Multiple Imputation

Bill Rising StataCorp LP

2010 Italian Stata Users Group Meeting Bologna, Italia November 11, 2010

Contents

1	Introduction	1
	1.1 Goals Goals Goals 1.2 MI Background Goals Goals	1
	1.2 MI Background	1
	MI Basics	3
	2.1 A Simple Example	3
3	MI In More Depth	14
	3.1 Setup	14
	3.2 Imputation	
	3.3 Estimation and Postestimation in MI	20
	3.4 Data Management in MI	23
	Conclusion	26
	4.1 Conclusion	26

1 Introduction

1.1 Goals

Goals

- Learn the mechanics of basic multiple imputation using Stata
- Learn about some of the extras mi has to offer

1.2 MI Background

Why Impute?

- Missing values cause observations to be omitted from analyses
- Omitted observations mean lost power
- Would like to regain some of the information from the non-missing variables in those observations

Past Methods

- Hot deck—picking a fixed value from another observation with the same covariates
 - Not necessarly deterministic if there were many observations with the same covariate pattern
- Mean imputation—replacing with a mean
- Regression imputation—replacing with a single fitted value
- These methods all suffer from too little variation
 - Replaced missing values single good estimates

Multiple Imputation

- Draw many guesses at the missing values
 - Use the Bayes posterior predictive distribution of the missing values based (typically) on some sort of non-informative prior
 - Allows accounting for variation due to not being observed
- Estimate the model on each of the imputed datasets
- Pool the estimates using rules which account for variation from each dataset (within) and variation from the imputation (between)
- Originally developed by Rubin

What Missingness?

- For MI to work, the missingness must be unrelated to the data
 - Missing completely at random (MCAR)—missingness is completely independent the data generating process
 * Think of having complete data and randomly omitting some values
 - Missing at random (MAR)—given the observed data, the probability an observation is missing is unrelated to its value
- MCAR is often hard to believe; MAR is often easy to believe
 - MCAR means missingness causes no bias, just loss of power
 - MAR means missingness cause bias and loss of power
- These are sometimes called "ignorable", which really means "not non-ignorable"
 - "Non-ignorable" missing value processes depend on the values of the very missing values

When to Use Multiple Imputation

- Works best when casewise deletion would drop many of the observations
- Also works best when there is some correlation between the variables with missing data and the variables which are complete
- Remember that using multiple imputation means fitting a valid imputation model—so it requires the same care
 as fitting any other kind of model

2 MI Basics

2.1 A Simple Example

A Simple Example

- We'll run through a simple example first, using the control panel for mi
- This will get us familiar with the steps involved in multiple imputation without getting lost in the details
 - There are many details when doing MI in a careful fashion—this lesson is more about mechanics than technique
- Be aware that this example is intentionally very simple-minded

Modeling Energy Usage

- Open up the autometric dataset
 - . use autometric

(auto data with liters per 100km)

- This is simply the auto dataset with a gas mileage variable 1p100km for liters of gas used per 100km
 - Used for physics' sake
- Try this model:
 - . regress lp100km weight displacement ///
 - . gear_ratio length foreign

Source	SS	df	MS	Number of obs = 74
+				F(5, 68) = 46.46
Model	560.704497	5	112.140899	Prob > F = 0.0000
Residual	164.146432	68	2.41391812	R-squared = 0.7735
+				Adj R-squared = 0.7569
Total	724.850929	73	9.92946478	Root MSE = 1.5537

lp100km	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
weight	.0028799	.0008972	3.21	0.002	.0010896	.0046703
displacement gear_ratio	.0028702 6059845	.0051781 .8019463	0.55 -0.76	0.581 0.452	0074625 -2.206243	.0132029 .9942745
length foreign	.0243027 1.807019	.025469 .5657431	0.95 3.19	0.343 0.002	0265199 .6780958	.0751254 2.935941
_cons	4167049	3.851043	-0.11	0.914	-8.101341	7.267931

• Store the estimates for comparison later

. estimates store $\ensuremath{\mathsf{complete}}$

Modeling with Missing Observations

- Now open up the automiss dataset
 - . use automiss

(auto data with missing values and liters per 100km)

• This is the same dataset with some missing values for weight, displacement and length

```
. codebook
                                         _____
make
                                          Make and Model
          _____
           type: string (str17)
      unique values: 74
                                 missing "": 0/74
         examples: "Cad. Deville"
                "Dodge Magnum"
                "Merc. XR-7"
                "Pont. Catalina"
         warning: variable has embedded blanks
           _____
price
                                                Price
                 _____
           type: numeric (int)
           range: [3291,15906]
                                  units: 1
      unique values: 74
                               missing .: 0/74
         mean: 6165.26
std. dev: 2949.5
                    10%
                          25%
                                50%
                                       75%
                                              90%
       percentiles:
                   3895
                          4195 5006.5
                                       6342
                                             11385
 _____
lp100km
                                   Liters per 100 kilometers
_____
           type: numeric (float)
                           units: .1
           range: [5.7,20.4]
      unique values: 55
                               missing .: 0/74
           mean: 12.123
         std. dev: 3.15111
       percentiles: 10% 25% 50% 75%
8.2 9.7 11.9 13.7
                                             90%
                                              16.8
              _____
                                       Repair Record 1978
rep78
```

	type:	numeric (byte)			
un	range: ique values:		units: missing .:		
	tabulation:	Freq. Value 2 1 8 2 30 3 18 4 11 5 5 .			
headroom				Head	room (in.)
	type:	numeric (float)			
un	range: ique values:	[1.5,5] 8	units: missing .:		
	tabulation:	Freq. Value 4 1.5 13 2 14 2.5 13 3 15 3.5 10 4 4 4.5 1 5			
 trunk					(cu. ft.)
	type:	numeric (byte)			
un	range: ique values:	[5,23] 18	units: missing .:		
	mean: std. dev:	13.7568 4.2774			
:	percentiles:	10% 8	50% 14		90% 20
 weight			 	Wei	ght (lbs.)
	type:	numeric (int)			
un	range: ique values:	[1760,4840] 51	units: missing .:		
	mean: std. dev:	3029.44 798.429			

	2050	2240	3190	3670	4080
length					Length (in.)
type:	numeric (int)				
range: unique values:	[147,233] 42		units: missing .:		Ł
mean: std. dev:	189.063 21.5892				
percentiles:	10% 161	25% 172	50% 193	75% 204	
 turn					Circle (ft.)
type:	numeric (byte)				
range: unique values:	[31,51] 18		units: missing .:		
mean: std. dev:	39.6486 4.39935				
percentiles:	10% 34		50% 40		
displacement			Dis	splaceme	ent (cu. in.)
type:	numeric (int)				
range: unique values:	[79,425] 26		units: missing .:		Ł
mean: std. dev:	206.895 95.0826				
percentiles:	10% 97	25% 121		75% 258	
gear_ratio					Gear Ratio
type:	numeric (float	;)			
range: unique values:	[2.19,3.89] 36		units: missing .:		
mean: std. dev:	3.01486 .456287				
percentiles:	10%	25%	50%	75%	90%

foreign								C	lar	typ
		numeric origin	(byte)							
uniqu	range: 1e values:					units: ing .:				
ta	abulation:	Freq. 52 22	0	Label Domesti Foreigr						
/e still would like	e to predict	gasoline ı	usage (lp	100km)						
-	OOkm weight length fo SS	preign				Number	of obs	=		36
. gear_ratio	length fo	preign				Number F(5,				
. gear_ratic Source 	0 length fo SS 365.7655	df 	MS 73.1531	.013		F(5, Prob >	30) F	= =	32 0.0	2.52
. gear_ratio Source + Model Residual	o length fo SS 365.7655 67.49446	oreign df 	MS 73.1531 2.24981	.013 .561		F(5, Prob > R-squar	30) F red	= = =	32 0.0 0.8	2.52)000 3442
. gear_ratio Source + Model Residual	0 length fo SS 365.7655	oreign df 	MS 73.1531 2.24981	.013 .561		F(5, Prob >	30) F ced squared	= = =	32 0.0 0.8	2.52)000 3442 3183
. gear_ratio Source Model Residual Total	<pre>> length fc SS 365.7655 67.49446 433.2599 Coef</pre>	df 07 5 82 30 75 35 . Std.	MS 73.1531 2.24981 12.3788	013 561 5564	 ?> t	F(5, Prob > R-squar Adj R-s Root MS	30) F red squared SE	= = = =	32 0.0 0.8 0.8 1.4	2.52)000 3442 3183 1999
. gear_ratio Source Model Residual Total lp100km	<pre>> length fc SS 365.7655 67.49446 433.2599 Coef</pre>	df 07 5 82 30 75 35 . Std.	MS 73.1531 2.24981 12.3788 Err.	013 561 5564 t F		F(5, Prob > R-squar Adj R-s Root MS [95%	30) F red squared SE Conf.	= = = = Int	32 0.0 0.8 1.4	2.52 0000 3442 3183 4999 ral]
. gear_ratio Source Model Residual Total lp100km weight	<pre>> length fc SS 365.7655 67.49446 433.2599 Coef .002055</pre>	df 07 5 82 30 75 35 . Std. 5 .0012	MS 73.1531 2.24981 12.3788 Err. 2717	013 561 5564 t F	.116	F(5, Prob > R-squar Adj R-s Root MS [95% 000	30) F red squared SE Conf. 05416	= = = Int	32 0.0 0.8 1.4 2erv	2.52 0000 3442 3183 4999 7a1]
. gear_ratio Source Model Residual Total Ip100km 	<pre>> length fc SS 365.7655 67.49446 433.2599 Coef .002055 .000347</pre>	df 07 5 82 30 75 35 . Std. 5 .0012 2 .0065	MS 73.1531 2.24981 12.3788 Err. 2717 5069	013 561 5564 t F 1.62 (0 0.05 (0).116).958	F(5, Prob > R-squar Adj R-s Root MS [95% 000 012	30) F ed squared SE Conf. 05416 29417	= = = Int .0	32 0.0 0.8 1.4 	2.52 0000 3442 3183 4999 ral] 526 8636
. gear_ratio Source 	<pre>> length fc SS 365.7655 67.49446 433.2599 Coef .002055 .000347</pre>	df 07 5 82 30 	MS 73.1531 2.24981 12.3788 Err. 2717 5069 9048 -	013 561 5564 t F 1.62 (0 0.05 (0 1.41 (0).116).958).168	F(5, Prob > R-squar Adj R-s Root MS [95% 000 012 -3.89	30) F ed gquared E Conf. 5416 29417 29721	= = = Int .0	32 0.0 0.8 1.4 2erv 0046 013 7119	2.52 0000 3442 3183 4999 7a1] 5526 3636 9245
. gear_ratio Source Model Residual Total Ip100km weight displacement gear_ratio length foreign	<pre>> length fc SS 365.7655 67.49446 433.2599 Coef .002055 .000347 -1.59389</pre>	df 07 5 82 30 75 35 5 .0012 2 .0065 8 1.125 12 .0376 6 .8412	MS 73.1531 2.24981 12.3788 Err. 2717 5069 9048 - 5232 1427	013 561 5564 t F 1.62 (0.05 (1.41 (1.41 ().116).958).168).169	F(5, Prob > R-squar Adj R-s Root MS [95% 000 012 -3.89 023	30) F ed gquared E Conf. 5416 29417 99721 38676	= = = Int .0 .7	32 0.0 0.8 0.8 1.4 	2.52 0000 3442 3183 1999 7a1] 5526 3636 9245

Note that the number of complete observations has dropped considerably, and that no coefficient is significant

- Store these estimates for comparison
 - $% \left({{{\left({{{\left({{{\left({{{{s}}}} \right)}} \right)}_{i}}}}} \right)} \right)$. estimates store withmissing

Using the mi Control Panel

- The simplest way to learn about running an MI analysis is to use the control panel for mi
 - Either go to ${\small Statistics} > {\small Multiple Imputation},$ or
 - Type db mi
- The control panel is structured to match steps in MI
- Even if not used for commands, it is useful for memory cues

Start: A Careful Check of Missing Values

- From the status bar, we see that the data are not set up yet
- Click on the Examine button
- On the subpane Tabulate missing values, click on the ${\bf Go}$ –> button
 - In the submenu, select **Report pattern** and **Report frequencies**
 - Click OK
- The command issued is new in Stata 11: misstable
 - . misstable patterns, frequency

Something about misstable

- If you like, play around with other output for misstable
- Why the detail?
 - If the missingness is nested, it makes it easier to impute variables of different kinds, as we'll see
- Of course, nested missing values is rare in real-life data, unless the missingness is due to dropouts in studies
 - So the missingness for earlier observations is nested in that of later observations

Setting Up the Dataset for MI

- Click the **Setup** button
- Click the < Choose style > combo box
- Four different styles are available—choose *Marginal long*
 - All styles will work; for what we are doing the style is not important—we'll come back to this when looking
 at details
- Click the **Submit** button
 - . mi set mlong

Things to Note

- Stata created three variables in this case: _mi_miss, _mi_m, and _mi_id
 - These are for tracking the imputed datasets-more later

Registering Variables I

- Stata needs to watch over variables when imputing:
 - Imputed variables are variables for which we want to impute values
 - Passive variables are variables derived from imputed variables
 - Regular variables are variables which have no missing values, and which
- In general, it helps to register all variables
 - This is not necessary, however

Registering Variables II

- Register weight, displacement, and length as imputed
 - . mi register imputed /// % f(x) = f(x) + f(x) +
 - . weight length displacement

(38 m=0 obs. now marked as incomplete)

- We can register the others (other than rep78) as regular
 - . mi register regular ///
 - . price headroom trunk turn ///
 - . gear_ratio foreign lp100km
- We have no passive variables

Imputing in the Control Panel I

- To do imputations in the Control Panel,
 - Select the Reset # of imputations radio button
 - Type in some number of imputatations—here use 20
 - . mi set M=20
 - (20 imputations added; M = 20)
- Now click the **Impute** button
- Here we would like to use multivariate normal regression
 - Select the Multivariate normal regression choice
 - Click the \mathbf{Go} –> button

Imputing in the Control Panel II

- In the submenu, put weight length displacement in the Imputed variables field
- Put price headroom trunk turn gear_ratio lp100km in the Independent variables field
- Check the **Replace imputed...** checkbox
- Enter a random seed, say 3593
- Click the **OK** button

```
. mi impute mvn ///
. weight length displacement = ///
. price headroom trunk turn gear_ratio lp100km, /// \,
. replace rseed(3593)
Performing EM optimization:
 observed log likelihood = -703.46284 at iteration 21
Performing MCMC data augmentation ...
                                    Imputations =
Multivariate imputation
                                                       20
Multivariate normal regression
                                    added =
                                                         0
Imputed: m=1 through m=20
                                         updated =
                                                         20
Prior: uniform
                                       Iterations =
                                                       2000
                                         burn-in =
                                                       100
                                         between =
                                                        100
              Observations per m
              |-----
     Variable | complete incomplete imputed |
                                                    total

        weight |
        54
        20
        20 |

        length |
        63
        11
        11 |

        displacement |
        57
        17
        17 |

                                                       74
                                                       74
                                                        74
_____
(complete + incomplete = total; imputed is the minimum across m
of the number of filled in observations.)
```

What Happened?

- Stata imputed 20 different datasets
- It treated the above variables (all of them) as being jointly multivariate normal
- It then used the Monte Carlo Markov Chain (MCMC) data augementation methods to pick values from the
 posterior predictive distribution for the multivariate normal
- Try looking at how mi sees the dataset

- Stata only imputed values for observations with system-missing values
 - Non-system missing values are considered to be structural missing values which should not be imputed
 - System missing are called soft; structural missing values are called hard missing values

Estimating a model

- Estimating a model is now as simple a estimating a typical Stata model
- We could select the -> Linear regression and click the Go -> button to use another dialog
- Since we know Stata's regress command, we'll just put our regression command from earlier in the *Estimation* command field, and click **Submit**

foreign
Imputations = 20
Number of obs = 74
Average RVI = 0.1706
Complete DF = 68
DF: min = 33.47
avg = 47.27
max = 61.28
F(5, 63.9) = 35.80
Prob > F = 0.0000
t P> t [95% Conf. Interval]

weight	.0027651	.0011953	2.31	0.027	.000336	.0051943
displacement	.0011164	.0054778	0.20	0.839	0099087	.0121416
gear_ratio	6147166	.9248199	-0.66	0.509	-2.464591	1.235157
length	.0329809	.0357376	0.92	0.363	0396889	.1056506
foreign	1.689288	.6080325	2.78	0.007	.4735638	2.905013
_cons	-1.309322	4.368096	-0.30	0.766	-10.08922	7.470574

What Happened?

- Stata estimated the model for all 20 imputed datasets
- The results were then combined
 - The results are weighted according to how much variation there is between imputations *vs.* how much variation there is according to the linear model

Imputations

20

- These rules are often called Rubin's rules
- We can see how much variation there is with
 - . mi estimate, vartable nocitable

Multiple-imputation estimates

Variance information

		 Impי	Relative				
	I	Within	Between	Total	RVI	FMI	efficiency
	+-						
weight		9.4e-07	4.7e-07	1.4e-06	.527225	.35328	.982643
displacement	L	.000024	6.1e-06	.00003	.272386	.217839	.989225
gear_ratio	L	.791364	.060884	.855292	.080782	.075288	.99625
length	L	.000828	.000428	.001277	.543305	.360331	.982302
foreign	L	.347025	.021598	.369704	.06535	.061713	.996924
_cons		15.4553	3.4523	19.0803	.234541	. 193043	. 99044

Note: FMIs are based on Rubin's large-sample degrees of freedom.

- The relative efficiencies are estimates of efficiency relative to an infinite number of imputations

Estimates Table and mi

- Now store these results
 - . estimates store mi
- We would now like to make an estimates table

estimates table complete with missing mi, b(%9.6f) se(%9.6f)

This fails, because mi is being protective—it does not want to post e(b) or e(V)—and these are needed by
estimates table

Getting Estimates Table to Work

- To force mi estimate to give us the (dangerous) values, add an post option to the prefix command
 - . mi estimate, post: regress lp100km ///
 - . weight displacement gear_ratio length foreign

Multiple-imputation estimates Imputations							20
Linear regression Number of obs						=	74
				Avera	ge RVI	=	0.1706
				Compl	ete DF	=	68
DF adjustment:	Small sam	ple		DF:	min	=	33.47
					avg	=	47.27
					max	=	61.28
Model F test:	Equal 1	FMI		F(5, 63.9)	=	35.80
Within VCE type	: (DLS		Prob	> F	=	0.0000
lp100km	Coef.	Std. Err.	t	P> t	 [95% Cor	 nf.	Interval]
weight	.0027651	.0011953	2.31	0.027	.000336	3	.0051943
displacement	.0011164	.0054778	0.20	0.839	0099087	7	.0121416
gear_ratio	6147166	.9248199	-0.66	0.509	-2.464591	L	1.235157
length	.0329809	.0357376	0.92	0.363	0396889	9	.1056506
foreign	1.689288	.6080325	2.78	0.007	.4735638	3	2.905013

- And then re-store the estimates
 - . estimates store mi
- Now for the table
 - . estimates table complete withmissing mi, ///
 . b(%9.6f) se(%9.6f)

Variable	complete	withmis~g	mi
weight	0.002880	0.002056	0.002765
	0.000897	0.001272	0.001195
displacement	0.002870	0.000347	0.001116
-	0.005178	0.006507	0.005478
gear_ratio	-0.605984	-1.593898	-0.614717
U _	0.801946	1.129048	0.924820
length	0.024303	0.052969	0.032981
Ŭ I	0.025469	0.037623	0.035738
foreign	1.807019	1.617600	1.689288
Ű I	0.565743	0.841143	0.608032
cons	-0.416705	0.376183	-1.309322
-	3.851043	5.090549	4.368096
			logond: h/go

legend: b/se

Phew!

How Did We Do?

• Note that the standard errors are in the order

complete < imputed < missing

• If we check significance, we'll see that the imputed dataset did better, also

legend: * p<0.05; ** p<0.01; *** p<0.001

Here, things seem to have worked just fine

General Flow:

- Inspect the data: misstable
- mi set the data
- Register variables: mi register
- Impute values
 - Choose an Imputation model
 - * This should be done with the same care as choosing the model of interest
 - Compute passive variables using mi passive:
 - $\ast\,$ Here is where passive variables should be generated using mi
- Estimate using mi estimate:

3 MI In More Depth

3.1 Setup

Some Notation and Terminology

- The original data are just what you would think—the original dataset
- An *imputation* is an entire dataset where missing values have been filled with imputed values
 - Our example had 20 imputations
- The imputation datasets are $m=0,1,2\ldots,M$, where M is the number of imputations
 - m = 0 is the original dataset
- Complete observations are observations without any imputed values
 - imputed observations have at least one imputed value

Data Styles

- mi understands 4 data styles:
 - Full, long, and separate (flongsep stores a full copy of each imputation dataset from 0 through M
 - * Needed only for very large datasets or imported datasets
 - Full, long (flong), keeps a full copy of each imputation dataset stacked up in one Stata dataset
 * Once again best for imported datasets
 - Marginal long (mlong) keeps just imputed observations
 - * Useful when manipulating variables
 - Wide (wide) stores copies of imputed variables
 - * Useful when manipulating observations

Looking at Our Example

- Our dataset is in mlong form
 - _mi_id marks the observation in the original data for which this is the imputed observation
 - _mi_miss marks the observations in the original dataset which have missing values in the imputed variables
 - _mi_m holds the imputation dataset number
- These can be used for looking at the imputed values
- We could have just as easily specified that the data should be wide

Which Data Style?

- The mi convert command can convert between forms of datasets, so the type of dataset is not immediately critical
- It is best, if the dataset can fit in memory, to use either mlong or wide form
- Here, we can convert to wide form
 - . mi convert wide, clear
- Note that we now have prefixed variables corresponding to each imputation and imputed variable
- Either wide or mlong is preferable to the other styles

3.2 Imputation

Univariate Imputation Methods

- Univariate Methods
 - linear regression (mi impute regress)—for continuous variables
 - predictive mean matching (mi impute pmm)—for continuous variables when normal errors in linear regression are suspect
 - logistic regression (mi impute logit)—for $0/1\ variables$
 - multinomial logistic regression (mi impute mlogit)—for nominal variables
 - ordinal logistic regression (mi impute ologit)—for ordinal variables
- The general syntax is mi impute method model
 - The model is specified just like the corresponding estimation command

An Example

- First allow rep78 to be imputed by registering it:
 - . mi register imputed rep78
- An example with our present dataset:
 - . mi impute ologit rep78 ///
 - . headroom trunk turn gear_ratio foreign, ///
 - . replace rseed(30103)

Univariate imputation	Imputations	=	20
Ordered logistic regression	added	=	0
Imputed: m=1 through m=20	updated	=	20

			Observation	s per m		
Variable		-	incomplete	-		total
rep78		69	5	5	:	74

(complete + incomplete = total; imputed is the minimum across m of the number of filled in observations.)

- We can investigate this
 - We make the data mlong
 - . mi convert mlong, clear
 - We see where it is missing
 - . list _mi_id if _mi_m==0 & missing(rep78)

	+		+
	Ι.	_mi_id	I
			۰I
З.	1	3	I
10.	1	10	I
53.	1	53	I
57.	I	57	I
63.	I	63	I
	+		+

- Look at the various imputed values

. tab _mi_id rep78 ///

1		Repair	Record 197	8		
_mi_id	1	2	3	4	5	Total
3	0	1	10	7	2	20
10	2	4	8	3	3	20
53	1	0	2	13	4	20
57	2	6	11	1	0	20
63	1	5	13	1	0	20
+ Total	6	16	44	 25	 9	100

Were These Imputations Proper?

- These imputations were done sequentially after imputing the missing values for weight, length, and displacement
- We may use these imputed values in two situations:
 - We think that rep78 is independent of the other imputed variables, or
 - We will not use rep78 together with the other imputed variables in any model building
 - * In our case, this is something reasonable, because rep78 and lp100km would likely not be involved in each other's modeling

Multivariate Methods

- Multivariate normal regression (mi impute mvn)—for continuous data when there is no structure to missing values
 - mi impute mvn imputed varlist = indepvarlist
- Sequential univariate imputation (mi impute monotone) when missing observations are nested
 - Models are specified in order from least to most missing values

Example of Monotone Imputation I

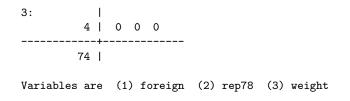
- Save what we've done, if you like; other wise clear out
 - . clear
- Open up a specially constructed dataset
 - . use automono

(auto data with monotone missing values and lp100km)

- Take a look at it usingmisstable (method 1)
 - . misstable nested
 - 1. foreign(4) \rightarrow rep78(5) \rightarrow weight(21)
 - This works because the missing observations are truly nested
- Using misstable (method 2)
 - . misstable patterns, freq bypat

```
Missing-value patterns (1 means complete)
```

	L	P	att	ern
Frequency	Ι	1	2	3
53	-+-· 	1	1	1
1: 16 2:	 	1	1	0
2:		1	0	0



Example of Monotone Imputation II

- We can use monotone imputation, starting with weight, then foreign, then rep78
- We'll do this via a do-file to save some typing

```
. do automono
. * start by using automono again
. use automono
(auto data with monotone missing values and lp100km)
. mi set mlong
. mi register imputed rep78 weight foreign
(21 m=0 obs. now marked as incomplete)
. mi register regular price headroom trunk length-gear_ratio lp100km
. mi impute monotone (pmm) weight (logit) foreign (ologit) rep78 ///
  = lp100km trunk length turn displacement gear_ratio, ///
>
> add(20) rseed(3443)
Conditional models:
      foreign: logit foreign lp100km trunk length turn displacement
                gear_ratio
        rep78: ologit rep78 i.foreign lp100km trunk length turn displacement
               gear_ratio
       weight: pmm weight i.rep78 i.foreign lp100km trunk length turn
                displacement gear_ratio
                                     Imputations = 20
added = 20
updated = 0
Multivariate imputation
Monotone method
Imputed: m=1 through m=20
      foreign: logistic regression
        rep78: ordered logistic regression
       weight: predictive mean matching
              1
                           Observations per m
              |-----
     Variable | complete incomplete imputed | total
 -----

      foreign
      70
      4
      4
      74

      rep78
      69
      5
      5
      74

      weight
      53
      21
      21
      74

-----
(complete + incomplete = total; imputed is the minimum across m
of the number of filled in observations.)
```

. * saving the . mi estimate,			//				
	LOOkm weight	-		atio leng	th foreig	'n	
Multiple-imputa	ation estimat		Tmruut	ations	=	20	
Linear regressi	-	r of obs		74			
Tillegt regressi					ge RVI		0.1366
					ete DF		68
DE addinates ant .	Qmall	-1-		-	min		37.13
DF adjustment:	Small sam	pre		DF:			
					avg		49.08
				- /	max		60.27
Model F test: Equal FMI					5, 64.4		
Within VCE type	e: (DLS		Prob	> F	=	0.0000
-	Coef.		t	P> t	[95% C	onf.	Interval]
	.0030823		2.28	0.029	. 00033	78	.0058269
displacement	.0007368	.0064655	0.11	0.910	01223	19	.0137056
gear_ratio	581057	.8499161	-0.68	0.497	-2.2809	85	1.118871
length	.0252698	.0328691	0.77	0.447	0411	58	.0916977
foreign	1.72751	.6428406	2.69	0.010	.43555	83	3.019461
_cons	8242788	4.226009	-0.20	0.846	-9.2923	24	7.643767

end of do-file

Notes on Monotone Imputation

- mi is smart enough to learn from the method to know which imputed variables are categorical
- monotone includes each imputed variable for imputing the following variables

Notes on pmm

- pmm was used for weight to illustrate its use
 - We could have used linear regression
- pmm chooses values from the posterior predictive distribution
- It then picks the observed value corresponding to the closed predicted value
 - The number of neighbors from which the value is chosen can be changed from 1 using the knn option

Note on Multivariate Normal Imputation

- This is the method which is commonly used if there is no pattern to the missing values
- It assumes a multivariate normal distribution for the imputed variables, however

What if a Mixture of Models is Needed?

- It is possible to try multivariate normal methods and round values
- If the missing patterns are nearly monotone, it is possible to delete values to force monotonicity, and then run the imputations
- It is possible to use the chained equation methods
 - This is a user-written command: ice
 - It complements Stata's capabilities, and should be considered as a possibility

Other Notes on Imputation

- If you think there will be interaction terms involving a complete variable in the dataset, separate imputations should be run on the levels
- For example: if foreign were complete, we would need

mi impute ... if foreign==0

mi impute ... if foreign==1

as two separate imputations

3.3 Estimation and Postestimation in MI

What Estimation Commands Work?

• Many of Stata's estimation commands work as above, with

mi estimate estimation command ...

- To see which commands work, look at help mi estimation
- This is a large subset of the estimation commands
 - These include some of the special-form datasets, such as survival time datasets and complex survey datasets
 - These dataset structures must be set up before using themi version of the command—see help mi XXXset

What about User-Written Estimation Commands?

• User-written estimation commands can be used via

mi estimate, cmdok: ...

• Warning: this is something that must be done carefully, because the user-written command must understand how to combine the results from the various imputations

What Postestimation Commands Work?

- Because MI estimation is a much different beast than typical estimation, the suite of postestimation commands is different: try help mi postestimation
- mi test corresponds to test, but only for testing coeffecients being zero
- mi testtransform is used for testing linear and non-linear hypotheses

An Example of mi test

• Look at the last model

. mi estimate							
Multiple-imputa	ation estima	tes		Imputations =			20
Linear regressi	lon		Numbe	r of obs	=	74	
-				Avera	ge RVI	=	0.1366
				Compl	ete DF	=	68
DF adjustment:	Small sam	ple		DF:	min	=	37.13
-					avg	=	49.08
					max	=	60.27
Model F test:	Equal 1	FMI		F(5, 64.4) =	38.03
Within VCE type: OLS				Prob	> F	=	0.0000
lp100km	Coef.	Std. Err.		P> t	[95% C	 onf.	Interval]
weight	.0030823	.0013547	2.28	0.029	.00033	78	.0058269
displacement	.0007368	.0064655	0.11	0.910	01223	19	.0137056
gear_ratio	581057	.8499161	-0.68	0.497	-2.2809	85	1.118871
length	.0252698	.0328691	0.77	0.447	0411	58	.0916977
foreign	1.72751	.6428406	2.69	0.010	.43555	83	3.019461
_cons	8242788	4.226009	-0.20	0.846	-9.2923	24 	7.643767

 If we would like to test if the coefficients of displacement, gear_ratio, and length are simultaneously zero, we would use

. mi test displacement gear_ratio length
note: assuming equal fractions of missing information
(1) displacement = 0
(2) gear_ratio = 0
(3) length = 0
F(3, 62.9) = 0.34
Prob > F = 0.7952

An Example of a Linear Test I

- When running a test on a non-MI model, we would use, for example test weight == displacement
- We could estimate at linear combinations using
 - lincom weight displacement

- These don't work directly after mi estimate, because more information is needed from the fitting of the model
 - This is different than typical tests which just need the model, coefficients and the variance-covariance matrix

An Example of a Linear Test II

- We would need to re-estimate the model, but we saved the estimation results in automono_fit.ster above
 - Stata added the ster extension
- So, now we estimate the difference to run the test (like in lincom)

. mi estimate (lintest: _b[weight] - _b[displacement]) using automono_fit

Multiple-imputat Linear regressic	Numbe Avera	ations er of obs age RVI	=	20 74 0.1366			
DF adjustment:	Small sam	ple		DF:	ete DF. min avg max	=	
Model F test: Within VCE type:					5, 64.4) >F) =	38.03 0.0000
lp100km		Std. Err.	t	P> t	[95% Co	onf.	Interval]
		.0013547	2.28	0.029	. 000337	 78	.0058269
displacement	.0007368	.0064655	0.11	0.910	012231	19	.0137056
gear_ratio	581057	.8499161	-0.68	0.497	-2.28098	35	1.118871
length	.0252698	.0328691	0.77	0.447	04115	58	.0916977
foreign	1.72751	.6428406	2.69	0.010	.435558	33	3.019461
_cons	8242788	4.226009	-0.20	0.846	-9.29232	24	7.643767
Transformations					ege RVI .ete DF		0.2290 68
DF adjustment:	Small sam	nle		DE·	min	=	48.96
bi aajabomono.	bildii buil	P10			avg		
Within VCE type:		OLS			max		
lintest: _	b[weight]	b[displace	ement]				
lp100km		Std. Err.			[95% Co	onf.	Interval]
		.0074491			- 012624	 14	0173155

. mi testtransform lintest

note: assuming equal fractions of missing information

lintest: _b[weight] - _b[displacement]

(1) lintest = 0

F(1, 49.0) = 0.10Prob > F = 0.7542

Non-linear tests work the same way

3.4 Data Management in MI

Data Management in MI

- Data management in MI requires more care than typical data management
 - Passive variables need to be kept consistent
 - Simple manipulations of the dataset have more ramificiations
 - Reproducibility can be made more difficult
- Good News: Stata has tools for making the data management simpler-but it still requires care

Working with Internal Datasets

- If you are working with your own internal datasets, where you have access to the whole dataset, it is best to do all your data mangement **before** doing imputation
- You will want to separate your overall data management from your imputation and creation of passive variables,
 - Keep them as 2 separate do-files so the separation is clear
- Every time you redo any data management, redo the imputation
- This will allow reproducibility to work properly

Importing Datasets

- Stata has several tools for working with imported datasets
 - mi import flong, mi import flongsep, and mi import wide correspond to the different mi data types
 - mi import ice imports MI datasets created by ice
 - mi import nhanes1 imports MI datasets from NCHS
- The datasets must be Stata datasets before they can be imported
 - ice naturally makes Stata datasets
- We'll not cover this here

Basic Tools for Data Management

• mi describe shows the mi structure of the dataset

```
. mi describe
```

```
Style: mlong
        last mi update 02nov2010 10:48:59, 1 second ago
 Obs.: complete
                          53
        incomplete
                         21 (M = 20 imputations)
         _____
                          74
        total
 Vars.: imputed: 3; rep78(5) weight(21) foreign(4)
        passive: 0
        regular: 8; price headroom trunk length turn displacement gear_ratio
                  lp100km
        system: 3; _mi_m _mi_id _mi_miss
        (there is one unregistered variable; make)
- mi query gives a much shorter description
   . mi query
```

```
data mi set mlong, M = 20
last mi update 02nov2010 10:48:59, 1 second ago
```

- mi varying can be used to spot mistakes—they look for how constant variables are across the imputed datasets
 - . mi varying

```
Possible problem variable names

imputed nonvarying: (none)

passive nonvarying: (none)

unregistered varying: (none)
```

- Constant imputed variables have not yet been imputed,
- Constant passive variables' imputed bases have not been imputed
- Varying unregistered variables change across imputations, and yet are supposedly not imputed or passive
 - * Such variables are called "super varying" and should not occur often
- Of course, mi varying can work only if variables are registered

Specialized Tools for Data Management

- Stata has a few tools for working on the repeating datasets
 - mi xeq: command runs command on each of the imputed datasets
 - There are several commands which have been extended to work with mi: look at help mi
 - mi update is used to check consistency and update changes

Example of mi update

• Try dropping an observation—recall that rep78 is missing in observation 3

```
. drop in 3
```

- (1 observation deleted)
- Dropping the 3rd observation means that some imputed observations will no longer be needed

```
. mi update
```

(system variable _mi_id updated due to changed number of obs.)
(20 m>0 marginal obs. dropped due to dropped obs. in m=0)

- mi update is run after every mi command—so you need to run it only after manipulating data directly
- Be careful—mi update keeps track of observations and other bookkeeping, but it cannot keep track of needed changes in passive variables or changes to observations which could affect imputations

- Hence it should really only be used when manipulating imported data

A Fancy Tool

- There is a pair of commands which allows temporarily stepping out of the mi realm while doing data management
- Suppose you have saved your mi dataset in doremi, and you would like to manipulate it

```
- use doremi
mi extract 0
...
mi replace0 using doremi, id(keyvarlist)
will allow changes to the main dataset to be propagated through the imputed datasets
```

Example of the Fancy Tool

- Open the automono2 dataset
 - . use automono2, clear

(auto data with monotone missing values and lp100km)

Extract the non-imputed dataset

```
. mi extract 0
```

- Change some data (output omitted)
 - . replace rep78 = 2 if make=="AMC Spirit"
 - . drop if price>=14000
- Rebuild

```
. mi replace0 using automono2, id(make)
```

(system variable _mi_id updated due to changed number of obs.)
(imputed variables updated in 20 obs. in m>0 in order to match m=0 data)

Peek

. list make _mi_m rep78 if make=="AMC Spirit"

4	+		+
l	make	_mi_m	rep78
3.	AMC Spirit	0	2
73.	AMC Spirit	1	2
93.	AMC Spirit	2	2
113.	AMC Spirit	3	2
133.	AMC Spirit	4	2
153.	AMC Spirit	5	2
173.	AMC Spirit	6	2
193.	AMC Spirit	7	2
213.	AMC Spirit	8	2
233.	AMC Spirit	9	2
I			I
253.	AMC Spirit	10	2
273.	AMC Spirit	11	2
293.	AMC Spirit	12	2
313.	AMC Spirit	13	2
333.	AMC Spirit	14	2
353. I	AMC Spirit	 15	2
373. I	AMC Spirit	16	2
393. I	AMC Spirit	10	2
413.	AMC Spirit	18	2
433.	AMC Spirit	18 19	2
-100.		19 	∡
453. +	AMC Spirit	20	2

- This works fine-but take care if you are working on an internal dataset which could change

Data Management in General

- Use mi versions of data management commands if they are available
- Use the mi xeq: prefix command
- Try checking mi update for consistency
- Take great care

4 Conclusion

4.1 Conclusion

Conclusion

- Multiple Imputation allows gaining back some information lost by non-response
- Stata has tools built for working with a wide variety of estimation commands and specialized data structures—all of these are mi commands

Index

м

mi, 3-26 control panel, 7 data management tools, 23–26 data styles, 15 estimates table, 12, 13 estimation, 11, 12 imputation methods multivariate, 17-20 univariate, 15-17 imputed datasets, 14 imputing, 10, 11 postestimation, 20-23 registering variables, 9 workflow, 14 missing at random (MAR), 2 missing completely at random (MCAR), 2 missing value structure, see misstable misstable, 8 multiple imputation concept, 1, 2 implementation, see mi