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Overview

This talk shows how to use the margins command to estimate the
mean of the partial effects and the partial effects at the mean

This talk highlights some important points about estimating partial
effects

In nonlinear models, the partial effect at the mean can differ
significantly from the mean of the partial effect
Standard parameter estimators; such maximum-likelihood, least
squares, and generalized method of moments; only require a
missing-at-random assumption, but estimating the mean of the partial
effects requires a missing-completely-at-random assumption

This talk will also illustrate some basic uses of Stata’s factor variables
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Factor variables in Stata

Factor variable syntax

Stata supports operators for factor variables

i. unary operator to specify indicators
c. unary operator to treat as continuous
# binary operator to specify interactions
## binary operator to specify factorial interactions
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Factor variables in Stata

Earnings data

. use earn2b

. summarize age

Variable Obs Mean Std. Dev. Min Max

age 7373 40.1968 13.22641 15 80

. tabulate educ3 hourly

hourly

educ3 nonhourly hourly Total

No high school diplom 192 766 958

HIGH SCHOOL DIPLOMA 616 1,641 2,257

SOME COLLEGE NO DEGRE 472 945 1,417

ASSOCIATE OCCUPATIONA 122 244 366

ASSOCIATE ACADEMIC 110 133 243

BACHELOR´S DEGREE 987 369 1,356

MASTER´S DEGREE 447 89 536

PROFESSIONAL DEGREE 110 18 128

DOCTORATE DEGREE 104 8 112

Total 3,160 4,213 7,373
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Factor variables in Stata

regress with factor variables

. regress lnearn age c.age#c.age i.educ3 i.hourly

Source SS df MS Number of obs = 7352

F( 11, 7340) = 353.39

Model 1866.97842 11 169.725311 Prob > F = 0.0000

Residual 3525.27413 7340 .480282579 R-squared = 0.3462

Adj R-squared = 0.3453

Total 5392.25255 7351 .733540001 Root MSE = .69302

lnearn Coef. Std. Err. t P>|t| [95% Conf. Interval]

age .1284447 .0034719 37.00 0.000 .1216388 .1352507

c.age#c.age -.0013821 .0000405 -34.09 0.000 -.0014615 -.0013026

educ3

3 .3663099 .0272751 13.43 0.000 .3128428 .419777

4 .3965967 .0293683 13.50 0.000 .3390264 .454167

5 .5247704 .0432303 12.14 0.000 .4400267 .6095141

6 .5574536 .0505165 11.04 0.000 .4584268 .6564805

7 .7062318 .0314011 22.49 0.000 .6446767 .767787

8 .7281191 .0398533 18.27 0.000 .6499951 .8062431

9 .9653706 .0666575 14.48 0.000 .8347028 1.096038

10 .8957075 .0708855 12.64 0.000 .7567514 1.034663

1.hourly -.2135234 .0186841 -11.43 0.000 -.2501496 -.1768972

_cons 3.373212 .0719173 46.90 0.000 3.232233 3.514191
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Factor variables in Stata

Use coeflegend option to see parameter names

. regress lnearn age c.age#c.age i.educ3 i.hourly, coeflegend

Source SS df MS Number of obs = 7352

F( 11, 7340) = 353.39

Model 1866.97842 11 169.725311 Prob > F = 0.0000

Residual 3525.27413 7340 .480282579 R-squared = 0.3462

Adj R-squared = 0.3453

Total 5392.25255 7351 .733540001 Root MSE = .69302

lnearn Coef. Legend

age .1284447 _b[age]

c.age#c.age -.0013821 _b[c.age#c.age]

educ3

3 .3663099 _b[3.educ3]

4 .3965967 _b[4.educ3]

5 .5247704 _b[5.educ3]

6 .5574536 _b[6.educ3]

7 .7062318 _b[7.educ3]

8 .7281191 _b[8.educ3]

9 .9653706 _b[9.educ3]

10 .8957075 _b[10.educ3]

1.hourly -.2135234 _b[1.hourly]

_cons 3.373212 _b[_cons]
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Factor variables in Stata

interaction syntax

. regress lnearn i.educ3 c.age#c.age c.age##i.hourly, vsquish

Source SS df MS Number of obs = 7352

F( 12, 7339) = 325.59

Model 1873.37108 12 156.114257 Prob > F = 0.0000

Residual 3518.88146 7339 .479476967 R-squared = 0.3474

Adj R-squared = 0.3464

Total 5392.25255 7351 .733540001 Root MSE = .69244

lnearn Coef. Std. Err. t P>|t| [95% Conf. Interval]

educ3

3 .3672511 .0272535 13.48 0.000 .3138264 .4206757

4 .3954825 .0293452 13.48 0.000 .3379575 .4530076

5 .525017 .043194 12.15 0.000 .4403442 .6096897

6 .5596144 .0504776 11.09 0.000 .4606638 .6585649

7 .7089366 .0313835 22.59 0.000 .6474159 .7704572

8 .7212365 .0398645 18.09 0.000 .6430907 .7993824

9 .9621752 .0666073 14.45 0.000 .8316057 1.092745

10 .8775882 .0709997 12.36 0.000 .7384085 1.016768

c.age#c.age -.0014171 .0000416 -34.04 0.000 -.0014987 -.0013355

age .1345898 .0038557 34.91 0.000 .1270315 .1421481

1.hourly -.0082572 .0592347 -0.14 0.889 -.1243743 .1078599

hourly#c.age

1 -.0049327 .0013509 -3.65 0.000 -.0075809 -.0022845

_cons 3.178811 .0894314 35.54 0.000 3.0035 3.354122
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A review of cross-sectional probit model The probit model

A model for binary data

The probit model for binary data is one of the most widely used
nonlinear models

The dependent variable yi that we observe takes on values 0 and 1.

One way to model this process is assume that there is a latent
continuous variable y∗i such that

yi =

{

1 if yi∗ = xiβ + ǫi > 0
0 otherwise

Specifying Pr(y = 1|x) = F (xβ) to be the cumulative distribution for
ǫi conditional on x yields

Pr(y∗ > 0|x) = Pr(ǫ > −xβ|x)

= Pr(ǫ < xβ|x) (if ǫ has a symmetric distribution)

= F (xβ)
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A review of cross-sectional probit model The probit model

Estimation and inference in the probit model

After choosing a distribution function, we have a fully specified
parametric model

Maximum-likelihood is the estimation framework most often applied

Using the standard normal distribution for F (xβ) yields the probit
model
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A review of cross-sectional probit model The probit model

Accident data

We have some (fictional) data on individuals and whether or not they
have had an accident in the last year

crash is 1 if person has been the driver in an accident in the last year
cvalue is the value of the person’s car
kids is the number of children (under 18) for which the person is a
guardian
tickets is the number of tickets the individual has received in the last
three years
male is 1 if the person is male
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A review of cross-sectional probit model The probit model

Probit example

. use accidents2

. probit crash tickets traffic i.male, nolog

Probit regression Number of obs = 948
LR chi2(3) = 720.22

Prob > chi2 = 0.0000
Log likelihood = -60.522949 Pseudo R2 = 0.8561

crash Coef. Std. Err. z P>|z| [95% Conf. Interval]

tickets 2.464657 .2768335 8.90 0.000 1.922073 3.00724

traffic .159089 .0604682 2.63 0.009 .0405735 .2776045
1.male 5.892127 .7758214 7.59 0.000 4.371545 7.412709

_cons -12.63666 1.529302 -8.26 0.000 -15.63403 -9.639279

Note: 516 failures and 13 successes completely determined.

. estimates store probit1

12 / 32



A review of cross-sectional probit model Partial effects

Interpreting the estimated parameters

The sign of the coefficient gives the direction of the effect, but not
the marginal effect

The estimated coefficients estimate β
σ
, so their magnitudes are in

units of the standard-deviation of the errors

Marginal effect at a point x̃ is ∂E [y |x]
∂x

∣

∣

∣

x=x̃

= ∂F (xβ)
∂x

∣

∣

∣

x=x̃

= f (x̃β)β

The relative marginal effects do not depend x

∂F (xβ)
∂xj

∂F (xβ)
∂xk

=
f (xβ)βj
f (xβ)βk

=
βj

βk

Use testnl to test hypotheses about the relative effects

. testnl _b[1.male]/_b[tickets] = 2

(1) _b[1.male]/_b[tickets] = 2

chi2(1) = 8.86

Prob > chi2 = 0.0029
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A review of cross-sectional probit model Partial effects

Marginal effects

The good thing about marginal effects at point x̃ is that all the
information we need for estimation and inference about the marginal
effect is contained in the ML point estimates and estimated VCE

The bad thing about marginal effects at point x̃ is that we must
choose x̃

Use margins to estimate marginal effects at a point x̃

Conventionally, x̃ = x̄ when the variables in x are continuous

See [Long and Freese(2006)] for more about interpreting the
parameter estimates from cross-sectional binary-model regressions
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A review of cross-sectional probit model Partial effects

Marginal effects at means via margins

. margins , dydx(tickets traffic) atmeans

Conditional marginal effects Number of obs = 948
Model VCE : OIM

Expression : Pr(crash), predict()
dy/dx w.r.t. : tickets traffic

at : tickets = 1.436709 (mean)
traffic = 5.201121 (mean)

0.male = .5327004 (mean)
1.male = .4672996 (mean)

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

tickets 2.45e-07 8.06e-07 0.30 0.762 -1.34e-06 1.82e-06
traffic 1.58e-08 5.14e-08 0.31 0.759 -8.49e-08 1.17e-07

Note the small effect of tickets and traffic
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A review of cross-sectional probit model Partial effects

Marginal effects at means by hand

. estat summarize

Estimation sample probit Number of obs = 948

Variable Mean Std. Dev. Min Max

crash .1624473 .3690553 0 1
tickets 1.436709 1.849456 0 7

traffic 5.201121 2.924058 .005189 9.99823
1.male .4672996 .4991929 0 1

. matrix list r(stats)

r(stats)[4,4]
mean sd min max

crash .16244726 .36905531 0 1

tickets 1.4367089 1.8494562 0 7
traffic 5.2011207 2.9240582 .00518857 9.9982338

1.male .46729958 .49919289 0 1

. matrix r = r(stats)

. scalar f1 = normalden(_b[tickets]*r[2,1]+_b[traffic]*r[3,1] ///
> +_b[1.male]*r[4,1] + _b[_cons])

. display f1*_b[tickets]

2.446e-07

. display f1*_b[traffic]
1.579e-08
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A review of cross-sectional probit model Partial effects

Discrete effects at means via margins

. margins , dydx(male) atmeans

Conditional marginal effects Number of obs = 948
Model VCE : OIM

Expression : Pr(crash), predict()

dy/dx w.r.t. : 1.male
at : tickets = 1.436709 (mean)

traffic = 5.201121 (mean)
0.male = .5327004 (mean)
1.male = .4672996 (mean)

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

1.male .0087485 .007247 1.21 0.227 -.0054553 .0229523

Note: dy/dx for factor levels is the discrete change from the base level.
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A review of cross-sectional probit model Partial effects

Discrete effects at means by hand

. estat summarize

Estimation sample probit Number of obs = 948

Variable Mean Std. Dev. Min Max

crash .1624473 .3690553 0 1

tickets 1.436709 1.849456 0 7
traffic 5.201121 2.924058 .005189 9.99823
1.male .4672996 .4991929 0 1

. matrix list r(stats)

r(stats)[4,4]
mean sd min max

crash .16244726 .36905531 0 1
tickets 1.4367089 1.8494562 0 7

traffic 5.2011207 2.9240582 .00518857 9.9982338
1.male .46729958 .49919289 0 1

. matrix r = r(stats)

. local xb0 = _b[tickets]*r[2,1]+_b[traffic]*r[3,1] + _b[_cons]

. display normal(`xb0´+_b[1.male]) - normal(`xb0´)

.00874852
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A review of cross-sectional probit model Partial effects

Average partial effects

Average partial effect of xk is

βk

N

N
∑

i=1

f (xiβ)

if xk is continuous

If xk is discrete, the average partial effect is the average of the
discrete differences in the predicted probabilities
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A review of cross-sectional probit model Partial effects

Marginal effects at a point versus Average marginal effects

A marginal effect at a point is an estimate of the marginal effect at
chosen covariate values

The marginal effect for a given person

An average marginal effect is an estimate of a population-averaged
marginal effect

The mean marginal effect for a population
The distribution of the covariates must be representative to
consistently estimate the population-averaged marginal effect

Mean partial effects and marginal effects at the mean are different
quantities and can produce different estimates

Let g(x) = ∂F (x)
∂x

g() is nonlinear implies that

g(x̄)
p
→ g(E [x]) 6= E [g(x)]

p
← N−1

∑N

i=1 g(xi)
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A review of cross-sectional probit model Partial effects

Average marginal effects via margins

. margins , dydx(tickets traffic)

Average marginal effects Number of obs = 948
Model VCE : OIM

Expression : Pr(crash), predict()
dy/dx w.r.t. : tickets traffic

Delta-method

dy/dx Std. Err. z P>|z| [95% Conf. Interval]

tickets .0857818 .0031049 27.63 0.000 .0796963 .0918672
traffic .0055371 .0020469 2.71 0.007 .0015251 .009549

Note that these values are much larger than marginal effects at means

Note that these estimates are statistically significant
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A review of cross-sectional probit model Partial effects

Average marginal effects by hand

. predict double xb, xb

. generate double me_tickets = normalden(xb)*_b[tickets]

. generate double me_traffic = normalden(xb)*_b[traffic]

. summarize me_tickets me_traffic if e(sample)

Variable Obs Mean Std. Dev. Min Max

me_tickets 948 .0857818 .2090093 4.59e-35 .9818822

me_traffic 948 .0055371 .0134912 2.96e-36 .0633787
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A review of cross-sectional probit model Partial effects

Average discrete effects via margins

. margins , dydx(male)

Average marginal effects Number of obs = 948

Model VCE : OIM

Expression : Pr(crash), predict()
dy/dx w.r.t. : 1.male

Delta-method

dy/dx Std. Err. z P>|z| [95% Conf. Interval]

1.male .2092058 .0105149 19.90 0.000 .188597 .2298145

Note: dy/dx for factor levels is the discrete change from the base level.
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A review of cross-sectional probit model Partial effects

Average discrete effects by hand

. generate double xb0 = _b[tickets]*tickets + _b[traffic]*traffic + _b[_cons]

. generate double de = normal(xb0 + _b[1.male]) - normal(xb0)

. summarize de

Variable Obs Mean Std. Dev. Min Max

de 948 .2092058 .3605846 7.79e-12 .996267

24 / 32



A review of cross-sectional probit model Partial effects

Treating tickets as discrete I

. estimates restore probit1
(results probit1 are active now)

. preserve

. replace tickets = _n-1 in 1/8
(7 real changes made)

. replace male = .4672996 in 1/8
(8 real changes made)

. replace traffic = 5.2011 in 1/8
(8 real changes made)

. predict Fhat in 1/8
(option pr assumed; Pr(crash))
(940 missing values generated)

. graph twoway line Fhat tickets in 1/8, xline(1.4367)

. restore
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A review of cross-sectional probit model Partial effects

Treating tickets as discrete II

0
.2

.4
.6

.8
1

P
r(

cr
as

h)

0 2 4 6 8
tickets

The mean of tickets is about 1.43, and the slope of the probabilty
function is about zero when tickets is less than 3

When tickets is greater than or equal to 3, the slope of the probabilty
function is greater than 0

26 / 32



A review of cross-sectional probit model Partial effects

Treating tickets as discrete III

. margins , at(tickets = (0 1 2 3)) post coeflegend

Predictive margins Number of obs = 948
Model VCE : OIM

Expression : Pr(crash), predict()

1._at : tickets = 0

2._at : tickets = 1

3._at : tickets = 2

4._at : tickets = 3

Margin Legend

_at
1 1.66e-09 _b[1bn._at]

2 .0001208 _b[2._at]
3 .0549183 _b[3._at]
4 .4052946 _b[4._at]
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A review of cross-sectional probit model Partial effects

Treating tickets as discrete IV

. lincom _b[2._at] - _b[1bn._at]

( 1) - 1bn._at + 2._at = 0

Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) .0001208 .0001671 0.72 0.470 -.0002067 .0004484

. lincom _b[3._at] - _b[2._at]

( 1) - 2._at + 3._at = 0

Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) .0547975 .0177313 3.09 0.002 .0200448 .0895502

. lincom _b[4._at] - _b[3._at]

( 1) - 3._at + 4._at = 0

Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) .3503763 .0225727 15.52 0.000 .3061346 .3946179

. estimates restore probit1

(results probit1 are active now)
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A review of cross-sectional probit model Partial effects

Treating tickets as discrete V

. generate double xb_b = _b[_cons] + _b[traffic]*traffic + _b[1.male]*male

. generate double pr0 = normal(xb_b + 0*_b[tickets]) // prob when tickets=0

. generate double pr1 = normal(xb_b + 1*_b[tickets]) // prob when tickets=1

. generate double pr2 = normal(xb_b + 2*_b[tickets]) // prob when tickets=2

. generate double pr3 = normal(xb_b + 3*_b[tickets]) // prob when tickets=3

. generate pe_d01 = pr1-pr0

. sum pe_d01

Variable Obs Mean Std. Dev. Min Max

pe_d01 948 .0001208 .0003387 2.52e-24 .0031395

. generate pe_d12 = pr2-pr1

. sum pe_d12

Variable Obs Mean Std. Dev. Min Max

pe_d12 948 .0547975 .0794281 1.05e-14 .3911403

. generate pe_d23 = pr3-pr2

. sum pe_d23

Variable Obs Mean Std. Dev. Min Max

pe_d23 948 .3503763 .3749537 1.11e-07 .7821735
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A review of cross-sectional probit model Partial effects

Missing data and partial effects I

ML estimators are consistent if some of the data is missing at random

Missing at random allows the mechanism that causes data to be
missing to depend on the covariates x and a disturbance that is
independent of everything else in the model
This is sometimes called selection on observables
See [Cameron and Trivedi(2005)] and [Wooldridge(2002)] for
discussions and proofs
The sample distribution of the covariates need not be representative of
the population distribution
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A review of cross-sectional probit model Partial effects

Missing data and partial effects II

Estimating population averaged partial effects requires the much
stronger assumption that the sample distribution of the covariates is
representative

Missing completely at random guarantees that the sample distribution
of the covariates is representative
Missing completely at random requires the mechanism that causes data
to be independent of everything else in the model
In some cases, we can use weights to make the weighted sample
covariate distribution representative
We need a representative sample of covariates for

N−1
∑N

i=1 wig(xi)
p
→ E [g(x)]
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A review of cross-sectional probit model Partial effects

Missing data and partial effects III

We also need a representative sample covariate distribution to
estimate E [x ]

If we choose x̃ in way that does not depend on our sample, we can
perform estimation and inference for the partial effect at x̃ because all
the information we need is contained in the ML point estimates and
estimated VCE, which only require missing at random
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A review of cross-sectional probit model Partial effects
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