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The Gold Standard

Selection and Endogeneity

In a model like y = Xb + e, we must have E(X’e) = 0 for unbiased estimates
of b. This assumption fails in the presence of measurement error, simultaneous
equations, omitted variables in X, or selection (of X) based on unobserved or
unobservable factors. The “selection problem” is my focus.

A classic example is the effect of education on earnings, where the highest
ability individuals may get more education, but would have had higher earnings
regardless (leading us under this simple assumption to guess that the effect of
education is overestimated). The selection problem can often be framed as a
case of omitted variables (e.g. ability) or misspecification, but is more general.

Solution: observe unobserved factors, or attempt to control for unobservable
factors, using an experiment and/or quasi-experimental (QE) methods.
Though | focus on the selection problem and QE methods, they are also used
for other cases of endogeneity listed above; see e.g. Hardin, Schmiediche, and
Carroll (2003) on measurement error.
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The Gold Standard

A Simple Example

Success

Treatment 0 1 Total

.1743 . 8257 1

|
|
P |
| [.1621,.1872] [.8128,.8379]
|
|
|
|
|
|

0 .22 .78 1
[.2066,.234] [.766,.7934]
Total .1971 .8029 1

[.188,.2066] [.7934,.812]

Key: row proportions
[957, confidence intervals for row proportions]
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The Gold Standard

A Simple Example, con

Large ny
| Success

Treatment | 0 1 Total

P .3125 .6875 1

[.2813,.3455] [.6545,.7187]

|
|
|
[ .27 .73 1
| [.2533,.2873] [.7127,.7467]
|
Total | 2799 .7201 1
| [.2651,.2952] [.7048,.7349]
11
| Success
Treatment | 0 1 Total
P | .1333 .8667 1
| [.121,.1467] [.8533,.879]
|
01 069 .931 1
| [.0539,.0878] [.9122,.9461]
|
Total | L1176 .8824 1
|

[.1075,.1286] [.8714,.8925]
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The Gold Standard

The Rubin Causal Model

Rubin (1974) gave us the model of identification of causal effects that most
econometricians carry around in their heads, which relies on the notion of a
hypothetical counterfactual for each observation. The model flows from work
by Neyman (1923,1935) and Fisher (1915,1925), and perhaps the clearest
exposition is by Holland (1986); see also Tukey (1954), Wold (1956), Cochran
(1965), Pearl (2000), and Rosenbaum (2002).

To estimate the effect of a college degree on earnings, we'd like to observe the
earnings of college graduates had they not gone to college, to compute the gain
in earnings, and to observe the earnings of nongraduates had they gone to
college, to compute their potential gain in earnings.

One method here is to call the missing information on hypothetical
counterfactual outcomes missing data, and to impute the missing data—this is
essentially the approach a matching estimator takes. The other leading QE
candidates are panel methods, reweighting techniques, instrumental variables
(IV), and regression discontinuity (RD) approaches.
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The Gold Standard

The Fundamental Problem

The Fundamental Problem is that we can never see the counterfactual
outcome, but randomization of treatment lets us estimate treatment effects. To
make matters concrete, imagine the treatment effect is the same for everyone
but there is heterogeneity in levels—suppose there are two types 1 and 2:

Type Ely|T] Ely|C] TE
1 100 50 50
2 70 20 50

and the problem is that the treatment T is not applied with equal probability
to each type. For simplicity, suppose only type 1 gets treatment T and put a
missing dot in where we cannot compute a sample mean:

Type E[y|T] Ely|C] TE
1 100 ?
2 . 20 ?

The difference in sample means overestimates the ATE (80 instead of 50); if
only type 2 gets treatment the difference in sample means underestimates the
ATE (20 instead of 50).
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The Gold Standard

The Solution

Random assignment puts equal weight on each of the possible observed

outcomes:
Type E[y|T] Ely|C] TE
1 100 ?
2 . 20 ?
1 . 50 ?
2 70 . ?

and the difference in sample means is an unbiased estimate of the ATE.
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Selection and Endogeneity

The Gold Standard Solution

To control for unobservable factors, the universally preferred method is a
randomized controlled trial, where individuals are assigned X randomly. In the
simplest case of binary X, where X = 1 is the treatment group and X = 0 the
control, the effect of X is a simple difference in means, and all unobserved and
unobservable selection problems are avoided. In fact, we can always do better
(Fisher 1926) by conditioning on observables, or running a regression on more
than just a treatment dummy, as the multiple comparisons improve efficiency.

In many cases, an RCT is infeasible due to cost or legal/moral objections.
Apparently, you can’t randomly assign people to smoke cigarettes or not. You
also can’t randomly assign different types of parents or a new marital status,
either. Without random assignment, we have observational data, and an
observational study. Methods for consistently estimating b in observational
data are quasi-experimental methods, and include no method at all (i.e. you
run the same regression you would have before you realized there might be a
selection problem). Angrist and Pischke (2009) provide a good overview of a
few approaches, and Imbens and Wooldridge (2007) cover most.
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Selection and Endogeneity

All That Glitters

Even where an experiment is feasible, the implementation can be quite
daunting. Often, the individuals who are randomly assigned will agitate to be
in another group—the controls want to get treatment if they perceive a
benefit, or the treatment group wants to drop out if the treatment feels
onerous—or behave differently.

Even in a double-blind RCT, there may be leakage between treatment and
control groups, or differing behavioral responses. Those getting a placebo may
self-medicate in ways the treatment group do not (imagine a double-blind RCT
for treatment of heroin addiction), or side effects of treatment may induce the
treatment group to take some set of actions different from the control group (if
your pills made you too sick to work, you might either stop taking the pills or
stop working—presumably the placebo induces fewer people to give up work).
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Selection and Endogeneity

QE Methods in Experiments

In practice, all of the quasi-experimental methods here are used in experimental
settings as well as in observational studies, to attempt to control for departures
from the ideal of the RCT.

Sometimes, the folks designing experiments are clever and build in comparisons
of the RCT approach and observational approaches. See Orr et al. (1996) for
one example where OLS appears to outperform the more sophisticated
alternatives, and Heckman, Ichimura, and Todd (1997) where more
sophisticated alternatives are preferred. Smith and Todd (2001,2005) pursue
these comparisons further.

Another major problem with experiments is that they tend to use small and
select populations, so that an unbiased estimate of a treatment effect is
available only for a subpopulation, and the estimate may have large variance.
This is mostly a question of scale, but highlights the cost, bias, and efficiency
tradeoffs in choosing between an experiment and an observational study.
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Selection and Endogeneity

Treatment Effect

Just to be clear:

The “treatment effects” literature usually focuses on a binary indicator for
treatment where X = 1 indicates the treatment group and X = 0 the control,
but X is not randomly assigned in the sample.

| will use the term “treatment” for any potentially endogenous variable in X
whose effect we wish to measure, including continuous variables. Many
treatments come in different types or intensities, and we often estimate the
effect of a one-unit increase in intensity, however intensity happens to be
measured.
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Selection and Endogeneity

The Counterfactual Again

The mention of the placebo group self-medicating may also bring to mind what
happens in social experiments. If some folks are assigned to the control group,
does that mean they get no treatment? Generally not. A person who is
assigned to get no job training as part of an experiment may get some
elsewhere. Someone assigned to get job training as part of an experiment may
sleep through it.

The treatment group may not get treated; the control group may not go
untreated. The important thing to bear in mind is the relevant
counterfactual: what two regimes are you comparing? A world in which
everyone who gets treated gets the maximum intensity treatment perfectly
applied, and those who don't get treated sit in an empty room and do nothing?
What is the status quo for those not treated?
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Difference and Fixed Effects Models
More Models
ATE and LATE

The most basic quasi-experimental method used in observational studies is
identical to that used in most RCT's, the difference in differences (DD)

method.
Pre | Post
Treatment | w1 2
Control ¥3 va

ATE
(2 =y1) = (ya — y3)

The average treatment effect (ATE) estimate is the difference in differences.
For example, the estimate might be the test score gain from 8th grade to 12th
grade for those attending charter schools less the test score gain for those in
regular public schools. This assumes that the kids in charters, who had to
apply to get in, would not have had the same gains in a regular school, i.e.
that there was no selection into treatment.
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Difference and Fixed Effects Models
More Models
ATE and LATE

DD, DDD, D"

Having differenced out the “time" effect or the “state” effect, it is natural to
want to add dimensions and compute a difference in differences in differences,
and so on. This is equivalent to adding indicator variables and interactions to a
regression, and the usual concerns apply to the added variables.

The usual “good” diff-in-diff approach relies on a natural experiment, i.e. there
was some change in policy or the environment expected to affect treatment for
one group more than another, and the two groups should not otherwise have
different experiences. For this to work well, the natural experiment should be
exogenous itself (i.e. it should not be the case that the policy change is a
reaction to behavior) and unlikely to induce people to “game the system” and
change their behavior in unpredictable ways.
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Difference and Fixed Effects Models
More Models
ATE and LATE

A Natural Experiment Example

For example, in some US states in 1996, immigrants became ineligible for food
stamps, but 17 states offered a substitute program for those in the country
before 1996. As of July 2002, anyone in the country five years was eligible for
food stamps and most of those in the country 4.9 years were not. One could
compute a difference in mean outcomes (say, prevalence of obesity) across
recent and less recent immigrants, across calendar years 1995 and 1996, across
affected and unaffected states. Using 2002, you could compute a difference
across the population of immigrants in the country 4 years or 5 years. See
Kaushal (2007) for a related approach.
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Difference and Fixed Effects Models
More Models
ATE and LATE

Good Natural Experiments

In most cases, these types of natural experiments call for one of the other
methods below (the food stamp example cries out for an Regression
Discontinuity approach using individual data). A hybrid of DD and another
approach is often best.

In general, the more bizarre and byzantine the rules changes, and the more
draconian the change, the more likely a natural experiment is likely to identify
some effect of interest. A modest change in marginal tax rates may not provide
sufficient power to identify any interesting behavioral parameters, but the top
marginal estate tax rates falling from 45% in 2009 to zero in 2010 and then
jumping to 55% in 2011 creates an interesting incentive for mercenary children
to pull the plug on rich parents in the tax-free year.
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Diff-in-Diff and Natural Experiments

More Models
ATE and LATE

Difference and Fixed Effects Models

The natural generalization of the diff-in-diff method is to compute a difference
for each individual (person, firm, school, etc.), as in a first-difference model, or
include an individual-specific intercept for the fixed effect (FE) model. This can
be extended to two-way and n-way fixed effects just as the diff-in-diff can be
extended to the diff-in-diff-in-diff etc.

Suppose ability A is fixed for each individual i and does not change as time t
passes. A increases earnings Y and is correlated with higher schooling X, but
we cannot observe A in the true model:

Yie = Xieb + Ai + ez
so we estimate a first-difference model to eliminate the unobservable A:

Yie = Yie—1) = (Xie — Xi(e—1))b + €ir — €ie—1)
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Diff-in-Diff and Natural Experiments

More Models
ATE and LATE

Fixed Effects Models

To include individual-specific intercepts, we can demean the data:
Yie — Yi = (Xie — Xi)b + vir
or simply include an indicator variable for each individual i:
Yie = (Xie)b+ ai + vit
In fact, assuming we have a individual ID variable indiv, we should use one of:

xtreg y x*, fe i(indiv) cluster(indiv)
areg y x*, abs(indiv) cluster(indiv)

instead of including indicators. The cluster option allows for errors to be serially
correlated within panel (Arellano 1987; Kézdi 2004; Stock and Watson 2006).
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Diff-in-Diff and Natural Experiments

More Models
ATE and LATE

2-way Fixed Effects Models

Including additional sets of fixed effects, as for time periods, is easiest via
indicator variables:

qui tab year, gen(iy)
drop iyl
areg y x* iy*, abs(indiv) cluster(indiv)

See Abowd, Creecy, and Kramarz (2002) and Andrews, Schank, and
Upward (2005) for faster estimation of n-way fixed effects. See also
Cameron, Gelbach, and Miller (2006) for two-way clustering of errors,
and Cameron, Gelbach, and Miller (2007) for a bootstrap approach to
estimating cluster-robust standard errors with fewer than 50 clusters.
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Diff-in-Diff and Natural Experiments

More Models
ATE and LATE

First Difference, Fixed Effects, and Long Difference
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Diff-in-Diff and Natural Experiments

More Models
ATE and LATE
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Diff-in-Diff and Natural Experiments

More Models
ATE and LATE

First Difference, Fixed Effects, and Long Difference
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Diff-in-Diff and Natural Experiments

More Models
ATE and LATE

First Difference, Fixed Effects, and Long Difference

w
-
-
LD=14
v+ FE=1
oA %——‘FD:,E

Pre Post

Austin Nichols



Diff-in-Diff and Natural Experiments

More Models
ATE and LATE

FD, FE, and LD

Clearly, one must impose some assumptions on the speed with which X
affects Y, or have some evidence as to the right time frame for
estimation. This type of choice comes up frequently when stock prices
are supposed to have adjusted to some news, especially given the
frequency of data available—economists believe the new information is
capitalized in prices, but not instantaneously. Taking a difference in stock
prices between 3:01pm and 3pm is inappropriate, but taking a long
difference over a year is clearly inappropriate as well, since new
information arrives continuously.

One should always think about within-panel trends and the frequency of
measurement. Baum (2006) discussed some filtering techniques to get
different frequency “signals” from noisy data. Personally, | like a simple
method due to Baker, Benjamin, and Stanger (1999).
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Diff-in-Diff and Natural Experiments
Difference and Fixed Effects Models

ATE and LATE

Growth Models

In the food stamps example, if you had daily observations on height and
weight, you would not want to estimate the one-day change in obesity
among the affected group. Similarly, for an educational intervention, the
test scores on the second day are probably not the best measure, but are
the test scores on the last day? In the Tennessee STAR experiment, some
students were placed in smaller classes, and had higher test scores at the
end of the year. If they don't have higher test scores after five years,
should we care?
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Diff-in-Diff and Natural Experiments
Difference and Fixed Effects Models

ATE and LATE

There is a large class of growth models, where the effect of X is assumed to be
on the rate of change in Y. The natural way to specify these models is to
include an elapsed time variable and interact it with X.

Yie = Xieb + Tieg + TXif + Ai + €it

For a binary X, the marginal effect of X for each observation is then b + T
(or b[x]+_bl[timex]*time in Stata with T variable time and TX variable
timex), and we can imagine taking the mean across relevant time periods or
computing this quantity at some specified end point, i.e. we are back to
choosing among first difference or long difference models.

In practice, growth models are usually estimated using hierarchical models,
such as xtmixed, xtmelogit, xtmepoisson or some form of gllamm model
(Rabe-Hesketh, Skrondal, and Pickles 2002).
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Diff-in-Diff and Natural Experiments
Difference and Fixed Effects Models

ATE and LATE

Consistency

Note the assumption | started with: Suppose ability A is fixed for each
individual i but does not change as time t passes. If ability doesn't
change over time, what is the point of education? A facile observation,
perhaps, but the point is that the assumed selection was of the most
uncomplicated variety, and it is natural to think that people differ in
unobservable ways over time as well.

If people differ in unobservable ways over time as well, or selection is

more complicated, these panel methods will not provide consistent
estimates of the effect b.
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Diff-in-Diff and Natural Experiments
Difference and Fixed Effects Models

ATE and LATE

Other Panel Models

There are a variety of random effect and GLS methods that exploit
distributional assumptions to estimate more complicated panel models,
and there is the random coefficient case

Yie = Xiebi + €z

which seems like a natural extension to the basic panel setting (see xtrc
in Stata 10). With more assumptions come more violations of
assumptions, but greater efficiency (and potentially less bias) if the
assumptions hold.
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Diff-in-Diff and Natural Experiments
Difference and Fixed Effects Models
More Models

The mention of individual-specific coefficients raises the question of what
exactly we wish to estimate. If individuals may have different treatment
effects, or marginal effects, of some endogenous X, a regression of Y on
X will not in general recover the mean marginal effect of X, or average
treatment effect (ATE).
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Diff-in-Diff and Natural Experiments
Difference and Fixed Effects Models
More Models

OLS inconsistent for ATE

Consider a simplified case with a continuous X where Y = Xb+ X?g + e
but we do not observe X? (the omitted variable induces endogeneity) and
the effect of X on y for individual i is b+ 2gX; (i.e. the effect of X
varies across individuals in a very simple way). If X is normally
distributed, the OLS estimator b is consistent for the ATE, in the sense
that plim(b) = E(b + 2gX), but if X is lognormally distributed, the OLS
estimator is not a consistent estimator of the ATE.

(IV, which comes later, can get consistent estimates in some cases of

heterogeneous effects, but not all; see e.g. Wooldridge 1997 and
Heckman and Vytlacil 1997.)
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Diff-in-Diff and Natural Experiments
Difference and Fixed Effects Models
More Models

ATE and LATE

For evaluating the effect of a treatment/intervention/program, we may
want to estimate the ATE for participants (the average treatment effect
on the treated, or ATT) or for potential participants who are currently
not treated (the average treatment effect on controls, or ATC), or the
ATE across the whole population (or even for just the sample under
study). Often, however, for interventions which we are thinking about
expanding, we want only the ATE for the marginal participants, i.e. those
to whom treatment will be extended. This quantity, one version of the
Local Average Treatment Effect (LATE) where local means “local to
marginal participants at the current size,” is often exactly what is
estimated by quasi-experimental methods, particularly IV and RD. See
the classic, short, and well-written papers Imbens and Angrist (1994) and
Angrist, Imbens, and Rubin (1996), and see Heckman and Vytlacil (1999,
2000, 2004) for further discussion.
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Diff-in-Diff and Natural Experiments
Difference and Fixed Effects Models
More Models

Outline

Panel Methods
Diff-in-Diff and Natural Experiments
Difference and Fixed Effects Models
More Models
ATE and LATE
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Nearest Neighbor Matching
Propensity score matching
Reweighting
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Nearest Neighbor Matching
Propensity score matching
Reweighting

Matching and Reweighting Distributions

If individuals in the treatment and control groups differ in observable
ways (selection on observables case), a variety of estimators are possible.
One may be able to include indicators and interactions for the factors
that affect selection, to estimate the impact of some treatment variable
within groups of identical X (a fully saturated regression). There are also
matching estimators (Cochran and Rubin 1973) which compare
observations with like X, for example by pairing observations that are
“close” by some metric. A set of alternative approaches involve
reweighting so the distribution of X is identical for different groups,
discussed in Nichols (2008).
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Propensity score matching
Reweighting

Nearest Neighbor Matching

Nearest neighbor matching pairs observations in the treatment and
control groups and computes the difference in outcome Y for each pair,
then the mean difference across pairs. Imbens (2006) presented at last
year's meetings on the Stata implementation nnmatch (Abadie et al.
2004). See Imbens (2004) for details of Nearest Neighbor Matching
methods.

The downside to Nearest Neighbor Matching is that it can be
computationally intensive, and bootstrapped standard errors are infeasible

owning to the discontinuous nature of matching (Abadie and Imbens,
2006).
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Nearest Neighbor Matching

Reweighting

Propensity score matching

Propensity score matching essentially estimates each individual's
propensity to receive a binary treatment (via a probit or logit) as a
function of observables and matches individuals with similar propensities.
As Rosenbaum and Rubin (1983) showed, if the propensity were known
for each case, it would incorporate all the information about selection and
propensity score matching could achieve optimal efficiency and
consistency; in practice, the propensity must be estimated and selection
is not only on observables, so the estimator will be both biased and
inefficient.

Morgan and Harding (2006) provide an excellent overview of practical
and theoretical issues in matching, and comparisons of nearest neighbor
matching and propensity score matching. Their expositions of different
types of propensity score matching, and simulations showing when it
performs badly, are particularly helpful.
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Nearest Neighbor Matching

Reweighting

Propensity score matching methods

Typically, one treatment case is matched to several control cases, but
one-to-one matching is also common. One Stata implementation psmatch2 is
available from SSC (ssc desc psmatch2) and has a useful help file, and there
is another Stata implementation described by Becker and Ichino (2002)
(findit pscore in Stata). psmatch2 will perform one-to-one (nearest
neighbour or within caliper, with or without replacement), k-nearest neighbors,
radius, kernel, local linear regression, and Mahalanobis matching.

As Morgan and Harding (2006) point out, all the matching estimators can be
thought of as reweighting scheme whereby treatment and control observations
are reweighted to allow causal inference on the difference in means. Note that
a treatment case / matched to k cases in an interval, or k nearest neighbors,
contributes y; — k™* Efyj to the estimate of a treatment effect, and one could
just as easily rewrite the estimate of a treatment effect as a weighted mean
difference.
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Nearest Neighbor Matching

Reweighting

Common support

Propensity score methods typically assume a common support, i.e. the range of
propensities to be treated is the same for treated and control cases, even if the
density functions have quite different shapes. In practice, it is rarely the case
that the ranges of estimated propensity scores are the same, but they do nearly
always overlap, and generalizations about treatment effects should probably be
limited to the smallest connected area of common support.

Often a density estimate below some threshold greater than zero defines the
end of common support—see Heckman, Ichimura, and Todd (1997) for more
discussion. This is because the common support is the range where both
densities are nonzero, but the estimated propensity scores take on a finite
number of values, so the empirical densities will be zero almost
everywhere—we need a kernel density estimate in general, to obtain smooth
estimated density functions, but then areas of zero density may have positive
density estimates, so some small value is redefined to be effectively zero.
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Nearest Neighbor Matching

Reweighting

Common support diagnostic graph

It is unappealing to limit the sample to a range of estimated propensity scores, since it
is hard to characterize the population to which an estimate would generalize in that
case. A more appealing choice if the distributions of propensity scores exhibit poor
overlap, or if kernel density estimates of propensity scores for treatment or control
groups exhibit positive density or nonzero slope at zero or one, is to limit to ranges of
X variables, such that the distributions of propensity scores exhibit better properties.
At least in this case, we can say “our estimates apply to unemployed native workers
with less than a college education” or somesuch, together with an acknowledgement
that we would like estimates for the population as well, but the method employed did
not allow it.

Regardless of whether the estimation or extrapolation of estimates is limited to a
range of propensities or ranges of X variables, the analyst should present evidence on
how the treatment and control groups differ, and which subpopulation is being
studied. The standard graph here is an overlay of kernel density estimates of
propensity scores for treatment and control groups, easy in Stata with twoway
kdensity (but better with akdensity or kdens on SSC; the latter allows a boundary
correction at zero and one). DiNardo and Tobias (2001) provide an overview of
nonparametric estimators including kernel density estimators.
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Nearest Neighbor Matching
Propensity score matching

Propensity score reweighting

The propensity score can also be used to reweight the treatment and control
groups so the distribution of X looks the same in both groups: one method is
to give treatment cases weight one and control cases weight p/(1 — p) where p
is the probability of treatment. Additional choices are discussed in Nichols
(2008).

Note that the assumption that p is bounded away from zero and one is
important here. If estimated p approaches one for a control case, the
reweighting scheme above assigns infinite weight to one control case as the
counterfactual for every treatment case, and this control case should not even
exist (as p approaches one for a control case, the probability of observing such
a case approaches zero)!
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Nearest Neighbor Matching
Propensity score matching

Propensity scores, true and estimated

Part of the problem may be that propensity scores are estimated. If we had true
propensity scores, they would certainly never be one for a control case. But it turns
out that is really not the problem, at least for mean squared error in estimates of
causal impacts. In fact, you can usually do better using an estimated propensity score,
even with specification error in the propensity score model, than using the true
propensity score (based on unpublished simulations). This arises because the variance
of estimates using true propensity scores is very high, whereas using an estimated
propensity score is effectively a shrinkage estimator, which greatly reduces mean
squared error.

In fact, Hirano, Imbens, and Ridder (2003) show that using nonparametric estimates
of the propensity score to construct weights is efficient relative to using true
propensity scores or covariates, and achieves the theoretical bound on efficiency (but
see Song 2009 for a case where this does not hold).

It is a problem that propensity scores are estimated, because that fact is not used in
constructing standard errors, so most SEs are too small in some sense. Yet if we think
that using estimated propensity scores and throwing away information on true
propensity scores can improve efficiency, perhaps our standard errors are actually too
large! This is an active research area, but most people will construct standard errors
assuming no error in estimated propensity scores.
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Nearest Neighbor Matching
Propensity score matching

More reweighting

The large set of reweighting techniques lead to a whole class of estimators
based on reweighting the treatment and control groups to have similar
distributions of X in a regression. The reweighting techniques include DiNardo,
Fortin, and Lemieux (1996), Autor, Katz, and Kearney (2005), Liebbrandt,
Levinsohn, and McCrary (2005), and Machado and Mata(2005), and are
related to decomposition techniques in Blinder (1973), Oaxaca (1973), Yun
(2004, 2005ab), Gomulka and Stern (1990), and Juhn, Murphy, and Pierce
(1991, 1993).

DiNardo (2002) draws some very useful connections between the
decomposition and reweighting techniques, and propensity score methods, but
a comprehensive review is needed.
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Nearest Neighbor Matching
Propensity score matching

Selection on unobservables et

Imagine the outcome is wage and the treatment variable is union membership—one
can imagine reweighting union members to have equivalent education, age,
race/ethnicity, and other job and demographic characteristics as nonunion workers.
One could compare otherwise identical persons within occupation and industry cells
using nnmatch with exact matching on some characteristics. The various propensity
score methods offer various middle roads.

However, these estimates based on reweighting or matching are unlikely to convince
someone unconvinced by OLS results. Selection on observables is not the type of
selection most critics have in mind, and there are a variety of remaining problems
unaddressed by reweighting or matching, such as selection into a pool eligible for
assignment to treatment or control—e.g. in the union case, there may be differential
labor market participation (so whether or not a particular person would be in a union is
unknown for many cases). One hypothesized effect of unions is a reduction in the size
of workforces—if unionized jobs produce different proportions working, the marginal
worker is from a different part of the distribution in the two populations. DiNardo and
Lee (2002) offer a much more convincing set of causal estimates using an RD design.
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Necessary Specification Tests
Generalizations using Control Functions
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Treatreg
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Forms of IV

Necessary Specification Tests
Generalizations using Control Functions
The zeroth stage

Treatreg

IV methods

The idea of IV is to exploit another moment condition E(Z’e) = 0 when we think
E(X'e) # 0. Put another way, Z moves X around in such a way that there is some
exogenous variation in X we can use to estimate the causal effect of X on Y. It is this
way of characterizing IV that leads people to think they are getting an unbiased
estimator, but it is worthwhile to remember the IV estimator is biased but consistent,
and has substantially lower efficiency than OLS. Thus, if a significant OLS estimate b
becomes an insignificant EIT/ when using IV, one cannot immediately conclude that

b = 0. Failure to reject the null should not lead you to accept it.

There are a variety of things that can go wrong in IV, particularly if your chosen
excluded instruments don't satisfy E(Z’e) = 0 or if Z is only weakly correlated with
the endogenous X. You should always test for endogeneity of your supposedly
endogenous variable, and test that your IV estimate differs from your OLS point
estimate (not just from zero). You should also conduct overidentification tests and
identification tests, and tests for weak instruments. Luckily, all of the tests are easily
done in Stata, and some are part of official Stata as of release 10.
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Forms of IV

P The IV Estimator The instrumental variables estimator in ivreg is a one-step estimator that
can be thought of as equivalent to a variety of 2-step estimators; most think of it as a
projection of y on the projection of X on Z.

P Two-stage Least Squares (2SLS) is an instrumental variables estimation technique that is
formally equivalent to the one-step estimator in the linear case. First, use OLS to regress X
on Z and get X = Z(Z'Z)71Z'X, thenS use OLS to regress y on X to get By .

P Ratio of Coefficients: If you have one endogenous variable X and one instrument Z, you can
regress X on Z to get # = (Z’Z)7'Z’'X and regress y on Z to get 4 = (Z2'Z)"'Z'y, and
the IV estimate ,C;’/V = 4/#. If X is a binary indicator variable, this ratio of coefficients
method is known as the Wald estimator.

P The Control Function Approach: The most useful approach considers another set of two
stages: use OLS to regress X on Z and get estimated errors 0 = X — z(z’z)*lz/x then
use OLS to regress y on X and © to get ().

Note that in every case the set of excluded instruments does not vary; if different instruments are
to be used for different endogenous variables, you have a system estimator and should use reg3
(and read Goldberger and Duncan 1973). Also, if you want to model nonlinearities in an
endogenous variable X, as by including X2, you must treat added variables as new endogenous
variables, so you may need additional excluded instruments.
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One-step vs. two-step

The latter 3 two-step approaches will all give you the same answer as the
one-step estimator, though you will have to adjust your standard errors to
account for the two-step estimation as discussed in Wooldridge (2002,
Section 12.5.2). The advantages of the control function approach are
that it offers an immediate test of the endogeneity of X via a test of
b[v_x]=0:

reg x_endog X* z*
predict v_x, resid
reg y x_endog x* v_X
test v_x

(without adjusting SEs), and that it generalizes to nonlinear second stage
GLM estimation techniques such as probit or logit (for binary Y) and log
(for nonnegative Y) links.
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Other Flavors of IV: GMM

The GMM version of IV offers superior efficiency, and is implemented in
Stata using ivreg2 (see Baum, Schaffer, and Stillman (2003) and Baum,
Schaffer and Stillman (2007)), or the Stata 10 command ivregress.
GMM should be preferred in large samples if the null is rejected in a test
of heteroskedasticity due to Pagan and Hall (1983) implemented in Stata
as ivhettest by Schaffer (2004). Pesaran and Taylor (1999) discuss
simulations of the Pagan and Hall statistic suggesting it performs poorly
in small samples.

ivreg2 can also estimate the “continuously updated GMM" of Hansen

et al. (1996), which requires numerical optimization methods, in addition
to offering numerous choices of standard error corrections.
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Other Flavors of IV: LIML etc.

ivreg2 and ivregress both can produce the Limited Information
Maximum Likelihood (LIML) version of IV, though ivreg2 also offers
general k-class estimation, encompassing for example the UEVE
estimator proposed by Devereaux (2007) to deal with measurement error.
The Jackknife instrumental variables estimator (JIVE) can be estimated
by jive (Poi 2006) though note too that Devereaux (2007) draws a link
between JIVE and k-class estimators. There are a variety of other IV
methods of note, including for example the Gini IV (Schechtman and
Yitzhaki 2001).
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Tests for Endogeneity

If X is not endogenous, we would prefer OLS since the estimator has lower
variance. So it is natural to report a test of the endogeneity of any “treatment”
variables in X before presenting IV estimates. | already mentioned the control
function approach; the ivreg2 package offers a variety of other tests:

> orthog: The C statistic (also known as a "GMM distance” or
" difference-in-Sargan” statistic), reported when using the
orthog(varlist) option, is a test of the exogeneity of the excluded
instruments in varlist.

> endog: Endogeneity tests of one or more potentially endogenous
regressors can be implemented using the endog(varlist) option.

> ivendog: The endogeneity test statistic can also be calculated after ivreg
or ivreg2 by the command ivendog. Unlike the output of ivendog, the
endog(varlist) option of ivreg2 can report test statistics that are
robust to various violations of conditional homoskedasticity.
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OverlD Tests

If more excluded instruments are available than there are endogenous variables, an
overidentification (overlD) test is feasible. Since excluded instruments can always be interacted
with each other, with themselves (forming higher powers), or with other exogenous variables, it is
easy to increase the number of excluded instruments.

Users of Stata 9.2 or earlier should use the overid command of Baum, Schaffer, Stillman, and
Wiggins (2006) in the ivreg2 package. As of Stata 10, the command estat overid may be used
following ivregress to obtain the appropriate test. If the 2SLS estimator was used, Sargan’s
(1958) and Basmann'’s (1960) chi-squared tests are reported, as is Wooldridge's (1995) robust
score test; if the LIML estimator was used, Anderson and Rubin’s (1950) chi-squared test and
Basmann'’s F test are reported; and if the GMM estimator was used, Hansen's (1982) J statistic
chi-squared test is reported.

The null of an overID test is that the instruments Z are valid, i.e. that E(Z'e)=0, so a statistically
significant test statistic indicates that the instruments may not be valid. In this case, an appeal to
theorized connections between your variables may lead you to drop some excluded instruments and
form others.
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Identification Tests

For the parameters on k endogenous variables to be identified in an IV model, the
matrix of excluded instruments must have rank at least k, i.e. they can't be collinear
in the sample or in expectation. A number of tests of this rank condition for
identification have been proposed, including the Anderson (1951) likelihood-ratio rank
test statistic —N In(1 — e) where e is the minimum eigenvalue of the canonical
correlations. The null hypothesis of the test is that the matrix of reduced form
coefficients has rank k — 1, i.e, that the equation is just underidentified. Under the
null, the statistic is distributed chi-squared with degrees of freedom L — k + 1 where L
is the number of exogenous variables (included and excluded instruments). The
Anderson (1951) statistic and the chi-squared version of the Cragg Donald (1993) test
statistic Ne/(1 — e), are reported by ivreg2 and discussed by Baum, Schaffer, and
Stillman (2003, 2007).

Frank Kleibergen and Mark Schaffer produced the Stata program ranktest to
implement the rk test for the rank of a matrix proposed by Kleibergen and Paap
(2006). The rk test is a generalization of the Anderson (1951) test that allows for
heteroscedasticity /autocorrelation consistent (HAC) variance estimates.

A rejection of the null for any of these rank tests indicates that the model is identified.
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Tests for Weak Instruments

Weak instruments result in incorrect size of tests (typically resulting in overrejection of the null
hypothesis of no effect) and increased bias. Bound, Jaeger, and Baker (1993, 1995) pointed out
how badly wrong IV estimates might go if the excluded instrument is weakly correlated with the
endogenous variable, and Staiger and Stock (1997) formalized the notion of weak instruments.
Stock and Yogo (2005) provide tests of weak instruments (based on the Cragg and Donald (1993)
statistic) for some models, which are reported by ivreg2 when possible. Andrews, Moreira, and
Stock (2006, 2007), Chao and Swanson (2005), Dufour (2003), Dufour and Taamouti (1999,
2007), Kleibergen (2007), and Stock, Wright, and Yogo (2002), among others, discuss various
approaches to inference robust to weak instruments.

Anderson and Rubin (1949) propose a test of structural parameters (the AR test) that turns out to
be robust to weak instruments (i.e. the test has correct size in cases where instruments are weak,
and when they are not). Kleibergen (2002) proposed a Lagrange multiplier test, also called the
score test, but this is now deprecated since Moreira (2001, 2003) proposed a Conditional Likelihood
Ratio (CLR) test that dominates it, implemented in Stata by Mikusheva and Poi (2006).

Nichols (2006) reviews the literature on these issues. Briefly, if you have one endogenous variable
and homoskedasticity and the first-stage F-stat is less than 15, use the CLR test condtest by
Mikusheva and Poi (2006). If you have multiple endogenous variables, or H/AC/clustered errors,
use the AR test, but note its confidence region need be neither bounded nor connected, and may
not contain the point estimate. In theory, either the AR test or the CLR test can be inverted to
produce a confidence region for the parameter or parameters of interest, but in practice this
requires numerical methods and is computationally costly.
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Generalizations using the CF approach

The class of “control function” approaches is simply enormous, but |
refer to the fourth “flavor” of IV above where the endogenous X
variables are regressed on all exogenous variables (included and excluded
instruments), error terms are predicted, and included in a regression of
outcomes on X variables. The last stage, the regression of outcomes on
X variables, need not be a linear regression, but might be probit or
logit or poisson or any glm model.

The standard errors have to be corrected for the two-stage estimation, as
in Wooldridge (2002, Section 12.5.2), but in practice, the corrections
seem to make little difference to estimated standard errors. The
bootstrap is an easier and generally more robust correction in practice.

See Imbens and Wooldridge (2007; lecture 6) for much more detail on
various control function approaches.
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The zeroth stage

Generated regressors normally require corrections to standard errors; this is not
the case for excluded instruments. So various estimation strategies to estimate
Z are allowed before running an IV model (like a stage zero before the stage 1
and 2 of IV). In fact, a wide variety of specification search is “allowed” in the
first stage as well.

Wooldridge (2002) procedure 18.1 is a useful implementation of this: a binary
endogenous variable X is no problem for IV, but estimation is typically woefully
inefficient. Improved efficiency may be obtained by first regressing X on the
included and excluded instruments via probit or logit, predicting the
probability X, and using X as the single excluded instrument.

A related approach is to predict a continuous endogenous X in some previous
step and then use the prediction X as the instrument Z in the IV regression
(e.g. Dahl and Lochner 2005).

Note that the weak instrument diagnostics will fail miserably using these
approaches.
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The treatreg command offers another approach similar to IV in the
case of a single binary endogenous variable, but offers increased efficiency
if distributional assumptions are met. The two-step estimator is another
control function approach, where the inverse Mills ratio is the predicted
component in the first stage regression that is then included in the
second stage.

These consistent estimators can produce quite different estimates and
inference in small samples:

sysuse auto, clear

treatreg pri wei, treat(for=mpg)
treatreg pri wei, treat(for=mpg) two
ivreg pri wei (for=mpg)

qui probit for wei mpg

qui predict ghat if e(sample)

ivreg pri wei (for=ghat)
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Deterministic or Probabilistic Assignment
Interpretation

The RD Design

The idea of Regression Discontinuity (RD) design (due to Thistlewaite and
Campbell 1960) is to use a discontinuity in the level of treatment related to
some observable to get a consistent LATE estimate, by comparing those just
eligible for the treatment to those just ineligible.

Hahn, Todd, and Van der Klaauw (2001) is the standard treatment, and a
number of papers on RD appear in a special issue of the Journal of
Econometrics, including notably a practical guide by Imbens and Lemieux
(2008). Cook (2008) provides an entertaining history of the method’s
development, and Lee and Card (2008) discuss specification error in RD.

The RD design is generally regarded as having the greatest internal validity of

all quasi-experimental methods. Its external validity is less impressive, since the
estimated treatment effect is local to the discontinuity.
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RD Design Validity

For example, the What Works Clearinghouse (established in 2002 by the U.S.
Department of Education’s Institute of Education Sciences) uses Evidence
Standards to “identify studies that provide the strongest evidence of effects:
primarily well conducted randomized controlled trials and regression
discontinuity studies, and secondarily quasi-experimental studies of especially
strong design.”

P "Meets Evidence Standards’ —randomized controlled trials (RCTs) that do not have

problems with randomization, attrition, or disruption, and regression discontinuity designs
that do not have problems with attrition or disruption.

P "Meets Evidence Standards with Reservations”—strong quasi-experimental studies that
have comparison groups and meet other WWC Evidence Standards, as well as randomized
trials with randomization, attrition, or disruption problems and regression discontinuity
designs with attrition or disruption problems.

P> "Does Not Meet Evidence Screens” —studies that provide insufficient evidence of causal
validity or are not relevant to the topic being reviewed.
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RD Design Elements

What do we need for an RD design?

The first assumption is that treatment is not randomly assigned, but is
assigned based at least in part on a variable we can observe. | call this
variable the assignment variable, or Z, but it is often called the
“running” or “forcing” variable.

The crucial second assumption is that there is a discontinuity at some
cutoff value of the assignment variable in the level of treatment. For
example, in the food stamps example, immigrants in the country five
years are eligible, those in the country one day or one hour less than five
years are not.
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RD Design cont.

The third crucial assumption is that individuals cannot manipulate the
assignment variable (e.g. by backdating paperwork) to affect whether or
not they fall on one side of the cutoff or the other, or more strongly,
observations on one side or the other are exchangeable or otherwise
identical.

The fourth crucial assumption is that the other variables are smooth
functions of the assignment variable conditional on treatment, i.e. the
only reason the outcome variable should jump at the cutoff is due to the
discontinuity in the level of treatment. (Actually, only continuity in Z of
potential outcomes Y (X) at the cutoff is required, but some global
smoothness is an appealing and more testable assumption.)

Note this differs from IV, in that the assignment variable Z can have a
direct impact on the outcome Y/, not just on the treatment X, though
not a discontinuous impact.
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Deterministic or Probabilistic Assignment

In one version of RD, everyone above some cutoff gets treatment (or a strictly higher
level of treatment), and in another, the conditional mean of treatment jumps up at
the cutoff. These two types are often called the Sharp RD Design and the Fuzzy RD
Design, but | don't much like the Fuzzy versus Sharp terminology. The discontinuity
must be “sharp” in either case. One issue is whether there is common support for the
propensity of treatment—if not, then we can say for certain that folks to the left of the
cutoff certainly don’t get more than x amount of treatment and folks to the right get
no less than x, and X < x gives us one kind of “sharp” design since there is no overlap.

The special case where we know the conditional mean of treatment above and below
the cutoff, as with a binary treatment where X = 0 and x = 1, | call the deterministic
RD design since there is “deterministic assignment” of treatment conditional on the
observed assignment variable. In any other case, we have to estimate the jump in the
conditional mean of treatment at the discontinuity.
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One obvious “deterministic assignment” example of a regression discontinuity
occurs in elections with two options, such as for/against (e.g. unionization) or
Republican/Democrat. Across many firms, those which unionized with a
pro-union vote of 80% are likely quite different along many dimensions from
those that failed to unionize with a pro-union vote of 80%. Across many
congressional districts, those with 80% voting for Republicans are likely quite
different from those with 80% voting for Democrats. However, the firm that
unionizes with 50% voting for the union is probably not appreciably different
from the one that fails to unionize with 49.9% voting for the union. Whether
or not those people casting the few pivotal votes showed up or not is often due
to some entirely random factor (they were out sick, or their car didn't start, or
they accidentally checked the wrong box on the ballot). DiNardo and Lee
(2002) found little effect of unions using an RD design. Lee, Moretti, and
Butler (2004) looked at the effect of party affiliation on voting records in the
US Congress (testing the median voter theorem'’s real-world utility) and Lee
(2001) looked at the effect of incumbency using similar methods.
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Voting example

Dem and Rep Incumbents’ Spending
by District in the 102nd Congress

%

Spending in District

-5

-1

Dem Vote Share
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Educational grant example

An example of “probabilistic assignment” is a US Department of
Education grant program that is available to high-poverty school districts
within each state. High-poverty districts are clearly different from
low-poverty districts, but districts on either side of the cutoff point are
essentially exchangeable. The first difference here is that districts that
qualify (are above the cutoff) do not automatically get the grant; they
must apply. A second difference is that low-poverty districts can enter
into consortia with high-poverty districts and get funds even though they
are below the cutoff. However, a district cannot unilaterally apply, which
creates a discontinuity in the costs of applying at the cutoff, and we can
observe the assignment variable and the cutoff to see if there is a
discontinuity in funds received:
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Educational grants as a function of poor students
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Local Wald Estimator

In the “sharp” or “deterministic assignment” version, the estimated treatment effect is just the
jump in expected outcomes at the cutoff: in other words, the expected outcome for units just
above the cutoff (who get treated), call this y*, minus the expected outcome for units just below
the cutoff (who don't get treated, but are supposed to be otherwise identical), call this y ~, or

[ATE = (y" —y7)

since the jump in the level of treatment is exactly one unit at the cutoff.

In the “fuzzy” or “probabilistic assignment” version, the jump in outcomes is “caused” by some
jump in treatment that need not be one—but the ratio of coefficients method for 1V, the Wald
estimator, suggests how to estimate the effect of a unit change in treatment: just form the ratio of
the jump in outcomes to the jump in treatment. The Local Wald Estimator of LATE is thus

(y" —y7)/(xT — x7), where (x™ — x7) is the estimated discontinuous jump in expected
treatment. Note that this second estimator reduces to the first given “deterministic assignment”
since (x* — x7) = 1 in this case, so the distinction between “sharp” and “fuzzy” RD is not too
sharp.
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The RD estimator assumes “as-if random” assignment of the level of treatment
in the neighborhood of the cutoff, so that observations with levels of the
assignment variable Z close to the cutoff Zy form the “experimental” group.
Just as is often the case with true experiments, we cannot generalize the
estimated treatment effect to the rest of the population; for RD, our estimated
treatment effect technically applies only to individuals with Z exactly equal to
Zy, i.e. a set of measure zero in the population. RD is therefore a very
localized sort of Local Average Treatment Effect (LATE) estimator with high
internal validity and low external validity.

In this respect, RD is most like a RCT, in which subjects are often selected
nonrandomly from the population and then randomly assigned treatment, so
the unbiased estimate of average treatment effects applies only to the type of
subpopulation selected into the subject pool. At least in RD, we can
characterize exactly the population for whom we estimate the LATE: it is folks
with Z exactly equal to Zp.
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Polynomial or Local Polynomial in Z

There is a great deal of art involved in the choice of some continuous
function of the assignment variable Z for treatment and outcomes. The
researcher chooses some high-order polynomial of Z to estimate
separately on both sides of the discontinuity, or better, a local
polynomial, local linear, or local mean smoother, where the art is in the
choice of kernel and bandwidth. Stata 10 now offers 1poly which
supports aweights; users of prior versions can findit locpoly and
expand their data to get weighted local polynomial estimates. The
default in both is local mean smoothing, but local linear regression is
preferred in RD designs.
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Choice of Bandwidth

There are several rule-of-thumb bandwidth choosers and cross-validation
techniques for automating bandwidth choice, but none is foolproof. McCrary
(2007) contains a useful discussion of bandwidth choice, and claims that there
is no substitute for visual inspection comparing the local polynomial smoother
with the pattern in the scatterplot.

Because different bandwidth choices can produce different estimates, the
researcher should really report more than one estimate, or perhaps at least
three: the preferred bandwidth estimate, and estimates using twice and half the
preferred bandwidth. | believe a future method might incorporate uncertainty
about the bias-minimizing bandwidth by re-estimating many times using
different bandwidth choices.

As it is, though, local polynomial regression is estimating hundreds or
thousands or even hundreds of thousands of regressions. Bootstrapping these
estimates requires estimating millions of regressions, or more. Still, computing
time is cheap now.
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More Choices

Of somewhat less importance, but equally art over science, is the choice
of kernel. Most researchers use the default epanechnikov kernel, but the
triangle kernel typically has better properties at boundaries, and it is the
estimates at the boundaries that matter in this case.

Show the Data

Given how much choice the researcher has over parameters in a
supposedly nonparametric strategy, it is always wise to show a scatter
or dotplot of the data with the local polynomial smooth superimposed,
so readers may be reassured no shenanigans of picking parameters were
involved.
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Testing for Existence of a Discontinuity

The first test should be a test that the hypothesized cutoff in the assignment
variable produces a jump in the level of treatment. In the voting example, this
is easy: the probability of winning the election jumps from zero to one at 50%,
but in other settings the effect is more subtle: in the education example, the
discontinuity is far from obvious.

In any case, the test for a discontinuity in treatment X is the same as a test for
a discontinuity in the outcome Y. Simply estimate a local linear regression of
X on Z, both above and below the cutoff, perhaps using a triangle kernel with
a bandwidth that guarantees 10-20 observations are given positive weight at
the boundary, approaching the cutoff from either side. The local estimate at
the cutoff for regressions constrained below the cutoff is x~ and the local
estimate at the cutoff for regressions constrained above the cutoff is x*. The
computation of the difference x* — x~ can be wrapped in a program and
bootstrapped for a test of discontinuity.
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Testing for a Discontinuity

Assume for the sake of the example that the assignment variable Z is called share and ranges
from 0 to 100 (e.g. percent votes received) with an assignment cutoff at 50. Then we could write
a simple program:

prog discont, rclass

version 10

cap drop z f0O f1

g z=_n in 1/99

lpoly ‘1’ share if share<50, gen(f0) at(z) nogr k(tri) bw(2) deg(1)
lpoly ‘1’ share if share>=50, gen(f1) at(z) nogr k(tri) bw(2) deg(1)
return scalar d=‘=f1[50]-£0[50]"

end

bootstrap r(d), reps(1000): discont x

The computation of the difference in outcomes y™ — y ™ is obtained by replacing x with y above.
The Local Wald Estimator of LATE is then (y™ — y~)/(x" — x™), which quantity can also be
computed in a program and bootstrapped. The SSC package rd automates many of these tasks.
Imbens and Lemieux (2008) also provide analytic standard error formulae.
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Testing for Sorting at the Discontinuity

McCrary (2007) gives a very detailed exposition of how one should test
this assumption by testing the continuity of the density of the assignment
variable at the cutoff. As he points out, the continuity of the density of
the assignment variable is neither necessary nor sufficient for
exchangeability, but it is reassuring.

McCrary (2007) also provides tests of sorting around the discontinuity in

voting in US Congressional elections, where there is no sorting, and in
roll-call votes in Congress, where there is sorting.
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Testing for Extraneous Discontinuities in Y and X

Another useful test is that there are no extra jumps in the levels of
treatment or the outcome (both should be smooth functions of the
assignment variable at other points) where no hypothesized cutoff exists.
This is a test of the fourth crucial assumption. One can easily pick 100
random placebo cutoff points, and test the difference in X and the
difference in Y (about 5 placebo cutoffs will show significant jumps, of
course).
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Testing for Extraneous Discontinuities in Other Potential
Outcomes

An important though supererogatory piece of evidence is that there are
no jumps in variables that are not suspected to be affected by the

discontinuity. This amounts to estimating the difference h™ — h™ at the
cutoff for every other variable h (e.g. demographic characteristics, etc.).

This makes for some long papers, with page after page of scatterplots
showing no relationship where none was expected, but is very reassuring
that there is not some major difference between treated and untreated
observations around the discontinuity (i.e. these graphs are more
evidence in favor of exchangeability).
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Sensitivity Testing

The exposition by Manski (1995) demonstrates how a causal effect can be bounded under very
unrestrictive assumptions, and then the bounds can be narrowed under more restrictive parametric
assumptions. Given how sensitive the QE methods are to assumptions (selection on observables,
exclusion restrictions, exchangeability, etc.), some kind of sensitivity testing is order no matter
what method is used.

Rosenbaum (2002) provides a wealth of detail on formal sensitivity testing under various
parametric assumptions. Eliason (2007) provides a short Stata example of calculating Rosenbaum
bounds on treatment effects using psmatch2 and rbounds, due to DiPrete and Gangl (2004), who
compare Rosenbaum bounds in a matching model to IV estimates. sensatt by Nannicini (2006)
and mhbounds by Becker and Caliendo (2007) are additional Stata programs to aid in the
construction of bounds. Rosenbaum’s “gamma” measure of sensitivity is a useful summary
measure of potential sensitivity, often estimated via simulation.

Lee (2005) advocates another very useful method of bounding treatment effects, used in
Liebbrandt, Levinsohn, and McCrary (2005).
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Panel and IV methods

Estimators such as xtivreg (see also xtivreg2 due to Schaffer 2007) or
the Arellano and Bond (1991) estimator in xtabond (see also xtabond?2
and Roodman 2006) offer a combination of panel methods and IV
estimation.
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Panel matching/reweighting

Many of the reweighting papers e.g. DiNardo, Fortin, and Lemieux
(1996), Autor, Katz, and Kearney (2005), etc., are marriages of
matching/reweighting estimators and panel methods.

The preferred estimator in Heckman, Ichimura, and Todd (1997) is a
marriage of matching and diff-in-diff estimation.
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Reweighted 1V or RD

It is also interesting to consider reweighting so compliers in IV (those
induced to take a binary treatment by a single excluded binary
instrument) look like the rest of the distribution in observable variables,
or more generally to match or reweight to impute the LATE estimates to
the rest of the sample, and get an ATE estimate.

Similarly, one can imagine reweighting/matching marginal cases in RD to

get at the ATE. | have not seen this in the literature, though; probably
the finite sample performance is poor.
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RD meets IV

As mentioned above, the LATE estimate in the so-called “fuzzy RD"

design (y* —y~)/(xT — x7) is a Local Wald Estimator, or a type of
local IV.

If one were willing to dispose of local polynomials and assume a form for
X and Y as functions of the assignment variable Z, the RD approach can
be recast as straight IV where the terms with Z are included instruments
and an indicator for Z above the cutoff is the sole excluded instrument.
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RD meets DD

One can also imagine estimating a diff-in-diff version of the RD estimator, given the advent of
some policy with an eligibility cutoff, where the difference across times t and 0:

[0 =y = 06 —y0)] /=)
would be the estimated program impact. One would not want the difference in local Wald
estimates
[0 =y =xD)] = [0 =y )/ =x0)]

since before the policy is implemented, one would expect (x™ — x ™) to be zero, which would
create instability in the estimate.

An application where this might be useful is if we expect an underlying discontinuity at the cutoff
in the absence of treatment but we can use the observed jump in x and y before treatment begins
to difference that out. For example, a new treatment is applied only to those 65 or older, but there
is already an effect at 65 due to a jump in eligibility for Medicare (a large public health insurance
system). Or a new treatment is applied only to those whose children are 18 or older, but there is
already an effect at 18 due to parents’ ideas about when children should fend for themselves. If
¥y — ¥, (and/or xj — x4 ) is nonzero, we can give up the internal validity of regression
discontinuity, and downgrade to the internal validity of panel estimators, but get an unbiased
estimate under stronger conditions. If the jumps at the cutoff are not changing over time in the
absence of treatment, the differenced local Wald estimators will be unbiased for the local average
treatment effect.
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Conclusions

None of these methods is perfect. The gold standard, an RCT, has the best
internal validity but may have poor external validity. Of methods using
observational data, the RD design is closest to an RCT, and also has high
internal validity but low external validity. IV methods can eliminate bias from
selection on unobservables in the limit, but may have very poor performance in
finite samples. The hypothetical internal validity of IV is high, but the practical
internal validity of IV is often low, and the external validity not much greater
than RD.

Panel methods can eliminate bias from selection on unobservables that do not
change over time, or satisfy other strong distributional assumptions, but the
required assumptions are often untenable in practice. Matching and
reweighting methods can eliminate bias due to selection on observables, and
give efficient estimates of many types of treatment effects in many settings,
but it is rarely the case that selection depends only on observables, in which
case matching can actually exacerbate bias. Regression or matching methods
applied to population data often have very high external validity, but internal
validity that is often questionable.
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Conclusions cont.

In practice, the data often dictate the method. If one has access to
experimental data, one worries less about selection (though IV is often used to
correct for selection of treatment status contrary to assignment). Given
observational data, if one can find a discontinuity in expected treatment with
respect to an observable assignment variable, one uses RD; if one can conceive
of plausible excluded instruments, one uses V. In the absence of these features
of the data, repeated measures may used to control for invariant unobservables,
or observations may be matched on observables.

Checking that your model is not badly misspecified, and conducting various
kinds of sensitivity tests, is perhaps the most valuable way to minimize bias in
published estimates. Nichols (2007, 2008) offers a kind of “checklist” of things
to look at in these models (in Stata) and there will be a monograph with more
user-friendly text and examples later this year (forthcoming from Stata Press).
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