Using margins to estimate partial effects

David M. Drukker

Director of Econometrics Stata

2010 Italian Stata Users Group meeting Bologna November 2010

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- This talk shows how to use the margins command to estimate the mean of the partial effects and the partial effects at the mean
- This talk highlights some important points about estimating partial effects
 - In nonlinear models, the partial effect at the mean can differ significantly from the mean of the partial effect
 - Standard parameter estimators; such maximum-likelihood, least squares, and generalized method of moments; only require a missing-at-random assumption, but estimating the mean of the partial effects requires a missing-completely-at-random assumption
- This talk will also illustrate some basic uses of Stata's factor variables

Factor variable syntax

- Stata supports operators for factor variables
- i. unary operator to specify indicators
- c. unary operator to treat as continuous
- # binary operator to specify interactions
- ## binary operator to specify factorial interactions

Earnings data

. use earn2b

. summarize age

Variable	10	bs Mea	n Std. 1	Dev. 1	Min Max
age . tabulate edu	73 1c3 hourly		13.226	641	15 80
	educ3	hour	5	Total	
	educs	nonhourly	hourly	Iotal	
No high school	*	192	766	958	
HIGH SCHOOL	DIPLOMA	616	1,641	2,257	
SOME COLLEGE 1	IO DEGRE	472	945	1,417	
ASSOCIATE OCCU	JPATIONA	122	244	366	
ASSOCIATE A	ACADEMIC	110	133	243	
BACHELOR	DEGREE	987	369	1,356	
MASTER 'S	5 DEGREE	447	89	536	
PROFESSIONAL	. DEGREE	110	18	128	
DOCTORATE	DEGREE	104	8	112	
	Total	3,160	4,213	7,373	

Factor variables in Stata

regress with factor variables

. regress lnea	arn age c.age#	c.age i.edu	1c3 i.hou	rly		
Source	SS	df	MS		Number of obs	
Model Residual	1866.97842 3525.27413		.725311)282579		F(11, 7340) Prob > F R-squared Adj R-squared	= 0.0000 = 0.3462
Total	5392.25255	7351 .733	3540001		Root MSE	= .69302
lnearn	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	.1284447	.0034719	37.00	0.000	.1216388	.1352507
c.age#c.age	0013821	.0000405	-34.09	0.000	0014615	0013026
educ3						
3	.3663099	.0272751	13.43	0.000	.3128428	.419777
4	.3965967	.0293683	13.50	0.000	.3390264	.454167
5	.5247704	.0432303	12.14	0.000	.4400267	.6095141
6	.5574536	.0505165	11.04	0.000	.4584268	.6564805
7	.7062318	.0314011	22.49	0.000	.6446767	.767787
8	.7281191	.0398533	18.27	0.000	.6499951	.8062431
9	.9653706	.0666575	14.48	0.000	.8347028	1.096038
10	.8957075	.0708855	12.64	0.000	.7567514	1.034663
1.hourly _cons	2135234 3.373212	.0186841 .0719173	-11.43 46.90	0.000	2501496 3.232233	1768972 3.514191

Factor variables in Stata

Use coeflegend option to see parameter names

	regress	lnearn	age	c.age#c.age	i.educ3	i.hourly,	coeflegend
--	---------	--------	-----	-------------	---------	-----------	------------

Source	SS	df	MS	-	Number of obs =	
Model Residual	1866.97842 3525.27413	11 7340	169.725311 .480282579		F(11, 7340) = Prob > F = R-squared =	0.0000
Total	5392.25255	7351	.733540001		Adj R-squared = Root MSE =	
lnearn	Coef.	Legend	l			
age	.1284447	_b[age]			
c.age#c.age	0013821	_b[c.a	ge#c.age]			
educ3						
3	.3663099	_b[3.e	duc3]			
4	.3965967	_b[4.e	duc3]			
5	.5247704	_b[5.e	duc3]			
6	.5574536	_b[6.e	duc3]			
7	.7062318	_b[7.e	duc3]			
8	.7281191	_b[8.e				
9	.9653706	_b[9.e	duc3]			
10	.8957075	_b[10.	educ3]			
1.hourly	2135234					
_cons	3.373212	_b[_co	ns]			

interaction syntax

. regress lnea	arn i.educ3 c.	age#c.age c	.age##i.	hourly,	vsquish	
Source	SS	df	MS		Number of obs	
Model Residual	1873.37108 3518.88146		114257 476967		F(12, 7339) Prob > F R-squared	= 0.0000 = 0.3474
Total	5392.25255	7351 .733	540001		Adj R-squared Root MSE	= .69244
lnearn	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
educ3						
3	.3672511	.0272535	13.48	0.000	.3138264	.4206757
4	.3954825	.0293452	13.48	0.000	.3379575	.4530076
5	.525017	.043194	12.15	0.000	.4403442	.6096897
6	.5596144	.0504776	11.09	0.000	.4606638	.6585649
7	.7089366	.0313835	22.59	0.000	.6474159	.7704572
8	.7212365	.0398645	18.09	0.000	.6430907	.7993824
9	.9621752	.0666073	14.45	0.000	.8316057	1.092745
10	.8775882	.0709997	12.36	0.000	.7384085	1.016768
c.age#c.age	0014171	.0000416	-34.04	0.000	0014987	0013355
age	.1345898	.0038557	34.91	0.000	.1270315	.1421481
1.hourly	0082572	.0592347	-0.14	0.889	1243743	.1078599
hourly#c.age						
1	0049327	.0013509	-3.65	0.000	0075809	0022845
_cons	3.178811	.0894314	35.54	0.000	3.0035	3.354122

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ⊙

A model for binary data

- The probit model for binary data is one of the most widely used nonlinear models
- The dependent variable y_i that we observe takes on values 0 and 1.
- One way to model this process is assume that there is a latent continuous variable y_i^* such that

$$y_i = \begin{cases} 1 & \text{if } y_i * = \mathbf{x}_i \boldsymbol{\beta} + \epsilon_i > 0\\ 0 & \text{otherwise} \end{cases}$$

• Specifying $Pr(y = 1 | \mathbf{x}) = F(\mathbf{x}\beta)$ to be the cumulative distribution for ϵ_i conditional on \mathbf{x} yields

$$Pr(y^* > 0|\mathbf{x}) = Pr(\epsilon > -\mathbf{x}\beta|\mathbf{x})$$

= $Pr(\epsilon < \mathbf{x}\beta|\mathbf{x})$ (if ϵ has a symmetric distribution)
= $F(\mathbf{x}\beta)$

・ □ ト 4 回 ト 4 国 ト 4 国 ト 国 の Q (0)

Estimation and inference in the probit model

- After choosing a distribution function, we have a fully specified parametric model
- Maximum-likelihood is the estimation framework most often applied
- Using the standard normal distribution for $F(\mathbf{x}\beta)$ yields the probit model

Accident data

- We have some (fictional) data on individuals and whether or not they have had an accident in the last year
 - crash is 1 if person has been the driver in an accident in the last year
 - cvalue is the value of the person's car
 - kids is the number of children (under 18) for which the person is a guardian
 - tickets is the number of tickets the individual has received in the last three years
 - male is 1 if the person is male

Probit example

. use accidents2

. probit crash tickets traffic i.male, nolog

Probit regress	sion			Numbe	r of obs	=	948
				LR ch	i2(3)	=	720.22
				Prob	> chi2	=	0.0000
Log likelihood	d = -60.52294	9		Pseud	o R2	=	0.8561
crash	Coef.	Std. Err.	Z	P> z	[95% (Conf.	Interval]
tickets	2,464657	.2768335	8.90	0.000	1.9220	073	3.00724
traffic	.159089	.0604682	2.63	0.009	.0405	735	.2776045
1.male	5.892127	.7758214	7.59	0.000	4.3718	545	7.412709
_cons	-12.63666	1.529302	-8.26	0.000	-15.634	403	-9.639279

Note: 516 failures and 13 successes completely determined.

. estimates store probit1

Interpreting the estimated parameters

- The sign of the coefficient gives the direction of the effect, but not the marginal effect
- The estimated coefficients estimate $\frac{\beta}{\sigma}$, so their magnitudes are in units of the standard-deviation of the errors
- Marginal effect at a point $\tilde{\mathbf{x}}$ is $\frac{\partial E[y|\mathbf{x}]}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\tilde{\mathbf{x}}} = \frac{\partial F(\mathbf{x}\beta)}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\tilde{\mathbf{x}}} = f(\tilde{\mathbf{x}}\beta)\beta$
- The relative marginal effects do not depend x

$$\frac{\frac{\partial F(\mathbf{x}\boldsymbol{\beta})}{\partial x_j}}{\frac{\partial F(\mathbf{x}\boldsymbol{\beta})}{\partial x_k}} = \frac{f(\mathbf{x}\boldsymbol{\beta})\beta_j}{f(\mathbf{x}\boldsymbol{\beta})\beta_k} = \frac{\beta_j}{\beta_k}$$

• Use testnl to test hypotheses about the relative effects

Marginal effects

- The good thing about marginal effects at point $\tilde{\mathbf{x}}$ is that all the information we need for estimation and inference about the marginal effect is contained in the ML point estimates and estimated VCE
- The bad thing about marginal effects at point $\tilde{\mathbf{x}}$ is that we must choose $\tilde{\mathbf{x}}$
- Use margins to estimate marginal effects at a point $\tilde{\mathbf{x}}$
- Conventionally, $\tilde{\mathbf{x}} = \bar{\mathbf{x}}$ when the variables in \mathbf{x} are continuous
- See [Long and Freese(2006)] for more about interpreting the parameter estimates from cross-sectional binary-model regressions

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ○ ○ ○ ○

Marginal effects at means via margins

. margins , dy	dx(tickets ti	affic) atmea	ıs			
Conditional ma Model VCE :	orginal effect OIM	s		Number	r of obs =	948
Expression : dy/dx w.r.t. :						
at :	tickets traffic 0.male 1.male	= 5.20 = .53	01121 27004	(mean) (mean) (mean) (mean)		
		elta-method Std. Err.	z	P> z	[95% Conf.	Interval]
tickets traffic	2.45e-07 1.58e-08	8.06e-07 5.14e-08	0.30 0.31			

۲ Note the small effect of tickets and traffic

Marginal effects at means by hand

. estat summarize

Estimation sam	nple probit	Nu	mber of obs =	= 948
Variable	Mean	Std. Dev.	Min	Max
crash tickets traffic 1.male	.1624473 1.436709 5.201121 .4672996	.3690553 1.849456 2.924058 .4991929	0 0 .005189 0	1 7 9.99823 1

```
. matrix list r(stats)
```

```
r(stats)[4.4]
```

```
min
            mean
                         \mathbf{sd}
                                            max
 crash .16244726 .36905531
                                    0
                                              1
tickets 1.4367089 1.8494562
                                    0
                                              7
traffic 5.2011207 2.9240582 .00518857 9.9982338
1.male .46729958 .49919289
                                    0
                                              1
. matrix r = r(stats)
. scalar f1 = normalden(_b[tickets]*r[2,1]+_b[traffic]*r[3,1]
                                                                    111
         + b[1.male]*r[4.1] + b[cons])
>
. display f1*_b[tickets]
2.446e-07
. display f1*_b[traffic]
1.579e-08
```

Discrete effects at means via margins

. margins , dy Conditional ma Model VCE :				Number	r of obs =	948
Expression : dy/dx w.r.t. : at :	1	= 1.43 = 5.20 = .532	01121 27004	(mean) (mean) (mean) (mean)		
	D dy/dx	elta-method Std. Err.	z	P> z	[95% Conf.	Interval]
1.male	.0087485	.007247	1.21	0.227	0054553	.0229523

Note: dy/dx for factor levels is the discrete change from the base level.

Discrete effects at means by hand

. estat summarize

Estimation sam	nple probit	Nu	mber of obs	= 948
Variable	Mean	Std. Dev.	Min	Max
crash tickets traffic 1.male	.1624473 1.436709 5.201121 .4672996	.3690553 1.849456 2.924058 .4991929	0 0 .005189 0	1 7 9.99823 1

```
. matrix list r(stats)
```

r(stats)[4,4]

	mean	sd	min	max				
crash	.16244726	.36905531	0	1				
tickets	1.4367089	1.8494562	0	7				
traffic	5.2011207	2.9240582	.00518857	9.9982338				
1.male	.46729958	.49919289	0	1				
. matrix r = r(stats)								

```
. local xb0 = _b[tickets]*r[2,1]+_b[traffic]*r[3,1] + _b[_cons]
. display normal(`xb0'+_b[1.male]) - normal(`xb0')
```

```
.00874852
```

Average partial effects

• Average partial effect of x_k is

$$\frac{\beta_k}{N} \sum_{i=1}^N f(\mathbf{x}_i \boldsymbol{\beta})$$

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへの

if x_k is continuous

• If x_k is discrete, the average partial effect is the average of the discrete differences in the predicted probabilities

Marginal effects at a point versus Average marginal effects

- A marginal effect at a point is an estimate of the marginal effect at chosen covariate values
 - The marginal effect for a given person
- An average marginal effect is an estimate of a population-averaged marginal effect
 - The mean marginal effect for a population
 - The distribution of the covariates must be representative to consistently estimate the population-averaged marginal effect
- Mean partial effects and marginal effects at the mean are different quantities and can produce different estimates

• Let
$$g(\mathbf{x}) = \frac{\partial F(\mathbf{x})}{\partial x}$$

• g() is nonlinear implies that $g(\bar{\mathbf{x}}) \xrightarrow{p} g(E[\mathbf{x}]) \neq E[g(\mathbf{x})] \xleftarrow{p} N^{-1} \sum_{i=1}^{N} g(\mathbf{x}_i)$ A review of cross-sectional probit model

Partial effects

Average marginal effects via margins

.0055371

. margins , dydx(tickets traffic)							
Average marginal effects Model VCE : OIM				Number	of obs	=	948
1	: Pr(crash), predict() : tickets traffic						
	dy/dx	Delta-method Std. Err.	z	P> z	[95% C	onf.	Interval]
tickets	.0857818	.0031049	27.63	0.000	.07969	63	.0918672

• Note that these values are much larger than marginal effects at means

2.71

0.007

.0015251

Note that these estimates are statistically significant

.0020469

.009549

traffic

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Average marginal effects by hand

- . predict double xb, xb
- . generate double me_tickets = normalden(xb)*_b[tickets]
- . generate double me_traffic = normalden(xb)*_b[traffic]
- . summarize me_tickets me_traffic if e(sample)

Variable	Obs	Mean	Std. Dev.	Min	Max
me_tickets	948	.0857818	.2090093	4.59e-35	.9818822
me_traffic	948	.0055371	.0134912	2.96e-36	.0633787

Average discrete effects via margins

. margins , dydx(male)							
Average marginal effects Model VCE : OIM				Numbe	er of obs =	948	
<pre>Expression : Pr(crash), predict() dy/dx w.r.t. : 1.male</pre>							
	dy/dx	Delta-method Std. Err.	z	P> z	[95% Conf.	[Interval]	
1.male	.2092058	.0105149	19.90	0.000	.188597	.2298145	

Note: dy/dx for factor levels is the discrete change from the base level.

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 ● 今々で

Average discrete effects by hand

- . generate double xb0 = _b[tickets]*tickets + _b[traffic]*traffic + _b[_cons]
- . generate double de = normal(xb0 + _b[1.male]) normal(xb0)
- . summarize de

Variable	Obs	Mean	Std. Dev.	Min	Max
de	948	.2092058	.3605846	7.79e-12	.996267

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Treating tickets as discrete I

```
. estimates restore probit1
(results probit1 are active now)
. preserve
         replace tickets = _n-1 in 1/8
(7 real changes made)
         replace male
                            = .4672996 in 1/8
(8 real changes made)
         replace traffic = 5.2011 in 1/8
(8 real changes made)
         predict Fhat in 1/8
(option pr assumed; Pr(crash))
(940 missing values generated)
         graph twoway line Fhat tickets in 1/8, xline(1.4367)
. restore
```

Treating tickets as discrete II

- The mean of tickets is about 1.43, and the slope of the probability function is about zero when tickets is less than 3
- When tickets is greater than or equal to 3, the slope of the probability function is greater than 0

Treating tickets as discrete III

. margins , at	t(tickets = (0 1 2 3)) post	coeflege	end		
Predictive man Model VCE	0			Number of obs	=	948
Expression	: Pr(crash),	predict()				
1at	: tickets	=	0			
2at	: tickets	=	1			
3at	: tickets	=	2			
4at	: tickets	=	3			
	Margin	Legend				
_at 1 2 3 4	.0001208 .0549183	_b[1bnat] _b[2at] _b[3at] _b[4at]				

Treating tickets as discrete IV

- . lincom _b[2._at] _b[1bn._at]
- (1) 1bn._at + 2._at = 0

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
(1)	.0001208	.0001671	0.72	0.470	0002067	.0004484

- . lincom _b[3._at] _b[2._at]
- $(1) 2._at + 3._at = 0$

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
(1)	.0547975	.0177313	3.09	0.002	.0200448	.0895502

- . lincom _b[4._at] _b[3._at]
- $(1) 3._{at} + 4._{at} = 0$

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
(1)	.3503763	.0225727	15.52	0.000	.3061346	.3946179

. estimates restore probit1 (results probit1 are active now)

Treating tickets as discrete V

<pre>. generate double xb_b = _b[_cons] + _b[traffic]*traf</pre>	fic + _b[1.male]*male
<pre>. generate double pr0 = normal(xb_b + 0*_b[tickets])</pre>	<pre>// prob when tickets=0</pre>
. generate double pr1 = normal(xb_b + 1*_b[tickets])	<pre>// prob when tickets=1</pre>
. generate double pr2 = normal(xb_b + 2*_b[tickets])	<pre>// prob when tickets=2</pre>
. generate double pr3 = normal(xb_b + 3*_b[tickets])	<pre>// prob when tickets=3</pre>
. generate pe_d01 = pr1-pr0	

. sum pe_d01

Variable	Obs	Mean	Std. Dev.	Min	Max
pe_d01	948	.0001208	.0003387	2.52e-24	.0031395
. generate pe	_d12 = pr2-p	r1			
. sum pe_d12					
Variable	Obs	Mean	Std. Dev.	Min	Max
pe_d12	948	.0547975	.0794281	1.05e-14	.3911403
. generate pe	_d23 = pr3-p	r2			
. sum pe_d23					
Variable	Obs	Mean	Std. Dev.	Min	Max
pe_d23	948	.3503763	.3749537	1.11e-07	.7821735

Missing data and partial effects I

- ML estimators are consistent if some of the data is missing at random
 - Missing at random allows the mechanism that causes data to be missing to depend on the covariates **x** and a disturbance that is independent of everything else in the model
 - This is sometimes called selection on observables
 - See [Cameron and Trivedi(2005)] and [Wooldridge(2002)] for discussions and proofs
 - The sample distribution of the covariates need not be representative of the population distribution

Missing data and partial effects II

- Estimating population averaged partial effects requires the much stronger assumption that the sample distribution of the covariates is representative
 - Missing completely at random guarantees that the sample distribution of the covariates is representative
 - Missing completely at random requires the mechanism that causes data to be independent of everything else in the model

- In some cases, we can use weights to make the weighted sample covariate distribution representative
- We need a representative sample of covariates for $N^{-1}\sum_{i=1}^{N} w_i g(\mathbf{x}_i) \xrightarrow{p} E[g(\mathbf{x})]$

Missing data and partial effects III

- We also need a representative sample covariate distribution to estimate E[x]
- If we choose $\tilde{\mathbf{x}}$ in way that does not depend on our sample, we can perform estimation and inference for the partial effect at \tilde{x} because all the information we need is contained in the ML point estimates and estimated VCE, which only require missing at random

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへの

Bibilography

- Cameron, A. Colin and Pravin K. Trivedi. 2005. *Microeconometrics: Methods and applications*, Cambridge: Cambridge University Press.
- Long, J. Scott and Jeremy Freese. 2006. *Regression models for categorical dependent variables using Stata*, College Station, Texas: Stata Press.
- Wooldridge, Jeffrey. 2002. *Econometric Analysis of Cross Section and Panel Data*, Cambridge, Massachusetts: MIT Press.