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Background

STATISTICS IN MEDICINE
Statist. Med. 2005: 24:1185-1202
Published online 29 November 2004 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/sim.1970

Funnel plots for comparing institutional performance

David I. Spiegelhalter™

MRC Biostatistics Unit, Institute of Public Health, Cambridge CB2 2SR, UK.

SUMMARY

‘Funnel plots’ are recommended as a graphical aid for institutional comparisons, in which an estimate of
an underlying quantity is plotted against an interpretable measure of its precision. ‘Control limits’ form
a funnel around the target outcome, in a close analogy to standard Shewhart control charts. Examples
are given for comparing proportions and changes in rates, assessing association between outcome and
volume of cases, and dealing with over-dispersion due to unmeasured risk factors. We conclude that
funnel plots are flexible, attractively simple, and avoid spurious ranking of institutions into ‘league
tables’. Copyright © 2004 John Wiley & Sons, Ltd.

KEY WORDS: control charts; outliers; over-dispersion; institutional profiling; ranking



Background

o Quantitative indicators are increasingly used to monitor
health care providers

o Interpretation of those indicators is often open to anyone
(patients, journalists, politicians, civil servants and managers)

@ It is crucial that indicators are both accurate and presented in
a clear way to avoid unfair criticism
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Classical presentation: league tables

@ Imply the existence of ranking
among institutions

o Implicitly support the idea that
some of them are
worse/better than others

ates, age and sex standardized, following
ium acute and muli-service hospitals m
vals are plottcd and compared to
cent

Figure 1. ‘Ceterpilla” plot of 30-day m
treatment for fractured hip for over-63s



Statistical Process Control methods: key principles

o Variation, to be expected in any process or system, can be
devided into:

o Common cause variation: expected in a stable process

o Special cause variation: unexpected, due to systematic
deviation

o Limits between these two categories can be set using SPC
methods
@ Funnel plots:
o All institutions are part of a single system and perform at the
same level
o Observed differences can never be completely eliminated and
are explained by chance (common cause variation).
o If observed variation exceeds that expected, special-cause

variation exists and requires further explanation to identify its
cause.
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Funnel Plot
o Scatterplot of observed

indicators against a measure of
its precision, tipically the sample

Lt size
e , o Horizontal line at a target
. e . T level, typically the group avarage
. o Control Limits at 95%
100 150 20;)amplem§50 300 350 ("Rj 25D) and 998% (% 35D)
[ovmts ———sgnsw ———— sion. 2% | levels, that narrows as the

sample size gets bigger
Association of Public Health Observatories in UK developed

analytical tools in excell for producing funnel plot
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Multiple testing problem

Journal of
Clinical
Epidemiology

Journal of Clinical Epidemiology 61 (2008) 232240

Use of the false discovery rate when comparing multiple
health care providers
Hayley E. Jones*, David 1. Ohlssen, David J. Spiegelhalter

MRC Biostatistics Unit, Institute of Public Health, Robinson Way, Cambridge CB2 2SR, UK
Accepted 18 April 2007

Abstract

Objective: Comparisons of the performance of multiple health care providers are ofien based on hypothesis tests, those with res
P-values below some critical threshold being identified as potentially extreme. Because of the multiple testing involved, the cla
value threshold of, say, 0.05 may not be considered strict enough, as it will tend to lead to too many “false positives.”” However, we argue
that the commonly used Bonferroni-corrected threshold is in general too strict for the problem in hand. The purpose of this article is to

a suitable i ing procedure that is already well established in other fields.

Study Design and Setting: The suggested procedure involves control of an error measure called the “false discovery rate” (FDR). We
present a worked example involving a comparison of risk-adjusted mortality rates following heart surgery in New York State hospitals dur-
ing 2000—2002. It is shown that the FDR critical threshold lines can be drawn on a “funnel plot,” providing a simple graphical presentation
of the results.

Results: The FDR procedure identified more providers as potentially extreme than the i ion, while ining control
of an intuitively sensible error measure.

Conclusion: Control of the FDR offers a simple guideline to determining where to draw critical thresholds when comparing multiple
health care providers. © 2008 Elsevier Inc. All rights reserved.
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A funnel plot has four components:
o An indicator Y.
o A target 6 which specifies the desired expectation for
institutions considered “in control”.

o A precision parameter N determining the accuracy used in
measuring the indicator. Select a N directly interpretable, eg
the denominator for rates and means.

o Control limits for a p-value, computed assuming Y has a
known distribution (normal, binomial, Poisson) with
parameters (6, 0).
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From a purely statistical point of view, funnel plot is a graphical
representation testing whether each value Y; belongs to the known
distribution with given parameters.

1004

The formal test of significance: ol Jest e 59.8% alarm

HO : \/I = 9 ] olest satisfied: in control
40|

H]. : \/I # 9 olest failed 95%: alert
209

Y;—0
= — ol
(O' / v N ) 0 20 ) 60 80 100
Units  ——— Sign.5% ————- Sign. .2%
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Classical Bonferroni
correction strongly
control P(F >=1) at
level a. Too
conservative!

T T T
0 2 40 60 80 100 120

P=4%005/m

An alternative is control of the expected proportion of errors
among all rejected null hypotheses
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False Discovery Rate FDR

FDR = E(g|5 > 0)

with:
o F: null true
o S: null rejected, significants

The FDR is the probability that a provider isn't a genuine extreme,
given that it is called significant by the test. Benjamini and
Hochberg proposed an algoritm for costraining the FDR to be less
than of equal to «
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False Discovery Rate FDR

o Let
Pi,Ps, ..., P,

be the ordered P-values and and H; be the null hypotesis
corresponding tp P;, i=1,....m
o Identify k as the largest i such that
P,’ S (;)04

o Thenrejectall H;, i=1,... )k



Control limits

In cases of discrete distributions there are two possibilities for
drawing control limits as functions of N

@ a normal approximation:

o
yp(N) =0+ % N
@ an “exact” formula
"p,No) —
N)= "2
YP( ) N

where r(, v g) and « are defined in the following slides
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Binomial

In the case of binomial distribution:

® r(p,n,0) is the inverse to the cumulative binomial distribution
with parameters (0, N) at level p. The definition Spiegelhalter
refers to is as follows:! if F(o,n) is the cumulative distribution
function, ie Fy n)(k) is the the probability of observing k or
fewer successes in N trials when the probability of a success
on one trial is #,% then o = I(p,N,0) IS the smallest integer
such that

P(R < rp) = Fiony(rp) > p

@ « is a continuity adjustment coefficient

_ F(B,N)(rp) - P
Fo.ny(rp) — Fo,ny(rp — 1)

(%

!Beware that the Stata function invbinomial() is not defined this way.
2The Stata function binomial(N,k,d) computes Fio,ny (k).

- -
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Poisson

In the case of Poisson distribution:

® r(p,n,0) is the inverse to the cumulative Poisson distribution
with parameter M = 0N at level p. The definition
Spiegelhalter refers to is as follows:3 if Fy; is the cumulative
distribution function, ie Fp(k) is the probability of observing
k or or fewer outcomes that are distributed Poisson with mean
M.* then p = I(p,N,0) 1S the smallest integer such that

P(R < rp) = Fm(rp) > p
@ « is a continuity adjustment coefficient

Fru(rp) —p
Frm(rp) — Fm(rp, — 1)

o=

3Beware that the Stata function invpoisson() is not defined this way.
*The Stata function poisson(M,k) computes Fi(k).
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Example 1: binomial, 6=1%

X

100

Approximated

Exact

From invbinomomz(), probability .01

150

fa 4

o Does it make
sense to test
a 1% of cases
with
N < 1007

e For N > 100
the two pairs
of curves
almost
coincide
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Example 2: binomial, 6=20%

o For N < 100
very similar
curves,
approximated
upper bounds

conservative

/// o For N > 100

0 50 100 150 the two pairs

i of curves
‘ Approximated Exact ‘
From invbinomomz2(), probability .2 a Im ost
coincide
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Example 3: binomial, 6=50%

o For N < 100
very similar
curves,
approximated

upper bounds
conservative

e For N > 100
3 p o Py the two pairs
* of curves
Approximated Exact
From invbinomomz2(), probability .5 a Im ost
coincide
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Example 4: Poisson, 0=1%

50

X

100

Approximated

Exact

From invpoisson2(), rate .01

150

fa 4

o Does it make
sense to test
a 1% of cases
with
N < 1007

e For N > 100
the two pairs
of curves
almost
coincide
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Example 5: Poisson, 6=50%

The two pairs of
curves almost
coincide

X

Approximated Exact

From invpoisson2(), rate .5
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Example 6: Poisson, =1 (SMR)

The two pairs of
curves visibly
coincide

0 50 100 150
X

Approximated

Exact

From invpoisson2(), rate 1
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Conclusion for using exact vs approximated test

o Whenever the sample size is bigger than 100, the
approximated test is almost superimposed to the exact test

o Consider if it makes sense to use exact test
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Basic syntax

funnelcompar value pop unit [sdvalue],
[continuous/binomial/poisson]
[fdr bonferroni onlyfdr onlybonferronil

[ext_stand() ext_sd() noweight smr ]
[constant ()]

[contours() exact]
marking options
other options




Variables

funnelcompar value pop unit [sdvaluel

o value contains the values of the indicator.

@ pop contains the sample size (precision parameter)
@ unit contains an identifier of the units
°

sdvalue contains the standard deviations of indicators
(optionally, if the continuous option is also specified)
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Users must specify a distribution among:
@ normal. option cont
@ binomial: option binom

o Poisson: option poiss
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Parameters: 6

6 can be obtained as:

o weighted mean of value with weights pop (default)

@ non weighted mean of value if the noweight option is
specified

@ external value specified by users with the option ext_stand ()
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Parameters: o

e Binomial distribution: o = 1/6(1 — 6)
@ Poisson distribution: o = /6

@ Normal distribution:

o weighted mean of sdvalue with weights pop (defualt)

o non weighted mean of sdvalue if the noweight option is
specified

o external value specified by users with the option ext_sd ()
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Multiple testing options

@ bonferroni option draws both classical and bonferroni
corrected thresholds

o fdr option draws both classical and fdr corrected threshold

o onlybonferroni and onlyfdr options draw only Bonferroni
or fdr corrected thresholds respectively
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The smr option

smr option can be specified only with poisson option:
value are assumed to be indirectly standardized rates
pop contains the expected number of events

0 is assumed to be 1
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Constant

The constant () option specifies whether the values of the

indicators are multiplied by a constant term, for instance

constant (100) must be specified if the values are
percentages.
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Curves

contours(): specifies significance levels at which control
limits are set (as a percentage).

Default contours() are set at 5% and .2% levels, that is a
confidence of 95% and 99.8% respectively.

For example if contours(5) is specified only the curve
corresponding to a test with 5% of significance is drawn.

For discrete distributions if the exact option is specified, the

exact contours are drawn. As a default the normal
approximation is used.
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Percentages, internal target, units out-of-control marked

.")68
30
.513 .106
§ 207'5\38'?50; TTeee-@Ao £ 1
5 . e T unnelcompar
z . B .
s . N measure pop unit,
= L4 . ° L4 .
£ 101 D S S binom const(100)
B e S8
T markup marklow
.‘340
o]
100 150 200 250 300 350
sample size
® Units ——— Sign.5% ————- Sign. .2%
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indicator (per cent)
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Percentages, no-weighted internal target

o
L]
o .
o *. \\1 T e
7 funnelcompar
Ld o L] .
s , measure pop unit,
. . o b .
e binom const(100)
—o I L T .
- . noweight
L]
100 150 200 250 300 350
sample size
® Units ——— Sign.5% ————- Sign. .2%




Percentages, no-weighted internal target, with bonferroni
and fdr thresholds

& ® Units
—  Sign. 5%
— - Sign. 5% (FDR)
b === Sign. 5% (Bonferroni)
30
R funnelcompar
R . measure pop unit,
20 S e .
T T DT binom const(100)
L] ° === -
e fdr bonferroni
. .
01 ele—==z====zz=2 noweight
/:,...---"'"""— .
01 - ° *

100 200 300 400 500



indicator (per 1,000)

40

30

20+

10

Rates, external target,

500

1000 1500 2000
sample size

2500

3000

® Units ® "Type A" ——— Sign.5%

Sign. .2%

type-A units marked

funnelcompar measure pop
unit, poisson

const (1000) ext_stand(15)
markcond(type = 1)
legendmarkcond (Type A)
colormarkcond (blue)
optionsmarkcond (msymbol(S))
twowayopts(yline (23,
lcolor(green)) )
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Rates, only fdr threshold

® Units
— - Sign. 5% (FOR)

B funnelcompar measure pop
e unit, poisson

o S— const(1000) fdr onlyfdr
T ’ legendmarkcond

1000 2000 3000 4000 5000



indicator
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Means, internal target, unit type marked

sample size

o Units m "Type A" ® "Type B"4 “Type C" — — Sign. 5% —— —- Sign. ,2%

funnelcompar measure pop
unit sd, cont const(1)
markcond (type=1)
legendmarkcond (Type A)
colormarkcond(blue)
optionsmarkcond (msymbol(S))
markcondl (type = 2)
...markcond2 (type=3)



Means, internal target, bonferroni and fdr thresholds

RN : i
o — . Sign. 5% (FDR)
~~~~~~~~ == Sign. 5% (Bonferroni)
o et T .
\\\“‘EL“_‘\ T T T ———
s T ST funnelcompar measure pop
) I unit sd, cont const(1)
e fdr bonferroni
. LI
_,/""” o
,_/
o

100 200 300 200
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Standardized Incidence Rates, one unit marked

5

4

funnelcompar smr exp

= 39 N
. T unit, poisson smr
B T markunit(5 "your unit")

O legendopts (placement (se)

0 T T — row(1l))

4 6 : ) 2
expected events
® Units — —— Sign.5% ————- Sign. .2%




PN - fa

References

@ Spiegelhalter DJ
Funnel plots for comparing institutional performance.

@ Jones HE, Ohlssen DI, Spiegelhalter DJ
Use of false discvery rate when comparing multipli helaht care
providers.

@ Spiegelhalter DJ
Funnel plots for institutional comparison.

@ Spiegelhalter DJ
Handling over-dispersion of performance indicators.

y 9 -» V & N



Acknowledgements

@ We thank Neil Shephard, Paul Silcocks and Hayley Jones for
valuable discussion.

@ Our routine is heavily based on confunnel by Tom Palmer.

@ Many programming tricks were stolen from eclplot and
other routines by Roger Newson.



	Funnel plot for institutional comparison
	Some statistics
	Underlying test
	Multiple testing problem
	Exact vs approximated control limits

	The funnelcompar command
	Some examples
	

