
 

Abstract: 

There are occasions when a task is difficult in Stata but fairly easy in a more general 

programming language. Python is a popular language for a range of uses. It is easy to use, has 

many high-quality packages, and programs can be written relatively quickly. Is there any 

advantage to combining Stata and Python within a single interface? Stata already offers 

support for user-written programs, which allow extensive control over calculations but 

somewhat less control over graphics. Also, except for specifying output, the user has minimal 

programmatic control over the user interface. Python can be used in ways that allow more 

control over the interface and graphics, and in so doing provide roundabout methods for 

satisfying some user requests (for example, transparency levels in graphics and the ability to 

clear the results window). My talk will explore these ideas, present a possible method for 

combining Stata and Python, and give examples to demonstrate how this combination might 

be useful. 
 

 

To define the scope a little more, I’m considering why and how users might want to combine 

Stata and Python, rather than how and why Stata Corp. might. 

I’ll be presenting some of my own ideas, but to help direct the brainstorming, I’ll also be using 

requests I found on Statalist. 



 



I’ll be discussing three kinds of benefits. 

 

 

 



 

 

This user wants the ability to type a command such as results clear (as I have done 

here), and … 



 

… when the command is submitted, the results window is cleared.  

There are ways to imitate this. For instance, the user could insert blank lines until the old 

output is no longer visible. However, the user can’t  remove the blank lines to make the old 

output reappear.  



 

Sometimes it will be useful to have a command like results restore to bring the 

results back (as has been done here). 



 

Another request, this time for a visual reminder that a dataset has been preserved. 



 

 

In the top slide, the status bar below the results window turns yellow and the status is set to 

“Preserved” after submitting a preserve command.  

In the bottom slide, the status bar returns to its default state after submitting a restore 

command. 



 

 

It would also be nice to have interactive highlighting for making some parts of the output more 

salient. This could be used as a way to bookmark results in a long Stata session or to help draw 

attention to particular areas when the results are given to someone else. Here, two portions of 

the result have been highlighted (black text on white background). 



 

Stata can hold one data set at a time in memory. If there were a way to load Stata datasets 

into Python, the user could have simultaneous access to as many datasets as allowed by the 

memory constraints of the computer. 



 

Here I’ve entered two commands to load Stata datasets into Python: 

. py: sysuse auto 

. py: sysuse lifeexp 

 

Here, py: sysuse can be interpreted as “load system dataset into Python”. 



 

The previous commands also prompted the creation of two new tabs in the variables pane, 

one for each of the new datasets (there’s also one for the already-open dataset in Stata). 



 

To prove that these two datasets are in Python simultaneously, I enter the command 

. py: summ price lexp 

The program finds price within the auto dataset and lexp within the life expectancy 

dataset, and gives their summaries. 

 



 

What I’ve been using here is an imitation of Stata’s GUI, made with Python. When I open an 

instance of my imitation GUI, it generates a new instance of Stata and immediately instructs 

that Stata instance to start a log file. From then on, my GUI is aware of the Stata instance and 

its log file. Commands are sent to Stata, and results are retrieved from the log file. 



 

 

For example, the “py:” mode was used in the previous slides to load datasets into Python. 



 

This is the second type of benefit from a Stata/Python combination. 

This category includes those things that can already be done with Python and Stata separately, 

and combining them doesn’t add new functionality. Instead, the benefit would come from 

being able to issue a single command instead of several separate Python and Stata commands.  

This convenience can already be achieved using OLE automation within Python, as used in the 

previous examples (the GUI is not required for this). However, since Stata users will tend to be 

more comfortable with Stata than Python, a Stata-esque environment (like the imitation GUI) 

might be preferred even if the underlying code is Python. 

 



 

The third type of benefit. 



 

 



 

Here a user wants to shade a vertical band between two given x values. This request has come 

up a few other times:  

 



 

There’s a workaround for this where the user plots the data once to find the vertical bounds 

(or finds these bounds some other way), then generates a graph with a custom-made shaded 

area in the background. For this to work , the user also has to remove a margin around the 

inner plot region. 

The workaround is a little inconvenient. It would be nice if there were an option similar to 

xline or yline that would take care of the details for you. 

In the slide above, I’ve changed 

. scatter turn length 

to  

. iwscatter turn length, xband(200 220, color(gs14)) 

Instead of calling Stata’s scatter command, I am calling my own command, iwscatter, 

and I’ve added the option xband. 

 

(Note: The nbercycles package from SSC can also be used to draw shaded bands.) 



 

 

Transparency levels have been requested a few times, for a few different uses. 



 

 

Here I am using transparency to show overlap in data points, and I increased the size of the 

data markers to make the transparency easier to see. This graph was generated with 

. iwscatter turn length, opacity(0.2) msize(14) 



 

 



 

 



 

There’s a clear outlier in this plot. When I see an outlier like this, the first thing I want to do is 

find out which observation it is. In order to do that I could use a few Stata commands, but 

wouldn’t it be nice if you could just put the cursor over the data marker, and a popup would 

show the observation number?  

 



 

If we can do that, then it would also be nice if we could customize what appears in the info 

popup. The graph above is generated with 

. iwscatter turn length, opacity(0.2) msize(12) 

info(“Obs. {_n}\nMake: {make[_n]}”) 

(By the way, the observation numbers in these examples are off by one because Python starts 

indexing from 0 instead of 1.) 

 



 

 

Another idea: it would be useful to be able to filter based on another variable. Using 

. iwscatter turn length, opacity(0.2) msize(12) 

filter(price, title(“filter on price”)) 
 

a rug plot is created under the scatterplot, with an adjustable bar that defines the range of 

included observations. Excluded observations are drawn in a lighter shade of gray (“ghosted”). 



 

Observations can also be “selected” using a selection rectangle.  

Any plots that appear in the same window are automatically “linked”, so that interactions in 

one plot are mirrored in the others. Notice that the user is interacting with the top scatterplot, 

but corresponding changes appear in the rug plot.  

 



 

 

It would also be useful to be able to issue Stata commands that are aware of changes in the 

plot. Control-I opens a “command” box at the bottom of the window. From there commands 

can be submitted back to Stata. 



 

There are keywords for the types of interaction: active, selected, and ghosted. When 

a command is submitted, if any of the keywords is present, it is changed to an inlist 

containing the desired observation numbers. 

 

 

How these examples work: The iwscatter command writes a Python file, i.e., a text file 

with Python commands, and then instructs Python to run the file. The graphs are drawn using 

a Python module called Pyglet, which is a wrapper for OpenGL functions. Communication back 

to Stata is accomplished with a module called pywinauto. 



 

 

Stata graphs serve as tools for both investigation and publication. In order to serve the same 

purposes, the interactive graphs would need a format for saving and publishing. For fully 

interactive graphs, users with the required modules could exchange Python files, but for 

general publication, JavaScript would be the better option due to its ubiquity. 



 

 

This shows a working JavaScript version of the Python graphs. 



 

 

I can also be contacted at james.fiedler-1@nasa.gov 


