Heterogeneous Difference-in-Differences in Stata

Di Liu

StataCorp

Table of Contents

- Motivation
- 2 Setup
- 3 Estimators
- 4 Aggregations
- 5 Extensions

"TWFE" and heterogeneous treatment effects

Setup

- Estimate treatment effects using panel data or repeated cross-section
- Treatments start at different times
- Staggered treatment

Problems with using "TWFE"

$$y_{it} = \theta_t + \eta_i + d_{it}\alpha + v_{it}$$

- Treatment effects heterogeneity in two dimensions (cohort and time)?
- Summarize treatment effects with a single number?

We are asking too much from "TWFE"! See Goodman-Bacon (2021) and de Chaisemartin and D'Haultfœuille (2020)

Simulation example

$$ATET(g,t) = egin{cases} t-g+1, & ext{if } g <= 3 \ -(t-g+1), & ext{if } g > 3 \end{cases}$$

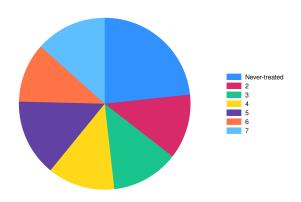


Figure 1: Cohorts distribution

Try "TWFE"

. xtdidregress (y x*) (treat), group(id) time(time)

Treatment and time information

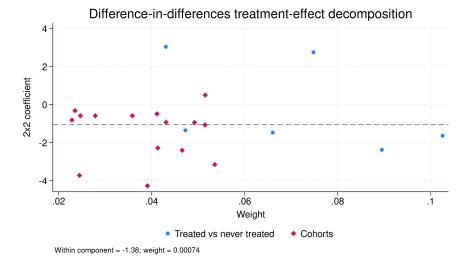
Time variable: time

Control: treat = 0
Treatment: treat = 1

| Control Treatment | Group | id | 233 | 767 | | Time | Minimum | 1 | 2 | Maximum | 1 | 7

Difference-in-differences regression Data type: Longitudinal

Number of obs = 7,000

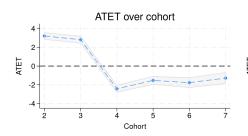

(Std. err. adjusted for 1,000 clusters in id)

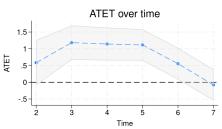
У	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
ATET						
treat (1 vs 0)	-1.052117	.0747087	-14.08	0.000	-1.198721	905513

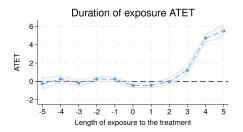
Note: ATET estimate adjusted for covariates, panel effects, and time effects. Note: Treatment occurs at different times.

$TWFE = \sum w_k Good_DID_k + \sum w_j Bad_DID_j$

• estat bdcomp, graph




xthdidregress


- xthdidregress aipw (y x*) (treat), group(id)
- estat atetplot, sci

estat aggregation

Overview of heterogeneous DID in Stata 18

Estimation:

- xthdidregress and hdidregress for panel data and repeated cross-section data
- Four estimators: ra, ipw, aipw in Callaway and Sant'Anna (2021) and twfe in Wooldridge (2021)

Post-estimation:

- estat atetplot: visualize ATETs
- estat aggregation: aggregate ATETs along different dimensions
- estat ptrends: pre-treatment parallel trend tests
- estat sci: simultaneous CI for RA, IPW, and AIPW estimators

Table of Contents

- Motivation
- 2 Setup
- 3 Estimators
- 4 Aggregations
- 5 Extensions

Potential outcome framework

Some notations:

- y_{i,t}(g) is unit i's potential outcome at time t if it starts treatment at time g
- $y_{i,t}(\infty)$ is unit i's potential outcome at time t if it is never treated
- G_i indicates unit *i*'s cohort (when the treatment starts), and it is one element in $\mathbf{G} = \{2, \dots, G, \infty\}$
- Thus, there are G potential outcomes for each unit i at time t
- $y_{i,t}$ is unit i's observed outcome at time t

$$y_{i,t} = \underbrace{\mathbb{1}(t < G_i)y_{i,t}(\infty)}_{\text{before treatment}} + \underbrace{\mathbb{1}(t \geq G_i)\sum_{g \in \mathbf{G}}\mathbb{1}(G_i = g)y_{i,t}(g)}_{\text{after treatment}}$$

Heterogeneous ATETs

$$ATET(g,t) = \mathbf{E}[y_{i,t}(g) - y_{i,t}(\infty)|G_i = g]$$

Remarks

- ATET(g, t) is a function of two arguments: cohort g and time t
- ATETs can be heterogeneous over cohorts, across time, across both time and cohorts
- Objective: consistently estimate ATETs and summarize them

Key assumptions

- Observe I.I.D samples of $\{y_{i,t}, \mathbf{x}_{i,t}, \mathbf{z}_{i,t}, d_{i,t}\}_{i=1,t=1}^{i=N,t=T}$, where $\mathbf{x}_{i,t}$ and $\mathbf{z}_{i,t}$ are covariates, and $d_{i,t}$ is observational level treatment indicator
- No one is treated in the first period
- No anticipation in pre-treatment periods t < g

$$\mathbf{E}[y_{i,t}(g)|\mathbf{x},G_i=g]=\mathbf{E}[y_{i,t}(\infty)|\mathbf{x},G_i=g]$$

Conditional parallel trend

$$\mathbf{E}[y_{i,t}(\infty)-y_{i,t-1}(\infty)|\mathbf{x},G_i=g]=\mathbf{E}[y_{i,t}(\infty)-y_{i,t-1}(\infty)|\mathbf{x},G_i=\infty]$$

Overlap assumption for propensity scores

Table of Contents

- Motivation
- Setup
- 3 Estimators
- 4 Aggregations
- 5 Extensions

Regression adjustment (RA)

$$ATET(g,t) = \mathbf{E} \left[\frac{K_g}{\mathbf{E}(K_g)} \left(y_t - y_{g-1} - m_{g,t} \right) \right]$$

$$= \underbrace{\mathbf{E} \left[y_t - y_{g-1} | K_g = 1 \right]}_{\text{treated differences}} - \underbrace{\mathbf{E} \left[m_{g,t}(\mathbf{x}) | K_g = 1 \right]}_{\text{untreated differences}}$$

where

- $K_g = \mathbb{1}(G_i = g)$ and $m_{g,t}(\mathbf{x}) = \mathbf{E}(y_t y_{g-1} | \mathbf{x}, G_i = \infty)$
- It is 2×2 difference-in-differences (two groups \times two periods)
- Benchmark time: one period before treatment (g-1)
- Benchmark group: never-treated group ($G_i = \infty$)

In Stata, we type

• xthdidregress ra
$$\underbrace{(y \quad \mathbf{X})}_{m_{g,t}(\mathbf{X})}$$
 (d), group(id)

Inverse probability weighting (IPW)

$$\textit{ATET}(g,t) = \mathbf{E}\left[\left(\frac{\textit{K}_g}{\mathbf{E}(\textit{K}_g)} - \frac{\frac{\textit{p}_g(\mathbf{z})\textit{K}_\infty}{1-\textit{p}_g(\mathbf{z})}}{\mathbf{E}\left[\frac{\textit{p}_g(\mathbf{z})\textit{K}_\infty}{1-\textit{p}_g(\mathbf{z})}\right]}\right)(\textit{Y}_t - \textit{Y}_{g-1})\right]$$

where

- $p_g(\mathbf{z}) = \Pr(K_g = 1 | \mathbf{z}, K_g + K_\infty = 1) = \frac{\Pr(K_g = 1 | \mathbf{z})}{\Pr(K_g + K_\infty = 1 | \mathbf{z})}$
- $\frac{\rho_g(\mathbf{z})}{1-\rho_g(\mathbf{z})} = \frac{\Pr(K_g=1|\mathbf{z})}{\Pr(K_\infty=1|\mathbf{z})}$. Thus, in the benchmark group (never treated), attach more weights to observations that are more probably observed in the cohort g
- We estimate $p_q(\mathbf{z})$ by a logit regression

In Stata, we type

• xthdidregress ipw (y) $\underbrace{(d \ z)}_{p_q(z)}$, group(id)

Augmented inverse probability weighting (AIPW)

$$ATET(g,t) = \mathbf{E}\left[\underbrace{\left(\frac{\mathcal{K}_g}{\mathbf{E}(\mathcal{K}_g)} - \frac{\frac{\rho_g(\mathbf{z})C}{1-\rho_g(\mathbf{z})}}{\mathbf{E}\left[\frac{\rho_g(\mathbf{z})C}{1-\rho_g(\mathbf{z})}\right]}\right)(Y_t - Y_{g-1} - \frac{\text{augmented term}}{m_{g,t}(\mathbf{x})})\right]}_{\text{IPW}}$$

 AIPW is doubly robust: only one of the outcome model or the treatment model needs to be correctly specified

In Stata, we type

• xthdidregress aipw
$$\underbrace{(y \ \mathbf{X})}_{m_{a,t}(\mathbf{X})} \underbrace{(d \ \mathbf{z})}_{p_g(\mathbf{z})}$$
, group(id)

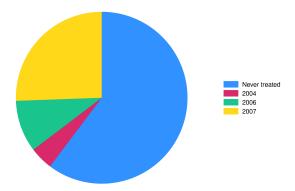
TWFF

Traditional TWFE:

$$\mathbf{y}_{it} = \mathbf{\theta}_t + \mathbf{\eta}_i + \mathbf{d}_{it}\alpha + \mathbf{v}_{it}$$

TWFE in Wooldridge (2021):

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$


With covariates **x**, add full interactions with θ_t , η_i , and $\mathbb{1}(G_i = g, t = s)$.

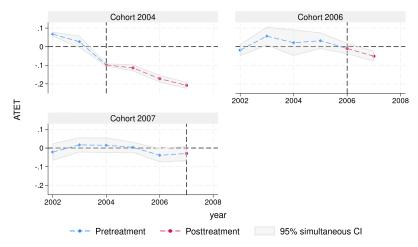
In Stata, we type

• xthdidregress twfe $(y \times x)$ (d), group(id)

Example: minimum wage and young employment

- Outcome: county-level employment for young workers
- Treatment: minimum wage restrictions introduced by State government; see Callaway and Sant'Anna (2021)
- Multiple periods: 2002 2007 (6 years)
- Multiple treatment timings: 2004, 2006, 2007

xthdidregress aipw


Define covariates

Use AIPW estimator

```
xthdidregress aipw (lemp $covars) (treat $covars), group(state)
```

- Adding covariates for conditional parallel trend
- There are 18 ATET(g,t)'s (6 years × 3 cohorts)
- Standard errors are adjusted by clusters of state

estat atetplot, sci

- Specify option sci for simultaneous confidence intervals
- For cohorts 2004 and 2006, minimum wage restriction decreases the employment rate for young workers

Table of Contents

- Motivation
- Setup
- Estimators
- 4 Aggregations
- 5 Extensions

Summarize ATET(g,t)'s

- How do the ATETs vary with the length of exposure to the treatment? (event study)
- How do the ATETs vary with cohorts? (does start treatment earlier matter?)
- How do the ATETs vary with time? (Good year vs. lousy year)
- Overall ATETs across time and cohorts

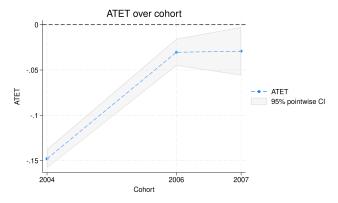
We can express the aggregations as a weighted mean of all ATETs


$$\theta = \sum_{g \in \mathbf{G}} \sum_{t=2}^{T} \underbrace{w(g,t)}_{\text{weight}} ATET(g,t)$$

Event study

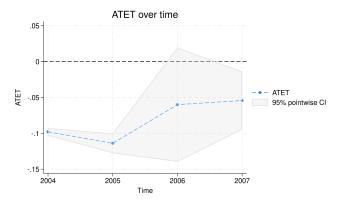
• Let e = t - g be the length of exposure to the treatment.

$$\theta(\mathbf{e}) = \sum_{g \in \mathbf{G}} \underbrace{\mathbb{1}(g + e \leq T) \Pr(G = g | g + e \leq T)}_{\text{propotions used to estimate ATET(g, g+e)}} \text{ATET}(g, g + e)$$


• estat aggregation, dynamic graph

ATETs over cohort

$$\theta(\mathbf{g}) = \sum_{t=g}^{T} \underbrace{\Pr(G = g | G = g, t \geq g)}_{\text{proportions used to estimate post-treatment ATET(g,t)}} ATET(g,t)$$


• estat aggregation, cohort graph

ATETs across time

$$\theta(\mathbf{t}) = \sum_{g \in \mathbf{G}} \mathbf{1}(t \ge g) \Pr(\mathbf{G} = g | \mathbf{G} \le t) ATET(g, t)$$

• estat aggregation, time graph

Overall aggregations

A single number to summarize ATET's

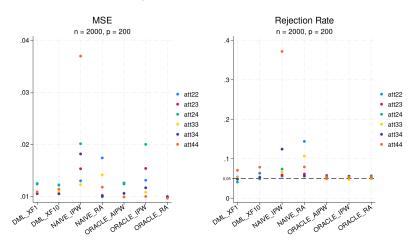
$$heta = rac{1}{\kappa} \sum_{g \in \mathbf{G}} \sum_{t=2}^T \mathbb{1}(t \geq g) \operatorname{\mathsf{Pr}}(G = g | G \leq T) extstyle{\mathsf{ATET}}(g, t)$$

• estat aggregation, overall

lemp	ATET	Robust std. err.	z	P> z	[95% conf.	interval]
treat (1 vs 0)	062811	.0256879	-2.45	0.014	1131582	0124637

Table of Contents

- Motivation
- Setup
- 3 Estimators
- 4 Aggregations
- 5 Extensions


Double machine learning AIPW estimator

Recall the AIPW estimator

$$ATET(g,t) = \mathbf{E}\left[\left(\frac{K_g}{\mathbf{E}(K_g)} - \frac{\frac{\rho_g(\mathbf{z})C}{1-\rho_g(\mathbf{z})}}{\mathbf{E}\left[\frac{\rho_g(\mathbf{z})C}{1-\rho_g(\mathbf{z})}\right]}\right)(Y_t - Y_{g-1} - m_{g,t}(\mathbf{x}))\right]$$

- AIPW is not only doubly robust but also Neyman orthognal
- Allowing high-dimensional covariates in $p_g(\mathbf{z})$ and $m_{g,t}(\mathbf{x})$
- Combining the cross-fitting with the AIPW scores
- For details, see the working paper Callaway, Drukker, Liu, and Sant'Anna (2023)

Simulations with high-dimensional covariates

- Double machine learning AIPW (DML_XF1, DML_XF10)
- Naive estimators for IPW and RA
- Oracle estimators for RA, IPW, and AIPW

References

- Callaway, B., D. Drukker, D. Liu, and P. Sant'Anna. 2023.

 Double/Debiased Machine-learning estimator for

 Difference-in-Difference with Multiple Periods. URL

 https://www.doi.org/10.13140/RG.2.2.33815.65447.
- Callaway, B., and P. H. Sant'Anna. 2021. Difference-in-Differences with multiple time periods. *Journal of Econometrics* 225: 200–230.
- de Chaisemartin, C., and X. D'Haultfœuille. 2020. Two-Way Fixed Effects Estimators with Heterogeneous Treatment Effects. *American Economic Review* 110: 2964–2996.
- Goodman-Bacon, A. 2021. Difference-in-differences with variation in treatment timing. *Journal of Econometrics* 225: 254–277.
- Wooldridge, J. M. 2021. Two-Way Fixed Effects, the Two-Way Mundlak Regression, and Difference-in-Differences Estimators. URL https://ssrn.com/abstract=3931952.

Appendix

Contents

1	xthdidregress	2
2	estat aggregation, dynamic	3
3	estat aggregation, cohort	3
4	estat aggregation, time	4

1 xthdidregress

. global covars i.region pop medinc white hs pov c.pop#c.pop c.medinc#c.medinc

. xthdidregress aipw (lemp \$covars) (treat \$covars), group(state)

note: variable _did_cohort, containing cohort indicators formed by treatment variable treat and group variable state, was added to the dataset.

Computing ATET for each cohort and time:

Cohort 2004 (6): done Cohort 2006 (6): done Cohort 2007 (6): done

Treatment and time information

Time variable: year

Time interval: 2001 to 2007 Control: _did_cohort = 0 Treatment: _did_cohort > 0

	_did_cohort
Number of cohorts	4
Number of obs	
Never treated	9639
2004	700
2006	1561
2007	4088

Heterogeneous-treatment-effects regression

Number of obs = 15,988 Number of panels = 29

Augmented IPW Panel variable: countyreal

Treatment level: state

Estimator:

Control group: Never treated

(Std. err. adjusted for 29 clusters in state)

		Robust				
Cohort	ATET	std. err.	z	P> z	[95% conf	. interval]
2004						
year						
2002	.0672458	.0061125	11.00	0.000	.0552655	.079226
2003	.0266718	.0122508	2.18	0.029	.0026608	.0506829
2004	0979371	.002649	-36.97	0.000	103129	0927451
2005	1139248	.0070092	-16.25	0.000	1276627	1001869
2006	1719979	.0082852	-20.76	0.000	1882366	1557592
2007	2078132	.0056814	-36.58	0.000	2189485	196678
2006						
year						
2002	0186685	.0105915	-1.76	0.078	0394274	.0020904
2003	.056737	.0181748	3.12	0.002	.0211151	.0923589
2004	.0212315	.0363779	0.58	0.559	0500679	.092531
2005	.0319911	.0158191	2.02	0.043	.0009863	.0629959
2006	009851	.0117487	-0.84	0.402	0328781	.013176
2007	0510452	.0092241	-5.53	0.000	069124	0329664
	1					

2007							
	year						
	2002	0215125	.014779	-1.46	0.145	0504788	.0074538
	2003	.0167167	.0132905	1.26	0.208	0093322	.0427655
	2004	.0149363	.0133763	1.12	0.264	0112809	.0411534
	2005	.0038453	.0092391	0.42	0.677	014263	.0219537
	2006	0390546	.0114977	-3.40	0.001	0615896	0165196
	2007	0292338	.0136042	-2.15	0.032	0558976	00257

Note: ATET computed using covariates.

2 estat aggregation, dynamic

. estat aggreg, dynamic graph(name(d1))

Duration of exposure ATET

Number of obs = 15,988

(Std. err. adjusted for 29 clusters in state)

		Robust				
Exposure	ATET	std. err.	z	P> z	[95% conf.	interval]
-5	0215125	.014779	-1.46	0.145	0504788	.0074538
-4	.0069386	.0100519	0.69	0.490	0127627	.0266399
-3	.0264872	.0126915	2.09	0.037	.0016122	.0513621
-2	.0151101	.0118987	1.27	0.204	0082109	.0384311
-1	0143403	.0124878	-1.15	0.251	0388159	.0101353
0	032043	.0122219	-2.62	0.009	0559975	0080885
1	0705126	.0161956	-4.35	0.000	1022553	0387699
2	1719979	.0082852	-20.76	0.000	1882366	1557592
3	2078132	.0056814	-36.58	0.000	2189485	196678

Note: Exposure is the number of periods since the first treatment time.

3 estat aggregation, cohort

. estat aggreg, cohort graph(name(c1))

ATET over cohort

Number of obs = 15,988

(Std. err. adjusted for 29 clusters in state)

Cohort	ATET	Robust std. err.	z	P> z	[95% conf.	interval]
2004 2006	1479183 0304481	.0053113	-27.85 -4.03	0.000	1583283 0452578	1375082 0156384
2007	0292338	.0136042	-2.15	0.032	0558976	00257

4 estat aggregation, time

. estat aggreg, time graph(name(t1))

ATET over time Number of obs = 15,988

(Std. err. adjusted for 29 clusters in state)

Time	ATET	Robust std. err.	z	P> z	[95% conf.	interval]
2004	0979371	.002649	-36.97	0.000	103129	0927451
2005	1139248	.0070092	-16.25	0.000	1276627	1001869
2006	0600513	.0406199	-1.48	0.139	1396648	.0195622
2007	0542855	.0206191	-2.63	0.008	0946981	0138728