatially lagged dependent variable

• This estimator is frequently used, even though there is no large-sample theory for the distribution of the estimator

Quasi-maximum likelihood theory does not apply

- Simple deviations from Normal IID can cause the ML estimator to produce inconsistent estimates
 - Arraiz, Drukker, Kelejian and Prucha (2008) provide simulation evidence showing that the ML estimator produces inconsistent estimates when the errors are heteroskedastic

sarml command

• Forthcoming user-written Stata command sarml estimates the parameters of Cliff-Ord models by ML

. sarml	crime	hoval inc,	armat(idmat_c)	ecmat(idmat_c)	nolog	
Spatial autoregressive model (Maximum likelihood estimates)			Number of obs = Wald chi2(2) =			49 43.6207	
		Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
crime							
h	oval	2806984	.0972479	-2.89	0.004	4713008	090096
	inc	-1.201205	.3363972	-3.57	0.000	-1.860532	5418786
-	cons	56.79677	6.19428	9.17	0.000	44.6562	68.93733
lambda							
-	cons	.042729	.0286644	1.49	0.136	0134522	.0989103
rho							

0.83

9.73

0.405

0.000

-.0866899

7.812185

.0768638

1.005501

_cons

cons

.0639603

9.78293

.2146105

11.75367

sigma

Generalized spatial Two-stage least squares (GS2SLS)

- Kelejian and Prucha [Kelejian and Prucha(1999), Kelejian and Prucha(1998), Kelejian and Prucha(2004)] along with coauthors [Arraiz et al.(2008)Arraiz, Drukker, Kelejian, and Prucha] derived an estimator that uses instrumental variables and the generalized-method-of-moments (GMM) to estimate the parameters of cross-sectional Cliff-Ord models
- [Arraiz et al.(2008)Arraiz, Drukker, Kelejian, and Prucha] show that the estimator produces consistent estimates when the disturbances are heteroskedastic and give simulation evidence that the ML estimator produces inconsistent estimates in the case

GS2SLS II

- The estimator is produced in three steps
 - **()** Consistent estimates of $oldsymbol{eta}$ and λ are obtained by instrumental variables
 - Following [Kelejian and Prucha(1998)]
 X, WX, W²X, ... MX, MWX, MW²X, ... are valid instruments,
 - **②** Estimate ρ and σ by GMM using sample constructed from functions of the residuals
 - The moment conditions explicitly allow for heteroskedastic innovations.
 - $\textcircled{O} Use the estimates of ρ and σ to perform a spatial Cochrane-Orcut transformation of the data and obtain more efficient estimates of β and λ }$
- The authors derive the joint large-sample distribution of the estimators

g2s1s command

 Forthcoming user-written command g2s1s implements the [Arraiz et al.(2008)Arraiz, Drukker, Kelejian, and Prucha] estimator

GS2SL regression Number of obs =					= 49		
		Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
crime							
	hoval	2561395	.1621328	-1.58	0.114	573914	.061635
	inc	-1.186221	.5223525	-2.27	0.023	-2.210013	1624286
	_cons	52.28828	9.441074	5.54	0.000	33.78411	70.79244
lambda	1						
	_cons	.0651557	.0273606	2.38	0.017	.0115299	.1187816
rho							
	_cons	.0224828	.0801967	0.28	0.779	1346998	.1796654

. gs2sls crime hoval inc, armat(idmat_c) ecmat(idmat_c) nolog

. estimates store gs2sls

g2s1s command II

. estimates table gs2sls sarml, b se

Variable	gs2sls	sarml	
crime			
hoval	2561395	28069841	
	.16213284	.09724792	
inc	-1.1862206	-1.2012051	
	.52235246	.33639724	
_cons	52.28828	56.796767	
	9.4410739	6.1942805	
lambda			
_cons	.06515574	.04272904	
	.02736064	.02866443	
rho			
_cons	.0224828	.0639603	
	.08019667	.07686377	
sigma			
cons		9.7829296	
		1.0055006	

legend: b/se

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ◆○◆

Summary and further research

- An increasing number of datasets contain spatial information
- Modeling the spatial processes in a dataset can improve efficiency, or be essential for consistency
- The Cliff-Ord type models provide a useful parametric approach to spatial data
- There is reasonably general statistical theory for the GS2SLS estimator for the parameters of cross-sectional Cliff-Ord type models
- We are now working on extending the GS2SLS to panel-data Cliff-Ord type models with large N and fixed T

Spatial Econometrics: Methods and Models. Boston: Kluwer Academic Publishers.

Arraiz, I., D. M. Drukker, H. H. Kelejian, and I. R. Prucha. 2008. A Spatial Cliff-Ord-type Model with Heteroskedastic Innovations: Small and Large Sample Results.

Technical report, Department of Economics, University of Maryland. http://www.econ.umd.edu/ prucha/Papers/WP_Hetero_GM_IV_MC.pdf

・ □ ト (□ ト (□)

```
Cliff, A. D., and J. K. Ord. 1973.
Spatial Autocorrelation.
```

London: Pion.

——. **1981**.

Spatial Processes, Models and Applications. London: Pion.

```
🔋 Kelejian, H. H., and I. R. Prucha. 1998.
```

A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances.

Journal of Real Estate Finance and Economics 17(1): 99–121.

—. 1999.

A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model.

International Economic Review 40(2): 509-533.

Estimation of simultaneous systems of spatially interrelated cross sectional equations.

Journal of Econometrics 118: 27-50.

Lee, L. F. 2004.

Asymptotic distributions of maximum likelihood estimators for spatial autoregressive models.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 ● ○○○

Econometrica (72): 1899-1925.

🔋 Ord, J. K. 1975.

Estimation Methods for Spatial Interaction.

Journal of the American Statistical Association 70: 120–126.

Tobler, W. R. 1970.

A computer movie simulating urban growth in the Detroit region. *Economic Geography* 46: 234–40.