Finite Mixture Models

Partha Deb

Hunter College and the Graduate Center, CUNY
NBER

July 2008

Deb (Hunter College) July 2008



Introduction

@ The finite mixture model provides a natural representation of
heterogeneity in a finite number of latent classes

@ It concerns modeling a statistical distribution by a mixture (or
weighted sum) of other distributions
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Introduction

@ The finite mixture model provides a natural representation of
heterogeneity in a finite number of latent classes

@ It concerns modeling a statistical distribution by a mixture (or
weighted sum) of other distributions

@ Finite mixture models are also known as

o latent class models
e unsupervised learning models

o Finite mixture models are closely related to

o intrinsic classification models
o clustering
e numerical taxonomy
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Introduction

Intuition

@ Heterogeneity of effects for different “classes” of observations

e wine from different vineyards
o healthy and sick individuals
e normal and complicated pregnancies
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Introduction

Canonical Example

Estimating parameters of the distribution of lengths of halibut

It is known that female halibut is longer, on average, than male fish
and that the distribution of lengths is normal

Gender cannot be determined at measurement

@ Then distribution is a 2-component finite mixture of normals
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Introduction

Canonical Example

Estimating parameters of the distribution of lengths of halibut

It is known that female halibut is longer, on average, than male fish
and that the distribution of lengths is normal

Gender cannot be determined at measurement

@ Then distribution is a 2-component finite mixture of normals

@ A finite mixture model allows one to estimate:

o mean lengths of male and female halibut
e mixing probability
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Introduction

A graphical view

N(0,1) N(5,2)
FM(N(0,1) wp 0.3, N(5,2) wp 0.7
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Introduction

A graphical view
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Introduction

A graphical view
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FM(N(0,1) wp 0.1, N(5,2) wp 0.9
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Introduction

Examples

@ Characteristics of wine by cultivar

o Infant Birthweight - two types of pregnancies “normal” and
“complicated”

o Medical Services - two types of consumers “healthy” and “sick”

@ Public goods experiments - selfish, reciprocal, and altruist

@ Stock Returns in “typical” and “crisis” times

@ Using somatic cell counts to classify records from healthy or infected
goats

@ Models of internet traffic
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Introduction

More generally from a statistical perspective

e FMM is a semiparametric / nonparametric estimator of the density
(Lindsay)

o Experience suggests that usually only few latent classes are needed to
approximate density well (Heckman)

@ In practice FMM are flexible extensions to basic parametric models

@ can generate skewed distributions from symmetric components
e can generate leptokurtic distributions from mesokurtic ones
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Outline of talk

@ Introduction
o Model

o Formulation

o Estimation

o Popular densities
o Properties

o Examples

o Color of wine
o Birthweight and prenatal care
o Medical care
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Model

Formulation

@ The density function for a C-component finite mixture is

C
f(y|x; 91, 92, ceey 9c; 71, 712, ..\, 7Tc) = Z 7rﬂ§~(y|x; Gj)
j=1

where 0 < 71; < 1,and Y, 71; =1
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Model

Formulation

@ The density function for a C-component finite mixture is

C
f(y|x; 01,02, ...,0c; 71, T2, ..., TTc) = 27716(}4)( 0; )
Jj=1

where 0 < 71; < 1,and Y, 71; =1

@ More generally

C
,92, ceny Gc; 71, 712, ..., 7Tc) = Z nj(z)f}-(y|x; Qj)

fly

July 2008

11/ 34

Deb (Hunter College)



Model

Estimation

@ Maximum likelihood

N C
maexln L= Z |0g(2 m;f;(v16;)

o i=1 j=1
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Model

Estimation

@ Maximum likelihood

maxInL i <Iog i y|9j))

j=1

@ Trick to ensure 0 < 71; < 1, and chzl =1

eXP(’Yj)
exp(71) +exp(7y) + . Fexp(ye_y) +1

Ty =
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Model

Estimation

Maximum likelihood

maxInL i <Iog i y|9j))

j=1

Trick to ensure 0 < 71; < 1, and chzl =1

eXP(’Yj)
exp(71) +exp(7y) + . Fexp(ye_y) +1

Ty =

EM
Bayesian MCMC
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Model

Popular mixture component densities

Normal (Gaussian)
Poisson

Gamma

Negative Binomial
Student-t

Weibull

Deb (Hunter College) FMM July 2008 13 / 34



Model

Some basic properties

o Conditional mean:

C
E(y,'|X,') = Z 7'[1')\1' where Aj = Ej(y,-|x,~)
Jj=1
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Model

Some basic properties

o Conditional mean:

C
E(y,~|x,-) = Z 7'[1')\1' where Aj = Ej(y,-|x,~)

Jj=1
@ Marginal effects:
E-(vlx: .
M = aﬁ — within component
ox; ox;
e, 9 .
m _ njaﬁ — overall
aX,‘ j=1 E)x,-
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Model

Some basic properties

@ Prior probability that observation y; belongs to component c:

Prly; € population c|x;, 8] = 7,
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Model

Some basic properties

@ Prior probability that observation y; belongs to component c:

Prly; € population c|x;, 8] = 7,
c=12.C

@ Posterior probability that observation y; belongs to component c:

e i 7[Cf;:(yf|xiv Bc)
Pr[y,- population c]x,-,y,-;e] =
ZJ'C——l ”ﬂj’(”‘xiv ej)

c=1,2.C
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Model

Estimation challenges

@ The number of components has to be specified - we usually have little
theoretical guidance

@ Even if prior theory suggests a particular number of components we
may not be able to reliably distinguish between some of the
components

@ In some cases additional components may simply reflect the presence
of outliers in the data

o Likelihood function may have multiple local maxima
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Model

Extending the model

o Parameterize v; = Za; in

_ eXP(’Yj)
exp(71) +exp(ry) + - +exp(ye_qg) +1

o Parameterizing mixing probabilities

e may lead to finite sample identification issues
e may lead to computational difficulties
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Model

Selecting number of components

o Estimate models with 2 and then more components

@ At each step calculate

AIC = —2log(L) + 2K
BIC = —2log(L) + K log(N)

@ Pick the model with the smallest AIC, BIC

July 2008
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Model

Implementation in Stata

o Stata package fmm

fmm depvar [indepvars] [if] [in] [weight],
components (#) mixtureof (density)

@ where density is one of

gamma
negbinl
negbin2
normal
poisson
studentt

@ predict and mfx give predictions and marginal effects of means,
component means, prior and posterior probabilities
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Example 1

Color of Wine

Results of a chemical analysis of wines grown in the same region in Italy
but derived from three different cultivars

Cultivar  Freq. % of total Color intensity (mean)

1 59 33.15 5.528
2 71 39.89 3.086
3 48 26.97 7.396
Total 178 100 5.058
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Example 1

Color of Wine

Wine Color Density

o1

0 10 15
Color

kemel = epanechnikov, bandwidth = 0.7076
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Example 1

Color of Wine

@ Finite mixture of Normals with 3 components
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Example 1

Color of Wine

Parameter component 1 component 2 component 3

Constant 4.929 7.548 2.803
(0.334) (0.936) (0.244)
T 0.365 0.312 0.323
(0.176) (0.117) (0.107)
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Example 1

Color of Wine

Parameter component 1 component 2 component 3

Constant 4.929 7.548 2.803
(0.334) (0.936) (0.244)

T 0.365 0.312 0.323
(0.176) (0.117) (0.107)

Cultivar  Freq. % of total Color (mean)

1 59 33.15 5.528
2 71 39.89 3.086
3 48 26.97 7.396
Total 178 100 5.058
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Example 1

Color of Wine

Posterior probability (median)
Cultivar component 1 component 2 component 3

1 0.737 0.195 9.00e-5
2 0.048 0.023 0.923
3 0.030 0.970 7.54e-14
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Example 2

Infant Birthweight and Prenatal Care

@ Data from the National Maternal and Infant Health Survey
@ Number of observations: 5219

@ Number of covariates: 12
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Example 2

Infant Birthweight and Prenatal Care

Density of birthweight residuals

Density
.04

.02
1

T T T
-40 -20 0 20 40
Residuals

kemel = epanechnikov, bandwidth = 1.1307
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Example 2

Infant Birthweight and Prenatal Care

Variable OoLS FMM
component 1 component 2
black -1.213%* -1.231%* -0.775%*
(0.312) (0.215) (0.393)
edu 0.353** 0.292** 0.040
(0.074) (0.050) (0.102)
numdead -1.181** -0.170 -0.585%*
(0.163) (0.117) (0.171)
onsethat  -0.501** -0.294%* 0.006
(0.183) (0.127) (0.234)
T 0.864 0.136
se(7) (0.005) (0.005)
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Example 3

Medical Care Use

o Data from the RAND Health Insurance Experiment
@ Number of observations: 20186

@ Number of covariates: 17
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Example 3

Medical Care Use
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Example 3

Medical Care Use

The density of the C-component finite mixture is specified as

f(y,-|91, 92, ey Qc; 7T1, 7T, ..., 7Tc)

_ i”' Ilyi+¢;,) ¥ Fe Aj.i :
ST )T+ 1) \ A+ gy Aji

where A = exp(xB) and ¥ = (1/a)A

o k=1NB-2
o k=0NB-1
@ k = 0 fits best
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Example 3

Medical Care Use

Parameter Estimates

nbl fmm nbl
component 1 component 2

logc -0.149%* -0.203* -0.024
(0.012) (0.020) (0.031)
educdec 0.023* 0.027* 0.015
(0.003) (0.005) (0.010)
disea 0.021* 0.019* 0.033*
(0.001) (0.002) (0.004)
T 0.802 0.198
(0.037) (0.037)

log L —42405 —42037

BIC 84999 84461
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Example 3

Medical Care Use

Marginal Effects

nbl fmm nbl

overall  overall component1l component 2
E(y|x) 2.561 2.511 1.887 5.038
logc -0.382% -0.331%* -0.382% -0.121
(0.030) (0.032) (0.032) (0.158)
educdec  0.058*  0.056* 0.052* 0.073
(0.007) (0.009) (0.008) (0.053)
disea 0.054*  0.062* 0.036* 0.167*
(0.003) (0.004) (0.004) (0.024)

Deb (Hunter College) July 2008 32 /34



Example 3

Medical Care Use

Predicted densities at mean(X)

o1 2 3 4 5 6 7 &8 9 10 11 12 13 14 158
|_ Component 1 I Component2|
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Example 3

Medical Care Use

Prior and posterior probabilities
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