Maarten L. Buis

IIII Oddotic

Interaction effects

and comparison o effects

Indirect effects

Conclusion

Extracting effects from non-linear models

Maarten L. Buis

Institut für Soziologie Eberhard Karls Universität Tübingen

Maarten L. Buis

Introduction

Interaction effects

and comparison o effects

Indirect effects

0 . .

Introduction

- What is the effect of x on y?
 - Which effect do I choose: average marginal effects or marginal effects for someone with average values for the predictors or odds ratios, or...?
- Is the effect of x on y in group a the same as the effect of x on y in group b?
 - How to interpret interaction effects: marginal effect for interaction effects or ratio of odds ratios?
 - Is such a comparison of effects across groups even identified?
- How much of the effect of x on y can I explain with variable z?
 - How can I get indirect/mediator effects?

Maarten L. Buis

Introduction

Interactio effects

and comparison o effects

Indirect effects

Conclusion

This introduction

- · Quick review of
 - What is an effect?
 - What variables should we control for?
 - What is a non-linear model?

Extracting non-linear models

Maarten L. Buis

Introduction

What is an effect?

- Almost always a comparison of means.
- Say we have data on the income of a number of males and a number of *comparable* females.
- The comparison of the mean income of males and females gives us the effect of gender on income.
- This comparison can take the form of a difference: women earn on average x euros/yen/pounds/dollars less than men.
- or it can take the form of a ratio: women earn on average y% less than men.

Maarten L. Buis

Introduction

Effects

Interactio effects

and comparison o effects

Indirect effects

manect enect

OK, but what about continuous variables?

- Say we want to know the effect of age on income.
- Still a comparison of groups, each 1 year apart.
- Easiest solution is to constrain all these effects to be the same.
- The default for "difference effects" in linear regression.
- The default for "ratio effects" in non-linear regression with the log link-function.

Maarten L. Buis

Introduction

Effooto

Interaction

and comparison o effects

Indirect effects

Conclusion

What variables do we need to control for?

Confounding variables

Maarten L. Buis

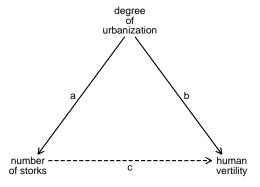
Introduction

Interactio

Identification and comparison o

Indirect effects

Conclusion



Maarten L. Buis

Introduction

Effocto

Interactio effects

and comparison of effects

Indirect effects

Conclusion

- Confounding variables
- Not intervening variables

Maarten L. Buis

Introduction

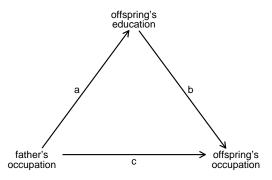
minoduotic

Interactio

and comparison o

Indirect effects

Conclusion



Maarten L. Buis

Introduction

Interaction

effects

and comparison o effects

Indirect effects

Conclusion

- Confounding variables
- Not intervening variables
- Not idiosyncratic error/random noise/'luck'
 - Many non-linear models exist to model a probability, an odds, a rate, or a hazard rate.
 - These concepts are defined by what we consider to be idiosyncratic error/random noise/'luck'.
 - In these models the dependent variable is defined by what we choose not to control for.

Maarten L. Buis

Introduction

Interestic

effects

and comparison o effects

Indirect effect

Non-linear models

- $f(E(y)) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots$
- f() is the link function, e.g.

• logit link: $\log(\frac{u}{1-u})$

• probit link: $\Phi(u)$

log link: log(u)

- an important characteristic of non-linear functions is that $f(E[y]) \neq E[f(y)]$
- · Many non-linear models exist to accommodate
 - known bounds in the dependent variable, e.g. probability [0,1], odds, rate, hazard rate ≥ 0.
 - · effects in terms of ratios

Maarten L. Buis

IIIIIouucii

Effects

effects

and comparison o effects

Indirect effects

Adjusted predictions (1)

- Say we want to know what the effect of having a college-degree on the probability of never being married, while controlling for age and whether or not the respondent lives in the South of USA.
- We do a logitstic regression: sysuse nlsw88, clear logit union collgrad age south
- An effect is a comparison of means, so why not get a predicted probability for a typical respondent with a college-degree and without a college-degree?

Maarten L. Buis

Introductio

Effects

Interactio effects

and comparison of effects

Indirect effects

Conclusion

Adjusted predictions (2)

 We could fix age and south at the mean and than predict the probability for the two groups:

Maarten L. Buis

Introducti

Effects

Interaction effects

and comparison o

Indirect effects

Canalusian

Adjusted predictions (2)

```
. margin , at(collgrad=(0 1) (mean) south age) noatlegend
Adjusted predictions
                                                   Number of obs
                                                                           2246
Model VCE
             : OIM
Expression
            : Pr(never_married), predict()
                          Delta-method
                   Margin
                            Std. Err.
                                            z
                                                 P>|z|
                                                           [95% Conf. Interval]
         _at
                 .0874183
                            .0068627
                                        12.74
                                                 0.000
                                                           .0739676
                                                                         .100869
                  .149139
                            .0154553
                                         9.65
                                                0.000
                                                           .1188472
                                                                       .1794308
```

Maarten L. Buis

Introductio

Effects

Interactio effects

and comparison o effects

Indirect effects

Conclusion

Adjusted predictions (2)

- We could fix age and south at the mean and than predict the probability for the two groups:
- Alternatively, We could predict the probabilities for all individuals, and than compute the mean probabilities within each group:

Maarten L. Buis

miroduci

Effects

Interactio effects

and comparison o

Indirect effects

Conclusion

Adjusted predictions (2)

Predictive margins Number of obs 2246 Model VCE : OTM Expression : Pr(never_married), predict() Delta-method Margin Std. Err. z P>|z| [95% Conf. Interval] _at .0893587 .0068779 12.99 0.000 .0758783 .102839

9.81

0.000

.1214279

.1820954

.0154767

. margin , at(collgrad=(0 1)) noatlegend

.1517616

Maarten L. Buis

Introduction

Effects

effects

and comparison o effects

Indirect effects

Adjusted predictions (2)

- We could fix age and south at the mean and than predict the probability for the two groups:
- Alternatively, We could predict the probabilities for all individuals, and than compute the mean probabilities within each group:
- Why are these not the same?

Maarten L. Buis

Introductio

Effects

Interactio effects

and comparison o effects

Indirect effects

Conclusion

Adjusted predictions (3)

- The predicted probability is $\Lambda(xb)$, where
 - $\Lambda(u) = \frac{exp(u)}{1 + exp(u)}$
 - $xb = \beta_0 + \dot{\beta_1}\dot{x_1} + \beta_2x_2 + \cdots$
- The first method consists of computing $\Lambda(E[xb])$.
- The second method consists of computing $E[\Lambda(xb)]$.

Maarten L. Buis

Introduction

Effects

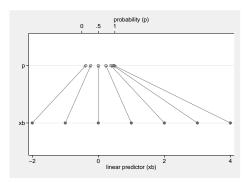
Interactio effects

and comparison o effects

Indirect effects

Conclusion

Adjusted predictions (3)



Maarten L. Buis

Introduc

Effects

Interactio effects

and comparison of effects

Indirect effects

OK, but what about the effect of continuous variables?

- We want to summarize by how much the probability of being unmarried decreases when one gets a year older.
- This is a rate of change, or first derivative.
- In this context often called marginal effect.
- Problem: the relationship between age and the probability is non-linear, so there are many marginal effects

Maarten L. Buis

Introduction

Effects

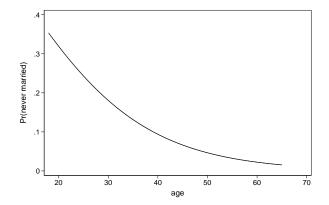
Interaction

and comparison o effects

Indirect effects

Conclusion

Effect of age



Maarten L. Buis

IIIIIOduciic

Effects

effects

and comparison of

Indirect effects

Conclusion

Effect of age (2)

```
. margins, dydx(age) noatlegend
          at ((mean) collgrad south age=(35 45))
Conditional marginal effects
                                                 Number of obs =
                                                                         2246
Model VCE
           : OIM
Expression : Pr(never_married), predict()
dy/dx w.r.t. : age
                         Delta-method
                   dy/dx
                                                         [95% Conf. Interval]
                           Std. Err.
                                               P>|2|
age
         _at
                -.0086154
                           .0032458
                                       -2.65
                                               0.008
                                                         -.014977
                                                                    -.0022538
                                       -5.24
               -.0046781
                           .0008927
                                               0.000
                                                        -.0064277
                                                                    -.0029285
```

Extracting non-linear models

Maarten L. Buis

Effects

OK, but what about the effect of continuous variables?

- We want to summarize by how much the probability of being unmarried decreases when one gets a year older.
- This is a rate of change, or first derivative.
- In this context often called marginal effect.
- Problem: the relationship between age and the probability is non-linear, so there are many marginal effects
- Problem: We get different effects when first fix the explanatory variables and than compute the marginal effect or first compute the marginal effects for each individual and than average.

Maarten L. Buis

IIIIIOduciic

Effects

effects

and comparison o

Indirect effects

Conclusion

Effect of age (3)

```
. margins, dydx(age) noatlegend
          at ((mean) collgrad south age=(35 45))
Conditional marginal effects
                                                 Number of obs =
                                                                         2246
Model VCE
           : OIM
Expression : Pr(never_married), predict()
dy/dx w.r.t. : age
                         Delta-method
                   dy/dx
                                                         [95% Conf. Interval]
                            Std. Err.
                                               P>|2|
age
         _at
                -.0086154
                            .0032458
                                       -2.65
                                               0.008
                                                         -.014977
                                                                    -.0022538
                                       -5.24
               -.0046781
                            .0008927
                                               0.000
                                                        -.0064277
                                                                    -.0029285
```

Maarten L. Buis

IIIIIoduci

Effects

effects

and comparison of effects

Indirect effects

0----

Too many effects

- So, what is the "true" effect?
- In a strick sense none of them, but they are all valid approximations
- There is an alternative that is not an approximation when the link function contains a logarithm.
- In that case the effect in terms of ratios is assumed to be constant.

Maarten L. Buis

Introductio

Effects

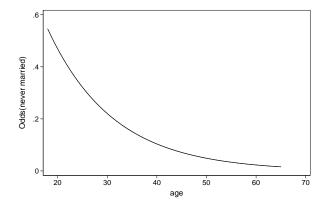
Interactio

and comparison o

Indirect effects

Canalusian

Effect of age (4)



Maarten L. Buis

Introductio

Effects

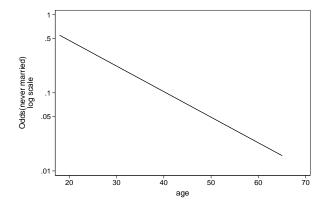
Interactio

and comparison o effects

Indirect effects

Conclusion

Effect of age (5)



Maarten L. Buis

Introductio

Effects

Interactio

and comparison o

Indirect effects

Conclusion

Effect of age (3)

.1310948

.3179058

```
. gen byte baseline = 1
```

baseline

.2041465

. logit never_married south c_age collgrad baseline, nolog nocons or

.0461335

Logistic regression Number of obs = 2246 Wald chi2(4) = 940.91 Log likelihood = -736.65888 Prob > chi2 = 0.0000

never_marr_d Odds Ratio Std. Err. z P> | z | [95% Conf. Interval] south .8552155 .1219781 -1.100.273 .6466511 1.131048 .0217551 -3.22 .970915 c age .9272802 0.001 .8856065 collgrad 1.829794 .270653 4.08 0.000 1.369295 2.445159

-7.03

0.000

[.] gen c_age = age - 30

Maarten L. Buis

miliodo

Effects

Interaction effects

and comparison of effects

Indirect effects

Marginal effects of interaction effects

- An interaction between two variables is included by creating a new variable that is the product of the two.
- In linear regression we can interpret the multiplicative term as how much the effect of variable 1 changes for a unit change in variable 2 (and vice versa).
- Ai and Norton (2003) pointed out that this does not work for marginal effects in non-linear models.
- The aim is find out how much the effect of x₁ changes for a unit change in x₂
- i.e. the cross partial derivative with respect to x_1 and x_2 .
- These can be computed in Stata by inteff and inteff3.

Maarten L. Buis

Introduction

Effocts

Interaction effects

and comparison o effects

Indirect effects

Conclusion

Ratio effect of interaction effects

- The easier solution is to interpret interaction effects in terms of ratio effects.
- The interaction effect can now be interpreted as the ratio by which the effect of x₂ changes for a unit change in x₁

Maarten L. Buis

Interaction

effects

Interaction effects

. sysuse nlsw88, clear (NLSW, 1988 extract)

. gen byte high_occ = occupation < 3 if occupation < . (9 missing values generated)

. gen byte black = race == 2 if race < .

. drop if race == 3

(26 observations deleted)

. gen byte baseline = 1

. logit high occ black##collgrad baseline, or nocons nolog

Logistic regression

Number of obs Wald chi2(4) 504.62 Prob > chi2 0.0000

Log likelihood = -1199.4399

high_occ	Odds Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
1.black 1.collgrad	.4194072 2.465411	.0655069	-5.56 7.58	0.000	.3088072 1.952238	.5696188 3.113478
black# collgrad 1 1	1.479715	.4132536	1.40	0.161	.8559637	2.558003
baseline	.3220524	.0215596	-16.93	0.000	.2824512	.3672059

Maarten L. Buis

Introduction

.....

Interaction

effects
Identificatio

and comparison of effects

Indirect effects

Conclusion

Interaction effects

. margins , over(black collgrad) expression(exp(xb())) post

Predictive margins Number of obs = 2211 Model VCE : OIM

Expression : exp(xb())

over : black collgrad

	Margin	Delta-method Std. Err.	z	P> z	[95% Conf.	Interval]
black#						
0 0	.3220524	.0215596	14.94	0.000	.2797964	.3643084
0 1	.7939914	.078188	10.15	0.000	.6407457	.9472371
1 0	.1350711		7.09	0.000	.097713	.1724292
1 1	.4927536	.1032487	4.77	0.000	.29039	.6951173

Maarten L. Buis

Interaction effects

Interaction effects

- . lincom 0.black#1.collgrad 0.black#0.collgrad
- (1) Obn.black#Obn.collgrad + Obn.black#1.collgrad = 0

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
(1)	.471939	.081106	5.82	0.000	.3129742	.6309038

- . lincom 1.black#1.collgrad 1.black#0.collgrad
- (1) 1.black#0bn.collgrad + 1.black#1.collgrad = 0

	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
(1)	.3576825	.1049933	3.41	0.001	.1518994	.5634656

Maarten L. Buis

Introduction

Interaction effects

Identification and comparison of effects

Indirect effects

Latent variable interpretation of logistic regression

- Assume that there is some latent propensity of success y*
- Someone gets a succusses if y* > 0 otherwise a failure.
- $y^* = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \varepsilon$
- the scale of y^* is fixed by fixing the standard deviation of ε to a fixed number $\frac{\pi}{\sqrt{3}}$.
- If we compare effects across groups or models we have to assume that the residual variance is equal otherwise the scale of the dependent variable will differ.

Maarten L. Buis

.

Effects

effects

Identification and comparison of effects

Indirect effects

Conclusion

Scenarios

- One way to get an idea about the size of this problem is to estimate various scenarios.
- The idea is that the heteroscedasticity comes from a (composite) unobserved variable, and to make assumptions regarding the size of the effect of this variable, its distribution, and how the effect changes when the observed variable of interest changes.
- The effect of the observed variables can than be estimated by integrating the likelihood function over this unobserved variable, which can be done by maximum simulated likelihood.
- This is implemented in Stata in scenreg.

Maarten L. Buis

Introductio

Interaction

Identification and comparison of

effects

Indirect effects

Conclusion

Probability and odds interpretation of logistic regression

- The problem is that the scale of y* is not defined
- We can solve that by interpreting the effects in terms of probabilities or odds, as these have a known scale.
- This does not do away with all arbitrariness:
 - the probability is defined in terms of what variables we chose to designate idiosyncratic error/luck
 - i.e. which variables we choose not to control for.
- Comparison of groups (interaction effects) can be solved this way, but comparisons of models with different explanatory variables (indirect effects) are still problematic.

Maarten L. Buis

Introduction

Interaction

effects

and comparison o

Indirect effects

Conclusion

Problem with naïve method

```
. drop _all
```

. set obs 60000 obs was 0, now 60000

 $. \text{ gen } z = \text{ceil}(_n / 20000) - 1$

- . bys z: gen $x = ceil(_n / 10000) 1$
- . bys z: gen x = ceii(_n / 10000) .
- . tab x z

x	0	1	2	Total
0	10,000 10,000	10,000 10,000	10,000 10,000	30,000 30,000
Total	20,000	20,000	20,000	60,000

- . set seed 12345
- . gen y = runiform() < invlogit(-4 + 4*x + 2*z)

Maarten L. Buis

Indirect effects

Problem with naïve method

```
. qui logit y x z
. est store direct
```

- . local direct = _b[x]
- . qui logit y x
- . est store total
- . local total _b[x]
- . est tab direct total

Variable	direct	total	
X Z	4.0391332 2.026339	2.6256242	
_cons	-4.0452305	-1.3123133	

. di "naive indirect effect = " `total' - `direct' naive indirect effect = -1.413509

Maarten L. Buis

Introductio

Interaction

Identification and comparison of

Indirect effects

munect enect

ldecomp solution:

Say we want to find the indirect effect of college education through occupation on union membership.

- Estimate a logistic regression with all variables.
- Predict the log odds for each respondent and transform these to proportions.
- Compute the average proportion for college-graduates and non-college-graduates, and transform back to log odds: the difference between these is the total effect.
- Compute the average proportion for college graduates, assuming they have the distribution of occupation of the non-college-graduates.
- The only difference between the college graduates and the counterfactual group is the distribution of occupation, so this difference represents the indirect effect.
- The distribution of occupation remains constant when comparing the counterfactual group with the

Maarten L. Buis

Indirect effects

Example

. sysuse nlsw88, clear (NISW. 1988 extract)

. gen byte high = occupation < 3 if occupation <.

(9 missing values generated)

Bootstrap replications (50)

. gen byte middle = occupation >= 3 & occupation < 7 if occupation < . (9 missing values generated)

. ldecomp union south, direct(collgrad) indirect(high middle) at(south 0) or (running _ldecomp on estimation sample)

Bootstrap results Number of obs 1869 Replications 50

	Observed Odds Ratio	Bootstrap Std. Err.	z	P> z		-based Interval]
1/0						
total	1.657501	.1867359	4.49	0.000	1.329096	2.06705
indirect1	.8958344	.0491377	-2.01	0.045	.8045225	.9975101
direct1	1.850231	.2249036	5.06	0.000	1.458004	2.347974
indirect2 direct2	.8872166 1.868203	.0493551 .2311406	-2.15 5.05	0.031	.7955693 1.465921	.9894213 2.380881

in equation i/j (comparing groups i and j)

let the fist subscript of Odds be the distribution of the the indirect variable let the second subscript of Odds be the conditional probabilities Method 1: Indirect effect = Odds_ij/Odds_jj

Direct effect = Odds ii/Odds ii

Method 2: Indirect effect = Odds ii/Odds ii Direct effect = Odds_ji/Odds_jj

value labele

0 not college grad 1 college grad

Maarten L. Buis

Effects

effects

and comparison o effects

Indirect effects

Conclusion

Conclusion

- There are two things that make non-linear models more difficult than non-linear models
 - The dependent variable is related to the independent variables via a non-linear function
 - The dependent variable is not directly observed, but a function of our model
- Often we can prevent the problem by using "ratio effects" instead of "difference effects"
- Sometimes we can bypass this problem by using a linear model as an approximation.
- Sometimes we will just have to use more complicated methods (ldecomp, scenreg, inteff, inteff3)